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M-001 Modeling Sitagliptin Effect on Dipeptidyl

Peptidase IV (DPP4/CD26) Activity in Adults

with Hematological Malignancies After Umbilical Cord

Blood (UCB) Hematopoietic Stem Cell Transplant

(HSCT)

Nieves Vélez de Mendizábal1,2,*, Robert M. Strother3,

Steven Messina-Graham4, Sherif S. Farag1, Hal Broxmeyer4,

Robert R. Bies1,2

1Indiana University School of Medicine, Indianapolis, IN, USA;
2Indiana Clinical and Translational Sciences Institute (CTSI),

Indianapolis, IN, USA; 3Christchurch Hospital, Christchurch, NZ,

USA; 4Indiana University-Purdue University, Indianapolis, IN, USA

Objectives: UCB is a promising resource for HSCT, however, the

delayed engraftment observed has resulted in increased morbidity and

mortality resulting in less frequent use of UCB. Inhibition of DPP4,

previously shown to enhance stem cell engraftment in mice, have

been examined in human subjects in an effort to improve time to

engraftment in UCB HSCT [1, 2]. Based on data from this clinical

trial, a semi-mechanistic model was developed to simultaneously

describe DPP-4 activity after multiple doses of sitagliptin in subjects

with hematological malignancies after a single-unit UCB HSCT.

Methods: The clinical study included 24 patients (21–58 years) that

received myeloablative conditioning followed by oral sitagliptin

600 mg on days -1 to +2, with single-unit UCB HSCT on day 0.

Sitagliptin plasma concentrations were determined via HPLC–MS/

MS and plasma DPP-4 activity was determined using the DPP4-Glo

Protease Assay (Promega, Madison, WI, USA). These data were

simultaneously analyzed using the population approach with NON-

MEM 7.2.

Results: Disposition of sitagliptin in plasma was best described by a

2-compartment model. Drug absorption was best described by a first

order rate constant. Inter-subject variability (ISV) was found to be

significant for the apparent total plasma clearance (CL/F), apparent

volume of distribution in the central compartment (V2/F), apparent

volume of distribution in the peripheral compartment (V3/F), and

relative bioavailability (F). None of the PK parameters were time

or dose dependent. ISV was significant on DPP40, kunb and EC50.

The inclusion of covariance (positive correlation) between the ran-

dom effects associated to EC50 and bioavailability (F) parameters

significantly improved the model predictions. Different doses and

administration schedules were evaluated with the selected model with

the aim of maximizing the DPP-4 inhibition minimizing drug expo-

sure and/or Cmax.

Conclusions: A PKPD model was developed that accurately descri-

bed the relationship between sitagliptin dosing schedules and DPP4

activity in vivo. This model is valuable for exploration of new dose

regimes to maximize DPP-4 inhibition with the aim of improving

time to engraftment in UCB HSCT.
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M-002 Pharmacokinetic/Pharmacodynamic Analysis

of an Antibacterial Agent Administered in a Phase II

Study for the Treatment of Acute Bacterial Skin

and Skin Structure Infection (ABSSSI)

David Tenero* and John Zhu

GlaxoSmithKline, Clinical Pharmacology Modeling & Simulation,

King of Prussia, PA, USA

Objectives: Investigate the pharmacokinetic/pharmacodynamic (PK/

PD) relationship for an orally administered antibacterial agent in

patients with acute bacterial skin and skin structure infection and

attempt to identify breakpoint(s) for clinical response.

Methods: In a multicenter, randomized, double-blind, Phase II trial,

an antibacterial drug was administered as 1500 mg twice daily for up
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to 10 days in patients with suspected Gram-positive ABSSSI who

were not currently receiving antibacterial therapy. A population PK

model was first developed using PK data from three Phase I studies in

healthy volunteers. Population mean parameters were fixed to the

final Phase I estimates to obtain Bayesian estimates of apparent

clearance for each patient from the current Phase II study. Subse-

quently, individual Bayesian pharmacokinetic estimates were used to

predict drug exposure, as measured by the steady-state AUC(0-24),ss

for each patient. Logistic regression and classification and regression

tree (CART) analyses were conducted to investigate the PK/PD

relationship between microbiological/clinical cure and exposure

[AUC(0-24),ss or free (f) AUC/MIC] as well as patient covariates

(age, gender, and race). NONMEM (version 7.2) was used for pop-

ulation PK model building and R (version 2.12.0) was used for

logistic regression, CART, and Fisher’s exact test analyses and model

evaluation.

Results: The healthy volunteer data were best described by a two-

compartment model with first-order input and a lag time for absorp-

tion. Body weight was a statistically significant covariate on oral

clearance (CL/F) and central volume of distribution (V/F). Population

mean parameters were fixed to the final Phase I estimates to obtain

Bayesian estimates of PK parameters for each patient from the Phase

II study. The distribution of the Bayesian estimated CL/F and V/F

from the Phase II study were comparable to the individual post hoc

estimates from the Phase I studies used to developed the population

PK model, indicating that the Bayesian estimation approach was

appropriate to estimate CL/F (and AUC) for the Phase II patients.

The plan was to evaluate the PK/PD relationship in the intent-to-treat

bacteriology (ITTB) and clinical (ITTC) populations and the per

protocol bacteriology (PPB) and clinical (PPC) populations; however,

the number of treatment failures in the per protocol populations was

to low (n = 3) for this type of PK/PD analysis. Thus, PK/PD analyses

were only conducted for the ITTB and ITTC populations with results

shown for the ITTB population (n = 37; 22 cure/15 failure). Results

for the ITTC population were similar.

Univariate logistic regression analyses showed that age, gender,

race, fAUC/MIC, and AUC(0-24),ss were not statistically significant

predictors of microbiological cure in the ITTB population. AUC(0-

24),ss had the lowest P value (P = 0.137) and residual deviance and

provided the most informative model for these data, and the Hosmer–

Lemeshow test (P = 0.86) indicated there is not sufficient evidence to

conclude that this model has lack of fit. However, the area under the

receiver operating characteristic (ROC) curve was 0.63, indicating

poor discrimination and predictability of the model. At the median

AUC(0-24),ss value of 90.3 lg h/mL, the corresponding model-pre-

dicted probability of microbiological success is 58.9 %, concordant

with the observed 59.5 % microbiological success rate.

CART analyses identified a breakpoint for AUC(0-24),ss (78.2 lg

h/mL) as a predictor of microbiological cure. When AUC(0-24),ss was C

78.2 lg h/mL, the microbiological success rate was 67.9 % (19 suc-

cess, 9 failure), whereas when AUC(0-24),ss was \78.2 lg h/mL, the

microbiological success rate was only 33.3 % (3 success, 6 failure)

(P = 0.118). Logistic regression analysis was re-run with the indepen-

dent variable AUC(0-24),ss included as a categorical variable, based on

the CART-identified clinical breakpoint. AUC(0-24),ss as a categorical

covariate showed a more significant influence (P = 0.077) on microbi-

ological cure than AUC(0-24),ss as a continuous covariate. Additionally,

the model had the lowest residual deviance and more precise parameter

estimates.

Conclusions: Logistic regression and CART analyses were conducted

to investigate the PK/PD relationship between microbiological/clini-

cal cure and exposure [AUC(0-24),ss or fAUC/MIC] as well as

patient covariates (age, gender, and race) in this Phase II study.

AUC(0-24),ss and fAUC/MIC were not significant predictors for

microbiological success or clinical success but, overall, AUC(0-24),ss

provided the most informative model for these data. However, the

analyses were conducted on a small patient population that included

many non-drug related dropouts and these data need to be interpreted

with caution.

M-003 Design of Informative Renal Impairment

Studies: Evaluation of the Impact of Design

Stratification on Bias, Precision and Dose Adjustment

Error

J. G. Coen van Hasselt1,2,*, Jan H. M. Schellens1,3,

Jos H. Beijnen2,3, Alwin D. R. Huitema2

1Department of Clinical Pharmacology, The Netherlands Cancer

Institute, Amsterdam, The Netherlands; 2Department of Pharmacy

& Pharmacology, Slotervaart Hospital/Netherlands Cancer Institute,

Amsterdam, The Netherlands; 3Division of Pharmacoepidemiology

& Clinical Pharmacology, Department of Pharmaceutical Sciences,

Faculty of Science, Utrecht University, Utrecht, The Netherlands

Objectives: Renal impairment (RI) studies are conducted to estimate

the impact of RI on pharmacokinetics (PK). In some therapeutic areas

(e.g. oncology), these studies can be difficult to conduct, for instance

due to the limited number of eligible patients available. The objective

of this analysis was to evaluate bias and precision of population PK

parameters, and the dose adjustment error (DAE) for RI studies

(i) with different levels of study design imbalance in the stratification

of subjects across RI categories, and (ii) which include additional

patients in the control arm of RI studies, that may be available from

previously conducted PK studies.

Methods: Study designs were simulated and re-estimated using a

hypothetical 2-compartmental PK model, varying the magnitude of

the fraction of renal elimination (FR) and the magnitude of between-

subject variability (BSV). The DAE was computed based on the

difference between the theoretical dose adjustment versus the

empirical estimated dose adjustment.

Results: Although some design imbalance may still lead to DAEs of

acceptable magnitude (DAE B11.05–14.44 % inter-quartile range,

IQR), at least some patients are necessary in the more severe RI

groups in order to adequately estimate RI effects. Secondly, when 100

additional patients with normal renal function were included in a sub-

informative design, the DAE changed from B17.63–16.64 % IQR,

to B8.89–8.69 % IQR, indicating that inclusion of these patients may

substantially improve a RI analysis.

Conclusions: We quantified the impact of study design imbalance on

bias and precision of PK parameters and DAE, as may occur for RI

studies in some indications. Adding additional data from earlier

studies to the analysis dataset improves the bias and precision of PK

parameters.

M-004 A Modified Approach to Assess the Relationship

Between Plasma Eltrombopag Concentrations and QTc

Intervals from Phase III Studies in Patients

with Hepatitis C Virus Infection

Xiaohua Gong, Jianping Zhang*

GlaxoSmithKline, Research Triangle Park, NC, USA

Objectives: Eltrombopag is an orally bioavailable, small molecule

thrombopoietin receptor (TPO-R) agonist developed for the treatment
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of thrombocytopenia in patients with hepatitis C virus (HCV) infec-

tion. An earlier thorough QT (TQT) study in healthy subjects had

shown no relationship between plasma eltrombopag concentration

(Cp) and time-matched change from baseline in QTc between active

and placebo (ddQTc) at therapeutic (50 mg QD) and supratherapeutic

(150 mg QD) doses [1]. However, patients with HCV have demon-

strated increased eltrombopag exposure due to impaired hepatic

function [2], and they are more susceptible to QTc prolongation [3, 4].

Although assessment of the potential impact of eltrombopag on the

QTc interval was incorporated in phase III studies, time-matched QTc

data between placebo and active treatment were not available within

subject to allow standard Cp-ddQTc evaluation. A modified calcula-

tion of ddQTc was developed, such that the mean time-matched QTc

change from baseline in subjects from placebo group was subtracted

from the individual time-matched QTc change from baseline in

subjects treated with eltrombopag. This approach allowed method

similar to TQT analysis to be used to determine the effect of plasma

eltrombopag concentrations on QTc intervals in patients with HCV

from Phase III studies. The objectives of this analysis were (1) To

determine whether a relationship exists between plasma eltrombopag

concentration and the QT/QTc interval in patients with HCV; (2) To

identify influential covariates that might impact any relationship

between plasma eltrombopag concentration and QT/QTc interval in

patients with HCV.

Methods: Plasma eltrombopag concentration and ECG data were

obtained from 98 subjects with HCV in two phase III studies. Mixed

effects modeling was conducted for the Cp-QT and Cp-ddQTc

analyses. A stepwise modeling process was applied in which inter-

individual and inter-occasion variability and a circadian component

(for Cp-QT modeling) were added to the model. Graphical explora-

tion of random effects (g) against each covariate was inspected and

covariate analysis was conducted where effects of covariates mani-

fested. Data from Study 2 served as a validation dataset for the

models developed based on data from Study 1 alone. In addition,

visual predictive check and non-parametric bootstrap methods were

implemented for final model evaluation. The final Cp-ddQTc model

developed from the combined data was used to simulate the ddQTc at

therapeutic (up to 100 mg QD) and supratherapeutic (200 mg QD)

doses of eltrombopag in the analysis population (with time-matched

QTc data) as well as the entire PK population from both studies.

Results: (1) The final Cp-QT model fitted to the combined data

revealed an estimated correction coefficient (a) of 0.32. The esti-

mated slope for the effect of the plasma eltrombopag concentration on

QT interval was 0.243 (RSE = 9 %) m s/(lg/mL) with a 95 %

confidence interval from bootstrap analysis slightly above zero (0.059,

0.447 msec/(lg/mL)), suggesting a linear relationship between plasma

eltrombopag concentration and QT interval. However, a conservative

calculation using the upper limit of 95 % CI of the slope estimate

(0.447 msec/(lg/mL)) and assuming a fixed heart rate of 60 bpm

(RR = 1000 msec) demonstrated that the predicted QTc change from

baseline at 100 mg QD dose (median Cmax = 22.55 lg/mL) would be

approximately 10.1 msec, which suggests that impact of eltrombopag

concentrations on QT interval is not clinically significant. (2) The final

Cp-ddQTcF model fitted to the combined data also provided good

estimates of model parameters. The estimated slope for the effect

of the plasma eltrombopag concentration on ddQTcF was 0.136

(RSE = 10 %) msec/(lg/mL) with a 95 % confidence interval from

bootstrap analysis (-0.049, 0.394 msec/(lg/mL)) containing zero,

suggesting that the eltrombopag exposure does not have significant

affect on ddQTcF. (3) Simulations based on the final Cp-ddQTcF

model developed with either the analysis population or the entire PK

population suggested no significant QT prolongation over the studied

dosages of 25–100 mg once daily or with a supratherapeutic dose of

200 mg once daily.

Conclusions: (1) The slopes of the relationship between eltrombopag

concentrations and QT/ddQTc were slight. (2) The risk of QT

prolongation in response to daily dose of eltrombopag up to 100 mg is

negligible in patients with HCV infection. (3) The risk of QT pro-

longation due to supratherapeutic doses of eltrombopag as high as 200

mg QD is predicted to be negligible in patients with HCV infection.
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M-005 Pharmacokinetic-Pharmacodynamic Modeling

of the Antitumor Effects of SGN-CD19A, a Novel

Antibody–Drug Conjugate, in Mice

Baiteng Zhao1,*, Faith Stevison1, Che-Leung Law2, Tae H Han1

1Clinical Pharmacology, Seattle Genetics, Inc., Bothell, WA 98021,

USA. 2Preclinical Research, Seattle Genetics, Inc., Bothell, WA

98021, USA

Objectives: SGN-CD19A is a novel antibody–drug conjugate under

investigation for the treatment of acute lymphoblastic leukemia and B

cell non-Hodgkin lymphoma. It comprises a humanized antibody,

specific for human CD19, conjugated to the microtubule disrupting

agent monomethyl auristatin F. Preclinical evaluations of SGN-

CD19A demonstrated antitumor activities in the SCID mouse xeno-

graft models [1]. The objectives of this study were to characterize the

relationship of SGN-CD19A pharmacokinetics (PK) and antitumor

effects in a mouse Ramos xenograft model.

Methods: SGN-CD19A PK was characterized following intraperito-

neal (IP) administration of a single dose to nontumor-bearing mice

and to Ramos tumor-bearing. The pharmacodynamic (PD) antitumor

effect was characterized following IP administration of SGN-CD19A

in the mouse Ramos xenograft model. A dose fractionation approach

was used in the PD study, where a total dose of 8 mg/kg SGN-CD19A

was administered as either a single dose of 8, 4 mg/kg q21dx2, 4

mg/kg q7dx2, 2 mg/kg q7dx4, or 0.8 mg/kg q2dx10 [2]. Tumor sizes

were measured during the treatment. Sequential PK/PD models were

developed to describe the plasma PK and antitumor activity of SGN-

CD19A using NONMEM v7.1.2. Both the signal distribution model

and cell distribution model were tested for antitumor effects. Non-

linear tumor cell kill function with loss of drug sensitivity was

incorporated in the PD model.

Results: SGN-CD19A PK was dose proportional across the range of

doses tested and was similar between those in nontumor-bearing and

tumor-bearing mice. The plasma concentration–time profiles of SGN-

CD19A in mice were described well by a two-compartment PK model

with a depot compartment. The antitumor effects were dependent on

dose and schedule although all animals received the same total dose
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of SGN-CD19A. A single dose resulted in the greatest antitumor

effect while the highest fractioned dose resulted in reduced antitumor

activity. A cell distribution model with exponential growth and

incorporation of resistance development to the drug described the PD

data.

Conclusions: A semi-mechanistic PK/PD model characterized the PK

and antitumor effect of SGN-CD19A in a mouse Ramos xenograft

model. The antitumor effect of SGN-CD19A is dependent on the dose

and schedule in mouse xenograft model.
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M-006 Model Based Meta-analysis of Children’s

Depression Rating Scale: Revised (CDRS-R)

in Children and Adolescents with Major Depressive

Disorder

Diansong Zhou*, Nidal Al-Huniti

Clinical Pharmacology & Pharmacometrics, AstraZeneca,

Wilmington, DE, USA

Objectives: Major depressive disorder (MDD) leads to significant

morbidity and mortality in children and adolescents. Many antide-

pressants failed to demonstrate superiority in double blinded clinical

trials due to the significant placebo response. The purpose of current

study was to evaluate the time course of antidepressants in treatment

of MDD through longitudinal modeling, to explore the placebo

response effect and guide clinical trial design.

Methods: A PubMed search was conducted to obtain clinical trials

for antidepressive agents with reporting Children’s Depression Rating

Scale-Revised (CDRS-R) in children and adolescent. Only random-

ized controlled trials in youths (6–18 years of age) with MDD that

studied selective serotonin reuptake inhibitors as well as other novel

antidepressants were included as the placebo response in major

depression trials was higher than for other indications and could be

influenced by patient and trial characteristics [1]. A total of 10 clinical

trials for 7 drugs representing 2410 patients were included in the final

analysis. The average CDRS-R score at study entry was in the range

of 54.5–64.6 for these patients. An Emax like model was applied to

describe depression effect as shown below:

Responsei ¼ ðE0 þ g1Þ �
ðEmax þ g2Þ � Timei

ðET50 þ g3Þ þ Timei
þ e

ffiffiffi

n
p

Responsei is CDRS-R score for observation i.
Emax = Emax,placebo + D * Emax,drug, where D equals 1 for drug and

0 for placebo.

Model parameters were estimated by using nonlinear mixed effect

modeling software (NONMEM 7.2). A 1000 trial simulation was then

conducted with final parameter estimates and normally distributed eta

and epsilon with mean and variance estimated by the model to

evaluate the variability of placebo/drug and potential impact of

sample size in clinical trial design.

Results: The baseline CDRS-R score was estimated to be 58.9 (1.5 %

RSE) for MDD clinical trials in children and adolescent. The maxi-

mum effect with treatment of placebo was 24.5 (7.9 % RSE), while

the maximum effect was increased in the range of 1.4–7.7 by treating

with different antidepressive agents. The ET50, the time induced a

response equal to one-half of Emax, was estimated to be 1.9 weeks

(9.1 % RSE). The 1000-trial simulation (Figure below) indicated

model performance was acceptable (fluxetine results). In addition, the

model also demonstrated significant variability of placebo effect in

MDD clinical trials.

Conclusions: The meta-analysis of a longitudinal model permitted a

good fit to the antidepressive effect in children and adolescent. Model

based meta-analysis incorporates potential effect of different study

populations and designs from multiple clinical studies, and would

guide drug development programs to design new clinical trials.
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M-007 Diabetes Toolkit: A Multi-Function Clinical

Trial Simulation Program

Dongwoo Kang*, Raymond Miller

Translational Medicine and Clinical Pharmacology, Daiichi Sankyo

Pharma Development, Edison, NJ, USA

Objectives: To develop a general multi-function clinical trial simu-

lation tool for diabetes compounds to compute the probability of trial

success.

Methods: An R based trial simulation package consisting of 2

modules was developed using a diabetes drug PKPD (pharmacoki-

netic-pharmacodynamic) model established using rivoglitazone [1], a

peroxisome proliferator-activated receptor gamma (PPARc) agonist.

A publicly available R package of MSToolkit together with the

internally developed modules is used to simulate and analyze the data.

There also is an option to call a NONMEM run to simulate the model.

Module 1 simulates a conventional clinical trial to test if a new

compound produces large enough effect to be approved for market-

ing. An example decision criterion is to observe a 10 mg/dL or larger

drop in FPG (fasting plasma glucose) compared with baseline value

and/or to observe a 3 % or larger decrease in HbA1c (glycosylated

haemoglobin). Module 2 evaluates the viability of replacing a long

term study with a relatively short term study with the objectives of

reducing time and cost of development. To assess such a hypothesis, a
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long term (e.g., 16 weeks) study data is generated. Then a short term

(e.g., 2 or 4 weeks) study is mimicked by subsetting the long term

study observations. Using the short term subset data, PD model

parameters are reestimated to obtain a new model based on short term

data only. Projected endpoint values at the end of the required long

term period are obtained from the new short term data model, to be

compared with the original long term study output. If both values are

similar enough according to specific clinical criteria, the short term

study can replace the long term study because the conclusions will be

statistically similar. Diabetes Toolkit also produces extensive graphic

summary of the simulation results.

Results: Diabetes Toolkit was tested under various trial scenarios.

Example cases for Module 1 are shown in the tables below. Table 1

shows the probability of success (PoS) for FPG criteria of 10 mg/dL

or greater decrease from baseline at the end of 16 weeks of treatment,

and HbA1c criteria of 3 % or greater decrease, with respect to dif-

ferent sets of doses considered to determine trial success. Focusing on

high dose groups increases the PoS. Table 2 shows the PoS of FPG or

HbA1c with respect to various criteria values to identify the sensitive

or dull regions with respect to changes in the decision criteria.

Conclusions: A multi-function R package Diabetes Toolkit was

developed to perform diabetes clinical trial simulations. FPG and

HbA1c are the output variables to determine the drug response.

Diabetes Toolkit can be a useful tool during drug development to do

trial simulations quickly and with minimum or no reliance on other

software. Diabetes Toolkit can be easily modified for simulation of

different class drugs with different mechanisms of action.
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M-008 Population Pharmacokinetic Modeling

for Edoxaban in Healthy Subjects and Patients

with Non-valvular Atrial Fibrillation (NVAF)

Ophelia QP Yin, Raymond Miller

Daiichi Sankyo Pharma Development, Edison, NJ, USA

Objectives: Edoxaban is a novel, oral, once-daily, highly specific

direct inhibitor of factor Xa that is currently being developed for the

treatment and prevention of venous thromboembolism and prevention

of stroke and systemic embolism in patients with non-valvular atrial

fibrillation (NVAF). The objective of this analysis was to characterize

edoxaban population pharmacokinetics (PK), including estimation of

its absolute bioavailability, and quantification of the effects of renal

impairment or co-administration of P-gp inhibitors on edoxaban PK.

Methods: Data from 7 phase I studies in healthy volunteers (n = 225) or

renal impairment patients (n = 24), and one phase II study in patients

with NVAF (n = 732) were included in this analysis. NVAF patients with

mild or moderate renal impairment were enrolled in the phase II study.

Edoxaban was given as a single dose of 15 or 60 mg orally, or a single

dose of 30 mg intravenously in phase I studies. In the phase II study,

edoxaban doses were 30 or 60 mg once-daily orally, or 30 or 60 mg twice-

daily orally. Full PK samples were obtained from all phase I studies, while

in the phase II study there were approximately 2 samples per patient.

Population PK analysis was performed by using nonlinear mixed effects

modeling (NONMEM). The final selected model was assessed by good-

ness-of-fit, visual predictive check and bootstrap analysis.

Results: Edoxaban PK was described by a two-compartment model,

with first-order absorption and elimination. Absolute bioavailability

(F) was estimated to be 58.1 %. Renal creatinine clearance was iden-

tified as a significant covariate on clearance (CL), with typical CL

values being 28.7, 25.6, 22.7 and 20.4 L/h respectively, in subjects with

normal renal function, or with mild, moderate or severe renal impair-

ment. With intravenous dosing of edoxaban, concurrent administration

of the P-gp inhibitor quinidine statistically significantly decreased

edoxaban CL and volume of distribution of central compartment (Vc),

resulting in an increase of 32 % in AUC and 66 % in Cmin. With oral

dosing of edoxaban, concurrent administration of P-gp inhibitors

(including quinidine, ketoconazole, erythromycin, verapamil, and

amiodarone) significantly increased edoxaban F and decreased Vc,

resulting in moderate increases in AUC (range 33–77 %) and Cmax

(range 65–104 %), but a much smaller increase in Cmin (range -24 to

38 %) due to shortened terminal elimination half-life. Visual predictive

check suggested the final model described the data well, and all

parameter estimates had reasonable precision as per bootstrap analysis.

Conclusions: Overall, population PK analysis was consistent with the

known biopharmaceutical characteristics of edoxaban. The final model

provided reasonable estimation with regard to the absolute bioavail-

ability of edoxaban, impact of renal impairment on edoxaban

clearance, and the magnitude of change in edoxaban exposure mea-

sures upon co-administration of P-gp inhibitors. The population PK

model also aided the prediction of edoxaban PK in NVAF patients,

which will be used in a subsequent exposure–response analysis.

M-009 Understanding Placebo Responses

in Alzheimer’s Disease (AD) Clinical Trials

from the Literature Meta-data and CAMD Database

Kaori Ito1,*, Brian Corrigan1, Klaus Romero2, Richard Anziano1,

Jon Neville2, Diane Stephenson2, Richard Lalonde1

1Pfizer Inc., Groton, CT, USA; 2Critical Path Institute, Tucson, AZ,

USA

Table 1 Probability of success with respect to dose groups

considered

Dose (mg) PoS.FPG (%) PoS.HBA (%)

0.5, 1, 2, 3, 5 5 0

1, 2, 3, 5 8 0

2, 3, 5 30 0

3, 5 56 6

5 82 20

Table 2 Probability of success with respect to different decision

criteria

Criteria�DFPG

C (mg/dL)

PoS�FPG

(%)

Criteria�DHBA

C (%)

PoS�HBA

(%)

2.5 82 0.075 50

5 78 0.15 26

10 56 0.3 6

20 16 0.6 0
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Objectives: Understanding both the placebo response and the

underlying disease progression is crucial to designing clinical trials

and interpreting results in Alzheimer’s disease (AD) research. It is

sometimes difficult to differentiate the placebo effect and underlying

disease progression in individual longitudinal studies, resulting in

potential misinterpretation of the study results. In this analysis, the

placebo response in the Alzheimer’s disease assessment scale cog-

nitive subscale (ADAS-cog) was evaluated across studies. The

placebo response component from a previously published disease

progression model for ADAS-cog model was used to estimate the

placebo response with cognitive function over time in mild to mod-

erate AD patients, and the disease progression in the placebo group in

various case studies were compared to model predictions. In addition,

placebo group data from the coalition against major diseases (CAMD)

AD database in mild to moderate AD patients is described.

Methods: Historical placebo response data were obtained from a

literature search from 1990 to 2010, as described in a previous pub-

lication [1]. The disease progression model was developed based on

these trials [1], and the placebo response components were used in

this analysis. Data used in each Case Study was double blind, placebo

controlled studies taken from the public domain or Pfizer internal data

bases (placebo arm only), and the CAMD database (http://www.

c-path.org/CAMD.cfm). The CAMD AD database (cut-off date for

this analysis: Dec 2011) had patient level information from more than

3,700 individual subjects obtained from 10 trials, spanning the con-

tinuum of mild cognitive impairment (MCI) to mild and moderate AD

trials.

Results: Figure 1 (Case Study 1) shows side by side results from two

Phase II clinical trials for two different compounds (Drugs A and B).

In both cases, it appears as though a treatment effect was present as

compared with the placebo group in each study. However, when

historical control data is overlaid, along with model predictions

conditioned for baseline severity, it appears that the placebo response

in Drug B trial was much worse than what would be predicted.

Conversely, the treatment arm in Trial B appears to be where the

expected response for placebo usually falls. Given this result, and

without clear rationale for why a difference in placebo response

would be observed, the clinical team concluded that the placebo

response or Drug B was not normal, and needed more data to confirm

the efficacy before moving to Phase III.

In the next example, drug X demonstrated a significant treatment

effect in a Phase II study, followed by a large Phase III study. The

Phase III results appeared different from the Phase II study; there was

no significant difference between treatment group versus placebo

group. The clinical team questioned the placebo response in the Phase

III study, which appeared almost flat. In this case, the placebo

response in Phase III can be quantitatively assessed, and was deemed

well within the normal range; it was still within the 90 % prediction

intervals when compared with historical placebo response and model

prediction (Fig. 2). It was revealed that the placebo responses in both

Phase II and Phase III were reasonable, and that it was the treatment

effects that appeared different, resulting in a failed Phase III trial

(point size in Fig. 2 is proportional to the sample size of the study).

Figure 3 illustrates the mean change from baseline ADAS-cog

over time by study from the CAMD database. The blue line and gray-

shaded area in the figure indicate a lowess fit line with 95 % confi-

dential intervals. Across studies, the placebo effect is evident to at

least week 12. Interestingly, the short Phase II studies (Studies 1000

and 1009, 12 weeks Phase II studies) had larger placebo effects, again

perhaps due to expectations from both investigators and patients.

Also, these studies had a relatively small sample size (N = 102 and

164 for placebo arm), which might have effects on patient selection or

trial results.

Additional case studies will be presented at the conference.

Conclusions: Recent failures in Phase III AD clinical studies are not

likely due to insufficient cognitive decline/disease progression in the

placebo group to demonstrate separation of treatment effect. A meta-

analytic approach using all available data provides a robust under-

standing of placebo effect, and the disease progression, and the

placebo response predicted from the model allows us to quantitatively

evaluate the clinical study results, and to compare placebo responses

across trials. Baseline severity of cognitive deterioration is an

important covariate of disease progression, and must be accounted for

when comparing across trials.

Fig. 1 Using drug models to facilitate interpretation of study results Fig. 2 Abnormal placebo response or lack of drug treatment effect?

Fig. 3 Mean change from baseline ADAScog from CAMD database
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M-010 Pharmacokinetic-Pharmacodynamic Modeling

of Adalimumab and its Efficiency in the Management

of Rheumatoid Arthritis Patients

David Stepensky

Department of Clinical Biochemistry and Pharmacology, The Faculty

of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva,

Israel

Background: Anti-TNF-a antibodies that are used to manage rheu-

matoid arthritis (RA) can interact with TNF-a in the synovial fluid, in

the systemic circulation, and in other locations in the body. Unfor-

tunately, only partial data on the time course of synovial and systemic

concentrations of TNF-a and adalimumab is available due to the

difficulties with collection of synovial fluid from the RA patients.

Thus, there is lack of clarity regarding the mechanisms anti-TNF-a
effects of adalimumab in RA and its optimal use in this disease.

Outcomes of the recent pharmacokinetic-pharmacodynamic modeling

analysis of adalimumab effects in the RA indicated that subcutaneous,

intravenous and intraarticular administration of the clinically-used

doses of adalimumab (40 mg) exert similar anti-TNF-a effects [1]. At

these doses, adalimumab appears to exhibit predominantly systemic

anti-TNF-a effects (i.e., adverse effects) and the contribution of the

local effects in the rheumatic joints is small (*7 %). On the other

hand, the balance of local versus systemic effects can be potentially

improved using intraarticular sustained release (SR) formulations

of adalimumab. It is not clear to which extent the efficiency of the

local and systemic effects of adalimumab (administered by different

routes, as a solution or as a SR formulation) is affected by the inter-

patient variability of the RA disease state and of the adalimimab

pharmacokinetics.

Objectives: To estimate the inter-patient variability in the rheumatoid

arthritis (RA) disease state and in the pharmacokinetics and phar-

macodynamics of adalimumab. To estimate the resulting variability in

the time course of local (intraarticular) versus systemic concentrations

of TNF-a and in the optimal local delivery rate of adalimumab.

Methods: The data on the variability in the RA disease state and the

pharmacokinetics of adalimumab were collected from the scientific

literature [2–8]. The data included the following parameters: the TNF-

a baseline levels and its turnover in the plasma and the synovial fluid

of the RA patients, adalimumab absorption, distribution and elimi-

nation, and the affinity between the adalimumab and TNF-a. The

collected data have been analyzed using a target-mediated drug

disposition (TMDD) model with three sites of antibody-TNF-a
interaction1. Individual model parameters have been simulated for

one hundred virtual patients using Monte-Carlo approach, and the

time course of the local (intra-articular) and systemic TNF-a and

adalimumab concentrations have been analyzed. Furthermore, the

dose–response of intraarticular adalimumab in the individual patients

and its dependence on the individual variability factors have been

evaluated.

Results: The time course of the local (intra-articular) and systemic

TNF-a and adalimumab concentrations exhibited significant inter-

patient variability. The RA disease state (the baseline TNF-a secre-

tion rates in the individual compartments) was identified as the

highest source of variability in the baseline TNF-a levels and the anti-

TNF-a effects of adalimumab. Based on the simulations, intraarticular

adalimumab administration using sustained release formulations can

improve the balance of local versus systemic anti-TNF-a effects. For

the average patient, the optimal rate of intraarticular adalimumab

delivery (the therapeutic window) was in the range of

4.4–14.1 pmol h L. However, for the individual simulated patients, the

optimal local delivery rates of adalimumab ranged from 0.3–4.0 to

52–66 pmol h L (Figs. 1, 2).

Fig. 1 The dose–response of intraarticular adalimumab infusions in

the average patient. The average pharmacokinetic and pharmacody-

namics parameters of TNF-a and adalimumab and the TMDD model

with three sites of antibody-TNF-a interaction were used to simulate

the effect of the intraarticular adalimimab infusion rate on the local

(synovial fluid) and systemic (plasma) TNF-a levels in the rheuma-

toid arthritis patients. The arrows indicate the higher and the lower

boundaries of the therapeutic window: at least 80 % of desired effect

(reduction of the TNF-a levels in the synovial fluid) and up to 20 %

of the adverse effect (reduction of the TNF-a levels in the plasma)

Fig. 2 The therapeutic window of intraarticular adalimumab in the

individual patients. The dose–response of intraarticular adalimumab

infusions has been simulated for one hundred patients using Monte-

Carlo approach based on the inter-patient variability of the pharma-

cokinetic and pharmacodynamics parameters of TNF-a and adalimumab

and the TMDD model with three sites of antibody-TNF-a interaction.

The lines indicate the higher and the lower boundaries of the therapeutic

window of for the intraarticular adalimumab infusions in the individual

patients
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Conclusions: Despite the extensive clinical use of TNF-a-neutraliz-

ing antibodies, parameters that govern their efficiency in individual

RA patients have not been identified yet. Simulations using the

TMDD model with three sites of antibody-TNF-a interaction and the

estimated variability parameters indicate that the disease state is

the highest source of variability of the baseline TNF-a levels and of

the adalimumab pharmacological effects. Therefore, sustained release

formulation that continuously releases anti-TNF-a antibody at a

certain pre-set rate can lead to suboptimal responses in a high pro-

portion of the individual patients. Efficient RA treatment using TNF-

a-neutralizing antibodies should take into account the inter-patient

variability of local vs. systemic factors derived from the disease state.

Adjustment of drug dosage based on the individual variability factors

is required to optimize the balance of local versus systemic anti-TNF-

a effects. Correlation of local TNF-a levels in the affected joints with

the clinical markers of RA warrants further investigation. Inter-patient

variability should be taken into account for other drugs acting on

soluble targets (growth factors, interferons, interleukins, immuno-

globulins, etc.).
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M-011 Qualification of Ocular CFD Models to Aid

Development of Intravitreal Anti-VEGF Therapies

Paul Missel*

Modeling & Simulation, Alcon Research Ltd., Fort Worth, TX, USA

Objectives: Develop qualified computational fluid dynamic models

for rabbit, monkey and human eyes to simulate ocular PK after in-

travitreal (IVT) administration. This engineering approach explicitly

represents ocular anatomic geometry and simulates the patterns of

physiologic fluid flows and mass transport of drug by convective

diffusion. The model enables estimation of target ocular tissue

exposure across species and following various modes of administra-

tion (e.g. IVT, topical and subconjunctival). This abstract summarizes

current model qualification using available literature data.

Methods: Drug advection after central bolus injection was simulated

using methods published previously [1]. A regional drug sink, applied

to the choroid, was adjusted to provide the best fit to the rabbit data.

The same values of material properties, sink and boundary conditions

were applied for all species.

Results: Simulations fit the time course of drug concentration in both

vitreous and aqueous humor compartments for both Avastin and

Lucentis in the rabbit (data from Bakri et al. [2, 3], Fig. 1a, b). The

Fig. 1 Comparison between simulated and experimental pharmaco-

kinetic measurements after IVT injection in animals. In each case, the

initial condition at the beginning of the simulation was a spherical

bolus in the mid vitreous with concentration set as required to

administer the amount of drug specified. Solid curves represent the

average concentrations in the entire vitreous and aqueous compartments

as indicated. (a) 1.25 mg Avastin administered in 50 lL to Dutch-belted

rabbits. (b) 0.5 mg Lucentis administered in 50 lL to Dutch-belted

rabbits. (c) 0.5 mg Lucentis administered in 50 lL to Cynomolgus

monkeys
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rate of clearance from man reproduced the aqueous humor mea-

surements of Krohne et al. [4, 5], although the absolute magnitude

was only reproduced for Avastin (Fig. 2b, c). Clearance of Avastin

simulated for the vitreous compartment was slower than the clinical

data of Zhu et al. [6] obtained from patients exhibiting choroidal

neovascularization (Fig. 2a). Clearance simulated from the monkey

was slower than the experimental data of Gaudreault et al. [7], and the

aqueous humor concentrations were underpredicted (Fig. 1c).

Conclusions: The model seems best qualified for the rabbit eye, and

reproduces the clearance rate in man. However, there may be phys-

iologic differences between species that provide an additional means

of drug clearance from the vitreous in the monkey, with the possi-

bility of an additional mechanism of transfer from the vitreous to the

aqueous compartment. Drug clears from the monkey eye about as

quickly as from the rabbit eye despite the fact that the monkey eye is

slightly larger. Model physiology will need to be altered to account

for disease effects. The strong sink required in the choroid suggests

that clearance may be coming close to being limited by diffusion.
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M-012 Prediction of Shrinkage of Individual

Parameters Using Bayesian Information Matrix

in Nonlinear Mixed Effect Models with Evaluation

in Pharmacokinetics
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France; 2Pharma Research and Early Development, Clinical

Pharmacology, F. Hoffmann-La Roche Ltd, Basel, Switzerland;
3Institut Roche de Recherche et Médecine Translationnelle,

Boulogne-Billancourt, France

Objectives: In population pharmacokinetics (PK), precision of pop-

ulation parameter estimates depends on design and are evaluated

using Fisher information matrix. Individual parameters are usually

estimated by the maximum a posteriori (MAP) and precision of

individual estimates can be evaluated using the Bayesian fisher

information matrix (MBF) [1]. Shrinkage of individual parameters

towards the mean occurs when information is sparse and can be

quantified as a reduction of variance of the estimated random effects

(RE) [2]. This study aims at (1) exploring the relationship between

BMF and shrinkage in order to propose a prediction of shrinkage and

(2) evaluating by simulation the prediction of individual parameter

precision and shrinkage.

Methods: We first derived the expression of MBF for additive RE and

constant residual error and then extended it for exponential RE and/or

combined residual error, using first order approximation of the model.

Fig. 2 Comparison between simulated and experimental pharmaco-

kinetic measurements after IVT injection in humans. In each case, the

initial condition at the beginning of the simulation was a spherical

bolus in the mid vitreous with concentration set as required to

administer the amount of drug specified. Solid curves represent the

average concentrations in the entire vitreous or aqueous compart-

ments as indicated. a 1.25 mg Avastin administered in 50 lL to

patients with submacular hemorrhage and CNV due to age-related

macular degeneration. b 1.25 mg Avastin administered in 100 lL to

patients with macular edema secondary to neovascular age-related

macular degeneration, diabetic retinopathy, or retinal vein occlusion.

c 0.5 mg Lucentis administered in 100 lL to patients with macular

edema secondary to neovascular age-related macular degeneration,

diabetic retinopathy, or retinal vein occlusion
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Using the formula of shrinkage in linear mixed effects models, we

derived a prediction of shrinkage from MBF. Regarding the evaluation

by simulation, we simulated data from sparse and rich design for two

PK examples: a simple one (one compartment) with six different

scenarios (additive or exponential RE, with low and high variabilities,

additive or combined residual error); a more complex example

derived from a real case study [3] (two compartment, dual linear and

non-linear elimination). We used NONMEM 7.2 and MONOLIX 4.0

to perform individual estimation via MAP assuming known popula-

tion parameters and fixed to their exact value. We also recorded

individual standard errors (SE). We then compared predicted and

estimated individual SE for each scenario and example as well as the

predicted and estimated shrinkage, evaluated using the formula with

ratio of variances.

Results: For the simple example, considering all scenarios and designs,

predicted SE of the two parameters using MBF were close to the esti-

mated SE with both software and varied as expected with the richness of

the design and the variabilities. There were also a very good agreement

(almost identity line) between estimated shrinkage (which varies from 0

to 70 %) and predicted shrinkage. Similar results were observed for all

the parameters of the real example.

Conclusion: The Bayesian Information Matrix allows to evaluate

impact of design on precision of individual parameters and to predict

shrinkage. It can be used for design optimization and will be imple-

mented in PFIM.
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M-013 Systems Modeling of Bortezomib

and Dexamethasone Combinatorial Effects on Bone

Homeostasis in Multiple Myeloma Patients
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Objectives: Osteolytic bone disease is one of the most debilitating

manifestations of multiple myeloma (MM), and bisphosphonates are

often administered to inhibit bone resorption by suppressing osteo-

clast activity. Bortezomib, a proteasome inhibitor that combines

potent anti-myeloma properties with bone anabolic effects, is being

evaluated for its positive effects on MM with skeletal complications.

Dexamethasone is often given in conjunction with bortezomib for its

potent antineoplastic effects; however, osteolysis is a major adverse

event of long-term steroid-based therapies [2]. The purpose of this

study is to develop a pharmacodynamic model that integrates the bone

anabolic effects of bortezomib with the osteolytic activity of dexa-

methasone in MM associated bone disease.

Methods:Mean temporal profiles of bortezomib plasma concentration,

20S proteasome activity, serum Dickkopf-1 (DKK1) concentrations

following bortezomib monotherapy, and concentrations of bone spe-

cific alkaline phosphatase (bALP), a bone formation biomarker,

following bortezomib and dexamethasone exposure in MM patients

were extracted from literature [1, 3].

A systems pharmacological model was developed to describe bort-

ezomib bone anabolic effects by integrating the temporal cascades of

bortezomib PK, inhibition of proteasome activity, suppression of

myeloma cell-derived DKK1 secretion, DKK1 regulation of cellular

bone homeostasis, and bALP dynamics following bortezomib multi-

ple dosing in MM patients. Furthermore, an interaction model was

developed to simultaneously characterize bortezomib induction and

dexamethasone inhibition of bALP by coupling the effects of dexa-

methasone modulation of myeloma burden and osteoblast apoptosis

into the bortezomib anabolic model. Model parameters were esti-

mated in sequential stages by maximum likelihood with the ADAPT5

computer program. Simulations were performed to assess the bone

anabolic effects under various bortezomib and dexamethasone com-

bination regimens.

Results: A three-compartment PK model with time-dependent

elimination well described bortezomib exposure, and a sigmoidal

direct response model well characterized proteasome activity sup-

pression after bortezomib administration. An indirect response

model reasonably captured myeloma cell-mediated DKK1 turnover,

and bALP dynamics was well captured by integrating DKK1

inhibition on responding osteoblast production following bortezo-

mib monotherapy. The dynamics of bALP following bortezomib

and dexamethasone combination therapy in MM patients (Fig. 1)

was well described by the combination model that was developed

by integrating the apoptotic effects of dexamethasone on myeloma

and osteoblast cells into bortezomib bone model. The final model

parameters were all estimated with good precision (low CV %). Fur-

thermore, model simulations suggest that bortezomib monotherapy, or

combined with low-dose dexamethasone (10 mg), might represent

appealing therapeutic strategies for MM patients with skeletal

complications.

Conclusion: A systems pharmacology model was developed and

successfully characterized the time-course of clinical biomarkers

following bortezomib and dexamethasone combination therapy in
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Fig. 1 Model predicted and observed serum bALP concentration–

time profile after multiple dosing of 1.3 mg/m2 bortezomib concom-

itant with 20 mg dexamethasone in MM patients. Original data were

obtained from literature [1]. Symbols represent the observed data

(mean ± S.E.), and dashed line represents the model fitted profile
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MM patients. The interaction model is based on codifying multiple

regulatory mechanisms of drug action and provides a platform for

probing optimized bortezomib and dexamethasone combination dos-

ing regimens to minimize skeletal side effects during myeloma

therapy.
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M-014 Compliance Spectrum as a Drug Fingerprint

of Drug Intake and Drug Disposition Based on Limited

Sampling Information

Olivier Barrière, Jun Li, Fahima Nekka*

Université de Montréal, Montreal, QC, Canada

Objectives: Poor adherence to a drug prescription has significant

impact on the efficacy and safety of a planned therapy. The rela-

tionship between drug intake and drug disposition can only be

partially obtained through the positive influence investigation of the

former on the latter. The so-called ‘‘inverse problem’’, which is

concerned with the issue of retracing the patient compliance scenario

using limited clinical knowledge, provides a platform to assess this

complex issue.

Methods: Based on the reported Pop-PK model of a specific drug,

imatinib in this work, where the PK parameters and the associated

variability were well determined, we were able to simulate a whole

range of drug concentration values at a given sampling point for once

daily regimens. Then, all possible drug compliance profiles were

mimicked for a population of patients. We designed a heatmap-style

image, named compliance spectrum, which provides an intuitive and

interactive way to evaluate the relationship between drug input and

drug disposition along with their consequences on PK profile [1].

Construction of the compliance spectrum is based on the Bayesian

decision method we previously developed for the inverse problem of

patient compliance within the framework of Population-PK [2].

Results: The adopted approach allows, for the first time, to quanti-

tatively acquire knowledge about the compliance patterns having a

causal effect on a given PK. Moreover, using a simulation approach,

we were able to evaluate the evolution of success rate of the retracing

process in terms of the considered time period before sampling a well

as the model-inherited variability. Moreover, our invented visual

representation clearly presented the heterogeneity of different sam-

pling concentrations for susceptible drug compliance profiles.

Conclusions:This work allows, from a probability viewpoint, to

propose a solution for this inverse problem of compliance determi-

nation. And for the first time, we provide a direct visualization of

complex relationship of drug input and disposition such that these two

currently separated topics can be studied in the same framework.

References

[1] Barrière O, Li J, Nekka F (2012) Compliance spectrum as a drug

fingerprint of drug intake and drug disposition. J Pharmacokinet

Pharmacodyn (in press)

[2] Barrière O, Li J, Nekka F (2011) A Bayesian approach for the

estimation of patient compliance based on the last sampling

information. J Pharmacokinet Pharmacodyn. 38(3):333–351

M-015 Introduction of an Information-Loaded Metric

to Improve the Comparison of Antibiotic Performance

for Different Dosing Regimens

Jun Li*, Fahima Nekka
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Objectives: The determination of an optimal dosing regimen is a

critical step to enhance the drug efficacy and avoid toxicity. Rational

dosing recommendations based on mathematical considerations are

increasingly being adopted in the process of drug development and

use.

Methods: We propose a quantitative approach to evaluate the efficacy

of antibiotic agents by integrating both in vivo pharmacokinetic (PK)

and in vitro pharmacodynamic (PD) information into a unified for-

malism. In this way, the dosing regimens, including doses and

associated timings, can be mathematically defined as a causal variable

that influences the drug therapeutic effect. The hypothetical but

realistic drug models, representatives of concentration– and time–

dependents antibiotic agents, will be used to investigate the proposed

approach on several typical dosing regimens, including QD, BID, TID

and QID.

Results: We succeeded to reveal unexpected, but relevant behaviours

of drug performance when different drug regimens and drug classes

are considered [1]. First, the new pharmacometric formalism allows

covering a whole range of antibiotics, including the two well known

concentration and time dependent classes, through the introduction of

the Hill-dependency concept. Second, we found that the doses

required to reach the same therapeutic effect, when scheduled dif-

ferently, exhibit completely different tendencies for concentration–

and time–dependent drugs. Moreover, we theoretically confirmed the

previous experimental results of the superiority of the once daily

regimen of aminoglycosides.

Conclusions: The proposed methodology is appealing for its com-

putational features and can easily be applicable to design fair clinical

protocols or rationalize prescription decisions.
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Objectives: Vertilmicin is a novel semisynthetic aminoglycoside

derived from verdamicin. The goal of this study is to develop a semi-

mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model to

describe the relationship between bacterial responses and drug con-

centrations and to predict the optimized dose required to achieve

maximum efficacy of vertilmicin alone and in combination with

ceftazidime in the future clinical trials.

Methods: Static and dynamic time-kill curves were adopted to study

in vitro antibacterial activity of vertilmicin alone against methicillin-

susceptible Staphylococcus aureus (MSSA), methicillin-resistant

Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. In the

static time-kill curve studies, the bacterial burden was determined

under a wide range of drug exposures ranging from 0.25- to 16-fold of

minimum inhibitory concentration (MIC) over a 24-h period. The

dynamic time-kill experiments were performed at 20 lg/mL and

carried out using a manual dilution system with half-life of 2 h.

Constant time-kill study against Pseudomonas aeruginosa will be

utilized to study the combined antimicrobial activity of vertilmicin

and ceftazidime based on 0.25- to 4-fold MIC of vertilmicin in the

presence of five different concentrations of ceftazidime. Subse-

quently, two-compartment PK/PD model was developed to fit the data

of mono- and combination therapies simultaneously. The Loewe

additivity was used as reference to evaluate the drug–drug interactive

effect.

Results: The result of time-kill kinetics showed that vertilmicin was

concentration-dependent antibacterial agent against the three bacterial

strains. The elimination half-life of vertilmicin had a dramatic impact

on its antimicrobial activities, which was further confirmed by the

EC50 estimates from the semi-mechanistic PK/PD model. The com-

bination of vertilmicin and ceftazidime against Pseudomonas
aeruginosa showed significantly enhanced bactericidal capacity

compared to either drug at the same level. The drug–drug interaction

model that incorporates PK/PD model and Loewe additivity was able

to elucidate the time course of bacterial growth and death in each

combination treatment. The estimates from the drug–drug interaction

model showed that the overall drug–drug interactive effect between

vertilmicin and ceftazidime was additive, but highly varied with

respect to the combinations. The optimal dose regimen of vertilmicin

in combination with ceftazidime could be easily identified using

there-dimensional surface response.

Conclusions: The result of PK/PD modeling demonstrated that ver-

tilmicin has promising prospect for future clinical application. It also

suggested that drug–drug interaction model modified from PK/PD

modeling was capable of assisting dose selection for combination

therapy of vertilmicin and ceftazidime to maximize the probabilities

of positive clinical outcomes. Undoubtedly, PK/PD model is a pow-

erful tool to evaluate the in vitro antibacterial activity of novel

antibiotics, as well as to make key decisions in drug development.
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Objectives: to examine the relationship between commonly used

model selection criteria and predictive performance of the resulting

models. Six model selection criteria were used:

1. -2ll + 2 points per parameter (AIC [1])

2. AIC + Requirement for successful covariance step

3. -2ll + 3.84 points per parameter (Chi square test with p \ 0.05,

1 df)

4. -2ll + 6.64 points per parameter (Chi square test with p \ 0.01,

1 df)

5. -2ll from cross validation [2,3] with 0 points per parameter

6. Normalized prediction distribution errors (NPDE) global p value

[4]

Methods: A data set was provided by an independent party and was

selected based on having a large number of potential candidate

covariates (13) on several parameters (4). This data set was divided

into a 2/3 fraction used as the training data set and the remaining 1/3

used as the validation data set. The model search was limited to

covariates. NONMEM analyses on the training data set were per-

formed using a global search method; single objective hybrid genetic

algorithm (GA, [5]). GA is an automated, reproducible, robust and

objective model selection algorithm. It is objective in the sense that

all models were constructed and evaluated by strictly objective

measures. No learning effect between analyses will occur with the

GA, as might occur with an individual doing six sequential analyses

of the same data. No subjective decisions about what covariates to

include, or the sequence in which to include them were made. In this

algorithm the model population size was set to 300 models, with 4

niches. For each analysis the model was considered to be final after no

improvement is seen for 8 generations. Each modeling exercise

constructed, ran and evaluated approximately 12,000 models.

The covariates include both discrete (N = 3) and continuous (n = 10)

covariates. One of the discrete covariates had 5 levels, the others had

only 2. An exponential model (e.g., TV = TV*EXP(COV*THETA())

was used for discrete covariates candidate relationships, where TV is

the typical value, COV has values of 0 or 1 and THETA() is an

estimate parameter. For the discrete covariate with 5 possible values,
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the initial covariate was reparameterized into 3 separate covariates,

representing different combinations of the most common values.

For the continuous covariates, two derived covariates were cre-

ated: one centered (e.g., CSCOV = (COV-Mean)/SD, where CSCOV

is the centered value, COV is the covariate, Mean is the covariate

mean and SD is the standard deviation) and scaled (e.g., SCOV =

COV/Mean. In the model search, the centered, scaled covariate was

used for candidate exponential relationships (TV = TV*EXP

(COV*THETA()) and the scaled covariate was used for candidate

power relationships (TV = TV*COV**THETA()), as the covariates

must be non-negative to avoid numerical errors.

The model search included all covariates on all parameters

(ADVAN3, TRANS4). The parameters were:

• Clearance

• Central volume of distribution

• Intercompartmenal clearance

• Peripheral volume of distribution

For the cross validation, four data splits into four data sets was

used. Commonly for cross validation, 10 data splits and 10 data sets

are recommended. However, this resulted in unacceptable run times

(i.e., 100 NONMEM runs for each of *12,000 models).

The full model selection exercise was repeated six times with the

same training data set; once with each different model selection cri-

teria. The final model from each model selection exercise was then

used (with fixed model structure and parameters) to calculate the -2ll

and NPDE of the validation data set.

The endpoints for the analysis were:

• # of covariates in the final model.

• -2ll for the validation data set, with a model (structure and

parameters) fixed to the final training data set model.

• NPDE global p value for the validation data set, with a model

fixed to the final training data set model.

Results:
The analysis was run on a local network of between 1 and 6 Windows

computers. Run times for the each modeling exercise was between

38 h (LRT with p \ 0.01) on 1 computer and 132 h (cross validation)

on 6 computers.

Results are given in Table 1

Conclusions: In general, performance of the final model reflects the

model selection criteria used. If NPDE is used as the model selection

criteria, the results will best predict a large (better) global p value in a

validation data set. However, the -2ll is significantly larger (worse).

The larger the parsimony penalty used in the model selection process,

the more parsimonious the resulting model will be. The price paid for

a more parsimonious model is a larger -2LL on both the training data

set (not shown) and the validation data set. A requirement for a

successful covariance step yields a slight smaller and slightly less

predictive model than a similar modeling exercise that does not

require a successful covariance step.

Cross validation (with no parsimony penalty) resulting in the largest

and most predictive model. A modeling exercise with a parsimony

penalty of 3.84 (p \ 0.05) using the traditional -2ll on the training

data set resulted in a model that was somewhat less predictive than

using cross validation (with no parsimony penalty), but significantly

smaller.

In general cross validation resulted in the most predictive model.

A requirement for a successful covariance step resulted in a less

predictive model than a similar analysis not requiring a successful

covariance step.
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Objective: Dose–response based electrocardiogram (ECG) studies

are used to evaluate the potential of compounds to promote cardiac

arrythmia. Cardiac arrythmia is often characterized by prolongation of

QT interval which may lead to an increased risk of fatal arrhythmias

Table 1 Results of modeling exercises

Model selection

criteria

#

Covariates

-2ll for valida-

tion set

NPDE global

p value

AIC 26 648.16 1.58e-06

AIC + $COV

success

24 651.80 6.33e-08

LRT (p \ 0.05) 13 648.47 2.27e-06

LRT (p \ 0.01) 6 652.84 6.44e-07

Cross validation 32 623.74 7.12e-07

Npde 21 785.80 3.47e-04

The first column lists the model selection criteria used, the 2nd col-

umn the number of covariates in the final model. The 3rd column lists

the -2ll from the fixed model, using the validation data set, and the

last column the global p value from NPDE

J Pharmacokinet Pharmacodyn (2013) 40:S15–S149 S27

123



including torsades de pointes. Our objective in this work is to develop

a population-based pharmacokinetic/pharmacodynamic (PK/PD)

model to describe the exposure–response relationship of LDZ856 on

the prolongation of the QT interval in preclinical animal models. This

approach would allow for a quantitatively robust method to identify

QT positive compounds earlier in the development process, and

would be helpful in developing safety margins for QT prolongation

between clinical and preclinical studies.

Methods: LDZ856 was administered at three dose levels (30, 150,

300 mg/kg) as an oral gavage to three beagle dogs. Plasma concen-

tration was measured at 0.5, 1, 3, 7 and 24 h post dose and samples

were analyzed by a validated LC–MS/MS method. Measurement of

the QT interval was obtained hourly by jacketed telemetry during the

single ascending dose PK studies. Telemetry jackets were equipped

with a digital ECG transmitter box. ECG signals were recorded

continuously by emka system for approximately 26 h (2 h prior to

dosing followed by 24 h post-dose). Heart rate and ECG intervals

were digitally analyzed by emka ECG-Auto software. QT intervals

were corrected for heart rate using Van de Water’s QT correction

formula (QTcVW) [1]. Population PK/PD modeling was performed

using First Order Conditional Estimation with Interaction (FOCE-

INT) in NONMEM 6. Final model selection was based on various

goodness-of-fit indicators, including comparisons based on the minimum

objective function value, visual inspection of diagnostic scatterplots,

parameter plausibility and precision of parameter estimates.

Results: Time-matched, PK/QTcVW observation analysis indicated a

positive linear slope [0.00074 ms/(ng/mL) (16.9 %), parameter mean

(%RSE)]. This limited data set did not include the complete time

course of QTcVW measurements, and was unable to adequately

describe a physiologically relevant exposure–response relationship.

To better describe the exposure–response relationship, the PK data

was best fit with a one compartment model with a proportional error

model [30.6 (11.8 %)] to predict the full concentration–time course.

The bioavailability of the low dose (30 mg/kg) was fixed to a value of

(1), and the relative bioavailability of the increasing dose levels were

fit as model parameters [0.55 (10.3 %)] and [0.53 (10.7 %)] for the

higher dose levels (150 and 300 mg/kg), respectively, to account for

dose non-linearity due to limited absorption at higher doses. The

clearance [1.28 L/h (14.3 %)] and volume of distribution of [29.9 L

(9.86 %)] were precisely estimated by the PK model. Upon selection

of a final PK model, a sequential approach was taken to fit the PD

data, where parameter values from the PK fitting exercise were fixed

to subject specific values to drive the PD effect. The model predicted

PK concentrations were utilized to characterize the full time course

QTcVW effect, allowing for the use of a more complex PD model.

The PD data was best fit with a non-linear, sigmoid Emax model, using

an additive error model [10.5 ms (4.69 %)]. This model describes a

physiologically relevant exposure–response relationship of LDZ856

concentration to QTcVW prolongation. The concentration of LDZ856

associated with a 50 % increase (EC50) [9.12 lg/mL (26.8 %)] in the

maximum effect on QTcVW prolongation (Emax) [33.6 ms (19.3 %)]

and Hill parameter [1.54 (22.0 %)], were precisely estimated by the

final PD model (Fig. 1).

Conclusion: The exposure–response relationship was successfully

developed to describe the prolongation of the QT interval as a

function of LDZ856 concentration. In future studies we would like to

apply this approach to preclinical studies of Novartis compounds to

evaluate its capacity to predict QTc prolongation in clinical studies

and generate safety margins between preclinical and clinical studies.

In turn, this method will be employed to better evaluate go/no go

decisions for preclinical data when transitioning into clinical trials.
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Objectives: Significant and reversible reductions in testosterone

levels were observed with Compound A (Cmpd A), in both pre-

clinical and clinical testing. Modeling and simulation were used to

quantify Cmpd A pharmacological effects and to support optimal

dosing in further clinical development. The objectives of this analysis

were: (1) to develop a population pharmacokinetic pharmacodynamic

(PKPD) model to characterize the relationship between Cmpd A and

testosterone concentration; (2) to characterize the food effect on

Cmpd A PK and simulate food effect on PD response; (3) to perform

simulation and predict the differences of testosterone suppression

effect between BID and QD dosing strategy.

Methods: Population PKPD modeling of Cmpd A and testosterone

concentrations from four phase I studies and one phase II study was

performed to quantify the exposure–response relationships between

plasma concentrations of Cmpd A and testosterone. PKPD analyses

were conducted using sequential approach via nonlinear mixed-

effects modeling with NONMEM� VII. The PK model was devel-

oped first and the predicted concentrations from the empirical Bayes

estimates of the PK parameters were used in the PD response model

building. Different absorption rate constant (Ka) was introduced to

characterize the PK in fed state compared to fasted state. The

developed PKPD model was used to explore different dosing regi-

mens (40 mg BID vs. 80 mg QD) targeting reduction of plasma

Fig. 1 The final exposure–response relationship from the population

PK/PD analysis is indicated for each individual subject (1001,1002,

1003). Observed data is indicated by the green dots, and the

individual model predicted response is indicated by the solid green

line. The dashed line (DQTcVW = 0) is used as a reference and

indicates no change in DQTcVW value
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testosterone levels and predict PD response at fasted and fed state at

different dosing regimen.

Results: Data including 3597 Cmpd A PK observations and 786

testosterone concentrations from 139 healthy volunteers were inves-

tigated. A two-compartment model with first-order elimination best

described Cmpd A PK. Covariates of interest included weight, age,

sex and race. Weight was found to be the significant covariate on

central volume of distribution (Vc), peripheral volume of distribution

(Vp) and the inter-compartmental clearance (Q). Significant higher

Ka (0.739 h-1) was found in volunteers at fed state compared to

0.337 h-1 at fasted state. Circadian rhythm of baseline testosterone

concentrations was well described by a cosine function. Indirect

response model (inhibition on testosterone production) was used to

link the drug effect to PD response. The scheme of PKPD model is

illustrated in Fig. 1. Age was found to influence the baseline testos-

terone significantly. This result was supported by the findings of

significant higher testosterone concentrations in healthy young male

than healthy elder male from Diver et al. [1]. Based on simulations,

the observed PK difference (significant higher Cmax, similar AUC) in

fed volunteers compared to fasted volunteers, did not lead to signif-

icant difference in testosterone change. It was also concluded that

following 40 mg BID treatment, trough Cmpd A concentration will

be much higher compared to 80 mg BID. The time above IC50 for

testosterone concentration after 40 mg BID of Cmpd A is 80.9 %

time of the dosing interval compared to only 55.7 % after 80 mg QD

(Fig. 2). The mean predicted peak testosterone concentration at

steady state are lower and overall less variable during 24 h for 40 mg

BID dose compared to 80 mg QD dose (Fig. 3). These findings

suggest 40 mg BID dosing provide sustained testosterone suppression

effect during dose interval and is preferred in future clinical trial.

Conclusions: Population pharmacokinetic and pharmacodynamic

analysis demonstrates that 40 mg administered twice a day is better

than 80 mg once a day to maximally and more consistently suppress

testosterone during the entire dosing interval. Dose modification is not

needed for volunteers at fed state to achieve comparable testosterone

suppression effect at fasted state.
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Objectives: Monoclonal antibodies (mAbs) are a promising and

exponentially growing category of targeted agents. In contrast to

small molecules, elimination of mAbs occurs predominantly via

endosomal catabolism to amino acids and peptides. Their long half-

life is attributed to binding to endosomal neonatal Fc (FcRn) receptor

which protects them from catabolic degradation. Binding of mAb to

FcRn is pH-dependent such that higher binding affinity occurs in

acidic environment. Previously published PBPK models explaining

the gradual change in endosomal pH are useful in describing the

effects of pH-dependent FcRn-mAb binding on mAb half-life.

However, several processes in these models occur in distant com-

partments with minimal impact on plasma or tissue concentrations.

Such models exhibit exceeding complexity and high number of

compartments. The goal of the current work is to reduce the com-

plexity of these models by making physiologically sound assumptions

regarding the rate of binding and transfer processes.

Methods: We applied a previously published catenary PBPK model

[1] that describes the endosomal transit of mAb and pH dependency

in mAb–FcRn association and dissociation. The model represents the

endosomal space as five subcompartments with different pH levels

and binding affinities to mAb. The five endosomal subcompartments

can be classified into one initial (highest pH), three intermediate, and

one terminal subcompartment (lowest pH). Following mAb transfer from

the vascular space of each tissue to the initial endosomal subcompart-

ment, the drug is transferred through intermediate subcompartments with

an inter-compartmental transit time, tau. Recycling of FcRn-bound mAb

to vascular and interstitial compartment occurs from the terminal

Fig. 1 PKPD model scheme of Cmpd A

Fig. 2 Predicted steady state Cmpd A concentration after adminis-

tering 40 mg BID or 80 mg QD of Cmpd A

Fig. 3 Predicted steady state testosterone concentration after admin-

istering 40 mg BID or 80 mg QD of Cmpd A
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endosomal subcompartment. Two basic assumptions were made. First,

binding and dissociation of the mAb to FcRn was assumed to occur

instantaneously (i.e. binding and dissociation constants, kon and

koff ? ?) relative to other processes (e.g. mAb internalization and ter-

minal elimination rates) [2]. Thus, we assumed that free mAb, free FcRn

receptor, and mAb-FcRn receptor complex are at rapid equilibrium

conditions. The mAb binding affinity to FcRn was described as the dis-

sociation equilibrium constant (KD), which was defined as koff/kon.

Similar KD value was used for mAb and endogenous IgG. Second, given

the short total endosomal transit time (*10.8 min), we assumed

instantaneous transfer time between endosomal sub-compartments (i.e.

tau ? 0) [3]. All model coding and simulations were conducted using

ADAPT 5. Simulations of plasma and tissue profiles from full and sim-

plified models were analyzed via non-compartmental approaches using

Phoenix WinNonlin.

Results: Following mAb uptake from the vascular space, initial

endosomal subcompartment was rapidly equilibrated with interme-

diate subcompartments. Given the competitive binding of two

moieties (endogenous IgG and exogenous mAb) to the same receptor,

a new term that represents the total of free endogenous IgG and free

exogenous mAb (freeendo+mAb), was introduced and solved as a qua-

dratic equation. This term was then used to calculate free mAb.

Equations relating total (i.e. free and FcRn-bound) mAb concentra-

tion in initial and terminal subcompartments to concentrations in

vascular and interstitial compartments, uptake rate, and tau were

derived. The FcRn-bound mAb was calculated by subtracting the

amount of free mAb from the total amount. The simplified model (36

differential equations) recapitulated the typical biexponential plasma

profile from the original model (236 differential equations). Plasma

AUCs from full and simplified model were in good agreement

(97.7 %). Concentrations profiles from the simplified model in dif-

ferent tissues were similar to the original model (AUCs were in close

agreement 98.2 ± 0.5 %, mean ± SD).

Conclusions: A significant reduction in number of compartments

associated with catenary PBPK models was achieved while accurately

describing plasma and tissue concentrations. The proposed method

eliminates processes with minimal impact on plasma and tissue

concentration profiles. Attempts to further reduce PBPK model

complexity are ongoing.
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Objectives: BMN 673 is a highly potent, specific Poly ADP-ribose

polymerase (PARP) inhibitor in tumors bearing DNA repair deficiencies

[1]. PARP plays important roles in the repair of single-stranded breaks in

DNA through the base excision repair path way [2]. As a result of PARP

inhibition, accumulation of single-stranded breaks leads to the replication

fork collapse and conversion of single-stranded breaks to double-stran-

ded breaks. The inability of tumor cells with deficiency in homologous

recombination DNA repair to repair the double-stranded breaks then

induces cell death [3]. The goal of this study was to develop a population

Pharmacokinetic model of BMN 673 in beagle dogs.

Methods: BMN 673 was administered orally to beagle dogs once

daily at 0.003, 0.01, 0.03 and 0.1 mg/kg for 5 days followed by28-day

recovery. Intensive PK samples were collected on Days 1 and 5, and

sparse PK samples were collected from Days 6 to 26. The PK

properties of BMN 673 were investigated using nonlinear mixed-

effects models via NONMEM VII.

Results: The PK of BMN 673 was adequately characterized by a two-

compartment model with first order absorption and elimination. The

final PK model fitted the data well as demonstrated by goodness of fit

plots and visual predictive check. The population mean (relative

standard error) values for PK parameters such as clearance, absorp-

tion rate constant, central volume of distribution and peripheral

volume of distribution are 0.2 L/h (7.6 %), 0.97 h-1 (14.0 %), 6.54 L

(11.4 %), and 4.53 L (21.9 %), respectively. The relative standard

errors are between 8 and 22 % indicating that the precision of PK

parameter estimation was generally good.

Conclusions: The population PK model developed was appropriate to

describe the time course of BMN 673 plasma concentration in beagle

dogs after 5-day repeated dosing. This model can be used for simu-

lations to plan future studies.
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Objectives: To develop a mechanistic model incorporating the

interactions of MEDI-575, PDGFRa and the endogenous ligand

PDGF-AA, to describe the nonlinear pharmacokinetics (PK) of

MEDI-575 and observed PDGF-AA profiles in cynomolgus monkeys.

Methods: The PK and pharmacodynamic (PD, PDGF-AA) data from

a single-dose and a multiple-dose studies were merged and simulta-

neously modeled using NONMEM (Version 7.2). The PK-PD model

structure is shown below:
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Ab, R and L represent MEDI-575, PDGFRa and PDGF-AA ligand,

respectively. Both PDGF-AA and MEDI-575 bind to PDGFRa with

high affinities in vitro. After the initial transition period after MEDI-

575 dosing, the complexes Ab�R and L�R were assumed to quickly

reach a dynamic pseudo-equilibrium (steady-state). A cubic equation

depicting the tri-molecular interaction system was solved using a

novel differential-equation approach [1].

Results: Six differential equations delineating the overall interactions

and kinetics of MEDI-575, PDGFRa and PDGF-AA ligand were

reduced to four by pseudo-equilibrium assumptions. The free

(unbound) concentrations of MEDI-575 and PDGF-AA were deduced

by solving a cubic equation system in NONMEM. The model also

incorporated PDGFRa internalization kinetics as determined from

in vitro confocal imaging studies. The mechanistic model adequately

described the observed nonlinear PK of MEDI-575 and elevating

PDGF-AA profiles. By fitting to the PK and PD data, the model not

only predicted the target receptor occupancy by a mAb, but also the

biologically active agonistic ligand-receptor complex.

Conclusions: This work represents the first successful application of

a mechanistic model to delineate the in vivo tri-molecular interactions

of a drug, its target receptor, and a competing endogenous ligand. The

model also supported clinical utilization of a displaced ligand upon

mAb dosing as a relevant PD biomarker to assist the optimal dose

recommendation for early clinical studies.
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Objectives: Lopinavir/ritonavir (LPV/r) is a co-formulated protease

inhibitor (PI) used to treat HIV-1 infection. Lopinavir (LPV) inhibits

HIV-1 protease and ritonavir (RTV) inhibits CYP3A-mediated LPV

metabolism thereby increasing LPV plasma concentrations [1].

ACTG 5230 was a multicenter, open-label, single arm pilot trial that

evaluated LPV/r monotherapy (400/100 mg twice daily) as second-

line antiretroviral therapy (ART) in PI-naı̈ve HIV-infected patients

from resource-limited settings (RLS) experiencing virologic failure

on a first-line nonnucleoside reverse transcriptase inhibitor-based

regimen [2]. Given this novel treatment strategy and unique patient

population, the objectives of the present work were to characterize

LPV plasma pharmacokinetics (PK) and identify patient-specific

characteristics associated with PK variability.

Methods: A single, random, steady-state plasma sample was drawn

from each subject during study visits at weeks 8, 12, 16, and 24 and

analyzed for LPV concentrations by HPLC–UV. RTV concentrations

were not measured. LPV concentrations below the assay’s limit of

quantification (BLQ) were excluded from the analysis. Several

structural models were evaluated including one- and two-compartment

models with and without absorption lag time. Model parameter estimates

were obtained using the first order conditional estimation with interaction

(FOCE-I) method in NONMEM version 7.2. Covariate data consisted of

the continuous variables (mean ± SD) weight (63 ± 12.3 kg) and age

(39.3 ± 8.4 years), and the categorical variables sex and race (Thai or

Black African). Concomitant medications were not tested because drugs

known or suspected of interacting with LPV/r were prohibited in the

study. Covariate models were developed based on clinical relevance of

the covariates and likelihood ratio testing during stepwise forward

inclusion and backward elimination. In the stepwise procedure, a change

in the objective function value of 7.88 units was defined as significant

(p \ 0.005, df = 1). A bootstrap re-sampling technique with 1000 runs

was used to evaluate stability of the final model and precision of the

parameter estimates.

Results: 427 LPV concentrations from 111 subjects were used in the

population PK analysis. 7 concentrations (6 BLQ; 1 near BLQ) were

excluded. A one-compartment model with first-order absorption and

elimination best described the data. Sex and race modeled by a power

function were significant covariates on apparent oral clearance (CL/F)

and were included in the final model. Males had 32 % faster CL/F

than females. Thai subjects had 24 % faster CL/F than Black African

subjects from Malawi, Tanzania, and South Africa. Eta-shrinkage for

CL/F was 12.2 %. All parameter estimates, relative standard errors

(RSE) and 95 % confidence intervals (CIs), as well as bootstrap

estimates and 95 % CIs are below. Successful estimation and

covariance steps were achieved in 99.8 % of the bootstrap runs

suggesting a robust model.

Parameter Final

estimate

RSE

(%)

95 % CI Bootstrap

estimate

Bootstrap

95 % CI

CL/F (L/h) 2.83 4.28 2.59–3.07 2.82 2.57–3.06

SEX (M/F)

effect

1.32 5.77 1.17–1.47 1.33 1.18–1.50

RACE (Thai/

African)

effect

1.24 7.15 1.07–1.41 1.25 1.06–1.43

V/F(L) 45.4 26.2 22.1–68.7 44.6 20.4–74.5

Ka 0.364 34.6 0.117–0.611 0.375 0.127–0.699
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Conclusions: The PK of LPV in PI-naı̈ve HIV-infected subjects from

RLS receiving LPV/r monotherapy as second-line ART were ade-

quately described by a one-compartment model. LPV CL/F was

influenced by sex and race with males and Thai subjects exhibiting

faster clearances. After accounting for sex and race, the remaining

interindividual variability in CL/F is small and contributions from

other sources such as host genetics are as yet unknown.
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Objectives: Clozapine is highly effective in treating schizophrenia, in

particular with hard-to-treat patients that present with predominantly

negative symptoms. Despite this, there remains significant variability

in the response to this drug. To better understand the variability, the

objective of this study was to predict human ECF concentrations of

clozapine by translating rat brain concentrations and receptor occu-

pancy for this drug, coupling this with known human disposition of

clozapine in the plasma and predicting human brain concentrations

and occupancy from human plasma concentration measurements.

Methods: Unbound concentrations of clozapine and Nor-clozapine in

four rats were previously measured in brain using quantitative

microdialysis for up to 480 min after administration of a 10 mg/kg

dose given subcutaneously [1]. Rich data were available from rats in

both plasma and extracellular fluid (ECF) of brain for the modeling

analysis. A compartmental modeling approach was first constructed to

assess plasma and brain concentration data and subsequently explore

transfer to the brain compartments. A transit model [2] was used to

describe the delay observed in the appearance of clozapine in brain.

The receptor occupancy model published by Johnson et al. [3] was

adapted to describe the connection between brain ECF concentrations

and receptor occupancy in the final model as shown in Fig. 1. The

final rat PK-PD model was carried forward to simulate human ECF

concentrations by scaling rat ECF concentration data using allometric

principles with exponent to 0.75 for clearance, 1 for volume of dis-

tribution and 0.25 for transit rate constants. Human plasma PK

parameters from a published PK model for clozapine in humans

(Ismail [4]) were coupled with the scaled transfer rates and clearances

determined from the rat data [4].

Results: A one compartment model with first order absorption and

elimination best described plasma concentrations in rats. Clearance

and volume of distribution of clozapine in plasma were 0.582 L/min

and 25.8 L, respectively. A delay of concentration enriching in the

brain ECF compartment was captured by a transit model that con-

sisted of two transit compartments. Drug was assumed to pass through

these two transit compartments using the same ktr constant rate to the

brain. The estimated ktr was 0.0129 L/min. The PD parameter of koff

was estimated using dissociation constant (kd) of 72 nM; kon was

calculated from kd and koff. The model was evaluated using goodness-

of fit-plots and visual predictive checks. Between subject variability

was significant for volume of distribution in plasma (V2), bioavaili-

ability (F1) and the transit rate constant (ktr). Human clozapine

concentrations in ECF were simulated based on published human

plasma PK parameters and allometric scaling of the rat ECF PK

parameters.

Conclusions: This PKPD model of clozapine, developed using rich

plasma and brain concentrations in rats, adequately described drug

transport across the brain barrier in rats and accounted for target

receptor occupancy. This model was also useful to predict clozapine

concentration in human ECF. Linking these occupancies to responses

using this model may be improved if 5HT2 receptor occupancy is also

implemented to reflect additional mechanisms of action for clozapine.
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Fig. 1 PKPD model schema

Table contiuned

Parameter Final

estimate

RSE

(%)

95 % CI Bootstrap

estimate

Bootstrap

95 % CI

Intersubject

variability in

CL/F (CV %)

0.071

(26.7 %)

18.7 0.045–0.097 0.069 0.044–0.097

Residual

variability by

proportional

error model

(CV %)

0.089

(29.8 %)

10.9 0.070–0.108 0.089 0.071–0.108

RSE (%) = 100 % 9 SE/estimate; V/F apparent volume of distri-

bution; Ka absorption rate constant
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Designs
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Objectives: (1) To explore the amenorrhea (AM) and breast pain

(BP) profiles of BZA/CE, Prempro (Conjugated Estrogens/Medrox-

yprogesterone Acetate or CE/MPA) and Premarin (CE). (2) To

support BZA/CE post-marketing studies and development.

Methods: A comprehensive literature search through September 15,

2011 was performed for clinical trials that reported CE, MPA, BZA or

other hormone replacement therapies (HRTs) as treatments, the AM

and/or BP event rates as endpoints, and postmenopausal women as the

patient population. The trial results from ten selected publications

were extracted and combined with the summary information from

four internal studies to create the analysis databases. As the response

variables, the logit transformed AM and BP rates were modeled

separately. The dose amounts of the components in the combination

HRTs were the independent variables. Mixed-effects modeling was

used to analyze the data with trial/study as a random effect. Trial

simulations based on the developed models were used to estimate the

probability of success (PoS) of trial scenarios. The software R was

used for data preparation and analysis.

Results: AM rates were higher for BZA/CE than Prempro across all

dose combinations. The AM rates of BZA/CE were flat at all CE/BZA

dose combinations while those of Prempro decreased as the CE dose

increased. BZA/CE at CE 0.45 mg and BZA 10–40 mg had a mean

AM rate of 84 % with a 90 % CI: (82–85 %), compared to 59 %

(52–65 %) for Prempro at CE 0.45 mg and MPA 1.5 mg. A higher

MPA dose in Prempro tended to slightly decrease the AM rates fur-

ther. BP rates were lower for BZA/CE across all CE/BZA dose

combinations, compared to those of Prempro. BZA doses in the range

of 10–40 mg had little effect on BP rates. Mean BP rates were esti-

mated at 7 % (6–8 %) for BZA/CE with CE 0.45 mg/BZA 20 mg and

21 % (17–25 %) for Prempro with CE 0.45 mg/MPA 1.5 mg. The

MPA effect on BP rates was not assessed due to limited Prempro

treatment arms. To compare the AM rates of BZA/CE and Prempro at

the aforementioned dose combinations, 50 patients per treatment arm

were required to achieve an 80 % PoS. Twice the number of patients

might be needed to achieve a[80 % PoS if BP rate was the primary

endpoint. Dropout was not considered in the PoS estimation.

Conclusions: BZA/CE had better AM and BP profiles among post-

menopausal women who received HRTs. Additional post-marketing

studies may be conducted to confirm our findings from these

analyses.
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Objectives: Tailor-made therapeutic designs require a functional

understanding of the processes governing the distribution of sub-

stances within an organism. Anthropometric parameters like age or

weight have great influence on the level of drug exposure in the

human body [1]. Furthermore, the genetic predisposition of a patient

is very important, since different genotypes can have significant

effects on drug metabolization processes [2, 3]. In the worst case,

side effects due to increased (off-)target tissue drug concentrations

become critical for patient safety [3]. The early identification of

subgroups showing significantly increased adverse event rates is a

difficult task since only limited information about a new drug is

available but is of utmost importance to prevent costly drug with-

drawals in later phases of the drug development process [4].

Therefore, a mechanistic understanding of pharmacokinetics (PK) is

essential in drug development to optimize the benefit-risk profile of

a drug. This involves in particular the identification of high-risk

subgroups in which an unfortunate combination of predisposition

and non-optimal dosing schemes lead to potentially life-threatening

side effects. In clinical practice, such subgroups have to be treated

with individualized dosing schemes, which need to be designed and

surveyed with adequate diagnostics. Here we combine Bayesian

statistics with detailed mechanistic physiologically-based pharma-

cokinetic (PBPK) models. On a pravastatin example, we demon-

strate that this combination provides a powerful tool to investigate

inter-individual variability in groups of patients and to identify

clinically relevant homogenous subgroups in an unsupervised

approach. Since PBPK models allow the identification of physio-

logical, drug-specific and genotype-specific knowledge separately,

our approach supports knowledge-based extrapolation to other drugs

or populations.

Methods: PBPK models are based on a large amount of prior phys-

iological and anthropometric information which is integrated in the

model structure [5, 6], Since PBPK models explicitly distinguish

between properties of the compound and properties of the patients,

respectively, they allow separation of physiological and drug-induced

effects. PBPK models have previously been used for mechanistic

analyses of drug PK [7], pharmacogenomics [2], multiscale modeling

[8] or analysis of rare adverse events [3]. However, current use of

such models often provides only a single value time-concentration

curve, describing the behavior of a mean patient, neglecting poten-

tially relevant individual properties. Therefore, PBPK models

frequently lack the rigorous quantification of inter-individual vari-

ability in parameters which cannot be derived from the patients’

anthropometry. To systematically account for parameter variability

within patient populations, a Bayesian-PBPK approach is developed

rigorously quantifying the probability of a parameter given the

amount of information contained in the measured data. Since these

parameter distributions are high-dimensional, a Markov Chain Monte
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Carlo (MCMC) algorithm is used, where the physiological and drug-

specific parameters are considered in separate blocks. MCMC covers

a large group of algorithms containing usual [9], adaptive [10] and

hierarchical [11] approaches to take samples from the posterior dis-

tribution of a parameter vector. The core idea of MCMC is to sample

the unknown variables along a Markov chain, which has the posterior

distribution as its stationary distribution. If several parameters are

considered, such probability distributions are high dimensional.

Thorough analysis of this posterior distribution quantifies inter-

individual variability of a group of patients as well as the co-vari-

ability of the parameters, allowing the identification of homogenous

subgroups. Bayesian approaches have already been used in conjunc-

tion with PBPK modeling, especially in toxicological questions [11],

but also for population PK [12]. However, often the PBPK models

used have been comparatively small and have contained lumped

parameters carrying mixed information of different physiological or

drug specific parameters. By using a large-scale PBPK model, which

separates drug specific from population specific information, in

combination with Bayesian approaches iterative characterization of

special populations by optimally leveraging information from dif-

ferent drugs can be achieved.

Results: Considering pravastatin pharmacokinetics as an application

example, Bayesian-PBPK is used to investigate inter-individual var-

iability in a cohort of 10 patients. Correlation analyses infer structural

information about the PBPK model. Moreover, homogeneous sub-

populations are identified a posteriori by examining the parameter

distributions and this subgroup stratification can even be assigned to a

polymorphism in the hepatic organ anion transporter OATP1B1

(Fig. 1).

Conclusions: The presented Bayesian-PBPK approach systematically

characterizes inter-individual variability within a population by updating

prior knowledge about physiological parameters with new experimental

data. Moreover, clinically relevant homogeneous subpopulations can be

mechanistically identified. The large scale PBPK model separates

physiological and drug-specific knowledge which allows, in combination

with Bayesian approaches, the iterative assessment of specific popula-

tions by integrating information from several drugs.
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Objectives: Apremilast is a phosphodiesterase type 4 inhibitor

evaluated for the treatment of psoriatic arthritis (PsA), psoriasis,

ankylosing Spondylitis, and Behçet’s disease. The aim of this study is

to assess the population pharmacokinetics (PK) of apremilast (CC-

10004) and the relationship between apremilast exposure and clinical

endpoints ACR20, ACR50 and HAQ-DI (American College of

Rheumatology 20 or 50 Response, and Health Assessment Ques-

tionnaire, Disability Index) in PsA patients.

Fig. 1 Identification of clinically relevant subgroups related to the

hepatic uptake transporter OATP1B1 (p \ 0.1) using a Shapiro–Wilk

test. Estimated kernel densities of logarithmic mean values of the

posterior transporter activities (kcat) for MRP2 and OATP1B1 are

shown together with the single patient logarithmic mean values for

OATP1B1
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Methods: The dataset pooled from a phase 2 study and a phase 3 study

(N = 160), and several phase 1 studies (N = 98) was used to construct the

population PK model. Upon identification of the structural population PK

model, key covariates were evaluated to identify statistically and clinically

relevant covariates explaining the sources of variability in apremilast PK.

The final population PK model was used to predict apremilast exposure

measures and perform PK/PD modeling of clinical endpoints. Individual

clinical endpoints (ACR20 and ACR50) were characterized as a binary

response (0 or 1) over time. The relationship between exposure to apre-

milast and response was modeled using logistic regression.

The logit of this model had the following form:

F ¼ cþ Placeboþ DrugEffectþ eta

where c intercept for clinical response; Placebo = Placebo model

which is a function of time; DrugEffect = Drug action (i.e., PD

model described using either a direct, indirect, or effect site maximum

pharmacological effect (Emax) models, driven by exposure or con-

centration values of apremilast); eta = Individual random effect.

Population PK and PK/PD modeling was performed using NONMEM

version 7.2.

Results: A one-compartment model with first-order absorption

resulted in the best quality of fit of apremilast plasma concentrations.

Typical apparent clearance (CL/F) and volume of distribution (Vc/F)

of apremilast were 11.5 L/h and 129 L, respectively. Significant

effects of body weight, sex and disease status were observed on CL/F

or Vc/F. PK/PD modeling of ACR20, ACR50 and HAQ-DI were

described using time-dependent placebo models and Emax models for

drug effects. Average steady-state minimum concentration values of

apremilast following administration of placebo, 20 mg BID, 30 mg

BID and 40 mg QD at Week 16 were 0, 133.6, 202.7 and 76.3 ng/mL,

respectively. The above apremilast exposures allowed predictions of

ACR20 proportions (7.6, 25.1, 28.3 and 20.5 %, respectively),

ACR50 proportions (1.3, 11.2, 18.4 and 5.8 %, respectively) and

change from baseline of HAQ-DI (-0.10, -0.20, -0.22 and -0.18,

respectively) at Week 16.

Conclusions: PK/PD model reasonably described the change from

placebo for apremilast ACR20/ACR50 results, but underestimated the

ACR20 probability of placebo at week 16. The exposure-efficacy

analyses suggest that 30 mg BID and 20 mg BID treatments may

provide a greater probability of ACR20 and ACR50 responses; and

better HAQ-DI response compared to the 40 mg QD treatments in

PsA subjects and suggest that BID dosing regimen may be more

appropriate than QD dosing regimen.
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M-028 Modeling the Intrinsic Factor Xa

From Edoxaban Treatment

SaeHeum Song*, Dongwoo Kang, Jeanne Mendell,

Abdel-Baset Halim, and Raymond Miller

Translational Medicine and Clinical Pharmacology, Daiichi Sankyo

Pharma Development, Edison, NJ, USA

Objectives: To quantitatively describe the relationship between

intrinsic Factor Xa (Intr FXa) and the exposure of Edoxaban, an oral,

once-daily, direct Factor Xa inhibitor under development for the

prevention of stroke and systemic embolism in patients with non-

valvular-atrial fibrillation (NVAF) and treatment and prevention of

recurrence of venous thromboembolism.

Methods: Edoxaban is an oral, direct, selective Factor Xa inhibitor.

Reduced Factor Xa activity results in hypocoagulation. A population

PK (pharmacokinetic) model of edoxaban was built using 18 phase 1

and 2 studies including 11,444 PK samples from 1,624 patients.

Individual predicted concentration values were used to model the Intr

FXa data from a phase 2 study [1] evaluating the safety of the four

fixed doses of edoxaban (30 mg QD, 60 mg QD, 30 mg BID, and

60 mg BID) in patients with NVAF compared to an active control

arm of warfarin. Subjects were randomized to 1 of the 5 treatment

arms administered for 3 months. The Intr FXa data from 585 patients

who received edoxaban was modeled using a dynamic binding model

to describe the relationship between Factor Xa inhibition and edox-

aban concentration. Intr FXa was determined in citrated plasma

samples by activating endogenous Factor X to Factor Xa and then

measuring the activity of Factor Xa with a two-stage chromogenic

method. In the first stage, plasma Factor X is activated by Russel’s Viper

Venom (Pentapharm, Basel, Switzerland), in the presence of calcium

ions, and in the second stage, Factor Xa hydrolyses a chromogenic

substrate (Biogenic, Tokyo, Japan). The intensity of the color is directly

proportional to FXa and, hence, intrinsic FX activity. Linearity of the

assay was demonstrated between 9 and 100 % of normal human plasma,

and the assay was reliable as shown by inter-run CV % of B14 %.

Markov chain Monte Carlo stochastic approximation expectation max-

imization estimation implemented in NONMEM V.7.2 was used to

estimate the model parameter values for association (Kon) and dissoci-

ation (Koff) of edoxaban with Intr FXa and the associated variability.

Scatter plots of predicted vs. observed Intr FXa, pre-dose and post-dose

boxplots of predicted vs. observed Intr FXa were used along with

numerical evaluations to assess the goodness of model fit.

Results: The estimated binding affinity of Intr FXa was 9.04 ±

0.411 ng/mL (mean ± standard error) and the dissociation constant

was 0.220 ± 0.0188 h. Simulated daily mean and peak values of Intr

FXa activity for all the subjects are shown in Table 1 with respect to

dosing regimens along with the observed incidence of all bleeding

events from the phase 2 study. The order of daily mean Intr FXa

values, from the smallest to the largest, concurs with the order of

observed bleeding events from the phase 2 study. The proportion of

subjects with Intr FXa exceeding a certain cutoff value along with the

dosing schedule showed correlation with bleeding risk. For example,

30 mg BID dosing exhibited an average of 80 % or greater inhibition

of Factor Xa activity throughout the day, whereas 60 mg QD dosing

exhibited an average of 80 % or greater inhibition for 75 % of the

time (i.e., for about 18 h per day).

Conclusions: The established pharmacokinetic-pharmacodynamic

model of edoxaban has good predictability with respect to the

Table 1 Daily mean and peak values of Intr Factor Xa

(mean ± standard deviation) with respect to edoxaban dosing

regimens versus the observed bleeding risk

30 mg QD 60 mg QD 30 mg BID 60

mg BID

Mean Intr FXa

(%)

24.39 ± 11.16 15.65 ± 8.71 12.37 ± 8.40 7.13 ± 5.84

Peak Intr FXa

(%)

48.53 ± 19.28 35.35 ± 17.96 22.53 ± 14.14 14.20 ± 11.43

Observed

incidence of

all bleeding

events (%[N])

5.5 [13] 7.3 [17] 12.7 [31] 18.3 [33]
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observed data. The simulated daily Intr FXa agrees with the observed

bleeding risk across dosing regimens. The prolonged period of Intr

FXa suppression, despite the same total daily dose, may provide a

biological explanation to the greater bleeding risk observed from

30 mg BID compared to 60 mg QD. The 60 mg QD and 30 mg QD

regimens showed similar and less bleeding risk to the warfarin control

treatment (8.0 %), respectively, and were chosen for on-going phase 3

trials.
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M-029 Translation of Linezolid PK/PD Relationship

from In Vitro Killing Kinetics Against Staphylococcus

aureus Isolates to Mouse and Human Efficacy
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Infection Innovative Medicines, AstraZeneca R&D Boston, Waltham,

MA, USA

Objectives: In antibacterial drug discovery and development, three

PK/PD indices are commonly used: duration a drug remains above the

minimum inhibitory concentration (MIC) (T [ MIC), the ratio of the

maximal drug concentration to the MIC (Cmax/MIC) and the ratio of

the area under the concentration time-curve to the MIC (AUC/MIC).

This approach presents limitations relative to understanding the sys-

tem or disease progression, mainly because only the summary PK

parameters are being linked to a point estimate of efficacy. On the

other hand, understanding the relationship between the full concen-

tration–time profile and bacterial killing kinetics provides better

insight into optimizing dosing strategy of the drugs. The aims of this

study were (1) to simultaneously describe the in vitro killing kinetics

of linezolid against four different S. aureus isolates using a semi-

mechanistic PK/PD model; and (2) to demonstrate translation of

linezolid PK/PD relationship from in vitro data to preclinical and

clinical data using the model.

Methods: In vitro time-kill profiles of four different S. aureus iso-

lates exposed to various static linezolid concentrations were modelled

simultaneously using a mechanism-based population PK/PD model

implemented in NONMEM 7.1. Linezolid PK was described by a

one-compartment model. The bacterial dynamics in the system was

characterized by a two sub-population model: one replicating and

linezolid-susceptible population, and the other resting and linezolid-

non-susceptible population [1, 2]. In the model, linezolid was

assumed to enhance the killing rate of the bacteria in growing stage.

The translatability of the model to in vivo and clinical data was

evaluated in two parts: (a) the ability of the model to predict the

magnitude of mouse- and clinically-derived linezolid PK/PD index

(AUC/MIC); and (b) the ability of the model to predict the recom-

mended linezolid clinical dosing regimen. In part (a), a dose

fractionation study was simulated for each isolate in mouse and

human. In each dose fractionation study, a total of 75 dosing regimens

were simulated from the combinations of 15 different total daily doses

fractionated into 5 different dosing intervals. The doses were chosen

such that the full exposure–response relationship was explored. The

relationship between bacterial load at 24 h and AUC/MIC were fitted

with a sigmoidal Emax model (2), and the magnitude required to

achieve stasis and 1-log drop in bacterial load at 24 h were calculated.

In part (b), linezolid concentration–time profiles and corresponding S.
aureus load in human were simulated using the PK/PD model built

and previously published human PK parameters (3). Simulations were

conducted for doses of 600, 800, 1000, 1200, 1400 mg/day divided

into either once, twice or three times daily, administered as IV

infusion over 30 min.

Results: The PK/PD model adequately described the killing kinetics

of linezolid against all four isolates of S. aureus (Fig. 1). The growth

rate was found to be the only statistically significant parameter

accounting for the difference in killing kinetics seen between isolates.

The model predicted the average (±SD) AUC/MIC required to achieve

stasis and 1-log drop in bacterial load at 24 h in mouse infection model

were 75 ± 40 and 144 ± 97, respectively, in accordance with

previously published experimental values for stasis (83 ± 57) in a

neutro-penic mouse thigh model [4]. The results here demonstrate the

predictability of the model from in vitro to preclinical response, and

provide a tool for selecting doses for testing in vivo, therefore opti-

mizing the study design and potentially decreasing animal use in

research. In human, the reported linezolid AUC/MIC breakpoints for

different infection sites in severely ill patient population ranged from

51 to 164 [5]. This value is in good agreement with our model-pre-

dicted AUC/MIC ratio required for one log reduction in human

infection (96 ± 59). Free linezolid concentration–time profiles and the

corresponding bacterial count from the simulations of human dosing

regimen are presented in Fig. 2. Greater maximum bacterial killing was

associated with once daily dosing compared to twice or three times

daily dosing. However, more rapid regrowth was also seen after once

daily dosing. Overall, the predicted minimal dosing regimen (least

amount of drug given least frequently) required to achieve stasis and

1-log reduction at 24 h were 400 mg q12 h and 600 mg q12 h,

respectively. This is in good agreement with the recommended lin-

ezolid dosing guidelines: 400 mg q12 h for adults with uncomplicated

skin and skin structure infection or 600 mg q12 h for other approved

infection.

Conclusions: The simultaneous modeling of the in vitro killing

kinetics of linezolid against four different S. aureus isolates using a

semi-mechanistic PK/PD model with subsequent simulations of

response in vivo allowed us to translate a PK/PD relationship from

in vitro to in vivo preclinical studies and into to the clinical setting. In

addition, we demonstrated that our semi-mechanistic PK/PD model

offers advantages toward rational selection of optimal dosing

regimen.
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M-030 Longitudinal Analysis of Vabicaserin

and Olanzapine Treatment Effects on PANSS

Total Scores Using an Informed Dropout Model

Adam Ogden1,*, Jing Liu1, Thomas A. Comery1, and Diane Mould2

1Worldwide Research and Development, Pfizer Inc., Groton, CT,

USA; 2Projections Research, Inc., Phoenixville, PA, USA

Objectives: Vabicaserin (VABI), a potent and selective 5-HT2C full

agonist, has potential utility for the treatment of schizophrenia.

Results of a Phase 2a trial of VABI, which included olanzapine (OLZ)

as a positive control, in subjects with acute exacerbation of schizo-

phrenia were recently reported [1]. VABI treatment improved positive

and negative syndrome scale (PANSS Total) scores, relative to pla-

cebo, as determined using ANCOVAs with last observation carried

forward (LOCF). Due to the large percentage of dropouts ([ 50 %

distributed across all treatment groups) observed in this study, a

disease progression model accounting for dropouts was developed to

better characterize the effect of VABI treatment.

Methods: Time-dependent functions were evaluated as the base

PANSS Total models for VABI, OLZ, and placebo. Treatment effect

was estimated in all models. The models also included a LOGIT

function to constrain the predictions to be within the range of possible

PANSS Total scores. Time-to-event dropout models were then added

to the base PANSS Total models, and both models were fit simulta-

neously. Using the combined models, model-predicted mean changes

from baseline were estimated for VABI, OLZ, and placebo.

Results: A proportional quadratic function was determined to pro-

duce the best model fit of the VABI data, whereas a linear function

best fit the OLZ data. A Weibull hazard model resulted in the best fit

of the dropout data. Inclusion of a dropout model resulted in a less

steep slope of drug effect relative to the previous LOCF analysis. Due

to the significant overlap of observed VABI trough plasma concen-

trations at the doses tested, subject-level VABI concentrations could

not be incorporated into the treatment effect model but were a sig-

nificant covariate in the dropout model. A statistically-significant

treatment effect was observed for both VABI and OLZ relative to

placebo. The model-predicted mean change from baseline of PANSS

Total scores was -25.4, -17.0, and -6.8 for OLZ, VABI, and pla-

cebo, respectively.

Conclusions: Inclusion of a dropout model significantly improved the

model fits relative to the previous LOCF analysis. This analysis

suggests that VABI treatment demonstrated greater improvement on

PANSS Total scores compared to placebo. However, the magnitude

of response was less than that observed following OLZ treatment in

this clinical study.
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M-031 Population Pharmacokinetic Model-based

In Vitro-In Vivo Correlation Approach to Predict

Plasma Concentration Profiles of a Prodrug Orally
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Objectives: To develop an in vitro-in vivo correlation (IVIVC) model

connecting the time-profiles of in vitro dissolution of controlled

release (CR) formulations with in vivo plasma concentrations by

utilizing a population pharmacokinetic (PK) approach to predict

plasma concentration profiles of both a prodrug and its active

metabolite.

Methods: Three CR formulations, A, B and C corresponding to slow,

intermediate and fast release rates, were developed for a prodrug.

In vitro dissolution profiles of the CR formulations were determined

and plasma concentrations of both the prodrug and the active

metabolite were obtained from two clinical studies in fasted healthy

volunteers following oral administration of the prodrug as solution or

as one of the three CR formulations. The CR formulation dissolution

profiles were incorporated into a population PK model, which was

used to fit the plasma concentrations of both the prodrug and active

metabolite, using NONMEM VI. The model was then used to predict

plasma concentration profiles of the prodrug and the active metabolite

in fasted healthy volunteers following oral administration of three

Fig. 2 Simulated free linezolid concentration–time profile (top

panel) and corresponding S. aureus count (bottom panel) for different

dosing regimens of linezolid. The solid and dashed horizontal lines in

the bottom panel represent stasis and one log reduction in bacterial

count, respectively
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new CR formulations of the prodrug based on their in vitro dissolu-

tion profiles.

Results: The final population PK model included five compartments:

CR formulation, depot compartment representing absorption of pro-

drug, central compartment of prodrug, peripheral compartment of

prodrug, and active metabolite compartment. A fourth-order poly-

nomial function was used to describe in vitro dissolution kinetics of

the CR formulation, which was linked to the depot compartment of

the prodrug. A model event time (MTIME) was used to estimate the

absorption time window to characterize the extent of absorption of the

prodrug. PK of the prodrug was described by a two-compartment

model, which included first-order absorption from the depot, distri-

bution to the peripheral compartment and clearance to the active

metabolite. The active metabolite was then eliminated from the body.

The model adequately characterized the PK of both the prodrug and

the active metabolite for CR formulation A, B and C based on the

goodness-of-fit criteria, visual predictive checks, and parameter pre-

cision (percentage standard errors of estimation were below 30 %).

Using the in vitro dissolution profiles of three new CR formulations,

the model reasonably captured the observed concentration profiles of

both the prodrug and the active metabolite. The prediction errors for

area under the concentration–time curve (AUC) and maximal plasma

concentration (Cmax) of both the prodrug and the active metabolite

were generally below 100 %.

Conclusions: Avoiding data transformation and utilizing a population

PK model, this approach provides more information of in vivo drug

performance for not only the prodrug but also the active metabolite

which is of primary clinical interest, and allows greater flexibility in

assessing PK variability and potential covariate effects, compared to

conventional IVIVC approaches. The method was applied to select

the optimal CR formulation and guide dose selection of new untested

formulations in clinical studies.

M-032 Longitudinal Model Based Meta Analysis

of Positive and Negative Syndrome Scale (Panss)

in Patients with Schizophrenia

Sima Ahadieh*, Thomas Tensfeldt, Vikas Kumar

Pfizer Inc., Groton, CT, USA

Objectives: To support go/no go drug development decisions, a

longitudinal model based meta-analysis (L-MBMA) for PANSS Total

was updated with recently published studies and recently approved

antipsychotics.

Methods: A database of 43 published clinical studies (28 in acute and

15 in chronic schizophrenic (SCZ) patients) from MEDLINE, and FDA

summary basis of approval (SBA) was created. Treatments included in

the dataset were either placebo, atypical antipsychotics or more recently

approved antipsychotic drug such as asenapine, lurasidone, iloperidone,

and paliperidone ER. A large drop-out frequency in this patient popu-

lation required the use of the reported last observation carried forward

(LOCF) data. The model consisted of additive baseline, placebo, and

drug effects. The between study variability was accounted by a random

effect on the slope and asymptote of the placebo model. Between arm

variability was included through an additive residual variance term.

Chronic or acute disease status was used as a covariate in the model.

Both placebo and active treatments were characterized by an expo-

nential model vs. time. Model parameters were estimated using

NONMEM 7.1.2. Stochastic simulations were performed to assess

the predictive power of the model. The mathematical models were

defined as:

Effectplacebo ¼ ðBþ g2Þ � 1� e�ðK�eg1 Þ�time
� �

� ð1þ conditionÞ

Effectdrug ¼ Eff � 1� e�S�time
� �

� ð1þ conditionÞ
Effecttreatment ¼ Baseline� Effectplacebo � Effectdrug þW � e

B and K are the asymptote and onset of placebo effect, while Eff and

S were asymptote and onset of the drug effect. Condition was the

patient status covariate (chronic or acute).

Results: The placebo effect was estimated as -5.8 [-17.6, 4.2]

points reduction in PANSS Total after 6 weeks. There seemed to be a

rising in placebo response by the trial date. The estimated mean

placebo adjusted drug effect in acute patients at 6 weeks for various

antipsychotics (in decreasing order) was: olanzapine * risperidone

(-8.8) [ haloperidol (-8.46) [ aripiprazole (-8.3) [ paliperidone

ER (-7.56) [ ziprasidone * lurasidone * asenapine (-5.48) [ ilo-

peridone (-3.8). Newly approved antipsychotic drugs do not seem to

demonstrate superior efficacy compared to the standard of care

(risperidone/olanzapine).

The estimated mean placebo adjusted drug effect in patients with

chronic SCZ at 6 weeks, in decreasing order, were olanzapine *
risperidone (-8.2) [ paliperidone ER (-6.3) [ ziprasidone (-5.4) [
aripiprazole (-4.9) [ haloperidol (-4.5). The drop in PANSS total

was estimated to be larger in the acute patient population compared to

chronic patients.

Conclusions: Quantitative modeling of PANSS Total provided an

integrated approach for comparing treatment effects across marketed

antipsychotics. The updated model estimates were used to support

decision making by comparing the efficacy of internal compounds in

development with marketed antipsychotics in both chronic and acute

SCZ patients. In addition, the placebo response increase by time of

trial needs further investigation and could be used as a covariate on

the placebo effect in the future models.

References

[1] http://www.nature.com/clpt/journal/v85/n1s/pdf/clpt2008290a.

pdf?free=1

[2] Beal et al. (1998) NONMEM users guides: parts I–VIII.

NONMEM project group. University of California, San

Francisco

M-033 Development of a Population PK Model

to Describe Dovitinib Pharmacokinetics
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Objectives: Dovitinib is a potent oral inhibitor of Receptor Tyrosine

Kinases (FGFR, VEGFR, PDGFR). Dovitinib is anticipated to be

efficacious in patients with tumors dependent on FGF-activated

pathways (mutation, amplification or overexpression). Moreover,

dovitinib may augment management of tumors with FGF activation

secondary to VEGF resistance.The objective of this analysis was to

improve upon a previously developed PK model [1] to better describe

the time dependencies and dose dependent nonlinearities of dovitinib

PK.

Methods: PK data from 127 patients receiving dovitinib, 50–600 mg

daily or intermittently over 15–859 days were available. Plasma

concentration–time data were available after the first dose and at

steady state. NONMEM versions 6 and 7 were used for nonlinear

mixed effects modeling of the data; R version 2.1.3 was used for data

display and summarization.
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Results: Dovitinib exposures on Day 1 were characterized by dose

proportionality following single doses ranging from 50 to 600 mg. At

steady state, there was a slight non-proportional increase in exposure

with dose, but with lower accumulation than expected under time-

independent PK. Absorption was prolonged, with tmax 6–8 h post

dose.

A previously reported PK model used two parallel clearance terms

allowing for either lower than expected steady-state exposure or non-

dose-proportionality to manifest, with both phenomena depending on

a single time dependent process [1]. This model predicted non-dose-

proportionality only for patients with the highest exposures [1].

The multi-compartment model developed here (Fig. 1) exhibited

increased flexibility and was able to better capture the complex fea-

tures of dovitinib PK. Oral doses of dovitinib enter into a depot

compartment. Transit compartments accommodate the absorption lag.

The two turnover compartments (driven by either the parent drug

concentration or by a downstream effector) modulate the clearance of

dovitinib in opposing ways. The first turnover compartment has a very

small EC50 making it act like a switch that causes an amplification in

dovitinib clearance which is essentially the same for all doses. The

resulting increase in clearance causes the concentrations at steady

state to be lower than projections based on day 1. The second turnover

compartment induces reductions in clearance relative to baseline. It

has a more moderate EC50, which leads to an observable dose

dependence in exposure at steady state.

A predictive check was performed in order to compare the pre-

vious model [1] with the current model by simulating 5000 subjects at

each dose from each model with the same seed. Boxplots were used to

display the range of steady state AUC’s predicted by each model for

each dose level. Observed data was then overlaid (Fig. 2). The new

model demonstrates an improved predictive capacity at the higher

doses, implying that the non-dose-proportionality is better described

by this model.

Conclusions: The PK model developed in this work described the

data well and captured both time dependent processes including

decrease in exposure as well as the more subtle dose non-propor-

tionality over time. This model will be used to characterize data from

additional studies and perform a full covariate analysis.
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Objectives: To compare the dose response relationships for efficacy

(pain score), adverse events (frequency of somnolence and dizziness)

and total discontinuation rates (due to lack of efficacy, adverse

events) of gabapentin, pregabalin and duloxetine in specific types of

neuropathic pain.

Methods: A database consisting of 14 placebo controlled dose

ranging clinical trials of gabapentin, pregabalin and duloxetine was

developed from publicly available sources: journal articles, regulatory

documents, package inserts, and web documents. The clinical trials

investigated various neuropathic pain such as diabetic neuropathic

pain, post-herpetic neuropathic pain and general neuropathic pain. A

dose response with time course model with inter-study and inter-arm

variability for pain score (using 11-point Likert scale) was developed

to characterize improvements in mean pain score for each treatment

arm (placebo or drug) as shown below:

PainScore ¼ Baseline� Placebo � 1� e�Kpb�Time
� �

� Emax

� Dosec

Dosec þ EDc
50

1� e�Kdrug�Time
� �

where Kpb is the rate of decline in pain score in placebo; Emax is the

maximal effect of the drug; c is Hill coefficient; ED50 is the dose

associated with 50 % maximal effect; Kdrug is the rate of decline in

pain score in drug treated arm.

A logistic regression model was developed to characterize the total

discontinuation rates due to lack of efficacy, adverse events, or other

reasons, as well as the frequency of somnolence and dizziness.

Covariates such as pain subtype, drug, age, titration, and duration of

treatment were investigated. All analyses were conducted using

NONMEM VI and SPLUS 6.2.

Results: The treatment period for gabapentin was 8 weeks (daily

dose: 900–3600 mg), for pregabalin was 5–13 weeks (50–600 mg)

and for duloxetine was 12 weeks (20–120 mg). The baseline pain

score was lower for duloxetine (5.86) trials compared to pregabalin or

gabapentin (6.56). The model characterized the time course of change

in pain score from baseline well. The ED50 for pregabalin and dul-

oxetine were 105 and 19.5 mg, respectively, while there appeared to

be no dose dependency for gabapentin.

Similar to the pain score model, discontinuation due to lack of

efficacy declined with dose for both pregabalin and duloxetine,

while there was no dose response relationship for gabapentin.

Fig. 1 Schematic for improved model

Fig. 2 Comparison of predicted steady state AUC by dose with data

overlaid for previous model [1] and current model
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Discontinuation due to adverse events showed a clear dose response

relationship for all three drugs, although discontinuation rates were

lower for diabetic neuropathic pain than for the other indications.

While there was no dose response for discontinuation due to other

reasons, age

did have an effect, with older patients being less likely to drop out

of the study. Frequency of somnolence and dizziness were lower in

trials that used dose titration as compared to trials that did not use

titration.

Conclusions: The dose–response relationships for the efficacy,

adverse events and discontinuation rates were quantified for 3 cur-

rently approved drugs for neuropathic pain. The results of the meta-

analyses provided insights into the relative efficacy, tolerability and

dropout rates at the approved doses that guided decisions regarding

the selection of dose and active comparator for use in Phase 2 studies

and optimization of study design of novel compounds under inves-

tigation for neuropathic pain.

M-035 Population PK-PD Modeling of Everolimus

in the Treatment of Patients with Tuberous Sclerosis

Complex (TSC) Who Have Subependymal Giant Cell

Astrocytomas (SEGA)

William Sallas1,*, Ovidiu Chiparus1, Wing Cheung1, Shweta Urva1,

Jixian Wang2, Helene Cauwel2, Du Lam1, Gaurav Shah1, Celine Sarr1

1Novartis, East Hanover, NJ, USA; 2Novartis, Basel, Switzerland

Background: TSC is an autosomal dominant genetic disorder char-

acterized by the growth of non-malignant tumors in multiple organ

systems [1–2]. Brain lesions (SEGAs) are the primary cause of

morbidity and mortality in children with TSC. In the EXIST-1 trial

the primary endpoint was overall SEGA response rate—the percent-

age of patients with at least 50 % shrinkage in sum of target SEGA

volumes (SV) with no new or worsening non-target SEGA lesions or

hydrocephalus. Everolimus led to a statistically significant difference

(p \ 0.0001) in the overall SEGA response rate in favor of everoli-

mus versus placebo (34.6 vs. 0 %). The study is ongoing. Current

results are for double-blind treatment period, but not after the pre-

defined cutoff date. Dose was titrated from 4.5 mg/m2 to reach a

trough (Cmin) of 5–15 ng/mL, subject to tolerability. Limited phar-

macokinetics (PK) was assessed 2 weeks after first dose, at each visit,

and 1–2 weeks following dose adjustments. SEGAs assessed by brain

MRI at baseline, week 12, week 24, and week 48 were measured

centrally [3].

Exploratory objective: Assess target Cmin range for therapeutic drug

monitoring through modeling of the relationship between everolimus

exposure and sum of target SEGA volume (SV) while accounting for

interpatient differences

Methods: The sum of target SEGA volumes (SV, cm3) was mod-

eled as a function of everolimus exposure (Cmin, ng/mL) over time

based on actual daily dosing history, including dose changes and

interruptions. Baseline SV, age, body size, sex, and concomitant

medications were examined to help explain patient differences in

both their PK (not shown) and their impact on sensitivity to ever-

olimus for SV shrinkage. An indirect response model was developed

that modeled the rate of change in SV for Cmin = 0 (placebo) by a

nonnegative input rate ‘‘Kin’’ (cm3/h) and nonnegative output rate

‘‘Kout 9 SV’’ (1/h 9 cm3). The difference in input and output rates

tell you the rate of change in SV. The drug effect is the inhibition

‘‘I’’ (fraction 0–1) of the input rate Kin through everolimus Cmin by

an Imax model:

I ¼ Imax� Cmin= IC50þ Cminð Þ;

where Imax is between 0 and 1, and IC50 is nonnegative. Initially

Cmin = 0 (and I = 0) until after everolimus treatment starts; then I is

estimated daily. If Cmin = IC50, then I = Imax/2. For placebo and

everolimus, the differential equation for the rate of change of SV

was represented in terms of SV, Cmin, and the individual pharmaco-

dynamic parameters (Kin, Kout, IC50, and Imax) as:

dSV=dt cm3=h
� �

¼ Kin� 1� Ið Þ � Kout� SV:

A separate population PK analysis provided the individual PK

parameters from all patients in the everolimus arm to estimate daily

Cmin used in the population PK-PD model. NONMEM with

METHOD = 1 INTERACTION was used for both the population PK

(not shown) and the population PK-PD models.
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volume (cm3) versus time (week) Left panel is a placebo patient.

Right panel is an everolimus patient with an 80 % decrease in SEGA

volume

Time after first dose (week)

S
um

 o
f t

ar
ge

t S
E

G
A

 v
ol

um
es

 (%
 c

ha
ng

e)

0 10 20 30 40

-6
0

-4
0

-2
0

0

Cmin = 0 ng/mL
Cmin = 3 ng/mL
Cmin = 5 ng/mL
Cmin = 6 ng/mL
Cmin = 9 ng/mL
Cmin = 12 ng/mL
Cmin = 15 ng/mL

Fig. 2 Typical change in SV by Cmin vs. time

Table 1 Typical decrease in SV and model-based percentage of

patients with at least a 50 % decrease by Cmin

Cmin

(ng/mL)

Typical SV decrease

after baseline (95 % CI)

Model-based % patients

with C50 % decrease

0 0 (-4 to 9) 2

3 30 (22 to 36) 12

5 41 (30 to 46) 31

6 45 (32 to 50) 38

9 55 (37 to 59) 58

12 61 (40 to 65) 70

15 66 (42 to 70) 78
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Results: There were 78 patients randomized to everolimus with

median age 9.5 years (range 1.0–23.9), and there were 39 patients

randomized to placebo with median age 7.1 years (range 0.8–26.6).

Two patients randomized to everolimus had no target SEGA lesion

observed at baseline by central assessment and were excluded from

the population PK-PD analysis. The remaining 115 patients in the

population PK-PD analysis population contributed a total of 510 sums

of target SEGA volumes. The observed and predicted Cmin and SEGA

volume for two patients are below (Fig. 1).

Typical sum of target SEGA volumes (SV) after baseline as a func-

tion of Cmin was estimated (Fig. 2; Table 1).

Models with Cmin replaced by AUC calculated using the popula-

tion PK model provided similar results. Cmin was chosen because it

was used in therapeutic drug monitoring. The median observed Cmin

was 3.7 ng/mL at week 2, and the median increased to 7.1 ng/mL at

week 48 due to corresponding increases in dose. IC50 was variable,

ranging from 1 to 25 ng/mL with typical IC50 = 6.4 ng/mL. Some

subpopulations were too small to distinguish their IC50. Thus, there

was no evidence to individualize starting dose beyond that found from

population PK (not shown).

At 24 weeks, 21.6 % of everolimus patients had less than 30 %

SV shrinkage. Some of these patients may benefit from individualized

dosing. A patient SV reaches steady state typically after 12–24 weeks

of everolimus. Then, the model can theoretically provide some

guidance toward an individual target Cmin to meet a patient goal for

SV shrinkage (Table 2).

Conclusions: The PK-PD model generally supports the 5–15 ng/mL

target Cmin range, but also recognizes patients with tolerability issues

requiring a dose reduction and a Cmin below 5 ng/mL could still have

benefit from tumor shrinkage in this long-term, life-threatening

disease.
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M-036 Exposure–Response Modeling in Support

of Phase 3 Dose Selection of MK-3222 for Treatment

of Psoriasis
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Objectives: MK-3222 is a high affinity humanized anti-IL 23 p19

specific MAb being developed for treatment of psoriasis. The Phase

2b dose ranging study of MK-3222 was carefully designed to estab-

lish the dose–response relationship [1]. The results from this Phase 2b

study were used to develop an exposure–response model to analyze

PASI75 and PASI90 response rates. Model-based simulations were

used to support dose selection for Phase 3 development.

Methods: PASI75 and PASI90 responder status (yes/no) at week 16

were modeled as a saturable function of exposure using logistic

regression. PASI75 and PASI90 were analyzed separately and were also

co-modeled as correlated endpoints. Subject exposures were calculated

from a population PK model. The effect of body weight, prior biologic

experience (yes/no), psoriasis vs. psoriatic arthritis status, and baseline

PASI on model parameters were evaluated. Model robustness was

evaluated by fitting data subsets (i.e. only PASI75 data, or only PASI90

data), dose–response data, and combined PASI75 and PASI90 data.

Key Assumptions

• Phase 2b study P05495 subjects are representative for the Phase 3

population.

• The average serum concentration (Cavg) up to week 16 is a

reasonable measure of exposure that is predictive of week 16

PASI75 and PASI90

• A logistic regression model with a steep increase of response at

lower exposure levels, leading to a plateau at higher exposure levels,

is appropriate to describe MK-3222 PASI75 and PASI90 response.

Results:
Exposure–response model
The model fit is shown in Fig. 1 for PASI75 (left panel) and PASI90

(right panel). EC50 for PASI75 was estimated to be 0.2 lg/mL (i.e.

the concentration resulting in half-maximal efficacy). Since the

median exposure for the 100 mg dose group was 4.67 lg/mL, both

Table 2 Individual target Cmin for patients with poor early SV shrinkage

Past individual
SV shrinkage

Future individual goal for 
SV shrinkage

10% 20% 30% 50% 75%

Individual 
observed 
Cmin 
(ng/mL)

1

Individual 
target Cmin 
(ng/mL)

1.7 4.2 14.9
1 3.9 9.6 NA

2 3.5 8.4 NA
3 5.2 12.7 NA

2 7.9 NA NA
3 11.8 NA NA

4 6.9 NA NA
6 10.4 NA NA
8 13.9 NA NA

≥4 NA NA NA
≥9 NA NA NA

This table is based on limited data, and 
is not appropriate to use at this time.  

NA means goal is not likely to be 
achievable, i.e., individual target Cmin 
exceeds 15 ng/mL – the upper limit of 
the target Cmin range (based on limited 
safety experience in patients with 
higher Cmin).

Good chance to reach 50-75% shrinkage
Good chance to reach 50% shrinkage
Good chance to reach 30% shrinkage
Poor chance to reach 30% shrinkage
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100 and 200 mg are towards the top of the exposure–response curve

(Table 1).

Impact of body weight
The population PK analysis demonstrated that drug clearance

increased with body weight. Figure 2 shows the impact of body

weight on drug exposure (left panel) and on the dose–response rela-

tionship (right panel). Drug exposure decreases with increasing body

weight. Body weight was a relevant determinant of the PASI75

response rate in the lower dose range. However, impact was minimal

at the plateau of the dose–response relationship. These results justify

the conclusion that there is no need for a body weight based dosing

strategy.

Model-based dose selection

The model-based analysis of the clinical data from the Phase 2b study

suggested that the 100 mg dose was near the plateau of the exposure–

response relationship for PASI75. The incremental benefit for 200

versus 100 mg was estimated to be *2 % for PASI75 and 2–6 % for

PASI90. Clinical trial simulations were conducted to investigate the

impact of these differences on the potential outcome of Phase 3

clinical trials. In total, 10,000 trials were simulated with cohorts of

300 subjects. Results are shown in Fig. 3 which demonstrates that the

observed response rates for 200 versus 100 mg are likely similar for

PASI75 and may be higher for PASI90. All model scenarios (only

PASI75 data, only PASI90 data, dose–response data, and combined

PASI75 and PASI90 data) suggested fairly similar mean differences

between 100 and 200 mg dose groups, although models that fit

PASI90 only showed larger, possibly clinically meaningful benefits of

200 over 100 mg as compared to models that fit combined PASI75

and PASI90 data.

Conclusions: There is no need from a clinical pharmacology per-

spective to tailor the dose based on body weight. The 100 and 200 mg

doses are likely near or at the plateau of the exposure–response rela-

tionship and were both selected for Phase 3 development. The 200 mg

dose may have a clinically meaningful higher PASI90 response rate.
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Objectives: The objectives of these analyses were (1) To develop a

population pharmacokinetic (PPK) model characterizing for the first

time the pharmacokinetics of dutasteride in male subjects with

androgenic alopecia (2) To develop a population pharmacokinetic/

pharmacokinetic (PPKPD) model that characterizes the effects of

dutasteride on dihydrotestosterone and hair count following once

daily oral administration to male subjects with androgenetic alopecia.

Methods: Dutasteride and dihydrotestosterone concentrations and

target area hair count within a 2.54-cm diameter circle [1] were
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Fig. 1 Model fit for week 16 PASI75 and PASI90 response

(difference from placebo) versus exposure. Scenario: joint model of

combined PASI75 and PASI90 data. Dashed area is 95 % CI from

simulations based on the variance–covariance matrix

Table 1 PASI75 response rate at week 16

Dose group 5 mg 25 mg 100 mg 200 mg Placebo

N 42 90 89 86 45

n PASI75 responders (week 16) 14 58 59 64 2

% PASI75 responders (week 16) 33.3 % 64.4 % 66.3 % 74.4 % 4.4 %
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Fig. 2 Impact of body weight on drug exposure (left panel) and on

the dose–response relationship for PASI75 at W16 (right panel).
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Fig. 3 Results from clinical trial simulations for PASI75 (left) and

PASI90 (right) in cohorts of n = 300 based on exposure–response

models. Scenarios: model of PASI75 data (left) and PASI90 data

(right)
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available from a phase II-III multicenter randomized placebo-con-

trolled study. Male subjects with androgenetic alopecia aged 20–50

years received placebo or dutasteride (0.02, 0.1 or 0.5 mg) daily for

up to 24 weeks. Data were analyzed by non-linear mixed effect

modeling using NONMEM 7.0 using first order or first order condi-

tional estimation allowing for interaction (FOCE-I). As the 0.02 mg

dose group could not be included in the PPK model (see Results),

observed dutasteride concentrations were used for the PPKPD anal-

ysis. Dihydrotestosterone concentrations below the limit of

quantitation (LLQ) were replaced by half the LLQ and dutasteride

concentrations below the LLQ were replaced by half the LLQ for the

active treatment groups and by zero for the placebo group for the

PPKPD analyses. Model evaluation comprised non-parametric boot-

strap and visual predictive checks.

Results: More than 50 % of dutasteride concentrations were below

the LLQ for the dose of 0.02 mg and attempts to include these data

using the M3 method were unsuccessful. Initial runs were done with

models with linear and non-linear elimination with FOCE-I. These

runs showed consistent under estimation of concentrations for the

dose of 0.5 mg. This issue was solved by switching to the FO esti-

mation method as previously done [2]. The pharmacokinetics of

dutasteride for the dose of 0.1 and 0.5 mg were best described by a

one-compartment model with linear and non-linear elimination

(Table 1). Body weight and age were covariates on the linear clear-

ance and body weight was a covariate on the volume of distribution.

Race and ethnic Heritage did not have any additional effect on the

linear clearance and volume of distribution. The bootstrap analysis as

well as the visual predictive check showed that the model was rea-

sonably robust.

Dihydrotestosterone concentrations measured at the end of treatment

were better predicted with dutasteride concentration than dutasteride

dose. The PK/PD relationship (N = 694 subjects) followed a simple

Emax model where Emax is the maximum drug induced effect and was

91.0 % (95 % CI: 88.5–93.5 %). The concentration providing 50 %

of Emax (EC50) was estimated to be 0.191 ng/mL (95 % CI:

0.104–0.278 ng/mL). No covariates were identified for Emax.

The effect of dutasteride on change from baseline in 2.54-cm

target area hair count (n = 610 subjects) was best described by a

simple Emax relationship with dutasteride concentration (Table 2).

The placebo effect showed greater hair loss in subjects with higher

baseline hair count with an average loss of 8 hairs for a median

baseline hair count of 760 and a hair loss of 33 for the 95th percentile

baseline hair count of 1110. Cluster (Hispanic versus non-Hispanic

countries) and baseline Norwood-Hamilton (BNHS) alopecia score

significantly impacted Emax. Subjects from non-Hispanic countries

had 53 % lower hair gain and subjects with a baseline Norwood-

Hamilton score of V had 43 % higher hair gain than subjects with a

score of III or IV.

Conclusions: A one-compartment population pharmacokinetic model

for dutasteride with linear and non-linear elimination was success-

fully developed and validated. Dutasteride linear clearance and

volume of distribution were related to body weight with standard

Table 1 Population PK model for dutasteride in male subjects with androgenetic alopecia (n = 309 subjects)

Parameter NONMEM

estimate

Bootstrap estimate NONMEM

RSE

Bootstrap

RSE

Bootstrap 2.5th

percentile

Bootstrap 97.5th

percentile

H1 (L/h) in TVCL = h1�(1 + (AGE-40)�h5)�
(BW/70)^3/4

0.467 0.462 4.32 4.85 0.420 0.508

H2 (Km, ng/mL) 1.63 1.52 22.9 33.6 0.567 2.54

H3 (Vmax, lg/h) 3.66 3.60 9.26 11.8 2.82 4.41

H4 (L) in TVVC = h4�(BW/70)^1 461 455 5.86 7.44 400 530

H5 (%) in TVCL = h1�(1 + (AGE-40)�h5)�
(BW/70)^3/4

-2.16 -2.19 19.6 20.3 -3.11 -1.28

Variability (CV %)

Interindividual variability on CL 69.4 67.8 15.8 19.2 53.9 80.7

Interindividual variability on VC 63.2 60.8 19.0 23.1 46.4 73.9

Interoccasion variability on F 16.4 15.7 31.2 35.4 8.12 20.4

Residual variability (proportional) 12.3 12.5 26.3 26.9 7.23 20.2

RSE percentage of relative standard error (100 % * SE/Estimate)

Table 2 Population PK/PD model for change from baseline in 2.54-cm target area hair count (n = 610 subjects)

Parameter Estimate RSE (%) 95 % CI lower 95 % CI upper

Emax for BNHS III or VI and Hispanic countries, hair 134 10.6 106 162

Emax for BNHS V and Hispanic countries, hair 192 14.5 138 246

EC50, ng/mL 0.245 53.1 -0.0098 0.500

H1 (hair) in E0 = h1 + (BTAHC-760) � h2 -7.96 93.6 -22.6 6.64

H2 in E0 = h1 + (BTAHC-760) � h2 -0.0705 27.0 -0.108 -0.0333

H3 in Emax_Non Hispanic Countries = Emax_Hispanic countries � h3 0.472 14.4 0.339 0.605

Residual variability: r (additive) 93.2 9.45 85.3 101

RSE percentage of relative standard error (100 % * SE/Estimate); BTAHC baseline target area hair count, BNHS baseline Norwood–Hamilton

score, E0 placebo effect; Cluster 1 Argentina, Chile, Mexico and Peru. Cluster 2 Japan, Philippines, Thailand, Taiwan and Russia
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allometric relationships and the linear clearance decreased by 2.16 %

for each year increase in age. These effects were not clinically sig-

nificant and no dose adjustment is recommended.

The effect of dutasteride on DHT was best described by a simple Emax

model with no covariate with a maximum 91 % decrease from

baseline. The effect of dutasteride on hair count was also best

described by a simple Emax relationship with dutasteride concentra-

tion. Hispanic countries and a baseline Norwood–Hamilton score of V

were shown to provide higher Emax. Both models provided similar

concentrations leading to 50 % of maximum effect around 0.2 ng/mL

or slightly greater than the concentrations obtained with the 0.02 mg

dose of dutasteride. The mean concentrations observed with the 0.1

and 0.5 mg dose would lead to 90 and 99 % of Emax, respectively.
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Objectives: On September 28 2012, FDA approved adalimumab

(HumiraTM) for inducing and sustaining clinical remission in adult

patients with moderately to severely active ulcerative colitis (UC).

Phase 2 dose ranging trials were not conducted to establish the dose of

adalimumab for the treatment of patients with UC. However, in one of

the two registration trials in UC patients, the sponsor studied two

induction doses 80/40 (80 mg, followed 2 weeks later by a dose of

40 mg) and 160/80 (160 mg, followed 2 weeks later by a dose of

80 mg). There was no difference in remission rate observed between

adalimumab 80/40 and placebo. In the other registration trial, only the

160/80 mg induction dose was studied. Induction doses higher than

160/80 were not studied. The trial utilized co-primary efficacy end-

points of clinical remission (defined as proportion of patients with a

total Mayo score B2 with no individual subscore [1) at week 8

(induction of clinical remission) and clinical remission at week 52.

The trial demonstrated a statistically-significantly greater proportion

of patients presenting induction of clinical remission in the ada-

limumab arm (41 of 248, or 16.5 %) compared to the placebo arm (23

of 246, or 9.3 %), p \ 0.05. In view of the relatively modest effect

size seen in the trial we hypothesized that a higher dose could have

been more effective. Exposure–response analyses were performed by

the FDA to assess the appropriateness of the adalimumab dose for the

treatment of moderately to severely active UC.

Methods: The data originated from a multicenter, randomized, dou-

ble-blind, placebo-controlled phase 3 clinical trial to evaluate the

efficacy and safety of the human anti-Tumor Necrosis Factor (TNF)

monoclonal antibody, adalimumab in patients with UC. There were

258 patients randomized to the adalimumab arm (receiving a

160/80 mg induction dose followed by 40 mg every other week) and

260 patients randomized to the placebo arm. Logistic regression

analysis was conducted to assess the relationship between the week 8

trough adalimumab concentration and the probability of achieving

clinical remission at week 8. Beginning at week 12, patients who

demonstrated an inadequate response switched to open-label 40 mg

adalimumab every other week. Kaplan–Meier plots were generated to

visualize the relationship between week 8 trough adalimumab con-

centration and the time until inadequate response. Finally, the

relationship between week 8 trough adalimumab concentration and

time until inadequate response was assessed with a Cox proportional

hazards model. Numerous baseline risk factors (such as age, baseline

Mayo score, prior exposure to anti-TNF therapy, weight, etc.) were

evaluated in the logistic regression and Cox proportional hazards

analyses.

Results: The results of the logistic regression and Kaplan–Meier

analyses are presented in Fig. 1.

A statistically-significant (p = 0.0002) relationship was established

between week 8 trough adalimumab concentration and clinical

remission at week 8 (induction phase) using logistic regression

(Fig. 1a). Notably, the trend of increasing remission rate with

increasing adalimumab concentration does not appear to plateau over

the range of observed trough adalimumab concentrations, suggesting

that a higher dose may increase the probability of clinical remission at

week 8. The relationship between probability of achieving clinical

remission per Mayo score at week 8 and week 8 trough adalimumab

concentration was also modeled using multivariate logistic regression.

The results showed that week 8 trough adalimumab concentration

(p = 0.0003), baseline Mayo score (p \ 0.0001), and prior-anti-TNF

therapy experience at baseline (p = 0.025) were all significantly

related to week 8 remission. Patients with higher concentrations have

higher probability of induction of clinical remission. Patients with

prior anti-TNF therapy experience have a lower probability of

induction of clinical remission which is consistent with the observed
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represented by the black diamonds and bars, and the placebo group

is represented by the blue square and bars. Panel B: Inade-

quate Response Occurred Earlier in Patients with Lower Week 8

Concentrations
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clinical data. In addition, patients with higher baseline Mayo scores

have a lower probability of induction of clinical remission at week 8.

The Kaplan–Meier analysis results (Fig. 1b) indicate that patients

with higher week 8 trough adalimumab concentrations sustained their

response (i.e. did not exhibit inadequate response) over a longer period

of time compared to patients with lower week 8 trough adalimumab

concentrations who demonstrate inadequate response earlier. In addi-

tion, the proportion of patients who did not demonstrate an inadequate

response increased with increasing concentration (32 % for placebo,

29 % for Q1, 40 % for Q2, 53 % for Q3, and 57 % for Q4).

Univariate Cox-proportional hazards analyses were performed to

assess the relationship between time to inadequate response and week

8 trough adalimumab concentration as well as various baseline risk

factors (such as age, baseline Mayo score, prior exposure to anti-TNF

therapy, weight, etc.). The week 8 trough adalimumab concentration

(p = 0.0006) and prior exposure to anti-TNF therapy (p = 0.0031)

were statistically significant covariates indicating that patients with

lower concentrations or prior exposure to anti-TNF have higher

probability of an inadequate response. A multivariate proportional

hazards model showed that the week 8 trough adalimumab concen-

tration was a significant covariate (p = 0.0008) after accounting for

prior exposure to anti-TNF therapy. The hazard ratio for week 8 trough

adalimumab concentration (HR = 0.93) indicates that increasing

the concentration by 1 lg/mL decreases hazard for inadequate response

by 7 %. These results demonstrate that the time to inadequate response

(requiring an open-label switch) increases with increasing adalimumab

concentration after correcting for potentially confounding risk factors.

A robust exposure–response relationship for clinical remission at

week 52 could not be established due to the large number of patient

drop outs during the course of the trial and resulting missing PK data.

Conclusions: The pharmacometric analyses presented herein dem-

onstrate that higher week 8 trough adalimumab concentrations are

associated with: (1) greater proportion of patients achieving clinical

remission at week 8, and (2) increased duration of clinical remission.

Given the modest effect size (16.5 % remission induction rate for

adalimumab 160/80/40 versus 9.3 % for placebo) and the observation

that remission rate does not plateau over the observed concentration

range, we conclude that a higher dose for the induction of remission

may provide greater benefit to UC patients. These analyses were

presented by the FDA review team at the gastrointestinal drugs

advisory committee (GIDAC) Meeting on August 28th 2012. A

majority (14 of 17) of the GIDAC members voted that the optimal

adalimumab dose for UC has not been established, although the

dosage studied demonstrated clinical efficacy.

Exposure–response analyses were pivotal in enhancing our under-

standing the adequacy of the proposed adalimumab induction dosing

regimen. Based on the results of these analyses along with the

observed clinical data, FDA required the Sponsor to conduct a post

marketing clinical trial to evaluate the efficacy and safety of ada-

limumab induction regimens utilizing doses higher than those

previously studied.
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Objectives: Model-based meta-analysis leverages all publically

available competitor trial data to provide a framework for quantitative

comparison between compounds for which no head-to-head trials

have been performed [1]. Inclusion in the meta-analysis of internal

(unpublished) data for a compound under development expands the

framework to allow quantitative comparison with marketed compet-

itors and other compounds under development. This modeling can

then be applied as the basis for simulation of head-to-head trials with

the purpose of exploring suitable sample sizes and probability of

superiority (and non-inferiority) success.

Head-to-head trial powering has typically been done assuming a

certain difference in treatment effect and variance. Sample size

determination based on model-based meta-analysis can provide the

following advantages:

• All available data is used (rather than a single chosen ‘‘represen-

tative’’ trial result)

• Co-modeling provides a global estimate of placebo rate and

normalizes all efficacy results relative to that placebo rate (rather

than point estimates)

• Model-based analysis of trials provides a distribution of relative

treatment effect (rather than a point estimate) from which to base

trial simulations.

Here, we present a case study exploring sample sizes (based on

the psoriasis area and severity index; PASI) for prospective

head-to-head trials between brodalumab (AMG 827) and us-

tekinumab (Stelara�) and adalimumab (Humira�) for subjects with

psoriasis.

The objectives of this work were to use model-based meta-analysis

to determine the time course of the dose–response relationship for

PASI50, 75, 90 and 100 % response rates of brodalumab in relation to

other compounds (with published clinical trial data) for psoriasis; and to

present a case study illustrating how model-based meta-analysis can be

used to inform head-to-head trial simulation and optimize phase III trial

strategy

Methods: The analysis proceeded in two stages. In the first stage, a

model-based meta-analysis (MBMA) of all publically available data

from placebo controlled double blind trials of approved (or nearing

approval) drugs for psoriasis. Data to inform the meta-analysis was

found via literature search (PubMed, etc.) and review of reference
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lists from previous meta-analyses, clinicalstudyresults.org, conference

abstracts and corporate websites. Internal data from a phase II trial of

brodalumab was also included. The included data represented over

14000 subjects in 34 trials of 10 drugs.

The MBMA was accomplished as joint modeling of the probability of

achieving PASI 50, 75, 90, 100—by treatment arm of each trial.

Placebo and treatment effect were modeled for each drug. The base

model assumed a different Emax for each endpoint but similar for all

drugs. The assumption was tested by allowing different Emax by drug

class. We evaluated impact of endpoint, drug, drug class, regimen,

indication, failure of prior treatment, baseline PASI score, disease

duration, age, weight and gender on model parameters. From this

MBMA, we derive a distribution of effect difference between treat-

ments of interest.

In the second stage of this analysis, head-to-head trials for brod-

alumab vs. adalimumab and ustekinumab were simulated based on the

distribution of the effect difference between treatments. Trial level

assumptions included, most importantly, sample size, but also PASI

endpoint, weight distribution, and MBMA modeling assumptions. For

each set of trial level assumptions of interest, 10,000 trials were

simulated. The probabilities of achieving statistically significant

treatment effect outcomes (superiority, non-inferiority, inferiority and

inconclusive outcome) were calculated from the 10,000 trials. All

tests were done at a one-sided alpha of 0.025 and a non-inferiority

margin of 5 %.

Results: For chosen sets of trial level assumptions, plots comparing

treatment effect outcome probability vs. sample size were made to

illustrate the results. Results of primary interest were also tabled.

Conclusions: We successfully used model-based meta-analysis to

characterize the time-course of the dose–response relationship for

PASI50, 75, 90 and 100 of brodalumab in relation to competitor

drugs.

This case study illustrates how model-based meta-analysis can be

used to inform head-to-head trial simulation and optimize phase III

trial strategy under various trial level assumptions.

Head-to-head trial simulations allowed for assessment of the prob-

ability of success for clinical studies of brodalumab vs. ustekinumab

and adalimumab
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Objectives: The treatment of active tuberculosis (TB) requires mul-

tiple drugs and a treatment duration of at least 6 months. The standard

regimen for drug-susceptible TB consists of rifampin, isoniazid,

pyrazinamide (PZA), and ethambutol. Of these four TB drugs, PZA is

the only one known to be bactericidal against TB organisms in acidic

environments [1]. The use of PZA during the first 2 months of TB

treatment allows for the shortening of treatment from nine to 6 months.

Recent evidence suggests that PZA activity is dose dependent and that

maximum concentration (Cmax) values[35 lg/ml are associated with

better efficacy [2]. Higher doses than those currently recommended in

the USA (25 mg/kg) might be needed to achieve this Cmax target. The

goal of this study was to determine the proportion of patients with a

Cmax [ 35lg/ml and to estimate the pharmacokinetics (PK) of PZA

among patients enrolled in Tuberculosis Trial Consortium (TBTC)

trials 27 and 28.

Methods: The data are from PK sub-studies of TBTC Studies 27 and

28. In both studies, PZA was dosed at approximately 25 mg/kg daily,

rounded to the nearest 500 mg. Seventy-two patients participated in

the sub-studies. Blood was collected pre-dose then 1, 2, 6, 8, 12 and

24 h post dose. Blood PK sampling was performed after the fourth or

fifth dose of PZA, administered under directly observed therapy.

Noncompartmental analysis (NCA) was performed with WinNonlin

Professional Version 4.0. Population PK analysis was analyzed using

nonlinear mixed effect modeling software, Monolix version 3.2.

Results: The median dose patients received in the two studies was

1500 mg. The median (interquartile range) for Cmax and time to

maximum concentration (Tmax) were 29.77 (25.89-34.99) lg/ml and

1 (1-2) h respectively (NCA). Only 18 patients (25 %) had Cmax [ 35

lg/ml. A one-compartment model best described PZA PK. Because

PZA was rapidly absorbed, and there were limited data prior to two

hours post dose, the final population estimate for ka was high.

Therefore, ka was fixed at 3, as used in previous studies. Residual

variability was described using a combined error model. The median

population estimates for total body clearance (Cl/F) and volume of

distribution (V/F) were 44.1 L/h and 4.35 L respectively. Significant

covariates for PZA’s V/F were sex and weight. Only body weight was

a significant covariate for PZA clearance. Women had a lower V/F

compared to men, and both Cl/F and V/F increased with body weight.

Table 1

Goodness of fit plots are shown in Figs. 1 and 2.

Table 1 Final model parameter estimates

Parameter Median (%RSE) IIV%

Cmax 29.77 lg/ml

Tmax 1 h

V/F(L) 44.1 L (5) 10.4

Cl/F (L/h) 4.35 L/h (4) 23

Slope effect of weight on CL/Fa 0.586 (26)

Slope effect of weight on V/Fa 0.792 (13)

Effect of sex on V/Fa 0.178 (27)

IIV inter-individual variability
a Reported as mean, RSE: relative standard error

Fig. 1 Visual Predictive Checks
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Conclusions: Higher doses of PZA than those currently used in the

U.S. and globally for TB will be required to achieve the proposed

Cmax target of 35 lg/ml. Sex and weight both significantly affected

PZA pharmacokinetics, and patients with higher mg/kg doses were

more likely to achieve target concentrations, suggesting that weight-

based dosing for this drug is appropriate.
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Objectives: Levofloxacin, a fluoroquinolone with gram-positive and -

negative coverage, has bactericidal activity against Mycobacterium
tuberculosis [1–3]. As a result, current treatment guidelines for

tuberculosis (TB) advocate a role for fluoroquinolone use in cases of

multi-drug resistant TB (MDR TB) as the use of traditional regimens

is not feasible [4]. Although the population pharmacokinetics (PK) of

levofloxacin has been studied previously in children, no studies have

been performed in pediatric patients treated for, or exposed to, TB

[5,6]. During two simultaneous outbreaks of TB in the Federated

States of Micronesia (FSM) and Republic of Marshall Islands (RMI),

PK studies were performed by the Centers for Disease Control and

Prevention to characterize the drug disposition in this patient popu-

lation [7]. The goal of the analyses described herein is to characterize

the population PK in 50 children studied during these MDRTB

outbreaks.

Methods: In Chuuk, a state in the FSM, 33 children (age 1–14 years)

were administered levofloxacin (5–20 mg/kg/day) as an oral gel for

the treatment of MDR-TB or presumed MDR latent TB infection

(LTBI). In Majuro, the capital of the RMI, during another outbreak,

17 children (1–15 years) were treated with levofloxacin (11–16

mg/kg/day) as an oral gel for LTBI. Following 6 weeks of treatment

or longer, plasma samples were taken in all 50 children after 1, 2, and

6 h. In Majuro, a 0-h time point was also taken in all children. Fol-

lowing collection, samples were stored at -70 �C before being

shipped on dry ice to University of Florida for analysis using a val-

idated HPLC method with fluorescence detection.

A population PK analysis was performed in the software nonlinear

mixed effects modeling (NONMEM, version 7.2). The first-order

conditional estimation method with interaction algorithm was used

for all models. All collected data was included in the analyses.

NONMEM execution and run management was performed using

Pirana, while prediction-corrected visual predictive checks (pcVPC)

and a bootstrap analysis (n = 1,000 simulations) was performed using

Perl-speaks-NONMEM (PsN). For the bootstrap analysis, the 2.5th

and 97.5th percentile were calculated based on the samples generated.

Goodness of fit and pcVPCs were generated using the R (version

2.15.2) packages lattice and Xpose. Addition of covariates (age,

gender, weight, heigh, and breakfast status) was tested using gen-

eralized additive modeling implemented in the Xpose package. One-

and two-compartment PK models were tested. A fixed exponent

allometric model was applied to both CL/F and V/F using a 70 kg

standardized weight. Additive and combined additive with propor-

tional error models were tested. Using the final population PK model,

simulations were performed in NONMEM to evaluate target attain-

ment; whereby an area under the free drug concentration versus time

curve over the minimum inhibitory concentration (fAUC/MIC) C100

was evaluated as a target. A total of 1,000 simulations were per-

formed for varying dosing regiments (5, 10, 15, and 20 mg/kg) and

target attainment was calculated for various potential MIC values.

Results: A one-compartment body model provided an adequate data

fit (Fig. 1). The population parameter estimates for the absorption rate

constant (KA), and the standardized clearance (CL/F) and volume of

distribution (V/F) were 2.69 h-1, 11.61 L/h, and 88.39 L, respec-

tively (Table 1). Inter-individual variability estimates in KA, CL/F,

and V/F were 82.5, 33.2, and 24.5 %, respectively. Aside from

weight, no other covariates resulted in statistically significant

improvements in the data fit. Assuming a conservative drug exposure

target, fAUC/MIC C100, for the lowest assumed MIC (0.25 lg/mL),

a dose of 10 mg/kg resulted in a highly likelihood of target attain-

ment; while for an MIC of 0.5 lg/mL, a dose of 20 mg/kg was

needed (Table 2). Poor target attainment rates were obtained with

higher MIC values.

Conclusions: Levofloxacin may be an effective treatment option for

children with MDR-TB or presumed MDR LTBI. Further clinical

research is needed to evaluate appropriate targets for PK/PD indices

that can be used to optimize drug dosing.

Fig. 2 Observed vs predicted concentrations

Figs. 1-3 Goodness of fit plots and a visual predictive check for the

final population PK model
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Background: Recent post hoc analyses of patients participating in a

trial of abatacept (ABA) vs. placebo, in combination with myco-

phenolate mofetil and corticosteroids for treatment of active lupus

nephritis (IM101075) have provided an evidence-based rationale for

choosing among alternative definitions of complete renal response

(CRR) used in recent Phase 2/3 clinical trial in lupus nephritis [1].

Objective: The objective of this analysis was to characterize the

relationship between ABA exposure and CRR using these alternative

definitions to guide the dose selection for a follow-on Phase 3 study.

Methods: In IM101075, patients with biopsy-proven active, prolif-

erative lupus nephritis were randomized to receive placebo (n = 100)

or one of two intravenous ABA regimens: 30 mg/kg on Days 1, 15, 29

and 57 followed by *10 mg/kg every 4 weeks (30/10; n = 99), or

*10 mg/kg for the entire 12 months (10/10; n = 99). Pharmacoki-

netic (PK) data collected in the study were analyzed by population PK

analysis, and were used to determine various summary measures of

exposure (Cavg and Cmin over Month 1and 3, Cmin at Month 12 based

on clearance observed at Month 1) in each subject. We assessed rates

of CRR at 12 months according to 3 sets of criteria, from (1) an

ongoing National Institutes of Health trial of ABA (Abatacept and

Cyclophosphamide Combination: Efficacy and Safety Study [NCT00

774852]), (2) the Aspreva Lupus Management Study trial of myco-

phenolate mofetil (NCT00377637), and (3) the Lupus Nephritis

Assessment with Rituximab (LUNAR) trial of rituximab [2]. The

probability of achieving a CRR at 12 months was described by a

logistic regression exposure–response (E–R) model. Age, weight, sex

and baseline urine protein creatinine ratio (UPCR) were assessed as

covariates in the model. LUNAR criteria were selected for further

model evaluation based on largest observed difference (CRR of

*6 % in placebo group, compared to *20–24 % in ABA group).

The final model using CRR (assessed by the LUNAR criteria) was

applied to predict efficacy in a proposed Phase III trial.

Results: The average model-predicted minimum concentration of

ABA over the first month (Cmin (1 month)) was a significant predictor of

CRR at Month 12. Higher baseline UPCR was also identified as a

positive predictor of CRR at Month 12. There was a strong rela-

tionship between Cmin (0–1 month) and the probability of achieving

CRR in nephrotic (UPCR[339 mg/mmol) and non-nephrotic (UPCR

B339 mg/mmol) pts. An association was identified between protein-

uria and exposure suggesting that ABA is cleared more rapidly in

nephrotic subjects and that ABA exposure increased over time in

some nephrotic subjects suggesting that reduction in proteinuria may

reduce clearance over time. Model evaluation shows reasonable

agreement between model-predicted and observed response rates

predicting that there may be incremental benefit from induction with

30 mg/kg of ABA for 57 days. This regimen provides the most

benefit compared to placebo over time.

Conclusions: CRR based on LUNAR criteria shows a positive E–R

relationship for ABA in the treatment of lupus nephritis and identifies

proteinuria as a confounder in dose selection and a target of treatment

effect. This supports further evaluation of ABA and dose selection for

the treatment of lupus nephritis in an ongoing Phase III study.
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Table 1 Parameter and bootstrap estimates for the final population

PK model

Parameter estimate RSE

(%)

Bootstrap estimate

(95 % CI)

Structural

KA (HOUR-1) 2.69 22 2.77 (1.89–5.31)

CL/F (L/H) 11.61 5 11.61 (10.34–12.82)

V/F(L) 88.39 4 87.86 (80.8–95.26)

Variance

x2 (KA) 0.68 42 0.69 (0.22–1.43)

x2 (CL/F) 0.11 28 0.11 (0.05–0.17)

x2 (V/F) 0.06 50 0.06 (0.01–0.11)

Residual

Proportional 0.02 38 0.01 (0–0.03)

Addittive

(lg/ml)

0.08 56 0.1 (0–0.28)

Table 2 Percentage target attainment (%, fAUC/MIC C 100) for

varying levofloxacin dosing regimens (mg/kg) and representative

MIC (lg/mL) values for M. tuberculosis

DOSAGE/MIC 0.25 0.5 1 2

5 16.3 0.1 0 0

10 100 16.6 0.1 0

15 97.5 57 3.5 0

20 99.7 83.6 16.6 0.1
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Objectives: Despite an increasing interest in biomarkers, cognition

remains the primary regulatory accepted clinical endpoint in Alz-

heimer’s Disease (AD). The most frequently used test, ADAS-cog,

consists of a broad spectrum of tasks evaluating cognition [1]. The

total ADAS-cog score is obtained by summing up the subscores

resulting from rating a subject’s performance in each of the subtests.

Despite its frequent application, the total ADAS-cog score has a

number of practically relevant weaknesses. A major problem is the

low sensitivity of the assessment in mild cognitive impairment (MCI)

patients and severe AD patients and the consequential necessity to

adapt the assessment. This adaptation is often not only heuristic in

nature but also reduces the ability to compare results across trials.

Additionally, a potential bias arises if a subject refuses to perform one

or more tests and a subscore has to be imputed.

The objective of this work was to develop an alternative method to

analyze ADAS-cog assessments data with the ability to combine data

from different assessment variants and without the need to impute

subscores. Furthermore, the possibility to determine the most infor-

mative ADAS-cog variant for a specific population was to be

investigated.

Methods:Data: Baseline ADAS-cog assessments with item level data

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) [2]

and the Coalition Against Major Diseases (CAMD) [3] databases

were used to estimate model parameters in the developed IRT model.

In total the data consisted of 2651 subjects from 7 studies with a total

of 152313 baseline observations.

Data Analysis: Based on the statistical framework of item response

theory (IRT), each test was interpreted as a surrogate measure for the

hypothetical unobserved variable ‘‘cognitive disability’’. For each

subtest of the cognitive assessment, depending on the nature of the

arising data, a binary, count or ordered categorical model was

developed, describing the probability of a failed test outcome as a

function of the latent cognitive disability. All parameters character-

izing the individual subtest were expressed as fixed effects, whereas

the cognitive disability was modeled as a subject specific random

effect. The model performance was evaluated through comparison of

observed and simulated data for each subtest.

Optimal Test Design: From the developed IRT model, the Fisher

information for estimating a patient’s cognitive disability was calcu-

lated for each item in the ADAS-cog test. The test items were ranked

by information content within a mild cognitively impaired (MCI) and a

mild AD (mAD) patient population. Furthermore, the additional

amount of information added to an ADAS-cog assessment through

incorporation of additional components (‘‘delayed word recall’’ and

‘‘number cancellation’’) were evaluated in both populations.

Results:ADAS-cog IRT Model: The final ADAS-cog IRT model

consisted of 39 binary, 5 binomial, 1 generalized Poisson and 5

ordered categorical submodels with a total of 166 parameters. Sim-

ulations from each of the models were in excellent agreement with the

observed data. All but one estimated characteristic curves for the test

items were well defined with a low failure probability for healthy

subjects and high failure probability for severely impaired patients.

Only the characteristic curve for the task ‘‘state your name’’ was

essentially flat.

Optimal Test Design: The information content ranking of the sub-

components in a classical ADAS-cog assessment differed between the

two patient populations. For the MCI population the word recall

component was most informative, while for the mAD population the

orientation component carried most information. Similarly, there was

an apparent difference in the relative amount of information added by

including the ‘‘delayed word recall’’ and ‘‘number cancellation’’

components. With the additional components, the information content

of the complete ADAS-cog assessment increased by 78 % in the MCI

population compared to only 35 % for the mAD population.

Conclusions:By treating each item of the ADAS-cog assessment as a

measurement for ‘‘cognitive disability’’, the approach presented in

this work takes into account each single item response instead of only

one summary score. As a consequence, the assessment data from

different ADAS-cog variants can easily be combined in a common

analysis and results from one variant can be translated to another.

Missing subscore data due to refusal of a subject or omission by a

physician does not bias the outcome but are reflected in an increased

uncertainty of the analysis. Furthermore, the availability of individual

response functions for each test item allows for explicit quantification

of the information content of the individual components as well as the

ability to adapt a cognitive assessment test to a specific patient pop-

ulation’s degree of disability. A population specific test would not

only be more sensitive to changes due to disease progression or drug

effect, but also reduce the assessment time and thus burden for the

patient.
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M-044 The use of Bayesian MCMC Methods

on Development of Tools to Predict the Impact

of Immunogenicity on Pharmacokinetics

Steven Kathman1,*, Peiming Ma2, Lei Zhou1, Theingi Thway1,

Naren Chirmule1, Vibha Jawa1

1Amgen, Thousand Oaks, CA, USA; 2GlaxoSmithKline, Shanghai,

China

Objectives: Development of therapeutic proteins (TP) involves the

understanding of dose-exposure-efficacy, and safety/toxicity rela-

tionships. These analyses are complex due to the multi-factorial

effects of, for example, nonlinear pharmacokinetics (PK) that can be

caused by saturable target-mediated drug disposition. The induction

of immune responses introduces additional complexities to achieving

this understanding. Given the substantial increase in the number of

biological products, including biosimilars, there is a need to quantify

and predict the effects of immunogenicity and any resulting changes

in TP pharmacokinetics. The primary objective of this work is to

examine the utility of population-based modeling and simulation

approaches for investigating the development of immunogenicity and

assessing its impact on TP pharmacokinetics. Potential uses of the
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resulting models include: assessing the impact of anti-drug antibodies

(ADA) on PK as a means of determining exclusion criteria when

calculating exposure metrics, determining whether concentration

values from animals with low magnitude of ADA should be excluded

from exposure calculations, and addressing the technical limitation of

drug interference on preclinical assays at early time points by pro-

viding the impact of ADA even with a lack of actual analytical ADA

data.

Methods: Using data from two separate studies of single intra-

venous infusion into cynomolgus monkeys, models were developed

to assess the development of immunogenicity and its impact on

pharmacokinetics.

The first study was a single dose infusion of antibody clones from a

fully human monoclonal antibody. The same dose level was given to

all animals. There were five separate clones included in this study;

each clone had a different complementary determining region

sequence and binding affinity to the target, but identical framework

sequences. Up to eleven PK samples were taken from 0.5 to 1176 h

post dose from each subject. Four ADA serum samples were collected

at 168, 336, 504, and 672 h post dose.

The second study involved a single dose regimen with a range of

doses of a single antibody clone given to different animals. This clone

had not been evaluated in the first study, but did have the similar

target as above tested clones. Up to ten PK samples were taken from

0.5 to 1176 h post dose from each subject. Sparse sampling, at two or

three time points post dose, was utilized for the assessment of ADA.

The model developed for these studies was a two-compartment

simplified target-mediated disposition model [1]. The expression for

the clearance included a linear and nonlinear (Michaelis–Menten)

term. The linear term of the model was allowed to change at a par-

ticular point in time, presumably due to the presence of antibody

formation. The probability that the clearance changes and the time at

which the clearance changes were estimated in the model. These

estimates were then compared to the actual time at which antibodies

were detected, to explore whether or not the changes in clearance

could be due to antibody formation. The differential equation for the

central compartment of this model is as follows:

dC=dt ¼ Input� ðCL � Iðt\aÞ þ g � Iðt [ aÞÞ � C=V

� Vmax= KMþ Cð Þð Þ � C=Vþ Q=V � C2 � Cð Þ

where C is concentration in the central compartment, C2 is the con-

centration in the peripheral compartment, CL is the linear clearance

term prior to time = a, g is the linear clearance term after time = a,

a is the estimated point at which the clearance term changes, Vmax is

the maximum nonlinear elimination rate, KM is the Michaelis–

Menten constant, V is the volume of distribution for the central

compartment, and Q is the inter-compartmental clearance.

The model was fit using Bayesian Markov-Chain Monte Carlo

(MCMC) methods within the WinBugs software (http://www.mrc-

bsu.cam.ac.uk/bugs/welcome.shtml). The WBDiff add-on was used to

solve the differential equations. Non-informative prior distributions

were used for each of the unknown terms in the model.

The five clones (from the first study described above) were ana-

lyzed together in a single hierarchical model, with the clones

representing an additional level in the hierarchy. This approach is the

same as that typically used in model based meta-analyses.

Results: For both studies, individual plots reveal that the model fit the

data well. Figure 1 shows examples of concentration–time profiles
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Fig. 1 Example model fit plots for two individual animals. (a) an

animal that did not develop antibodies. (b) an animal that developed

antibodies
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Fig. 2 Observed concentration versus model predicted concentra-

tions (based on medians from Bayesian posterior simulations)
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Fig. 3 Time the antibodies were detected versus the estimated time

of linear clearance change (median of the posterior distribution)
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and model fits from the first study. Figure 1a illustrates the model fit

for an animal that did not develop antibodies while Fig. 1b illustrates

the model fit for an animal that did develop antibodies. Figure 2

shows the actual concentrations versus the model predicted concen-

trations from the first study to further illustrate the model fit. Similar

results are seen with the second study.

Figure 3 shows the actual time of antibody detection versus estimated

time of clearance change for the animals that had antibodies detected

in the first study. In most instances, the estimated time at which the

clearance changed was close to or before the actual time at which the

antibodies were detected. There were two animals that did not have

antibodies detected in this study. One had an estimated time for

clearance change of 767 h (the last sample for ADA detection was

672 h). The other animal had a probability of 0.95 that their clearance

did not change. Similar results were seen for the second study.

Conclusions: The Bayesian MCMC method offers a novel and rig-

orous approach to investigate the impact of immunogenicity on

biologic PK by evaluating the onset time and magnitude of the ADA

signal.

Reference

[1] Ma, P (2012) Theoretical considerations of target-mediated drug

disposition models: simplifications and approximations. J Pharm

Res 29:866–882

M-045 A Model for Maturation of Renal Function
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Objectives: Population modeling in pediatric pharmacokinetic (PK)

studies often uses size and age as covariates. Covariate-parameter

correlations are described in simple exponential relationships used by

allometric scaling. However, extrapolations based on such parameter

estimates have limited value due to the differences in the impact of

developmental growth across populations [1]. The quantitative mod-

els used to describe the clearance maturation processes across the age

range may be required to improve extrapolation and predictive per-

formance. The aim of this study is to use previously published

pharmacokinetic parameters from two renal excreted drugs (due to

glomerular filtration), gentamicin and vancomycin, to develop a

model for the maturation of renal clearance. The post conception age

(PCA) is used as the variable in the modeling practice.

Methods: A literature search (MEDLINE, 1976-present) were con-

ducted to find references or publications describing pharmacokinetics

of vancomycin and gentamicin in children, using words such as,

neonate, infant, children and crossing these with terms such as drug

names, pharmacokinetics. Additionally, a variety of pediatric phar-

macology reviews were examined. Through these sources, a database

of age-dependent observed clearances for 2 therapeutic probes was

created. A developmental renal excretion model was developed for

both gentamicin and vancomycin clearance using the following

equation [2, 3]:

CLi ¼ CLstd �
wi

70

� �0:75

� PCAh

Tclh þ PCAh

CLstd is a population clearance estimate standardized to a 70 kg

person; Tcl is a parameter describing the age (PCA) to reach 50 % of

standardized adult CL value; and h is the Hill coefficient. The allo-

metric weight scaling describes the size effect and the Hill function in

this equation is used as an empirical capacity limited model for the

maturation of renal function. The predictive performance of the

model was assessed by visual inspection of fits and precision of

estimates.

Results: The age-dependent clearance datasets included PK studies

on neonates, young infants, children, adolescents and adults. The

population clearance (CL) estimates for gentamicin and vancomycin

were 111 and 93.5 mL/min/70 kg, separately. The time to reach 50 %

of adult clearance was 11 months (PCA) for gentamicin and

9.5 month (PCA) for vancomycin. By 1 year of age, both vancomycin

and gentamicin clearance had attained more than 90 % of the adult

level. The two renally excreted compounds presented similar devel-

opmental profiles when the percentage fractions of adult clearance

were plotted versus PCA.

Conclusions: Use of the developmental renal excretion model to

quantify renal GFR—mediated gentamicin and vancomycin clearance

resulted in similar parameter estimates and maturation profiles, sug-

gesting that this model may be applicable to other drugs via renal

glomerular filtration across the age range from newborn to young

adults.
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Objectives: Our goal is to establish a framework that would allow for

the qualification of physiological models and their effective com-

munication internally to senior management and development teams

at Merck and externally to regulatory authorities for decision-making.

Methods: As in many other industries, the use of models is very

common in the pharmaceutical research and development process.

Throughout various stages of this process, valuable information is

obtained using in vitro (e. g. based on tissue samples, cells, or cell

components) or in vivo models (e. g. laboratory animal models and

humans). In the past 20 years, computational models (sometimes

referred to as in silico models) have entered the drug development

process and become an increasingly accepted pillar in drug research

and development. Among the computational models, physiological

models form an important subset. This class of models is character-

ized by the incorporation of a substantial amount of relevant prior

physiological knowledge and data (see definition below). Such

physiological models are currently used in drug discovery and

development programs to enable decisions. The ability to qualify

models and model results is essential for the use of physiological

models in enabling internal decisions and incorporation of physiological
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model sections into regulatory interactions and submissions. However,

there is limited guided or deliberate effort for qualifying developed

models.

Model qualification involves both technical and scientific qualifica-

tion. Once a model is in place, technical qualification seeks to ensure

that model formulation is accurately translated into a computer code,

and that the numerical solution of the model is accurate. Scientific
qualification is the process of identifying and describing the question

that a model is to be used for, as well as appropriately formulating a

model with acceptable assumptions and limitations. In some com-

putational fields, this distinction is referred to as model validation

(scientific aspects) vs. model verification (technical aspects). In this

presentation, we will be concerned with the scientific qualification of

models. We opt to use the terminology ‘‘qualification’’ instead of

‘‘validation’’ because it emphasizes that models are built to be fit for

purpose, and that models may be regularly updated or improved with

the advent of emerging data or advancements in scientific knowledge

and thinking. Hence, despite assumptions made, limitations in the

model, or incomplete representation of the complete physiology or

biology, a model can still provide added value within a well-defined

scope.

Results: It is important that the scope of the modeling activity, which

is typically a scientific question that is to be addressed, is well defined

at the beginning of the model development phase. Since a model is

designed to be fit for a purpose, this purpose needs to be clearly

described and a set of questions that need to be addressed clearly

defined. Once the background and associated questions are identified,

a discussion of whether a model can be used to address the questions

at hand needs to take place. We will be focused on the case where a

physiological model is identified, as part of this discussion, to help

address the questions being raised by the development or discovery

team. Subsequently, one needs to understand how the model will

contribute to addressing questions being raised. Upon establishing

this link between the modeling effort and the questions being raised,

we will review topics that we propose to be addressed and docu-

mented, as part of the qualification process.

The guidance for model developers will be exemplified using two

published physiological models. One of these models is the glucose-

insulin model (GIM) of Dalla-Cobelli and co-workers. The model of

Dalla-Cobelli and co-workers has been used as a decision support

system for insulin dosing in type 1 diabetic patients. It is further

applied in the context of glucose sensor evaluation and for the pre-

clinical testing of control strategies in artificial pancreas studies.

Several implementations of this model are available from commercial

vendors. The second model we will review is a finite element model

of bone strength by Cabal et al. [1] The model uses micro-architecture

images of the wrist bone and uses finite element methods to estimate

the strength of the bone in silico.

Conclusions: Physiological models are currently used in drug dis-

covery and development programs to enable decisions. We have

developed a framework for the qualification of physiological models

in the context of drug discovery and development. The adoption and

application of this framework will support the goals of effective

physiological model development, communication and increased

acceptance of physiological models to enable critical decisions in the

discovery and development environments.
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Objectives: ELND005 (scyllo-inositol) is being investigated as an

orally administered agent to treat Alzheimer’s Disease (AD). The

objective of this analysis was to develop a population pharmacoki-

netic (PK) model to describe plasma, cerebrospinal fluid (CSF),

and brain ELND005 concentration profiles following multiple oral

doses.

Methods: ELND005 or placebo was administered twice daily for

78 weeks to 351 mild to moderate AD patients randomized to placebo

(n = 83), 250 mg (n = 88), 1000 mg (n = 89) or 2000 mg (n = 91).

Sparse plasma samples were collected from all patients (n = 351) and

cerebrospinal fluid (CSF) samples were collected via lumbar puncture

from a subset of subjects (N = 20–26/dose), both of which were

analyzed for ELND005 via validated liquid chromatography–tandem

mass spectrometry. Brain ELND005 levels from a subset of subjects

(N = 25–26/dose), estimated by Magnetic Resonance Spectroscopy,

were considered for brain PK modeling. Population PK and statistical

methods were conducted following the FDA Guidance for Industry

Population Pharmacokinetics and the EMA Guideline on Reporting

the Results of Population Pharmacokinetic Analyses. To help inform

the PK model structure, plasma and CSF ELND005 PK data from two

Phase 1 studies in healthy subjects were pooled with the Phase 2 AD

patient data. The structure of the model for the human brain PK

compartment was also informed by prior analyses of preclinical brain

ELND005 PK data obtained from mice and rat studies.

Results: Plasma concentrations of ELND005 were adequately char-

acterized by a 2-compartment population PK model with zero-order

input and first order elimination from the central (plasma) compart-

ment. Apparent ELND005 plasma clearance was inversely related to

estimated creatinine clearance. CSF ELND005 levels were well

described as a function of the concentration of ELND005 in a third

compartment (CSF), in series with the plasma compartment. Brain

ELND005 levels were well described by a fourth compartment

(brain), in series with the plasma compartment and in which transfer

from plasma to the brain compartment occurred via a saturable

transport process.

Conclusions: The final population PK model can be properly con-

structed and characterized as moderate absorption, rapid distribution

into peripheral compartments, slow redistribution into central com-

partment, slow apparent clearance, and long apparent terminal half-

life. CSF and brain levels of ELND005 were dependent on plasma

ELND005 concentration with relatively slow clearance from the brain

compartment.
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The resultsin this abstract (with slight revision) have been previously

presented in part at International Conference on Alzheimer’s Disease

(ICAD), July 2011, Paris, France and published in the conference

proceedings as abstract P2-509.
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Objectives: Attention deficit hyperactivity disorder (ADHD) is a

serious neuro-behavorial disorder that affects up to 12 % of children

worldwide. Stimulant medications have been used for about 50 years,

with methylphenidate (MPH) as the main agent. A variety of

oral formulations are made available under immediate, to circum-

vent known limitations of immediate release, while keeping its

advantages [1].

Indeed, immediate release formulations have shown problems in

terms of effectiveness duration, patient compliance and issues of

privacy and inconvenience caused by frequent administration outside

home. In the current practice, three levels of doses, from high to

medium to low, are prescribed, in alignment with the observed

therapeutic effect.

In this study, we propose a computational strategy of dose adap-

tation using a Population pharmacokinetic (Pop-PK) approach to

identify the most efficient PK profile of immediate release MPH.

Methods: Inspired by these practical problems, we will apply our

recently developed methodology to investigate the best dosing regi-

men of MPH using a grid search for best dose and time schedules.

With the aim to reduce the considerable constraints related to the

MPH use, we will base our work on a reported Pop-PK model [2] to

investigate the use of PK as informative surrogate to enhance the

predictability of therapeutic effect, using clinical data for doses and

reported effect scales.

Results: The developed computational algorithm was applied to

delineate drug regimens in terms of their efficacy without recourse to

direct blood sampling.

Conclusions: The generated methodology and knowledge can be

translated to help designing new drug formulation and used to

develop educational tools.

References

[1] Swanson et al (1999) Acute tolerance to methylphenidate in the

treatment of attention deficit hyperactivity disorder in children.

Clin Pharmacol Ther 66(3):295–305

[2] Shader et al (1999) Population pharmacokinetics of methylphe-

nidate in children with attention-deficit hyperactivity disorder.

J Clin Pharmacol 39(8):775–785

M-049 Population Pharmacokinetic Model

for Azithromycin (AZI) in Blood, Peripheral Blood

Mononuclear Cells (PBMCs), and Polymorphonuclear

Cells (PMNs) of Healthy Adults

Mario Sampson1,*, Teodora Pene Dumitrescu2, Kim L.R. Brouwer1,

Virginia Schmith2

1University of North Carolina Eshelman School of Pharmacy, Chapel

Hill, NC, USA; 2GlaxoSmithKline, Research Triangle Park, NC, USA

Objectives: AZI, a macrolide, is under investigation as an anti-

inflammatory agent. AZI accumulates in white blood cells, distributes

extensively into tissues, and is eliminated primarily by biliary

excretion. Intracellular accumulation is thought to be due to lyso-

somal trapping. Data suggest that AZI accumulates more in inflamed

than non-inflamed tissues. Previous studies have not simultaneously

modeled concentrations in blood, PBMCs, and PMNs over time. The

purpose of this study was to develop a model to describe the distri-

bution of AZI between whole blood and pro-inflammatory cell

compartments, and to characterize the inter-individual variability in

parameter estimates.

Methods: AZI was administered to 20 healthy adults as a single,

250 mg or 1000 mg oral dose. Blood samples were collected pre-

dose, and at specified times for three weeks post dose. PBMCs and

PMNs were isolated from blood using density gradient centrifugation.

Drug concentrations were measured in blood, PBMCs, and PMNs by

tandem mass spectrometry. Data were analyzed by nonlinear mixed

effects modeling using Phoenix NLME 2.1. Model evaluation con-

sisted of bootstrapping (n = 1000) and visual predictive check

(n = 1000).

Results: The dataset was well described by a four-compartment

mamillary model with first-order absorption, first-order elimination

from the central (Comp1) and small peripheral (‘‘cellular’’, Comp2

and Comp3) compartments, and bidirectional distribution between the

central compartment and large peripheral (‘‘tissue/rest of body’’,

Comp4) compartment (Fig. 1). Blood concentrations were modeled as

the sum of concentrations in each compartment multiplied by a

coefficient (Eq. 1). Population central clearance (CL1) and volume of

distribution (V1) were 67.3 L/h and 336 L, respectively. Peripheral

compartment volumes of distribution (V2, V3, and V4) were 0.62,

Fig. 1 Structural Model
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2.96, and 4597 L, respectively. Inter-subject variability in Ka, CL1,

distributional CL (CL12/CL13), V1, V2, and V3 were 41, 114, 75,

122, 51 and 53 %, respectively. Twenty of 23 model parameters

exhibited \10 % difference (no parameters [20 % difference)

between model estimate and bootstrap median estimate. In the visual

predictive check for blood, PBMC, and PMN, 12.3, 9.7, and 6.7 % of

observed concentrations were outside the 90 % prediction interval,

respectively.

Conclusions: AZI distribution between blood, PBMCs, and PMNs

was well-described by a four-compartment model. Parameters were

estimated precisely and there was good overlap between observed and

simulated datasets. Future directions include using this model to

simulate AZI blood, PBMC, and PMN concentrations under various

dosing regimens used in inflammatory conditions.

Funding: This work was supported by T32GM086330 from the

National Institute of General Medical Sciences.

Cblood ¼ A � Comp1½ � þ B � Comp2½ � þ C � Comp3½ �; ð1Þ

where Cblood is the blood concentration, and A, B, and C are esti-

mated (A, B) or fixed (C) coefficients multiplied by the concentration

in the respective compartment.
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with Advanced Malignant Solid Tumors
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Ulsan University College of Medicine, Asan Medical Center, Seoul,

South Korea

Objectives: HM781-36B is an orally active inhibitor of human epi-

dermal growth factor receptors HER1, HER2, and HER4 tyrosine

kinase. The objectives of this work were to quantitatively describe the

pharmacokinetic (PK) characteristics of HM781-36 in Phase I

oncology patients and to evaluate the potential sources of its PK

variability.

Methods: The HM781-36 population PK analysis were performed

using the data from three phase I clinical studies, which included

1933 HM781-36 plasma concentrations from 58 patients with

advanced solid cancers (101 PK study: 39 patients, 102 PK study: 11

patients, 102 food effect PK study: 8). In 101 PK study, HM781-36B

was administered once-daily oral doses ranged from 0.5 to 32 mg

(0.5, 1, 2, 4, 8, 12, 16, 20, 24 and 32 mg/day) and were given for

14 days. Blood samples for PK were collected up to 24 h on the first

dosing day and up to 48 h after the last dosing. In 102 PK and 102

food-effect studies, HM781-36B was administered with once-daily

oral doses ranged from 12 to 24 mg (food effect study—16 mg only)

and was given for 28 days. Blood samples for PK were collected up to

24 h on the first and last dosing day. Plasma HM781-36 concentra-

tions were analyzed using liquid chromatography-mass spectrometry.

PK analyses were performed by non-compartment method, as well as

compartmental method. Nonlinear mixed effects modeling for the

population pharmacokinetic analysis of HM781-36 was performed

using NONMEM version 7.2 with ADVAN2 subroutine and a com-

bined exponential and additive error model to estimate the residual

unexplained error. The model selection was based on the generated

objective function value (OFV) and diagnostic plots. The robustness

of the final model was evaluated using a bootstrap procedure and

model stability and appropriateness using numerical and visual pre-

dictive checks.

Results: A one-compartment model with first order absorption and

mixed residual error model best described the pharmacokinetic data.

The final base model predicted a population apparent clearance (CL/

F) of HM781-36 of 16.74 L/h. The absorption rate constant, central

volume of distribution, and apparent clearance were 1.69 h-1

(between-subject variability, BSV: 10.7 %), 120 L (BSV: 4.8 %), and

16.7 L/h (BSV: 4.3 %), respectively. The model fitted well with the

observed data, and the bootstrap and predictive checks guaranteed

robustness and appropriateness of the population pharmacokinetic

model. No significant relationship was observed between PK

parameters and patient demographics.

Conclusions: A population pharmacokinetic model for HM781-36 in

patients with advanced malignant solid tumors has been developed.

This model will be used as HM781-36 basic drug model for dose

individualization and adjustment and for designing later Phase II and

III clinical trials. This study provided a rationale for further clinical

evaluation of HM781-36B.
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Objectives: The transit compartments model is commonly used to

describe a delay in signal processing. The number of transit com-

partments can be determined by trial and error or by estimation when

applying the gamma function [1]. The objectives of this study were to

assess the performance of the gamma function for estimation of the

number of transit compartments, assess the bias and precision of the

parameter estimates, and verify utility of the steady-state concentra-

tion data for parameter estimation.

Methods: The transit compartments model was used to describe a

delay between the site of drug administration and the central com-

partment with a first-order elimination. 100 replications of drug

concentration at the central compartment were generated at nine time

points with single dose administration, and fourteen time points with

multiple dose administration for steady state and washout using the

transit compartments model with varying compartment number N and

three levels of residual error CV % = 5, 10 and 20 %. Additional PK

parameters included mean transit time (s), volume of distribution (V),

and clearance (CL). The model parameters were estimated for each

scenario using the Phoenix WinNonlin. The bias and precision of

parameter estimates were examined. The bias was calculated as (Q2-

True)/True 9 100 %, and the precision was (Q3–Q1)/True 9 100 %,

where Q1, Q2, Q3 denote the quartiles of the parameter estimates

distribution.

Results: The precision of parameter estimates improved with

decreasing residual error. The bias decreased with decreasing residual

error. For the multiple dose administration in the model with 4 transit

compartments and the 10 % residual error, the percent bias of PK

parameters ranged: -0.13–25.21 and -0.45–0.27, for steady state

only data set and steady state with washout data set, respectively. The

percent precision ranged: 4.86–135.79 and 5.38–26.4 for steady state

only data set and steady state with washout data set, respectively.
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The steady state data did not allow accurate resolution of N. This flaw

can be resolved by addition of washout data. The correlation coeffi-

cients between N and s were about 0.95 across all scenarios.

Conclusions: The estimates of the number of compartments in the

transit compartments model can be obtained from steady-state PK

data with washout, but not steady state data alone. We provide

explicit solutions for transit compartments with bolus input allowing

implementation of gamma function method for single dose adminis-

tration and steady state plasma concentration data.
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Objectives: Hepatocellular carcinoma (HCC) is the third leading

cause of death worldwide and therapy is a significant unmet medical

need [1]. Sunitinib (SU) is a selective tyrosine kinase inhibitor of the

angiogenic biomarker soluble vascular endothelial growth factor

receptor-2 (sVEGFR2) [2]. SU failed its primary overall survival

endpoint in patients with advanced HCC in a phase III trial compared

to Sorafenib [3]. The current work applies PK/PD modeling to ana-

lyze and link drug exposure and sVEGFR2 dynamics to tumor growth

inhibition (TGI) and time-to-tumor progression (TTP). Our analysis

suggests that (i) the concentration of active drug (i.e., sunitinib and

metabolite) inhibits the release of sVEGFR2 from endothelial cells,

thus leading to TGI, and (ii) daily sVEGFR2 exposure is likely a

reliable predictor for the TTP endpoint in HCC patients. Moreover,

this work provides one of the first quantitative links between the

dynamics of a surrogate biomarker of angiogenesis and TTP, and

predicts with fidelity the clinical results observed in the placebo arm.

Methods: Data were obtained from 16 patients with unresectable

HCC enrolled in a phase II study. SU was orally administered daily at

37.5 mg on days 1–7 prior to chemoembolization with Doxil, and

again on days 15–35 after the start of the study. Subsequent treatment

cycles were 4 weeks on daily SU followed by 2 weeks off. Plasma

concentrations of SU and its active metabolite (SU12662) were

measured using a liquid chromatographic tandem mass spectrometric

method. The lower limits of quantifications (LOQ) were 0.099 and

0.088 ng/mL for SU and SU12662. Plasma levels for sVEGFR2 were

determined using an enzyme-linked immunosorbent assay, for which

the lower LOQ was 7 pg/mL. DCE-MRI was performed in all

available patients (n = 8) to determine baseline tumor volumes and

then on days 8, 10, 28, and 35. All 16 patients were monitored for

TTP and overall survival (OS). The RECIST criterion for the TTP

event was defined as an increase in tumor diameter of C20 % over

baseline. TTP and OS were reported as probabilities using Kaplan–

Meier plots generated in Prism (GraphPad Software). A MAP-

Bayesian approach was utilized to model drug and metabolite PK,

which both were captured with a two-compartment model including

linear clearances. Inhibition of sVEGFR2 production was mediated by

the model-predicted active unbound concentration (ACub) of SU and

SU12662. sVEGFR2 concentrations served as the driver for tumor

growth. The probability of TTP was modeled using an exponential

hazard function that is dependent on a time varying covariate—the

difference in sVEGFR2 concentration from its baseline (DsVEGFR2).

The final model is shown in Fig. 1. The nonlinear mixed-effects

modeling and simulations were performed using MONOLIX 4.1

and Berkeley Madonna. Internal model evaluation was performed

using a visual predictive check, and the precision of the parameter

estimates was assessed by the percent of relative standard errors

(%RSE).

Results: The apparent clearance of the drug and its metabolite (CLD,

CLM) were estimated at 30.3 and 19.7 L/h with a %RSE of 19 and 14,

respectively. Their corresponding apparent volumes of distribution

(VD, VM) were 1,780 and 1,840 L (39 and 25 %RSE). Sunitinib

exposure achieved was within the target range for sVEGFR2 inhibi-

tion. The half-life of sVEGFR2 in plasma calculated at 4 h was

consistent with the known half-life for this angiogenic factor [4]. The

slope (a) for ACub effect on sVEGFR2 production was 0.77 (lg/L)-1

with 14 %RSE. The sVEGFR2 effect on the inhibition of tumor

growth was assumed maximal (Imax = 1), whereas its potency

(DIC50) was estimated at 1.83 lg/L with 41 %RSE. The between-

subjects variabilities for CLD, CLM, VD, VM, a, and DIC50 were 37.4,

51, 44.7, 64.8, 21, and 36 %. The median observed tumor volume

baseline was 91 mm3. Visual predictive checks for model outputs are

shown in Fig. 2. The simulated mean TTP was 7.4 months and was in

good agreement with average observed data (7.8 months) (Fig. 3).

Conclusions: The final PK/PD models effectively captured the

plasma concentration–time course profiles of SU, SU12662, and

sVEGFR2 for all patients involved in the study. The profiles of

Fig. 1 Pharmacokinetic/pharmacodynamic model for sunitinib and

SU12662. Drug (D) and metabolite (M) were captured with two-

compartment models including linear elimination (CLD, CLM) and

first-order absorption from gastrointestinal tract (kaD, kaM). The

fraction of drug metabolized into SU12662 was fM = 21 %. The

active unbound concentration ACub = fub,D.CD + fub,M.CM, where

fub,D and fub,M are the fractions of unbound drug and metabolite

driving the inhibition of sVEGFR2 production, which was captured

with an indirect response model with a zero-order production rate

(kin) and a first-order removal rate constant (kout). The difference in

sVEGFR2 concentrations from its baseline level (DsVEGFR2) drive

the inhibition of net HCC growth (kg)
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sVEGFR2 plasma concentrations over time successfully linked drug

exposure to tumor volume shrinkage and the time-to-progression.

Moreover, sVEGFR2 was a reliable predictor for the time-to-pro-

gression event. This model may serve as a general platform for the

dynamics of anti-angiogenic drugs.
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Objectives: Accurate prediction of tumor growth is critical in mod-

eling the effects of anti-tumor agents. In recent years, both empirical

and semi-mechanistic models have been developed to capture the

relationship between pharmacokinetics and tumor growth inhibition.

More recent tumor growth mechanistic models have been proposed

that account for the first-order tumor growth that is determined by the

tumor size and maturation of the tumor cells exposed to chemother-

apy, which leads to their death [1–3]. We propose a tumor growth

model based on the lifespan of tumor cells and changes to the lifespan

as a result of anti-cancer drug treatment.

Methods: We are presenting a lifespan model to predict the growth of

tumors based on the doubling time of tumor cells. The fundamental

concept of our model is that tumor growth is accounted for by the cell

division that occurs after the time TD when the mitotic tumor cells

reach the end of their lifespan, and that tumor loss is due to loss of the

parent cell after division. Previous reports have demonstrated that pre-

clinical xenograph tumors grow exponentially during early phases and

linearly afterwards. To account for this, our model uses a previously

published bifurcation system [1] that can automatically switch the

tumor growth to a linear rate once a threshold tumor weight is

reached. Our model describes the effects of chemotherapeutic agents

as a dose-dependent shift of a fraction of the mitotic tumor cells into a

population of non-proliferating cells with a lifespan TN. The non-

proliferating cells die due to apoptosis when their age reaches TN, and

this contributes to the overall tumor cell loss. The chemotherapeutic

drug effect is described by the Emax model where EC50 serves as a

potency parameter.

Results: We compared our lifespan model to existing models through

simulations and refitting the literature data. Simulations showed that

the lifespan model accurately describes the same stages of tumor

growth as reported in the Simeoni model [3]. Lifespan parameters TD

and TN, as well as pharmacological parameters Emax and EC50 were

all identifiable. The estimates of lifespans TD and TN in our model

correspond to the exponential tumor growth rate and apoptotic mat-

uration parameters, respectively, reported in [3]. Simulations of the

lifespan model with parameter values derived from an exponential

growth rate of 0.146/day, linear growth rate of 0.334 g/day, and initial

tumor weight of 0.085 g [3] showed that decreasing the value of TD

causes the lifespan model to eventually collapse to the Simeoni model

with the same parameter estimates (exponential growth = 0.147/day,

Fig. 2 Temporal visual predictive check (VPC) plots for (A) sunitinib

plasma concentrations, (B) SU12662 plasma concentrations,

(C) sVEGFR2 plasma concentrations, and (D) tumor volumes. Solid

circles represent observed data. The gray area identifies the 5th

and 95th percentiles of the predicted data, and solid lines represent

the 50th percentile (median) of the predicted data. The confidence

interval includes the majority of the data and the median is cen-

trally located. These VPCs show no specific deviation of predicted

versus observed data, which qualifies the model as being structurally

sound and supports the veracity of the predicted parameter values and

concentrations

Fig. 3 Model predicted TTP probabilities. The solid black line

represents the observed TTP probability. The solid light gray lines are

the 5th and 95th percentiles of the predicted data, and the light gray

dashed line is the 50th percentile (median) of the predictions in

patients treated with SU. Model simulated TTP probability in placebo

patients is shown with the dark gray color, where solid lines represent

the 5th and 95th percentiles and the dashed line is the 50th percentile

(median)
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linear growth rate = 0.334 g/day and initial tumor weight = 0.085 g).

Simulations with increasing values of TD indicated that a nonlinear

relationship exist between cell doubling time and exponential growth

rate. The exponential growth rate and the threshold tumor weight can

both be accurately calculated from TD. Furthermore, the EC50 param-

eter of our model corresponds to the second-order rate constant used to

describe drug potency [3].

Conclusions: We have developed a mechanistic model that is based

on the lifespan of tumor cells to predict tumor growth and inhibition

of growth by anti-tumor agents. The model was compared to the

existing models of tumor growth. It performed equally well and in

addition the doubling time of mitotic tumor cells and lifespan of

apoptotic tumor cells affected by the drug were estimated. This

lifespan model is able to capture the relationship between the phar-

macokinetics of therapeutic agents with tumor growth inhibition

using physiologically relevant model parameters.
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Objectives: Phase 2 trials within diabetes generally have a long

duration of 12–24 weeks, where 12 weeks may be too short to reach

steady state HbA1c and 24 weeks significantly increase time and cost

of development. The main determinant for HbA1c is blood glucose,

which reaches steady state much sooner. We propose a framework for

predicting phase 3 end-of-trial HbA1c based on phase 2 data that

potentially avoids this issue by quantifying the longitudinal relation

between glucose and HbA1c.

Methods: Individual data from 4 clinical trials covering 12 treatment

arms with different anti-diabetic treatments (OADs, GLP-1 ana-

logues, and insulins) were included in this analysis (Table 1, Refs.

[1–4]). HbA1c was sampled at screening and 3-5 times during the

treatment period. In addition, 3 times during the treatment period,

each subject was sampled regularly to obtain 24-hour plasma glucose

Table 1 Summary of trials included

Treatment type Arm Trial and arm—short name N HbA1c baseline Ref.

Basal Insulin Insulin glargine (comparator) Trial1-arm1 259 8.6 [1]

Basal Insulin Insulin detemir Trial1-arm2 248 8.6

Pre-mixed insulin Novo mix Trial2-arm1 99 9.7 [2]

Basal insulin Insulin glargine (comparator) Trial2-arm2 110 9.8

GLP-1 analog + Biguanide + TZD Liraglutide Trial3-arm1 176 8.6 [3]

Biguanide + TZD 1.8 mg + Metformin + Rosiglitazone Trial3-arm2 8.4

GLP-1 analog + Biguanide + TZD Metformin + Rosiglitazone (comparator) Trial3-arm3 159 8.5

Liraglutide 1.2 mg + Metformin + Rosiglitazone 170

GLP-1 analog + Biguanide Liraglutide 0.6 mg + Metformin Trial4-arm1 238 8.4 [4]

GLP-1 analog + Biguanide Liraglutide 1.8 mg + Metformin Trial4-arm2 234 8.3

SU + Biguanide Glimeperide + Metformin (comparator) Trial4-arm3 232 8.3

Biguanide Metformin Trial4-arm4 116 8.4

GLP-1 analog + Biguanide Liraglutide 1.2 mg + Metformin Trial4-arm5 224 8.4

Fig. 1 Overview of prediction performance in each arm. The

abscissa shows the change in HbA1c % (DHbA1c %) following

24-28 weeks of treatment vs. comparator. Each line presents 95 %

confidence interval for the treatment effect vs. comparator calculated

based on observations (black) and predictions from 12 week data

(gray). Dots present mean difference in DHbA1c % between compar-

ator and the specific arm
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profiles. The link between glucose and HbA1c was implemented as an

indirect response model with mean plasma glucose (MPG) and HbA1c

as dependent variables estimated using a non-linear mixed-effects

model. The predictive performance of the model was evaluated using

12-week data to predict HbA1c at end-of-trial. Thus, HbA1c was

predicted for each individual subject from screening up to

24–28 weeks using MPG and HbA1c samples up to 12 weeks. Besides

directly comparing predicted HbA1c values (mean and variance) to

observations, we sought to evaluate whether the model could predict

the primary endpoint (DHbA1c vs. comparator) in each trial (Fig. 1).

Results: A total of five model parameters were estimated while two

model parameters reflecting glycosylation of hemoglobin were fixed

to predetermined values. HbA1c % at end-of-trial was predicted with

a mean numerical error in each treatment arm ranging from 0.0 to

0.24 % with an average of 0.14 % error across treatment arms. The

ratio of the variance of predictions versus observations ranged from

0.75 to 0.86 indicating a slight under-prediction of variance. Calcu-

lations of the mean DHbA1c versus comparator and the corresponding

confidence intervals were shown to provide identical conclusions

based on predictions from 12-week data and observations at end-

of-trial (Fig. 1).

Conclusions: The proposed link between glucose and HbA1c provides

a framework for accurate and precise prediction of end-of-trial

(24–28 weeks) HbA1c based on 12-week MPG and HbA1c measure-

ments. Application of this framework thus provides a basis for

improved phase 3 dose selection using phase 2 data within diabetes

drug development.
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IH, Zdravkovic M, Düring M, Matthews DR; LEAD-2 Study

Group (2008) Efficacy and safety comparison of liraglutide,

glimepiride, and placebo, all in combination with metformin, in

type 2 diabetes: the LEAD (liraglutide effect and action in

diabetes)-2 study. Diabetes Care 32(1):84–90

T-004 Single-cell Pharmacokinetics of an Auristatin-

Based Antibody–Drug Conjugate

Tae H Han, David Julian, Baiteng Zhao*

Clinical Pharmacology, Seattle Genetics, Inc., Bothell, WA,

98021 USA

Objectives: Antibody–drug conjugates (ADC) represent a new

modality in the treatment of cancer that enables target specific

delivery of potent cytotoxic agents. The pharmacokinetics of ADCs

are complex and requires consideration of multiple pathways. The

objectives of the study were to develop a mechanistic single-cell PK

model to account for these multiple pathways

Methods: A network model of ADC pharmacokinetics in a single cell

was developed in silico. Both specific and non-specific pathways for

ADC internalization were incorporated in this single-cell model.

Nodes that represent analytes in different locations in tissue were

connected by first-order or second-order reactions. Parameter values

were fixed based on literature, internal data, model fits, or scientific

judgment. MATLAB (R2012a) and SimBiology (v. 4.1) were used to

develop the model and for simulations.

Results: The model performed well in fitting auristatin data from

in vitro experiments. Across cell lines, efflux of the auristatin was

found to vary while the uptake of auristatin was similar. In addition,

specific delivery of ADC to the target cell accounted for the majority

of the in vitro cytotoxicity. Based on a sensitivity analysis, the key

reaction pathways were those directly involved in auristatin release

from the ADC.

Conclusions: The single-cell pharmacokinetic model describes

in vitro results well. Further work to extrapolate the ability of this

model to fit data from in vivo experiments is planned.
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Objectives: The drug metabolizing enzyme cytochrome P4501A2

(CYP1A2) demonstrates a large degree of inter-individual and pop-

ulation variability [1]. Currently, caffeine is the probe drug utilized to

investigate CYP1A2 activity in vivo in humans [2]. The apparent

clearance of caffeine is considered to be the gold standard measure-

ment of CYP1A2 activity. However, phenotyping methodologies

differ, in particular the time period of methylxanthine abstinence

(MA) prior to administration of the study dose of caffeine [3].

Understanding the impact of a methylxanthine abstinence period on

caffeine and paraxanthine pharmacokinetics is critical to ensure an

accurate estimate of CYP1A2 activity. The aim of this study was to

evaluate caffeine and paraxanthine pharmacokinetics with and with-

out a methylxanthine abstinence (MA) period in subjects with a range

of caffeine consumption and to analyze the impact of MA on metrics

of CYP1A2 activity.

Methods: This study developed and evaluated a mixed effects

pharmacokinetic model for caffeine and paraxanthine pharmacoki-

netics derived from a sequential single dose cross-over study in health

non-smoking male volunteers (n = 30) who received an oral 100 mg

caffeine dose. Participants received caffeine on 2 occasions: during

their usual diet of methylxanthines and after a 24 h period of meth-

ylxanthine abstinence. Blood samples were obtained at 0, 0.5, 1, 1.5,

2, 4, 6, 8, 10 and 24 h in both periods. Participants were classed as

heavy caffeine consumers if they had a usual caffeine intake of

[200 mg per day [1]. Plasma concentrations of caffeine and para-

xanthine were measured by high performance liquid chromatography

[4]. Data was modeled using the maximum likelihood estimation

method in ADAPT V [5].
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Results: Caffeine and paraxanthine concentration–time data were

modeled simultaneously with first order absorption (and lag), elimi-

nation rate constants and error variance models for both caffeine and

paraxanthine. Caffeine was described by a two compartment phar-

macokinetic model with two linear clearance parameters (CLCAPX,

which describes the clearance of caffeine to paraxanthine, and CLCAO

which describes clearance by all other elimination pathways of caf-

feine), while paraxanthine was described by a one compartment

pharmacokinetic model with one linear clearance (CLPX). The model

fit the data very well in the MA (overall r2 = 0.99 for caffeine and

r2 = 0.91 for paraxanthine) and no MA (r2 = 0.98 for caffeine, and

r2 = 0.91 for paraxanthine) periods. Table 1 displays the parameters

obtained from data in the 24 h MA and no MA periods. The apparent

clearance of caffeine (CLTOT) was calculated as the sum of CLCAPX

and CLCAO. A difference was observed between the apparent caffeine

clearance (CLTOT,) in the MA period (n, mean, 95 % CI) (30, 8.44,

7.21–9.68 L/h) and no MA period (30, 7.27, 6.14–8.40 L/h)

(p \ 0.05). When stratified by caffeine consumption the difference in

the CLTOT in heavy caffeine consumers between the no MA and MA

was only significant for heavy caffeine consumers (n = 5, 6.30,

3.39–9.19 L/h) and (10.48, 5.62–15.32 L/h), respectively (p \ 0.05)

(Fig. 1). The apparent paraxanthine clearance was not significantly

altered in heavy or light caffeine consumers between the two study

periods. The model indicated that the difference in the CLTOT in

heavy caffeine consumers between the two periods was related to the

CLCAO pathway rather than the pathway describing CYP1A2 medi-

ated metabolism (CLCAPX).

Conclusions: A methylxanthine abstinence period has a significant

impact on the pharmacokinetics of caffeine in heavy caffeine con-

sumers. The decrease in the total apparent caffeine clearance, in the

Table 1 Model parameters in the 24 h methylxanthine abstinence period and no methylxanthine abstinence period

Parameter 24 h Methylxanthine abstinence period No methylxanthine abstinence period

Mean RSE % CV % Mean RSE % CV %

ka 3.65 41.6 103 3.55 54.9 56.0

k12 1.71 19.4 32.5 1.54 71.5 62.6

k21 2.02 14.4 23.1 2.40 64.9 29.7

V1 31.2 38.8 17.7 27.7 56.8 20.2

V3 24.4 47.2 24.6 18.4 52.8 37.2

Tlag 0.15 54.5 107 0.14 76.2 81.2

CLCAPX 2.73 15.0 22.7 2.63 17.3 19.6

CLPX 3.81 11.2 13.4 3.70 14.2 10.9

CLCAO 4.86 40.1 57.1 3.74 49.0 68.1

IC(1) 1.72 82.3 229 3.40 144 187

IC(2) 1.20 Fixed – 1.21 Fixed –

IC(3) 4.06 22.8 48.2 6.93 77.2 103

IC(4) 1.37 Fixed – 1.18 Fixed –

SD1int 0.05 Fixed – 0.05 Fixed –

SD1Slope 0.02 38.8 – 0.07 13.7 –

SD2int 0.05 Fixed – 0.05 Fixed –

SD2slope 0.04 32.2 – 0.04 29.9 –

RSE % relative standard error of parameter as a percentage; CV % coefficient of variation percent; ka rate constant from absorptive compartment;

k12 rate constant from compartment 1 of caffeine to peripheral compartment; k21 rate constant from peripheral compartment to caffeine central

compartment; V1 volume of distribution of caffeine in compartment 1; V3 volume of distribution of paraxanthine in compartment 3; Tlag lag

time for caffeine from absorptive compartment; CLCAPX Clearance of caffeine to paraxanthine; CLPX Clearance of paraxanthine; CLCAO

Clearance of caffeine renally plus clearance of caffeine to theophylline and theobromine; IC(i) Initial condition in ith compartment; SD1int
variance model parameter describing intercept of caffeine; SD1slope variance model parameter describing slope of caffeine; SD2int variance

model parameter describing intercept of paraxanthine; SD2slope variance model parameter describing slope of paraxanthine

Fig. 1 Total apparent caffeine clearance in the 24 h MA and no MA

periods stratified by caffeine consumption. The upper and lower

bounds of the boxplot represent the 75th and 25th percentiles; the

median is also indicated by the line within each box
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no MA period does not appear related to saturation of the CYP1A2

enzyme pathway, indicated by the lack of change in the clearance of

caffeine to paraxanthine and the clearance of paraxanthine. The

results may reflect a change in the sensitivity to the diuretic effect of

caffeine among heavy caffeine consumers following methylxanthine

abstinence. These results have implications for measurement of

CYP1A2 activity, dose optimization of CYP1A2 metabolized drugs

and studies linking CYP1A2 activity to intrinsic or extrinsic factors.

The results highlight the importance of population pharmacokinetic

analysis compared to traditional pharmacokinetics approaches when

interpreting drug metabolism.

References

[1] Perera V, Gross AS, McLachlan AJ (2012) Influence of

environmental and genetic factors on CYP1A2 activity in

individuals of South Asian and European ancestry. Clin

Pharmacol Ther 92(4): 511–519

[2] Perera V, Gross AS, McLachlan AJ (2012) Measurement of

CYP1A2 activity: a focus on caffeine as a probe. Curr Drug

Metab 13(5): 667–678

[3] Perera, V, et al (2011) Pharmacokinetics of caffeine in plasma

and saliva, and the influence of caffeine abstinence on CYP1A2

metrics. J Pharm Pharmacol 63(9): 1161–1168

[4] Perera V, Gross AS, McLachlan AJ (2010) Caffeine and

paraxanthine HPLC assay for CYP1A2 phenotype assessment

using saliva and plasma. Biomed Chromatogr 24(10):p. 1136–1144

[5] D’Argenio DZ, Schumitzky A, Wang X (2009) ADAPT 5 User’s

Guide: Pharmacokinetic/Pharmacodynamic Systems Analysis

Software, B.S. Resource, Editor 2009: University of Southern

California, Los Angeles

T-006 Comparison of Different Efficacy Endpoints

in Neuropathic Pain Trials: An Application

of Meta-analysis

Chih-Wei Lin*, Wei Liu, Walid Awni, Sandeep Dutta

Clinical Pharmacology and Pharmacometrics, AbbVie, North

Chicago, IL, 60064, USA

Objectives: Pain intensity (PI) scale with the ‘‘0–10 numerical rat-

ing’’ is widely used as efficacy endpoint in pain trials. Although many

other endpoints are also used in pain evaluation and seem to show

similar trends for multiple efficacy endpoints typically evaluated in

pain trials, there have been no systemic comparison between these

efficacy endpoints for pain reduction. The objective of this work was

to compare PI with a variety of pain endpoints, including patient

global impression of change (PGIC), short from McGill (SFMAC),

short form 36 (SF36), brief pain inventory (BPI), clinical global

impression of change (CGIC) used in neuropathic pain trails.

Methods: The initial database of 82 trials was created by a systemic

search for published controlled clinical trials for neuropathic pain

including diabetic peripheral neuropathy, postherpetic neuralgia and

fibromyalgia. 9 endpoints were identified in the database: PI in 74

trials, PGIC in 49 trials, SFMAC in 37 trials, SF36 in 30 trials, BPI in

25 trials, CGIC in 23 trials, fibromyalgia impact questionnaire (FIQ)

in 16 trials, clinical global impression-Severity (CGI-S) in 11 trials,

and pain relief (PR) in 7 trials (Table 1). Majority of the trials had 3–4

different efficacy endpoints. To investigate the relationships between

efficacy endpoints, the data were regrouped for paired endpoints into

small subgroups by trial, arm, time and imputation. The observed

endpoint relationships were linear and evaluated by mixed effects

models. Between trial variability was described by random effects,

and residual error was weighted according to the size of the sub-

groups. The correlation between observations within an arm was

evaluated by a compound symmetry correlation structure. Akaike

information criterion was used in model selection. Analyses were

performed in R.

Results: The relationships between PI (0–10 scale) and other end-

points were evaluated, except FIQ, CGI-S and PR because of the

small sample size of the regrouped data. All the endpoint relation-

ships were well described by linear mixed effects models.

The mean score reduction in PI at endpoint was 1.4 for placebo

groups and 2.3 for active groups. By using PI as a bridge, it is possible

to compare different scales for pain assessments in neuropathic pain

trials for placebo and active groups (Fig. 1). When a change in PI was

compared to different efficacy endpoints, a 1.4 point mean score PI

reduction for placebo response was associated with the following

changes in different efficacy endpoints:

(i) 34.1 or 20.7 % of the trial subjects had achieved 30 or 50 % pain

reduction in PI, respectively;

(ii) 0.78 point drop from baseline in PGIC (1–7 scale, baseline = 4)

or 29.9 % rate to achieve much improved/very much improved

in PGIC;

(iii) 0.56 point reduction in SFMAC-present pain intensity (PPI)

(0–5 scale) and 17.1 point reduction in SFMAC-visual analog

scale (VAS) (0–100 scale);

(iv) 8.7 point reduction in SF36-body pain (0–100 scale);

(v) 1.43 point reduction in BPI (0–10 scale); (f) 0.81 point drop

from baseline in CGIC (1–7 scale, baseline = 4) or 29.2 % rate

to achieve much improved/very much improved in CGIC.

Conclusions: These analyses provide direct comparisons between PI

and other efficacy endpoints, and allow indirect comparisons among

other efficacy endpoints for placebo and drugs included in this

analysis. This work enables rough conversions between main score

reductions and responder rates for different endpoints, and provide

Table 1 Summary of Evaluated Efficacy Endpoints in Neuropathic Pain Database

Endpoint category N of trials Evaluated endpoint (N of trials)

Pain Intensity 74 average pain (73), 50 % reduction (43), 30 % reduction (34),

Patient Global Impression of Change (PGIC) 49 Mean score (20), %much improved/very much improved (16)

Short From McGill (SFMAC) 37 VAS Pain (26), present pain intensity (23)

SF36 30 Bodily pain (25)

Brief Pain Inventory (BPI) 25 Average pain (22)

Clinical Global Impression of Change (CGIC) 23 %much improved/very much improved (10), mean score (7)

Total 82
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approximate placebo and active responses for different endpoints for

neuropathic pain.
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Objectives: Published literature can be used to develop drug-disease

models to inform decisions about study design or drug development

strategy. Two models describing weight loss in obese patients with or

without Type 2 diabetes mellitus (T2DM) were developed to predict

the contribution of placebo, drugs, exercise, diet, and disease state on

the magnitude and time course of weight reduction.

Methods: A database of study-level aggregate data from multiple

trials published in literature (1 week to 1 year duration) was curated.

Study arms were categorized by disease status—obesity with or

without T2DM. Models included placebo and drug treatment (e.g.,

sibutramine, rimonabant, dexfenfluramine, exenatide, pramlintide,

liraglutide, taspoglutide, and albiglutide). Non-pharmacological inter-

vention (diet, exercise) or concomitant metformin use was treated as a

categorical covariate. The effect of baseline weight on change from

baseline was explored. An indirect dose–response model was imple-

mented in a nonlinear mixed effects modeling software (NONMEM)

using the first order conditional estimation (FOCE) method [1]. The

$PRIOR option and proprietary densely sampled data was utilized to

stabilize estimation of the rate constant describing the weight loss

time course [1]. The indirect dose–response model was translated into

SPLUS to simulate varying treatment conditions. The Integrated

Two-Component Prediction (ITP) longitudinal model [2] was exe-

cuted using BUGS software [3]. Predictions from the models

described potential scenarios for the probability of technical success

as represented by the percentage of the simulated population

achieving the desired target weight loss.

Results: The models revealed the differing time course and extent of

weight loss in the obese patient populations with and without T2DM

for the various interventions and conditions. A model and data from a

Phase 1 proof-of-concept study were used together to simulate

alternative study design scenarios to streamline a development pro-

gram and to predict plausible outcomes of a Phase 2 trial, including

the relative performance of a compound in development against

marketed comparators. The ITP weight loss model maximized the use

of dropout data to support dose allocation in an adaptive design trial.

Conclusions: Models for weight loss developed from literature data

are advantageous tools to support key drug development decisions. In

this case example, the models guided decisions dependent upon the

time course of weight reduction, the effectiveness of marketed

comparators, and the influence of study population on weight loss.
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Objectives: To characterize the population pharmacokinetic (PPK)

profile of levomilnacipran in patients with major depressive disorder

(MDD) and to quantify the potential effects of demographic charac-

teristics, renal and liver function, and relevant classes of concomitant

medications on steady-state exposures.

Methods: The PPK analysis data set included 11,863 non-zero

observations from 1,256 subjects (567 males, 689 females), including

8,928 observations from 458 healthy subjects in 13 Phase I studies

and 2,935 observations from 798 patients with MDD in three Phase

III studies. Doses of levomilnacipran sustained release (SR) formu-

lation ranged from 20 to 300 mg once daily in the combined dataset.

A structural PPK model was developed based on exploratory evalu-

ations of the phase I data and evaluation of goodness of fit plots.

Possible parameter-covariate relationships were initially identified

using exploratory graphical and regression analyses, then subse-

quently evaluated using nonlinear mixed effect modeling. Covariates

were screened one at a time and selected using a stepwise forward-

selection (p \ 0.01), backward-elimination (p \ 0.001) method based

on the likelihood ratio test. Model evaluation was based on statis-

tical criteria, numerical stability of the minimization, and graphical

presentations of goodness-of-fit. Goodness-of-fit graphs included

population and individual predicted concentrations versus observed

concentrations, conditional weighted residuals versus time after first

dose, and conditional weighted residuals versus predicted plasma

concentrations. During model refinement, statistically significant

covariates that were not clinically relevant were removed from the

model and parameter estimates were examined to ensure that they

were well estimated and plausible. The resultant model was consid-

ered the final practical PPK model. This final model was further

evaluated using visual predictive check and bootstrap analysis.

Modeling was performed in NONMEM, Version VII.1.0 (FOCE-I),

Fig. 1 Relationship between Pain Intensity and Other Endpoints for

Pain Assessments
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with Perl-speaks-NONMEM Version 3.2.12 used to conduct the

bootstrap analysis.

Simulations of the final PPK model were performed to identify dose

adjustment strategies for subjects with varying degrees of renal

impairment, including mild (CLCR 60–89 mL/min), moderate

(CLCR 30–59 mL/min) and severe (CLCR 15–29 mL/min). Various

dose reduction strategies, covering both the titration period and the

maintenance period, were evaluated through comparison to subjects

with normal renal function.

An exploratory evaluation of the impact of medications

co-administered with levomilnacipran on model-predicted steady-

state exposures to levomilnacipran was conducted for subjects in the

three Phase III studies. Groupings of drugs that influence the human

cytochrome P450 (CYP) system were created according to a reputa-

ble, publicly-accessible source table [1]. Groupings of interest

included CYP 3A4/5/7 inducers, CYP 3A4/5/7 inhibitors, CYP 2D6

inhibitors, CYP inducers as a combined group, and cyclosporine. In

addition, strong P-glycoprotein (P-gp) inhibitors and groupings of

drugs influencing renal transporters OCT2, OAT1, and OAT3 were

assessed, based on a list provided by US-FDA [2].

Results: A one compartment pharmacokinetic model with delayed

first order absorption and first order elimination best described the

pharmacokinetics of levomilnacipran. Pharmacokinetics were linear

over the therapeutic range. The model for levomilnacipran was

parameterized in terms of apparent systemic clearance (CL/F) and

apparent central compartment volume (Vc/F), an absorption rate

constant (Ka) and absorption lag time (Tlag). Interindividual vari-

ability was modeled in an exponential format and estimated to be

26 % for CL/F and Vc/F and 55 % for Ka. Covariance between CL/F

and Vc/F was modeled. Additive and proportional residual error terms

were estimated separately for sparse data and phase I data. The

additive and proportional error terms for Phase I data were 13 and

43 %, respectively, of the residual error variances for sparse data. The

structural model provided an adequate fit to the data as demonstrated

by diagnostic plots and symmetrical parameter distributions. All

parameters (Table 1) were well estimated as shown by precise

parameter estimates, reasonable ETA shrinkage (10–40 %) and low

epsilon shrinkage (8 %).

The primary clinical covariate influencing exposure to levomilna-

cipran was renal function. For a subject with normal renal function

(CLCR of 120 mL/min and body weight of 79 kg), typical CL/F was

24.0 L/h and typical Vc/F was 495 L. The median absorption lag time

was estimated to be 1.73 h and the median absorption half-life was

1.3 h. Variations in renal function explained 35 % of between-subject

variability in CL/F. For subjects with mild, moderate and severe renal

impairment, the final model shows reductions in median CL/F of 20,

40 and 58 %, respectively, compared with a typical subject with

normal renal function. A piece-wise model with separate parameters

for the impact of CLCR on CL/F was utilized to significantly improve

the goodness-of-fit at values of CLCR under 50 mL/min. The only

clinically relevant covariate for Vc/F was body weight. For a 100 kg

subject, Vc/F would be expected to increase by 15 % (571 L) com-

pared to a subject with the typical weight of 79 kg, while in a subject

weighing 60 kg, Vc/F would be expected to be reduced by 15 %

(419 L) compared to a subject with the typical weight of 79 kg.

However, over the full range in body weight of 45–143 kg observed

in the dataset, the influence of body weight on Cmax,ss resulted in less

than 20 % variation. Fewer than 3 % of subjects were taking clini-

cally relevant concomitant medications. In the exploratory evaluation

of the concomitant medication groups, none of the groupings listed

above showed an impact on model-predicted levomilnacipran

AUC,ss, Cmax,ss, or Cmin,ss.

Due to the influence of renal impairment on levomilnacipran

exposures, dosing adjustments are needed in subjects with moderate

or severe renal impairment to achieve steady-state exposures similar

to that in subjects with normal renal function (Table 2). At pharma-

cokinetic steady-state, the maximum doses for subjects with moderate

and severe renal impairment are 80 once daily and 60 mg once daily,

Table 1 Parameter estimates of the final practical PPK model

Parameter Estimate RSE IIV(ETA) IIV(as %CV)

CL/F (L/h) 24.0 0.93 0.0674 26.0a

Vc/F (L) 495 1.24 0.0657 25.6a

Ka (1/h) 0.519 2.64 0.307 55.4

Tlag (h) 1.73 0.58 – –

CLCR C50 mL/min on CL/F 0.475 8.46 – –

CLCR\50 mL/min on CL/F 0.525 7.43 – –

WTKG on Vc/F 0.605 11.2 – –

Residual error, Ph 1, proportional 0.150 3.95 – –

Residual error, Ph 1, additive 2.71 7.93 – –

Residual error, Ph 3, proportional 0.352 4.52 – –

Esidual error, Ph 3, additive 21.4 12.1 – –

RSE relative standard error, IIV interindividual variability, CV coefficient of variation
a Correlation of CL/F IIV and Vc/F IIV was 0.391

Covariate effects listed above modeled as PKPAR = TypicalPKParValue * (Cov/TypCov)^(theta)

IIV modeled as PKPAR*exp(ETA)

Cij = C + SQRT(additive + proportional*C), for ith subject and jth plasma concentration measurement

Table 2 Population PK-based recommendations for titration sche-

dule by renal function category

Dose (mg, QD) Day 1 Day 2 Days 3 and 4 Days 5–7 Days 8+

Renal function

Normal or mild 20 20 40 80 120

Moderate 20 20 20 60 80

Severe 20 20 20 40 60
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respectively, compared to a dose of 120 mg once daily in subjects

with normal renal function or mild renal impairment. Simulations also

indicated that dose reductions during the up-titration phase in patients

with moderate or severe renal impairment allow reduction of levo-

milnacipran plasma exposures to levels similar to those in normal and

mildly impaired patients. This would ensure peak plasma concen-

trations and AUCs in subjects with moderate to severe renal

impairment during the first 4 days of dosing are comparable to those

of subjects with normal renal function.

Conclusions: A one compartment pharmacokinetic model with

delayed first order absorption and first order elimination described the

pharmacokinetics of levomilnacipran. Creatinine clearance and body

weight were clinically relevant covariates influencing the pharmaco-

kinetics of levomilnacipran. Concomitant medications, including

those that influence renal transporters, P-gp and CYP, did not show an

impact on levomilnacipran exposures including AUC,ss, Cmax,ss, and

Cmin,ss. No dose adjustment is needed for subjects with mild renal

impairment, but the maintenance dose for subjects with moderate and

severe renal impairment should not exceed 80 mg once daily and

60 mg once daily, respectively. In addition, adjusted dose titration

schedules are recommended for subjects with moderate and severe

renal impairment to achieve levomilnacipran exposures similar to

those in subjects with normal renal function.
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Background: COX-1 is a homodimer enzyme that is involved in

prostaglandin biosynthesis from the arachidonic acid (AA) and can be

inhibited by non-steroidal anti-inflammatory drugs (NSAIDs). This

inhibition leads to reduced thromboxane B2 (TxB2) synthesis in the

circulating platelets and reduced platelet aggregation, leading to

cardioprotective activity. Aspirin can irreversibly inactivate the COX-

1 enzyme via its acetylation at Ser530 residue. It has been found

recently that COX-2 inhibitors from the coxib family, such as cele-

coxib and rofecoxib, are also able to bind to one subunit of COX-1

enzyme [1]. This binding to one monomer of COX-1 does not affect

the normal catalytic processing of the AA by the second subunit, but

does interfere with the inhibition of COX-1 by aspirin. Outcomes of

the in vitro and animal studies (in dogs) indicate that coxibs, that are

often prescribed in combination with low-dose aspirin, can interfere

with the COX-1 inhibition and reduce the cardioprotective effects of

aspirin [2]. The clinical studies that investigated the interaction

between the coxibs and aspirin did not provide conclusive findings on

its clinical importance, apparently due to the dose- and administration

schedule-dependent extent of this interaction [3–4].

Objectives: To develop a quantitative model of celecoxib and aspirin

binding to the COX-1 enzyme that takes into account the different

mode of binding of these drugs to the individual subunits of the

enzyme. To apply this model for analysis of the interaction between

the celecoxib and aspirin on the inhibition of the COX-1 enzyme,

TxB2 synthesis and platelet aggregation for the clinically-relevant

administration schedules of these drugs.

Methods: The data on the pharmacokinetics and pharmacodynamics

of aspirin and celecoxib were collected from the scientific literature

[5–7]. The data included the following parameters: the aspirin and

celecoxib pharmacokinetics, turnover of platelet COX-1 enzyme,

TxB2 synthesis and platelet aggregation, and affinities of the aspirin

and celecoxib to the COX-1. The collected data have been analyzed

using a model of celecoxib and aspirin interaction with the COX-1

enzyme (Fig. 1) to determine the time course of the plasma drug

concentrations, levels of the free and drug-bound COX-1, TxB2

synthesis and platelet aggregation. The model validation was per-

formed using the data from the clinical studies that investigated the

interaction between the celecoxib and aspirin. Subsequent analysis

included simulation of clinically-used doses and administration

schedules of the investigated drugs; simultaneously at different time

intervals.

Results: The applied model reflected the major pharmacokinetic and

pharmacodynamics properties of the celecoxib and aspirin, and

described appropriately the major findings of the clinical trials that

analyzed the interaction between these drugs. The modeling outcomes

indicated that celecoxib can interact with a substantial fraction of the

COX-1 enzyme in the platelets and attenuate the COX-1-acetylation

effect of aspirin. As a result, celecoxib can reduce the cardioprotec-

tive effects of aspirin. This interaction is most prominent at the high

doses of celecoxib, low doses of aspirin, and in case that both drugs

are administered simultaneously.

Conclusions: Celecoxib can interfere with the action of aspirin on

COX-1 at the clinically-relevant doses of these drugs and can

impede the action of low-dose aspirin on platelet aggregation in

human subjects. The dosage regimens of both drugs should be

modified to provide clinically effective COX-2 inhibition while

minimizing interference with aspirin inhibition of platelet COX-1.

Further studies should take into account the pharmacokinetic and

kCEL

koff

kout

kASA

kin

kout kout

celecoxibaspirin

Fig. 1 The model of celecoxib and aspirin interaction with the
COX-1 enzyme. The COX-1 in the platelets is produced at a constant

rate kin and is degraded according to the elimination rate constant kout.

Aspirin can irreversibly bind to the free COX-1 enzyme according to

the 2-nd order kASA rate constant. Celecoxib can reversibly bind to the

free COX-1 enzyme according to the 2-nd order kCEL rate constant

leading to the lower pool of COX-1 enzyme molecules that can be

inhibited by aspirin. In presence of celecoxib, higher levels of aspirin-

unbound COX-1 enzyme subsequently lead to increased thromboxane

B2 (TxB2) synthesis in the circulating platelets and increased platelet

aggregation
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pharmacodynamic variability for both drugs to select their appro-

priate dosage regimens.
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for an Escitalopram Thorough QT Study
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Lars Lindbom2, Parviz Ghahramani1
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Objectives: To develop a population PK-QT model for evaluating the

relationship between drug concentrations and the time-matched drug-

placebo differences in heart rate corrected QT change for escitalop-

ram doses 10–30 mg/day.

Methods: Data from 27 healthy volunteers in a Phase I study and 107

healthy volunteers in a dedicated Phase IV thorough QT (TQT) study

were used to develop a population pharmacokinetic model for escit-

alopram (ESC) and S-demethyl-citalopram (SDC). The primary goal

of the population PK modeling was to predict individual plasma

concentrations of ESC and SDC corresponding to the times when the

ECG measurements were taken using Holter monitoring following 10

and 30 mg/day doses. The secondary goal of the analyses was to

provide estimates of plasma concentrations and Cmax levels of ESC

and SDC following a dose of 20 mg/day, a dosage that was not tested

in the TQT study but may be used in clinical practice. The predicted

Cmax levels for 10, 20 and 30 mg/day doses were subsequently used to

predict maximum expected QTc change. The population PK analyses

for ESC and SDC were developed using the first order conditional

estimation (FOCE) method with interaction in NONMEMTM (version

VI). For SDC, a direct approach was applied whereby the metabolite

concentrations were modeled using a standard disposition model with

first order absorption. Under this approach, ESC dose was assumed to

drive the SDC model. The dose of SDC was set to 0.3 times the dose

of ESC (based on the observed ratio between the mean steady state

concentrations for SDC and ESC). The analysis examined the rela-

tionship between individual heart rate corrected QT interval (QTcNi)

and the individual predicted plasma concentrations of ESC and SDC

at 10 and 30 mg/day doses. A nonlinear mixed effects model for

QTcNi over time was developed in S-PLUS� v.6.2 for Windows and

consisted of additive effects of baseline, placebo, drug effect, and a

normally distributed residual error: QTcNi = Baseline + Pla-

cebo + Drug Effect + Error. The influence of exposures on QTcNi

drug effect was modeled using either ESC individual predicted

plasma concentrations, or SDC individual predicted plasma concen-

trations. Drug effect was modeled either as a linear or an Emax

relationship. Between-subject variability terms were added on each

model parameter but were removed if either numerical convergence

was not achieved by the estimation algorithm, or no significant

improvement in the fit (p [ 0.001) was achieved. To assess expected

QTc change at 10 and 30 mg/day doses, QTcNi drug effect was

simulated for typical steady state Cmax values predicted the 10 and

30 mg/day doses assuming PK-QT model uncertainty. The expected

QTc change at 20 mg/day dose was then interpolated using typical

steady state Cmax values at the same dose.

Results: The population PK models for ESC and SDC were based on

2,454 and 2,472 observations, respectively, collected from 134 sub-

jects across both studies. A 2-compartment model with linear

elimination and dose dependent bioavailability parameterized using

clearance and volume of distribution best characterized the plasma

concentration–time data of ESC. A 1-compartment model with linear

elimination parameterized using clearance and volume of distribution

best characterized the plasma concentration–time data of SDC. The

QTcNi exposure response model was based on 27,164 observations

collected from 117 subjects during baseline and active treatment

visits. Baseline, placebo, and drug effects for ESC were well esti-

mated (Table 1). For a male subject, typical baseline QTcNi was

estimated at 398 ms, with between-subject variability of 16 ms. Mean

baseline QTcNi for a female was 10 ms higher. As expected, baseline

measurements also followed a strong diurnal pattern; a typical study

subject experienced up to a 10 ms range of fluctuation in QTcNi over

the course of the full 24-h cycle. After accounting for baseline and

diurnal pattern, placebo effect was found to reduce the QTcNi pro-

longation by 3 ms. A modest diurnal pattern was present in placebo

effect as well. Relationship between QTcNi and ESC concentrations

was best described by an Emax model. The maximal QTcNi change

(Emax) attributed to ESC was estimated to be 17 ms; the concentration

causing half of this increase was estimated to be 47 ng/mL (EC50),

which incidentally is a typical Cmax estimated for a 20 mg dose.

Additional between-subject variability in Emax was estimated at 66 %.

No evidence of hysteresis in the escitalopram exposure-QTc effect

relationship was found. After accounting for baseline, placebo,

escitalopram, and moxifloxacin effects, an 8 ms residual variability in

QTcNi measurements remained. Residuals from the final escitalop-

ram QTcNi model were explored for their association with individ-

ually predicted SDC concentrations; no evidence of any association

was detected. Hence, most of the QTcNi prolongation observed after

repeated administration of escitalopram can be described by the

parent compound alone. An independent analysis was also performed

assuming a linear relationship between the natural algorithm of the

observed PK concentrations and time-matched, placebo-corrected

changes in QTcF following 10 and 30 mg/day doses and interpolated

for the 20 mg/day dose [1] (Fig. 1).

Conclusions: From the final PK-QT model of escitalopram, simula-

tions estimated a non-clinically relevant placebo-corrected QTcNi

prolongation at the recommended therapeutic dosage of 10 mg/day

(mean 5.2 ms increase at a typical Cmax after a steady state 10 mg/day

dose with the upper bound of 1-sided 95 % confidence intervals (UCI)

at 5.9 ms), a mean increase of 8.3 ms with 95 % UCI of 9.2 ms for

the 20 mg/day dose, and a mean increase of 10.2 ms (with 95 % UCI

of 11.4 ms) for the supratherapeutic dose of 30 mg/day dose. The

independent analysis using linear model and observed concentrations
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provided comparable estimates with a mean increase in QTcF of

6.6 ms (with 95 % UCI of 7.9 ms) for 20 mg/day dose [1].
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Objectives: The concentration-QT (CQT) relationship is routinely

assessed in addition to the intersection–union test (IUT) in thorough

QT (TQT) studies to quantify the effect of drugs on the QT interval.

Single (SAD) and multiple (MAD) ascending dose studies conducted

early in Phase 1 provide a data-rich basis to establish the CQT rela-

tionship since it contains wide range of drug concentration and time-

matched ECG measurements. This study assessed the predictability of

TQT study outcome using CQT analysis of pooled SAD/MAD data

from ten compounds at Pfizer.

Methods: Based on availability of both TQT and SAD/MAD studies

including ECG data, ten programs were identified. Linear mixed-

effect (LME) models were applied using baseline-adjusted QTcF

(Fridericia-corrected QT interval) as the dependent variable. Maxi-

mum baseline and placebo-adjusted QTcF (DDQTcF) was estimated

with the LME model from SAD/MAD data evaluated at the mean

maximum concentration from the TQT study, and compared with the

DDQTcF estimated by IUT analysis from the TQT study. The same

LME models were applied to the TQT data, and DDQTcF and slope

estimates from both TQT and SAD/MAD studies were compared.

Results: Positive/negative results of TQT IUT analysis were pre-

dicted by CQT analysis of SAD/MAD data for all ten compounds in

terms of the mean predicted DDQTcF being greater or less than 5 ms.

When the LME model was applied to TQT data, slope estimates and

90 % confidence interval of DDQTcF were generally in good agree-

ment with those from the SAD/MAD data. Bootstrap datasets were

additionally generated to account for variability in drug concentra-

tions. When the LME model was applied to bootstrap datasets,

maximum DDQTcF estimates were very similar to those from the

original data.

Conclusions: Equivalent information about QT prolongation of a

drug was obtained from both IUT analysis of TQT data and CQT

analysis of SAD/MAD data. Mean DDQTcF \5 ms is a potential

criterion for identifying negative compounds with CQT analysis of

Phase 1 data to obviate a need for TQT study.

T-012 Modeling Discrete Bounded Outcome Scores

Using Random Effects Coarsened Model:

A Comparison of Performance of SAS

and NONMEM� VII

Xu Steven Xu*, Mahesh Samtani, Partha Nandy

Model-Based Drug Development, Janssen Research & Development,

920 Route 202, Raritan, NJ, USA

Objectives: Random-effects coarsened (CO) models have been pro-

posed for discrete bounded outcome scores (BOS) [1]. The CO model

was originally implemented in SAS. Although the CO model has

been used in pharmacokinetic/pharmacodynamics modeling with

NONMEM [2], its performance with Laplacian approximation in

NONMEM has not been formally evaluated. This study is to use

Monte Carlo simulations to evaluate the performance of NONMEM

VII for mixed effects CO models in comparison with the proc

nlmixed in SAS, where numeric integration (Gaussian Quadrature) is

often used.

Table 1 Final Parameter Estimates for QTcNi Plasma Exposure Model with Bootstrap Standard Errors

Main model parameters Population mean Additive between-subject variability

Estimate SE, %CV Estimate SE

Baseline for males (msec) 397.7 0.5 16.0 1.0

Increase in baseline for females (msec) 9.5 31 – –

Placebo (msec) -3.0 4.7 – –

Log (Emax, msec) for escitalopram effect 2.81 3.2 0.66 0.07

Log (EC50, ng/mL) for escitalopram effect 3.84 2.9 – –

Residual variability (as st. dev.), msec 8.5 0.4 – –

Escitalopram conc (ng/mL)
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Fig. 1 Time-matched and placebo-corrected QTcNi associated with

drug effect at a range of escitalopram concentrations
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Methods: Monte Carlo simulations were conducted are based on a

CO model for Disability Assessment for Dementia Scores (DAD), a

functional assessment of Alzheimer’s disease. We assume that the

normalized discrete response (BOS = R(t)/100) takes the form of

k/m, where k = 0, 1, …, m = 100. A latent variable U on (0, 1) is

assumed to cause the BOS outcome by:

BOS ¼ k=m if and only if ak�U\akþ1

where ak = (k - 0.5)/m, ak+1 = (k + 0.5)/m, and a0 = 0, am+1 = 1.

We assume that:

log
Ui

1� Ui

	 


¼ b0i þ b1i � t þ e

where b0i is the intercept that characterizes baseline disease state, b1i

characterizes the rate of disease progression and e * N(0, r2). The

individual intercept and slope is assumed to follow a multivariate

normal distribution. Seven samples per subjects during a 78-week

period were simulated at baseline, 13, 26, 39, 52, 65, and 78 week.

Two hundred trials were simulated, and each trial contained 2000

subjects.

Results: Both SAS and NONMEM could provide very accurate

estimate for all the parameters (both fixed- and random-effects) of the

CO model. The estimation bias for all the parameters was virtually

identical for SAS and NONMEM, and the largest bias was no more

than 2 %. The relative root mean square error (RRMSE) was also

similar between SAS and NONMEM, and generally lower than 15 %.

Conclusions: The Laplacian approximation implemented in NON-

MEM VII provided almost identical performance for estimating both

fixed- and random-effect parameters of the mixed effects CO model,

compared to the numeric integration (Gaussian Quadrature) imple-

mented in proc nlmixed in SAS. In addition, the run time of

NONMEM VII for the mixed CO model was shorter than that of SAS.
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Objectives: Continuous bounded outcome scores (e.g., ADAS-cog

and DAD measured in Alzheimer’s disease) are often collected in

clinical studies. Since these types of data are often bounded within a

certain range, the expectation must be nonlinear due to the ceiling/

floor effects, and the error distribution must be heteroskedastic since

the variance must approach zero as their mean approaches either

boundary score [1]. Therefore, regular regression models, such as

normal linear or nonlinear models, are not applicable in such situa-

tions [1, 2]. Beta regression models have been recommended to

describe these types of data. Implementing beta regression in NON-

MEM presents difficulties since NONMEM doesn’t provide Gamma

functions required by the beta distribution density function. The

purpose of the study was to use Nemes’ approximation to the Gamma

function to facilitate the implementation of beta regression in

NONMEM.

Methods: Monte Carlo simulations were conducted to simulate

continuous outcomes within an interval of (0, 100) based on a beta

regression model in the context of Alzheimer’s disease. The responses

(R(t)) re assumed to follow a beta distribution as follows:

RðtÞ
100
� betaðls; ð1� lÞsÞ

where s is the precision parameter for the beta distribution, and the

expected response (l) for the ith subject on the logit scale is a linear

function of time:

log
liðtÞ

1� liðtÞ

	 


¼ b0i þ b1i � t

where b0i is the intercept that characterizes baseline disease state, and

b1i characterizes the rate of disease progression. The individual

intercept and slope are assumed to follow a multivariate normal

distribution. Seven samples per subject over a 78-week period were

simulated at 0, 13, 26, 39, 52, 65, and 78 weeks. Two hundred trials

were simulated and each trial had 1000 subjects. The beta regression

was applied to the Alzheimer’s disease assessment scale (ADAS-cog)

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) study,

a dataset that is publicly available.

Results: The simulation-reestimation exercise indicated that NON-

MEM could provide accurate estimates for the fixed-effect parameters

with minimum bias (\2 %). There appeared to be some difficulties in

estimating the interindividual variability (IIV), i.e. this approach

underestimated the IIV of the rate of disease progression by

approximately 20 %. In its current implementation, the mixed-effect

beta regression model well described the disease progression for the

cognitive component of the ADAS-cog from the ADNI study.

Conclusions: Using Nemes’ approximation of the Gamma function,

NONMEM provided reasonable estimates for both fixed and random-

effect parameters of the mixed effects beta regression model. In

addition, the NONMEM run time for the mixed beta regression

models appeared to be fairly reasonable, i.e., the minimization step

without the covariance step took *2–3 s for the model and data used

in the analysis.
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found at:www.loni.ucla.edu\ADNI\Collaboration\ADNI_Authorship_
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Objectives: Pasireotide is a novel cyclohexapeptide, injectable

somatostatin analogue with high affinity to four of the five known

human somatostatin receptors. Cushing’s disease (CD) is a devas-

tating disease caused by an adrenocorticotropic hormone (ACTH)

secreting pituitary adenoma. The elevated ACTH secretion stimulates

the adrenal glands to produce excess cortisol, leading to the sub-

sequent development of the clinical signs and symptoms of

hypercortisolism. By targeting somatostatin receptors in the pituitary

adenoma, pasireotide can reduce cortisol levels. Its subcutaneous

(s.c.) formulation has recently been approved for the treatment of CD

in Europe and the US.

During the clinical development of pasireotide s.c., its population

pharmacokinetics (PopPK) was assessed separately in healthy vol-

unteers (HV) and CD patients. The results of the separate HV and CD

PopPK analyses were qualitatively similar. A three-compartment,

linear structural model was found to be adequate for both populations.

Age and weight were identified as covariates for both populations,

with similar trends where they appeared in common roles.

However, the separate analyses also differed in notable ways.

Covariate dependencies were modeled in differently. Apparent

clearance for CD was estimated to be about 63 % that of HV at the

typical age and weight of HV; because of different dependencies on

age and weight, the ratio varied across values of those covariates.

Apparent clearance for CD was found to differ between the first and

later days of treatment, which was not found for HV. Age and weight

were significant covariates for both apparent clearance and apparent

central volume for CD, but weight was not identified as significant for

apparent clearance for HV. Lean body weight was found to be better

than weight as a measure of body size for CD; it had not been con-

sidered for HV.

Understanding similarities and differences in the PK of HV and

patients is important for information from clinical pharmacology

studies conducted in HV to be bridged to clinical studies in patient

populations. It is perhaps for this reason that as part of its review of

the NDA, the FDA requested a pooled analysis of HV and CD with

evaluation of the effect of disease status in addition to covariates as

were studied separately. This report describes the combined analysis

of HV and CD data, with comparison to the separate assessments.

Methods: The analysis in HV was based on data pooled from five

phase I studies. The analysis data set had 4,244 observations from 216

male subjects. The studies included single and multiple s.c.-injection

doses ranging from 2.5 to 1500 lg and 7 days’ continuous s.c.-infu-

sion doses of 450 to 2,250 lg per day.

The analysis in CD was based on data pooled from two studies. One

was the 15-day Phase II study with one dose regimen, 600 lg b.i.d.

The other was the 12-month Phase III study with two randomized

dose regimens of 600 and 900 lg b.i.d., where dose increases were

allowed to 1200 lg b.i.d. for efficacy and decreases were allowed to

300 lg b.i.d. for safety. Combined, the two studies in CD had 2368

observations from 197 CD patients.

Analysis data sets from the separate analyses were combined for

the joint analysis of HV and CD. The same three-compartment

structural model that was used for both HV and CD separately was

used for HV and CD combined. Four covariates were considered in

the combined PopPK modeling process: disease status (HV vs. CD),

age, total body weight (WT), and lean body weight (LBW). The latter

three comprised the union of covariates retained in the final models of

the initial separate analyses in HV and CD. Model selection was done

with LBW as the measure of body size. When the best model was

identified with LBW, that model was refitted using WT in place of

LBW, and the better of the two models was retained as the final

model.

For model selection, a set of models was considered where the

members of the set varied in the relationship between HV and CD.

The set was constructed by considering two possibilities for that

relationship—HV and CD are similar or HV and CD are different—

for each of four components of the overall model: (1) CL/F and V/F;

(2) ka; (3) k23 and k32; (4) k24 and k42.

Thus, a priori 24 = 16 possible models were considered. Each was

fitted and the one with the lowest value of BIC was retained to the

next step of replacing LBW by WT.

Results: The final model from the combined analysis had the fol-

lowing features:

• CL/F and V2/F: HV and CD have the same age effects on CL/F

and V2/F, have the same LBW effect on CL/F and V2/F, and have

the same covariance structure on Day 1. However, typical values

of CL/F and V2/F differ between HV and CD.

• ka: HV and CD are similar.

• k23 and k32: HV and CD are similar.

• k24 and k42: HV and CD are different.

Combined PopPK results show that pasireotide apparent clearance in

CD is typically 59 % that of HV, similar to the value of 63 % derived

from the separate analyses. Clearance increases with body size and

decreases with age in a similar way for CD and HV, so the ratio of

clearance between CD and HV remains constant across ages and

weights. Apparent central volume of distribution in CD is typically

43 % that of HV. Volume increases with body size and age in a

similar way for CD and HV. For CD, variation across ages and body

sizes in summary measures of exposure is similar with the current

model as with the model previously fitted to CD alone.

Let V4/F denote the apparent volume of the deep peripheral

compartment and Q4/F the inter-compartmental clearance between

the central compartment and the deep peripheral compartment. Then

using

k24 ¼ Q4=V2 and k42 ¼ Q4=V4

one can compute Q4/F and V4/F from the known values of V2/F, k24,

and k42. The following table summarizes the results of such calcu-

lations using the final model’s parameter estimates. Transfer of

pasireotide between the central compartment and the deep peripheral

compartment differed between CD and HV, associated with a larger

apparent volume of distribution of the deep peripheral compartment

among CD patients, being consistent with the fact of higher body fat

in CD.

Parameter Healthy volunteers Cushing’s disease

V2/F (L) 38.0 16.2

k24 (1/h) 0.0398 0.0704

k42 (1/h) 0.00865 0.00290

Q4/F (L/h) 1.51 1.14
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Table continued

Parameter Healthy volunteers Cushing’s disease

V4/F (L) 175 392

Conclusions: Combined modeling of data from HV and CD con-

firmed similarities and harmonized dissimilarities between separate

analyses, thereby providing further clarity in interpreting results of the

clinical pharmacology studies in HV for clinical practice. Clearance

for CD is 59 % that of HV at a given age and LBW, yielding cor-

respondingly higher exposures for CD. No physiological explanation

for this difference is known. CD patients, who are mostly women,

tend to be older and to have lower LBW than the young males

comprising the HV population. These differences in demographics

tend to yield still lower clearances for CD, about which the model

provides a quantification of the dependencies. Although lower in

LBW, CD patients tend to be similar in total weight or even heavier

than HV, in part due to the accumulation of body fat associated with

CD. This might explain the larger deep peripheral volume inferred

for CD.
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Objectives: Lilly is a global corporation with research facilities in

many different parts of the world. Within Lilly, there is a large

NONMEM [1] user community spread across several of these facil-

ities, in North America, Europe, and Asia. A distributed NONMEM

computing environment had previously been developed within Lilly

to support these users, and had been in use for approximately

20 years. While this UNIX-based, command line system had many

benefits for experienced users, a more user-friendly solution was

desired.

Methods: System development was undertaken with the following

goals:

– enable team members with varying technical backgrounds to

perform modeling and simulation tasks within a unified frame-

work

– take full advantage of existing infrastructure, including the

distributed Linux computing environment and fully-automated

parallel NONMEM execution

– leverage available open-source tools for automation of common

analysis tasks

– reduce the amount of required training for new users, by providing

a logical, user-friendly graphical interface

– provide command line access for experienced users who are

proficient in using such environment

– automate the generation of report-ready figures and tables

– improve system performance for users outside of the United States

(OUS).

Results: A group of PK/PD scientists was convened to evaluate

available software, including both open-source and commercial

solutions. Based on group consensus, PsN [2,3] and Pirana [4] were

selected as the foundation of the new Lilly NONMEM system. PsN

would provide an industry-standard automation tool for NONMEM

analysis, while Pirana would provide a user-friendly interface with

further automation capabilities.

Several solutions for hardware infrastructure were evaluated,

including: Windows desktop deployment, Windows-based virtual

desktop infrastructure, and a Linux server using NoMachine’s NX

Enterprise Server and Client software for remote desktop access. The

Linux server implementation was chosen due to ease of support,

superior performance, and the availability of UNIX command line

access for experienced users.

Linux servers were installed in Lilly’s Indianapolis, Basingstoke

and Singapore research facilities to provide better network perfor-

mance for OUS users. The servers were integrated with the existing

computational infrastructure, using Sun Grid Engine (SGE) [5] for

batch execution of NONMEM and PsN. A common file system for

these servers was placed in the Indianapolis facility, with local scratch

for the Erlwood and Singapore servers to facilitate local access.

Conclusions: Implementation of a user-friendly interface to the

existing NONMEM system will significantly increase overall through-

put and efficiency in performing PK/PD modeling tasks. The interface

will make population analysis more readily available to scientists cross-

functionally, thereby allowing PK/PD modeling and trial simulation to

be applied to a broader range of drug development programs.
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Objectives: In a non-tuberculosis infected population describe rifam-

picin0s autoinduced plasma concentrations and predict the concen-

tration ratios between epithelial lining fluid, alveolar cells and plasma.
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Methods: Rifampicin plasma, epithelial lining fluid and alveolar cells

in 40 adult subjects without tuberculosis [1] were included in this

analysis. The subjects received rifampicin at 600 mg orally once a

day for 5 days. Rifampicin plasma concentrations were measured on

day 5 at approximately 2 and 4 h post dose. Concentrations in epi-

thelial lining fluid and alveolar cells recovered by bronchoalveolar

lavage were measured at approximately 4 h after the administration of

the last dose.

Data analysis was performed with a nonlinear mixed-effects approach

as implemented in the software NONMEM, version 7.2 (ICON

Development Solutions), using the first order conditional estimation

method with interaction (FOCE INTER). R (version 2.15.1) [2] was

used for managing, exploring and visualizing data. The model

building process was performed in a stepwise fashion, starting from a

previously published rifampicin pharmacokinetic enzyme turn-over

model [3]. Rifampicin’s autoinduction was described with an enzyme

turn-over-model, where rifampicin’s plasma concentration increase

the enzyme production rate which in turn increases the enzyme pool

in a non-linear fashion by means of an Emax-model. The epithelial

lining fluid and alveolar cell drug penetration were described using

effect compartments [4], where the penetration coefficients between

plasma and epithelial lining fluid (Pelf) and plasma and alveolar cells

(Pac) were estimated. The time rate constants kelf and kac were fixed to

a value mimicking an almost instantaneous transfer of drug from

plasma to epithelial lining fluid or alveolar cells due to the sparse

sampling design.

Model selection was based on the objective function value,

parameter precision, goodness-of-fit plots (Xpose, version 4.3.5) [5],

prediction corrected visual predictive checks (PsN, 3.5.5) [6–8] and

scientific plausibility.

Results: The final rifampicin plasma model was a one compartment

model with transit absorption compartments and an enzyme turn-over

model describing rifampicin’s autoinduction.

Parameters related to the absorption and enzyme turnover was fixed to

previously published values [3]. Oral clearance and volume of dis-

tribution were estimated to 4.8 L/h and 50 L respectively. The data

supported inclusion of inter individual variability on oral clearance

(69 %).

At four hours post dose the rifampicin’s penetration coefficients

for epithelial lining fluid and alveolar cells were estimated to 0.27 and

1.17 respectively. This resulted in a mean epithelial lining fluid to

plasma ratio of 1.36 and a mean alveolar cell to plasma ratio of 5.81

when compensating for the free fraction (0.2) of rifampicin concen-

tration in plasma [9].

Conclusions: The final model propose a way to describe the often

sparse data originating from the use of bronchoalveolar lavage, where

only one or a few samples are possible to withdraw from each subject.

The model characterizes rifampicin’s plasma pharmacokinetic prop-

erties including auto-induction as well as the penetration of drug from

plasma to epithelial lining fluid and alveolar cells.
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Objectives: Carbonic Anhydryase II (CAII) changes cell fluid flow.

Inhibiting CAII enzymes in the Iris Ciliary Body (ICB) slows aqueous

humor production which lowers Intraocular pressure (IOP). Brinzo-

lamide is a CAII inhibitor that is used to treat elevated IOP in ocular

hypertensive and glaucoma patients (OAG/OHT).

We present a brinzolamide pharmacokinetics (PK)-pharmacodynam-

ics (PD) model to describe the aqueous humor PK and IOP lowering

following topical administration in rabbit, monkey and human. This

model was applied to evaluate the operating parameters needed for a

once-a-day brinzolamide formulation to give similar efficacy to BID

Brinzolamide in OAG/OHT patients.

Methods: Brinzolamide aqueous humor PK data was available from

three studies in Dutch Belt rabbits. The pooled rabbit PK data

included a single topical dose PK study at 300 lg, a 300 lg BID

14-day topical dose PK study, and a single 1000 lg subconjunctival

dose PK study. In addition, aqueous humor PK data was available

from a PK study where cynomolgus monkeys were administered two

300 lg drops separated by 5 min. For each of these studies one

aqueous humor sample was collected from each eye in a single

animal.

Brinzolamide PD data was available in monkeys and humans. The

preclinical data was pooled from 9 studies in cynomolgus monkeys.

These studies measured IOP in the monkey over 24 h period fol-

lowing QD dosing or BID dosing of brinzolamide. As in the PK

studies, the monkey studies administered a single 300 lg drop fol-

lowed 5 min later by a second 300 lg drop. The human PD data was

pooled from 8 clinical studies spanning a wide topical dose range of

90 lg (0.3 %) to 900 lg (3 %), either given as BID or TID dosing

regimens.
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All data was pooled to create a combined PK model and a linked

PD model. A naı̈ve pooled two compartment PK model was used to

describe the aqueous humor concentration following topical dose. PK

parameters were estimated simultaneously in all species by fitting the

model to all available pooled data. Scaling factors were derived using

a physiologically-based approach and applied to adjust for differences

in a few key model parameters across species. Human or rabbit

parameters were adjusted relative to parameters in monkey model.

For instance, the absorption coefficient for the topical dose was

estimated in monkey and adjusted for differences in rabbit and human

corneal thickness. Similarly, inter-species differences in the volume

of distribution and clearance from aqueous humor were accounted for

using physiological differences in anterior chamber volume. The

peripheral volume and inter-compartmental clearances were scaled by

the lens weight (monkey-to-rabbit) or by volume (monkey-to-human).

The PK model was linked to a direct-effect Hill (PD) model to

describe the IOP reduction in humans and monkeys. This mixed-

effect model characterized between subject changes in both the

amount of IOP lowering (Imax), and the concentration required for

IOP lowering (IC50). Covariate analysis identified species as signifi-

cant covariate (i.e. monkey vs human) for IOP lowering and this was

incorporated in the model. Additional human covariates such as age,

gender, race and iris color were graphically explored but were found

not to be significant.

Results: The PK model was able to predict the PK profile of both

rabbit and monkey for a wide range of topical dose and dosing reg-

imens (Fig. 1). Similarly the direct effect model was able to capture

the IOP response in monkeys and humans for a wide range of topical

dose with BID or TID dosing regimens, as shown by a visual pre-

dictive plot (Fig. 1). The human IOP-lowering was 8.5 % higher than

the Monkey IOP-lowering.

Conclusions: Based on human effect, this model-based simulation

inferred that at least a four-fold increase in bioavailability or a two

fold increase in bioavailability coupled with a 19 h increase in the

retention time was needed for a Brinzolamide QD formulation to

achieve and maintain the same efficacy as Brinzolamide BID 300 lg

dose.

T-018 Use of a Mechanistic Model of Drug-Induced

Liver Injury (DILIsymTM) to Support Interpretation

of Elevated Liver Transaminase Levels in a Healthy

Volunteer Pooled Safety Population for an Orphan

Drug Designed for a Life-Threatening Situation

Brett A. Howell*, Lisl K.M. Shoda, Jeffrey L. Woodhead,

Yuching Yang, Scott Q. Siler, Paul B. Watkins

The Hamner-UNC Institute for Drug Safety Sciences, Research

Triangle Park, NC, USA

Objectives: Compound A is in development for a specific life-

threatening situation. The severe nature of the circumstances under

which Compound A would be administered is such that the FDA will

assess efficacy based on animal studies alone. However, this ‘‘Animal

Rule’’ does not apply to safety assessment, which must be determined

in humans. In a pooled safety population involving 150 healthy adult

volunteers (NHV), marked elevations of serum aminotransferases

were observed in some subjects, suggesting possible liver injury. The

DILIsymTM model was employed to help interpret the severity of the

injury observed in the healthy volunteer population through a retro-

spective analysis.

Methods: DILIsymTM is a mechanistic, multi-scale, mathematical

model being developed to assist in the safety characterization of com-

pounds in clinical development [1–3]. The initial focus is on in vitro to

in vivo preclinical and in vivo preclinical to first in human clinical.

Simulated humans, dogs, rats, and mice are included, with differences

in biochemical variability amongst populations captured in simulated

sample populations generated via MATLAB’s optimization toolbox.

The primary goals for the model include understanding how in vitro

toxicity assay results translate to pre-clinical animal models, the rele-

vance of pre-clinical results for humans, and how biomarker results

translate to patient safety. In this case study, we focused on the ALT

sub-model within the larger DILIsymTM model. The ALT submodel has

been constructed based on APAP overdose data, and provides reason-

able agreement with data obtained in mice, rats, and man. We adjusted

parameters of necrosis rate and transfer rate to generate simulation

results consistent with the data obtained in the human volunteers treated
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with Compound A. The half lives of the transaminases [4] and the mass

per hepatocyte [5] were based on literature values. The predicted per-

cent of hepatocytes lost were then analyzed to assess the relevance of the

transaminase increases.

Results: The simulated alanine transaminase (ALT) levels agreed

with the NHV data by design. Aspartate transaminase (AST) levels

were then used as conformation that the baseline simulated human

was reasonable. The AST simulation results were in line with the

NHV outcomes observed. The predicted percentage of functional

hepatocytes lost for the maximum observed ALT, 95th percentile

observed ALT, and median observed ALT levels were around 3.5, 1,

and 0.3 % of viable hepatocytes. When variability was introduced to

the key parameter values, the percentage of hepatocytes lost was

predicted to range from 2.5 to 4.5 % for the maximum ALT observed.

The relevance of the magnitudes of the predicted hepatocyte loss

values were put into context based on literature reports of liver

excision [6], through simulation results compared to biomarker out-

comes from NHV studies using heparins [7], and using historical liver

biopsy data [8].

Conclusions: The simulations and associated analyses suggest that no

subject in the clinical trial likely experienced more than a modest loss

of hepatocytes, and that the levels lost were much lower than levels

reportedly leading to serious health risks in other scenarios. This case

study demonstrates the use of mechanistic models to interpret adverse

event signals and how this information can help in communications

with regulatory agencies.
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T-019 Predicting Baseline ADAS-cog Scores

from Screening Information using Item Response

Theory and Full Random Effect Covariate Modeling
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Brian Corrigan2 and Andrew C. Hooker1
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Objectives: The Mini-Mental-State Examination (MMSE) and the

Alzheimer’s Disease Assessment Scale - Cognitive Subscale (ADAS-

cog) test are two of the most important cognitive assessments in

Alzheimer’s disease (AD). Both cognitive tests have specific advan-

tages and are generally used for different purposes. While the MMSE

is a brief 30-point questionnaire test which is often used for AD

diagnosis by a primary care physician, ADAS-cog requires a training

for individuals (rators) who administer the test and it takes more than

30 min to complete all the tasks, however, it is considered more

sensitive and is one of the primary endpoints accepted by regulatory

authorites for clinical studies in mild and moderate AD. Clinical

studies generally use the MMSE to evaluate the cognitive capabilities

of a potential participant at screening, for a variety of reasons. Con-

sequentially, inclusion and exclusion criteria for the study are mostly

written in terms of MMSE score thresholds.

The objectives of this work were to develop a pharmacometric model

capable of predicting ADAS-cog assessment scores at baseline based

on the results of an MMSE assessment and covariates available at

screening.

Methods: Data: The data used for this work was from the Alzhei-

mer’s disease Neuroimaging Initiative (ADNI) [1] which was split

into estimation and validation datasets. The validation dataset con-

tained 30 randomly selected subjects from each arm of the study

(healthy, mild cognitively impaired and mild AD subjects, i.e., 90

subjects in total), the estimation dataset consisted of the remaining

732 subjects from all 3 arms. MMSE (total score) is a sum of scores

for each questionnaire in different sub-category tasks (e.g., orien-

tation, command, etc.), and these individual scores were obtained

from the ADNI database. For both datasets the MMSE assessment

data from the screening visit, the ADAS-cog assessment data from

the baseline visit as well as gender, age, and APOE4 genotype were

used in this analysis.

Model: This work is based on the previously presented Item Response

Theory (IRT) ADAS-cog model [2], which links the response of each

test in the ADAS-cog assessment to the hidden variable ‘‘cognitive

disability’’ using either a binary, binomial or ordered categorical

probability model. The model was extended to MMSE data by adding

additional binary models describing the MMSE response as function

of the same hidden variable. Additionally, covariate information

(gender, age and APOE4 genotype) was introduced into the model

using a full random effect model (FREM) approach [3]. Fig. 1

ADAS-cog prediction: Only the information available at screening

(MMSE and covariate data) from the validation dataset was used to

determine the post hoc distribution (mode and standard error) of

cognitive disability for all 90 individuals. The screening visit based

cognitive disability distribution was compared to the estimate of cog-

nitive disability after the baseline visit. Furthermore, expected
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ADAS-cog scores for the baseline visit were simulated based on the

screening information and compared to the observed values. Infor-

mation about the study arm, i.e., whether a subject was classified as

healthy, mild cognitively impaired or mild AD, was not used for

estimation and prediction, but only to evaluate the performance of the

model in the different populations.

Results: All Individual MMSE test items were described through a 2

parameter binary model, yielding a total of 50 parameters. Item

parameter estimates indicated a relatively low difficulty for most test

items, only delayed recall and construction task had higher difficulty.

The FREM model did not indicate any significant relationship

between cognitive disability and gender or age. However, APOE4

genotype and cognitive disability were correlated with a correlation

coefficient of 0.34. The whole FREM model was kept for the ADAS-

cog prediction.

For all individuals in the validation dataset, estimates for cognitive

disability based on the baseline visit were within the 95 % confidence

intervals obtained from the screening information. Bias and impre-

cision were lowest in the AD and highest in the healthy subjects

group, but generally not substantial.

Comparison of the predicted 95 % ADAS-cog score confidence

intervals with the observed ADAS-cog scores at the baseline visit

showed that the observed score was contained in the confidence

interval in 93.2 % of the individuals. The average interval width was

15.3 points, with the largest intervals in the mild AD group and the

smallest in the healthy subjects group.

Conclusions: The FREM covariate modeling approach, where

covariate associations are estimated as correlations, is ideally suited

for an IRT analysis which describes the unobservable disease status as

a random effect. The failure to identify age as a relevant covariate

might be a result of the age-matching in the healthy control group of

the ADNI study.

This work illustrates how IRT can map the two most relevant cog-

nitive tests, ADAS-cog and MMSE, to the same cognitive disability

scale and utilizes the resulting model to predict baseline scores from

screening information. Low bias and imprecision, especially in the

most relevant populations (mild cognitively impaired and mild AD),

illustrate the close correspondence between both assessments. These

results also suggest the possibility to use the MMSE in longitudinal

clinical studies, either in lieu of or interchanging with the ADAS-cog,

leading to a significant reduction in assessment effort for both the

physician and the patient, and a potential for additional longitudinal

data.
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T-020 Strategic Use of a Biomarker and Comparator

Modeling to Optimize Dose Selection for Dose-range

Finding and to Predict Efficacy and Aid Dose Selection

for Ph II
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Objectives: MRL-1 is under development using a Phase IIa/IIb

adaptive design development paradigm. To support the Phase IIa/IIb

trial, a modeling and simulation (M&S) approach was extensively

used to facilitate optimal dose/regimen selection of MRL-1 based on

available Phase I PK and PD (as a biomarker) data as well as com-

parator Drug-X efficacy data.

Methods: PK and PD data from single and multiple rising dose

studies were utilized to develop population PK and PK-PD models.

Additional meta-analysis (*60 references) was conducted to char-

acterize the extent, variability, and patient population impact on

placebo effect and the active comparators in the therapeutic field.

Furthermore, the expected level of MRL-1 efficacy was predicted by

leveraging the published (Drug-X) data in integrated modeling using

the relationship between PK-Biomarker-clinical efficacy of Drug-X

and PK-Biomarker of MRL-1 to predict MRL-1 clinical efficacy.

Results: A two compartment PK model with a transit compartment to

characterize drug absorption was found to best describe the PK data.

The relationship between PK and biomarker was characterized using

a direct link population PK/PD model. The doses selected and

expected to fully characterize exposure–response were MRL-1 A-mg

BID (98.8 % inhibition), B-mg QD (95.5 % inhibition), C-mg QD

(78.6 % inhibition), D-mg BID (68.0 % inhibition), and E-mg QD

(22.0 % inhibition). The MRL-1 A-mg BID and B-mg QD doses are

expected to result in near maximal biomarker inhibition (99 %). The

E-mg QD dose would be likely associated with sub-optimal efficacy

as it has a Caverage biomarker inhibition of *22 %.

Conclusions: The modeling efforts were pivotal in helping to select

doses expected to fully characterize the exposure–response for bio-

marker inhibition and efficacy parameter. The Phase II study doses

selected were based on predictions of the range of biomarker inhi-

bition (from *20 to 90 %). Further, a comparator model helped to

link biomarker inhibition with the efficacy parameter. Overall, the

Fig. 1 Comparison of screening and baseline visit based estimates

for cognitive disability as well as resulting prediction for ADAS-cog

scores for 10 randomly chosen individuals from the validation dataset
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modeling approach was extensively and successfully utilized to

enhance confidence in program decision making for MRL-1.

T-021 Exposure–Response Modeling and Simulation

of the Efficacy Endpoints in Rheumatoid Arthritis

Lian Ma1*,, Ping Ji1, Yaning Wang2, Liang Zhao1, Yun Xu1,

Suresh Doddapaneni1, Chandrahas G Sahajwalla1

1Division of Clinical Pharmacology II, Center for Drug Evaluation

and Research, Food and Drug Administration, Silver Spring, MD,

USA; 2Division of Pharmacometrics, Office of Clinical

Pharmacology, Center for Drug Evaluation and Research, Food

and Drug Administration, Silver Spring, MD, USA

Objectives: The common efficacy endpoints used in Rheumatoid

Arthritis (RA) clinical trials are the response rate of American Col-

lege of Rheumatology (ACR) score (ACR20, ACR50, and ACR70

represent at least 20, 50 and 70 % improvement, respectively) and the

change from baseline in Disease Activity Score using 28 joints

(DAS28). The aim of this current work was two fold: first, to develop

pharmacokinetic/pharmacodynamic (PK/PD) models that describe the

exposure–response relationships for these efficacy endpoints; and

second, to apply this knowledge to aid in sensitive endpoint selection

in RA.

Methods: The analysis used clinical data sets extracted from 11 phase

II–III clinical trials describing 4,600 patients for 5 approved RA

drugs. All these trials were randomized, double-blind, placebo-con-

trolled, parallel group studies in RA patients treated with methotrexate

(MTX) as background therapy. For each drug, the modeling was

conduced with the pooled dataset combining different studies using

sequential PK/PD approach in NONMEM VII. The contribution of

drug effect was modeled with a mechanism-based indirect-response

model with an Emax (maximal drug effect) inhibitory function on the

formation rate (kin). For ACR response, the longitudinal placebo/MTX

response was modeled empirically with an exponential decay process.

The probabilities of ACR response were then modeled with logistic

regression combining the indirect-response model with placebo/MTX

effect. For DAS28 score, the underlining placebo/MTX effect was

incorporated into the Emax function in an indirect-response model. The

final models were used to predict the clinical outcome at various time

points following different treatment regimens. Relative sensitivity of

these endpoints was assessed using power analysis based on results of

trial simulation.

Results: The developed longitudinal exposure–response models

adequately describe the relationship between drug concentrations and

the observed ACR20, 50, 70 response rates and DAS28 scores based

on various diagnostic plots. None of the covariate factors evaluated

(e.g., demographics, baseline disease characteristics) significantly

contributed to the between-subject variability in the pharmacody-

namic parameters. The trial simulation and subsquential power

analysis showed that the ACR20 response generally demonstrated the

highest power in detecting significant effect of active treatment versus

placebo at evaluated dosing regimens.

Conclusions: The developed exposure–response models can serve as

a basis to support future clinical trials design in rheumatoid arthritis

disease area.
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Metabolite Population Pharmacokinetic Model
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Objectives: The objective of the study was to develop a combined

parent-metabolite population pharmacokinetic model of atorvastatin

acid to identify and interpret demographic characteristics, genetic

polymorphism as well as physiological and pathological factors that

significantly alter pharmacokinetic properties of parent drug and its

major metabolite.

Methods: The parent drug and metabolite plasma concentrations

(1–11 per patient) of 132, male or female non-transplant (diabetic,

n = 46; non-diabetic, n = 53) or stable kidney transplant recipients

(diabetic, n = 22; non-diabetic, n = 11) who administered single or

multiple oral doses of atorvastatin calcium (Lipitor�, Pfizer Phar-

maceuticals, NY) were included in the study. Plasma concentrations

of atorvastatin acid and atorvastatin lactone were quantified using

previously validated liquid chromatography-tandem mass spectrom-

etry assay [1]. A total of 639 concentrations including both acid

(n = 322) and lactone (n = 317) form of atorvastatin were analyzed

by nonlinear mixed-effects modeling approach (NONMEM�, version

7.2.0, ICON Development Solutions), to identify the influence of

patients’ specific characteristics on pharmacokinetic properties of

both the parent drug and its lactone metabolite. The first-order con-

ditional estimation with interaction method was used to fit the data.

The inter-subject variability was assessed using additive, exponential

and proportional models. Likewise, the residual variability was

evaluated using additive, exponential, proportional and combined

additive-proportional error models. The influential covariates affect-

ing pharmacokinetic parameters of both the parent and metabolite

were examined thorough PLT Tools (PLTsoft, San Francisco, CA). A

stepwise covariate model building approach, forward addition ([3.84,

p \ 0.05, df = 1) followed by backward elimination (C7.9,

p \ 0.005) was used. The final model was validated using visual

predictive check and nonparametric bootstrap analysis (n = 1000).

Results: Pharmacokinetic characteristics of atorvastatin acid and

atorvastatin lactone were well described using two-compartment

model with first-order oral absorption and one-compartment with

linear elimination, respectively with some degree of inter conversion

between the two forms (Fig. 1). The inter-individual and the residual

variability of pharmacokinetic parameters for both the parent drug

and metabolite were modeled using an exponential and proportional

error model, respectively. The population mean estimates of the final

model parameters including absorption rate constant (Ka), apparent

volume of distribution of atorvastatin acid in the central compartment

(V2/F), apparent oral clearance of atorvastatin acid to atorvastatin

lactone (CL/F), apparent volume of distribution of atorvastatin acid in

the peripheral compartment (V3/F), apparent inter-compartmental

clearance of atorvastatin acid (Q/F), apparent oral clearance of ator-

vastatin lactone to atorvastatin acid (CLM/F), apparent volume of

distribution of atorvastatin lactone in the central compartment (VM/F),

apparent inter-compartmental clearance of atorvastatin lactone (QM/

F) were 0.771 h-1, 481 L, 1126 L/h, 5462 L, 343 L/h, 506 L/h, 2349

L and 748 L/h, respectively. The goodness-of-fit plots of the final

model for acid and lactone form of atorvastatin are presented in
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Fig. 2. It can be depicted from the goodness-of-fit plots that all the

points are close to the line of unity indicating good agreement

between observed, individual and population predicted plasma con-

centrations of the parent (Fig. 2a, b) and metabolite (Fig. 2c, d). In

this study, we found renal transplantation, LDH (liver enzyme) and

gender as the significant covariates for clearance and volume of

distribution of lactone metabolite, respectively. Renal transplant

recipients had 50 % lower metabolite clearance compared to non-

transplant patients. The bootstrap analysis and visual predictive check

(Fig. 3a, b) demonstrated robustness of the present population phar-

macokinetic model.

Conclusions: In summary, a combined parent-metabolite population

pharmacokinetic model of atorvastatin acid was developed. The

pharmacokinetic analysis indicated significantly reduced clearance of

lactone metabolite in stable kidney transplant recipients. Greater risk

of statin-related skeletal muscle toxicity is possibly because of

decreased clearance of lactone metabolite [2]. This finding should be

taken into account while prescribing atorvastatin treatment in kidney

transplant population who have additional co-morbidities and are on

multiple interacting medications.
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T-023 Characterizing the Pharmacokinetics of Imatinib

in Hard-to-Test Pediatric Population

via Physiologically-Based Pharmacokinetic Modeling

Linh M. Van1*,, Ryosei Leo Kawai1, 2, William Sallas3,

Yanfeng Wang4

1Novartis, Cambridge, MA, USA; 2Daiichi Sankyo Co. Ltd, Tokyo,

Japan; 3Novartis, East Hanover, NJ, USA; 4Novartis, Florham Park,

NJ, USA

Objectives: The analysis focused on the application of physiologi-

cally-based pharmacokinetic (PBPK) modeling to project imatinib

concentration–time profiles in plasma of pediatric patients scaled

from adult patient population. The development and evolution of the

imatinib PBPK model to support clinical dose recommendation in

pediatric patients will be discussed.

Methods: A previously developed PBPK model for imatinib to

support first-in-human (FIH) dose projections validated using animal

data [1] was subsequently optimized with adult data. Extrapolation to

pediatrics was done by scaling clearance range observed in a phase III

trial in adults to project imatinib exposure in pediatric population.

Particular attention with respect to understanding the PK behavior in

hard-to-test age groups, such as 1 year old was explored. Model

parameters were modified using growth and maturation database

obtained from literature. The effects of body size and blood perfusion

on the PK profiles were evaluated in addition to maturation in

clearance. The projections of plasma concentrations based on the

proposed pediatric body surface area (BSA) normalized dose were

compared with available observed concentrations similarly normal-

ized as part of the model evaluation.

Results: The projected plasma concentration–time profiles were

generally in good agreements with the observed plasma concentration

for most pediatric subjects, except for the youngest, for which the

exposure appeared to be over-predicted, especially Cmax at steady

state after multiple doses (Fig. 1).

The differences in predictions of children and adults seemed to be due

to mixed results of changing distribution volume and blood circu-

lating flow rate, in addition to clearance maturation with age.

Improvement of model prediction could be achieved for young sub-

jects by refining certain model assumptions or parameters, such as

assuming different plasma protein maturation in cancer patients from

healthy subjects, or a lower extent of oral absorption for those age

groups instead of a complete absorption - considering the immaturity

of the gastrointestinal tract. Collectively, the prediction was within

(\2-fold) of the adult exposure suggesting a useful application of

PBPK approach in scaling imatinib clearance down to children at

1 year of age.
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Fig. 1 Compartmental model

used in NONMEM
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Fig. 2 Observed, individual and population predicted plasma con-

centrations of the parent (a and b) and metabolite (c and d)
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Conclusions: With no PK in children less than 2 years of age, the

PBPK pediatric simulation provided a scientific rationale to support

the dose recommendation of imatinib in children down to 1 year of

age. Early development of such mechanistic models allowed seamless

integration of preclinical data to predict PK in adults and from adults

to pediatrics for clinical dose justification; thereby, an integrative

platform evolved to address issues that were raised during the

development program for imatinib.
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Objectives: Piperacillin is a time-dependent antibiotic, for which the

time the free-drug concentrations exceed the minimum inhibitory

concentration (MIC) is the key pharmacodynamic parameter. The

piperacillin/tazobactam (PTZ) label recommends dose adjustments

when creatinine clearance (CrCl) is below 40 mL/min. In addition,

extended-infusion dosing regimens assessed via Monte Carlo Simu-

lation (MCS) methods were shown to be superior to traditional (short-

term) dosing regimens at the same daily dose. With the increased

rates of obesity throughout the world, exploring the effects obesity

has on antimicrobial disposition and clinical effectiveness is critical.

Reports have suggested that dose adjustments may be warranted

based on the anticipated alterations in both the volume of distribution

(Vd) and clearance (Cl) in the obese population. However, PTZ

dosing in obese patients with renal impairment has not been well

studied. The objective of this study was, using MCS methods, to

compare the probability of target attainment (PTA) of PTZ in normal

and obese patients of varying renal functions for traditional and

extended-infusion dosing regimens.

Methods: The piperacillin population PK model selected from the

literature was a one compartment model with zero-order input, first

order elimination, and that included CrCl and body weight (WT) as

covariates on Cl and Vd, respectively [1]. Using this model, 30 trials

(1000 subjects/trial) were simulated with obese (BMI [ 30 and

WT [ 90 kg; test) and normal weight population (BMI between 18.5

and 25, and WT \ 90 kg; control) treatment arms using the Phar-

sight� Trial SimulatorTM 2.2.2 software package, including both

population variability and parameter uncertainty. The highly corre-

lated CrCl and WT covariates were obtained by sampling, with

replacement, from an existing database of 957 real subjects. Simu-

lations were conducted using the following dosing regimens:

The PTA (for MICs of 16, 32 and 64 mg/L) calculation was stratified

by CrCl (B20 mL/min, 20–40 mL/min, and [40 mL/min) for each

trial, and summarized across all trials in the obese and normal weight

populations.

Results: MCS of the target attainment rates for short- (30 min) and

prolonged- (4 h) infusion dosage regimens revealed no differences

between the normal and obese populations in any of the CrCl strata.

In support to the current dose adjustment recommendations, an

inverse relationship was observed between PTA and CrCl for all

regimens, in both weight groups. Within the same daily dose level, all

extended-infusion PTZ regimens were pharmacodynamically superior

to the short-infusion regimens. Simulations showed that all treatment

regimens resulted in suboptimal mean PTA for MIC of 64 mg/L. For

a 32 mg/L MIC, all regimens resulted in suboptimal mean PTA in the

[40 mL/min CrCl group, while regimens 7 and 9 were the only two

regimens resulting in mean PTA [80 % for the \20 mL/min and

20–40 mL/min CrCl groups. For MIC of 16 mg/L, the only regimen

with a mean PTA[80 % in the[40 mL/min CrCl group was regimen

9. In addition, regimens 1, 5, 7, and 9 resulted in[80 % mean PTA in

the \20 mL/min and 20–40 mL/min CrCl groups.

Conclusions: In contrast to the theory that obese individuals may

require different PTZ dosing regimens, no influence of weight on

piperacillin exposure and PTA was observed for any of the simulated

dosage regimens. This suggests that no weight-based PTZ dose

adjustments are required in obese population. In addition, the MCS

results presented here show that prolonged-infusion regimens

achieved higher PTAs compared to 30 min infusions, at the same

daily dose, thus validating the use of extended-infusion regimens in

both the normal weight and the obese individuals. Additional MCSs

are required to identify PTZ dosing regimens that achieve PTA

[80 % for the 32 and 64 mg/L MIC levels, in each of the CrCl strata.
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(g)
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Time
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(h)

1 3.375 30 min Every 6 6 3.375 4 h Every 12

2 2.25 30 min Every 6 7 4.5 30 min Every 6

3 2.25 30 min Every 8 8 4.5 30 min Every 8

4 2.25 30 min Every 12 9 4.5 4 h Every 8

5 3.375 4 h Every 8
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of piperacillin/tazobactam in patients with complicated intra-

abdominal infection. J Antimicrob Chemother 56:388–395

T-025 A Cloud-based Cluster Computing Platform

for Pharmacometric Applications
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Objectives: The advent of cloud computing creates new opportunities

and challenges with respect to the perennial need for a production-

quality pharmacometric computing infrastructure. We sought to

design a platform that minimizes cost, maintenance, and system-

dependence while maximizing scalability, quality assurance, and

feature support for two widely-received pharmacometric applications:

NONMEM� [1] and OpenBUGS [2].

Methods: OpsCode Chef [3] software was used to develop a machine

image for Amazon Web Services [4]. Chef allowed fully scripted

hardware abstraction for systematic version control of the image

during development. The image itself was deployed simultaneously

on an arbitrary number of virtual machines (i.e., a cluster) using

StarCluster [5] control software residing on the user’s workstation. On

the image, the following were pre-installed: NONMEM 7.2.0 (using

NMQual 8.1.3 [6] and Intel Fortran compiler 12.0.4 [7]), OpenBUGS

3.2.1, R 2.15.1 [8], Sun Grid Engine 6.2 [9], and RStudio Server

0.96.316 [10]: a full-featured, browser-accessible environment for R.

Post-deployment, the R package metrumrg 5.24 [11] was installed to

provide NONMEM� connectivity, while the package R2OpenBUGS

3.2-1.4 [12] was installed as the OpenBUGS connector. Pharmaco-

metric applications were accessed as follows (Fig. 1): the user pointed

a web browser at RStudio Server, authenticated, and loaded metrumrg

and/or R2OpenBugs; NONMEM� or OpenBUGS was then invoked

per the package documentation—optionally by means of scripted

commands. Features in the packages metrumrg and qapply adequately

supported parallelization by means of Sun Grid Engine for NON-

MEM� and OpenBUGS, respectively. Parallelization was supported

across runs, and within runs by individual (NONMEM�) or by

Markov Chain (OpenBUGS). Machines were added or removed from

the active cluster as necessary.

Results: The resulting platform met our expectations for a production

modeling and simulation environment. The use of cloud resources

minimized cost while maximizing scalability: fees were based only

on computational time and block storage used; additionally, arbitrary

numbers of virtual machines, initiated by any number of individual

end-users, could be employed simultaneously without the otherwise-

prohibitive costs of full ownership. Use of version-controlled machine

images reduced maintenance burden while enhancing quality

assurance: the image, which could be implemented on either fixed

persistent or elastic cloud computing (EC2) instances, represented a

well-defined management target that could be systematically char-

acterized and readily reproduced with a complete audit trail.

Additionally, in the event of a service outage, the image could be

efficiently cloned in a different service region. Use of a browser

interface with server-hosted software helped homogenize user expe-

rience, thereby limiting system dependency from the user’s

perspective. All features of the target applications were supported by

this paradigm. In particular, access to an arbitrary number of nodes in

a cluster environment made within-run parallelization highly prac-

tical; run times for representative models under NONMEM� 7.2

dropped substantially with even modest parallelization relative to

single-core execution (Table 1). Extensive use of open-source com-

ponents made this solution easy to adopt: R, RStudio, metrumrg,

R2OpenBUGS, NMQual, OpenBUGS, Sun Grid Engine, Chef, Star-

Cluster, and alternative Fortran compilers are freely available.

Conclusions: A cloud-based cluster computing solution enabled

economical, scalable use of pharmacometric applications in a multi-

user environment. Full feature support, ease of maintenance, and

superior quality assurance were accommodated. The design made

extensive use of off-the-shelf components. When implemented with

EC2, this platform practically eliminated the impact of computation

time from the critical path of completion for typical pharmacometric

projects.
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Table 1 Run times (h) under NONMEM� 7.2.0 for two representa-

tive models using various numbers of cores (i.e. ‘nodes’ argument in

the ‘pnm’ file)

Model Dual linear/non-linear

absorption

PKPD

NONMEM� 7.2.0

subroutine

ADVAN6 ADVAN6

Subjects 1000 70

Cores Time

1 80.7 4

8 16.8 1.1

16 8.9 0.66

24 6.2 0.4

48 3.8 .31

96 2.5
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Objectives: Coral snake (Micrurus fulvius) is a poison snake endemic

from US. The mayor toxins of venom are presynaptic neurotoxins that

alter the acetylcholine release in the neuromuscular junction causing a

progressive paralysis that can evolve to respiratory arrest, the mayor

immediate cause of death. Symptoms may be delayed for 18 h after

the bite, making the diagnosis of severe envenomation complicated

[1], consequently, when a person is bitten, antivenom is administered

by intravenous bolus injection. The selected dose (number of vials) is

based in the experience of the treating doctor. Since the PK of coral

snake venom has never been described, the aim of this work are: (1)

To have a better understanding of coral snake envenomation through

the knowledge of the pharmacokinetics of venom administrated

subcutaneously and by measuring the contribution of the lymphatic in

the absorption and distribution of venom [2]. (2) To analyze the

impact of the intravenous antivenom in venom pharmacokinetics. (3)

To correlate de above a data with the development of symptomatol-

ogy and to find biomarkers that could be used as endpoints in future

clinical trial designs.

Methods: The absorption and systemic bioavailability of M. fulvius
venom after SC administration was determined using a central lymph-

cannulated sheep model (group 3). As the reference, we also used

non-cannulated animals (group 2). Also, the kinetics of the venom

was followed after intravenous bolus injection (group 1) (Fig. 1). For

antivenom effect, we administrated antivenom in an intravenous bolus

injection after 2 h of subcutaneous administration of venom. Each of

the three groups included four sheep; experiments lasted 6 h and the

animals were kept under anesthesia during the whole experiment.

Venom concentrations in serum and lymph were measured by sand-

wich enzyme-linked immunoassay.

Results: The kinetics were determined (Fig. 2) and preliminary non

compartmental PK analysis has been made [3], showing that venom

injected into blood stayed in systemic circulation for 75 ± 7 min

(MRT), with a half-life (t1/2) of 25.3 ± 3.2 min, a initial volume of

distribution VD of 3.2 ± 0.5 l equivalent to 7 % of body weight, that

increase in steady state to 12 ± 1.8 % (Vss = 5.7 ± 9 l). In contrast,

when administered subcutaneously the venom MRT, t1/2 and Vss

Fig. 1 Experimental design to analyze the absorption, distribution

and elimination of the venom administrated SC

Fig. 2 a Serum venom concentrations after one mg IV inyection (9),

and SC administration to non-cannulated sheep after SC inyection of

5 mg of M. fulvius venom (���). b m Serum venom concentration

following SC administration in non-canulated (�) and lymph m

cannulated sheep (h) after SC inyection of 5 mg of M. fulvius venom.

c Cumulative percentage of the venom dose collected in lymph

cannulated sheep after SC inyection of 5 mg of M. fulvius venom.

d Serum venom and antivenom concentration after SC inyection of

5 mg of M. fulvius venom in non-cannulated sheep followed by

antivenom administration in a bolus intravenous dose 2 h later.

Symbols represent the mean ± SEM for n = 4 animals per treatment

group
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increased 5.5, 9 and 5.6-fold, respectively. The absorption of venom

to blood was incomplete when the venom was injected SC, with a

recovery of 60 ± 5 % of the initial dose during the 6 h of the

experiment. Lymph contributed with 39 % of the absorbed venom to

blood. When the antivenom is injected, the AUC is impacted

decreasing 1.6 fold since the venom concentrations fall immediately

to unquantifiable levels.

Conclusions: Preliminary results show a nonlinear pharmacokinetic

behavior of venom when is injected subcutaneously. The absorption

of venom by the lymphatic system plays a relevant role. The inocu-

lation site functions as a venom depot, which prolongs the absorption

and residence time of venom. When the AV is administrated IV, the

venom levels fall until undetectable. Further non-linear analysis

should been needed to establish a realistic model that can predict the

pharmacokinetic and simulate the effect of different doses and

administration routes for antivenom therapy.
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Objectives: AMG 145 is a monoclonal antibody being developed for

hypercholesterolemia. AMG 145 binds to PCSK9 with high affinity,

preventing its interaction with the LDL receptor (LDLR), restoring

LDLR recycling and LDL-C uptake. The objective was to charac-

terize the PK/PD of AMG 145 after single dose administration in

nonhuman primates.

Methods: Male, naive cynomolgus monkeys were randomly assigned

to placebo (n = 10) or one of six treatment groups (n = 5/group):

0.05, 0.2, 0.5, 3, 10, or 30 mg/kg. Each subject received a single SC

injection. Serum unbound AMG 145 and PCSK9 were measured

using ELISA, and LDL-C was measured using a clinical analyzer.

Simultaneous PK/PD analyses were performed with NONMEM 7.2.

Results: Nonlinear PK was observed for AMG 145, and dose-

dependent decreases in unbound PCSK9 and LDL-C were observed

following AMG 145 administration. The quasi-steady-state approxi-

mation to the TMDD model described unbound AMG 145 and

PCSK9. The model was optimized by allowing the steady state

constant (Kss) to increase after a time delay. The linear PK parameters

suggested an 11.5 day half life after saturating doses. An indirect

response model captured the time course of LDL-C reduction.

Suppression of PCSK9 below the estimated IC50 of 1.13 nM (inter-

subject variability: 58 %) resulted in significant LDL-C reduction.

Based on model predictions, a maximal reduction in LDL-C of

*80 % was predicted after the 3 mg/kg dose.

Conclusions: A semi-mechanistic PK/PD model well characterized

AMG 145 and LDL-C response in non-human primates. The model

included elimination of AMG 145 through its interaction with PCSK9

consistent with the mechanism of action. This model may have

applicability to human studies.
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Objectives: ‘Thorough QT (TQT) trials’ are expected from regulators

in drug development for non-antiarrhythmic drugs, because of the

association between QT prolongation and the risk of torsades de

pointes. [1] An approach that can make the evaluation of the QT

prolongation potential of drugs more cost-effective would be valu-

able. At AstraZeneca (AZ) high-quality digital electrocardiogram

(dECG) measurements are performed as standard in the Phase I single

(SAD) and multiple (MAD) ascending dose studies. The aim of this

population analysis was (1) to develop a model to quantify possible

drug effects on the heart rate corrected QT (Fridericia’s correction;

QTcF) interval, to be used for prediction of the typical trends and

variability of QTcF in TQT trials, and (2) to explore whether con-

structed 5 min mean QTcF interval data are informative enough,

compared to 10 s replicates with 1 min or 30 s intervals over a 5 min

period, for QTcF interval measurements in terms of estimation of the

underlying diurnal rhythm, estimation of drug effect on QTcF inter-

val, and associated variability.

Methods: The database included drug concentrations and QTcF

dECG data for two compounds, which had been investigated in SAD

and MAD studies as well as in TQT studies. The SAD/MAD datasets

consisted of 14,291 QTcF measurements from 162 subjects for

compound 1 and 22,209 QTcF measurements from 128 subjects for

compound 2. The PK and QTcF data from the TQT study were

blinded for the analysts at Uppsala University up until predictions of

the TQT studies had been performed based on the analysis of the

SAD/MAD data. Population PKPD-models were developed using

non-linear mixed effects modeling in NONMEM7. In the analysis

step of the SAD/MAD data, cosine functions were investigated to

describe the underlying (placebo) diurnal change in QTcF measure-

ments. Thereafter, linear, Emax and sigmoid Emax relations between

plasma concentrations and drug effect on QTcF were evaluated.

Gender and study effects were investigated as covariates. Various

sources of variability were evaluated such as IIV (including covari-

ance) and IOV in the parameters (including the residual error), auto-

correlation between QTcF measurements, and the sensitivity to the

assumption of normally distributed residuals by application of the

dynamic transform both sides (TBS) approach. [2] The placebo and

drug effect models were evaluated for three different ways of han-

dling the QTcF interval data: (i) 5 min mean QTcF interval data (1

obs per time point), (ii) one 10 s replicate every 30th s over 5 min
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(i.e. 10 obs per time point), and, (iii) one 10 s replicate per min (i.e. 5

obs per time point) over 5 min.

Once the QTcF model had been developed based on the SAD/MAD

data, the TQT study outcomes were predicted based on the TQT

design. To allow for simulation of the drug concentrations in the TQT

study without development of a population PK compartment model, a

dose-and-time-point specific PK ‘‘model’’ was built from the SAD/

MAD PK data for each dose level that was studied in the TQT studies.

Typical values and their variability at each time point were estimated,

and a covariance between time points was allowed (full BLOCK

matrix). The estimates from the PK ‘‘model’’ and the final estimates

of the PK-QT model based on SAD/MAD data were applied in the

simulations. Simulations were performed as a Visual Predictive

Check (VPC), i.e. the median, 5th and 95th percentiles and the 95 %

confidence intervals (CI) of the percentiles were computed from the

simulated data and after unblinding, the observed QTcF data in the

TQT studies were overlaid.

Results: The 1 min and 30 s QTcF interval data showed similar

results, while the 5 min mean QTcF interval data did not support the

same model complexity (diurnal rhythm, drug effect and variability)

and resulted in different parameter estimates. For both drugs, using

the 30 s QTcF interval data, the underlying (placebo) baseline was

best described by a dual cosine function with periods of 12 and 24 h.

Women had typically 20 ms higher QTcF than men while there

was no significant difference between studies. Both drugs were found

to have a small significant drug effect on QTcF which was best

described for compound 1 by an additive linear model (Slope =

0.0034 ms/nM (90 % CI: 0.002–0.0044 ms/nM), IIV(SD) = 0.004

ms/nM) predicting an increase in QTcF of 9.3 ms at the highest

observed concentration, and for compound 2 by an additive sig-

moid Emax model with a low Emax (0.0026 ms; 90 % CI: 0.0014–

0.0038 ms) for the typical individual but with a relatively high IIV

(SD = 11 ms). IIV on the Slope and Emax were additive, predicting

that the drug increases QTcF in some subjects and reduces QTcF in

others. IOV was found to be statistically significant on baseline QTcF

for both compounds. Overall the model adequately described the

observed SAD/MAD data. After unblinding of the TQT data, it was

revealed that the simulations agreed well with the typical trends and

variability in the observed QTcF data for both compounds, except for

a slight under prediction of the lower percentile of compound 1

(Fig. 1 a) and a slight under prediction of the median and upper

percentile at time points \0 h and of the lower percentile at time

points [0 h for the 500 mg dose of compound 2 (Fig. 1b). Allowing

re-estimation of the QTcF baseline for compound 2 based on the TQT

data resulted in a 10 ms higher QTcF baseline compared to the SAD/

MAD dataset which explains the under predictions found at time

points \0 h.

Conclusions: A model-based approach for quantifying drug effects

on QTcF interval was successfully developed based on data collected

in SAD/MAD studies. The models were shown to accurately predict

the typical trends and variability in the TQT trials. The 30 s and

1 min QTcF interval data resolution resulted in similar predictions,

while constructed 5 min mean QTcF interval data could not support

all parameters and when modeled under predicted the drug effect.

These findings describe a framework to allow for possible predictions

of TQT study results based on early QT assessment in Phase I studies.
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Objectives: AR-67 is a lipophilic camptothecin analogue currently

under early stage clinical trials. A favorable toxicity profile and

clinical responses observed during a recently completed phase I

clinical trial render AR-67 a promising candidate for further clinical

development [1]. Moreover, in vitro and in vivo studies suggest that

AR-67 elimination is mediated via extensive metabolism in the gut

and liver by UDP-glucuronosyltransferases (UGTs) [1, 2]. Similarly

to other anticancer agents, AR-67 is a narrow therapeutic index drug.

Therefore, identifying sources of intersubject variability is warrant to

accurately describe the dose-exposure–response relationship and

render AR-67 administration safe. The objectives of this study were

(1) to quantitatively describe the pharmacokinetics of AR-67 in phase

I oncology patients and (2) identify determinants of intersubject

variability in this population.

Methods: Data from cancer patients with solid tumors participating

in a phase I clinical trial were included in this analysis. Patients

received AR-67 daily as a 1-hour intravenous infusion for five con-

secutive days every 21 days and were monitored for toxicity and

response. A complete pharmacokinetic profile of AR-67 was obtained

on days 1 and 4 of cycle 1 producing a relatively rich set of data.

Population pharmacokinetic analysis was performed using the non-

linear mixed-effects modeling implemented in NONMEM v7.2.0 with

PDxPOP. Plasma concentrations versus time data were fitted with a

two compartment structural model with first-order elimination from

Fig. 1 a, b VPCs from 500 simulations of the TQT study for

compound 1 (A) and compound 2 (B) show the median (solid black
line), 5th and 95th percentiles (dashed black lines) for the observed

(black dots) and simulated (solid and dashed grey lines) QTcF

interval data with 95 % confidence intervals for the median (dark
grey field), 5th and 95th percentiles (light grey fields) based on the

simulations
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the central compartment. Inter-occasion variability (IOV) (day 1 vs.

day 4) was studied as described by Karlsson et al. [3]. Selected

covariates of clinical relevance (age, BSA, gender, indicators of renal

and liver function, AR-67 dose levels and hematocrit) were evaluated

for their effect on population parameters and were incorporated in the

model after being tested for colinearity. Additionally, smoking,

obesity and performance status were evaluated as determinants of

clearance, exposure and toxicity and body-measures (BSA, Ideal

Body Weight, Adjusted Ideal Body Weight, Lean Body Weight and

Body Mass Index) were tested for correlation with AR-67 clearance.

Model superiority was decided based on visual inspection of diag-

nostic plots, precision of parameter estimates, model stability and

statistically significant (p \ 0.05) decrease in the Objective Function

Value (OFV, -2LL).

Results: A two-compartment model fit the data best. The pharma-

cokinetic analysis was performed using Expectation–Maximization

methods (composite) and the population parameter estimates that

were obtained for either lactone or total AR-67 did not differ sig-

nificantly. Estimated pharmacokinetic parameters (mean, RSE %) for

lactone model were: clearance (CL), 25.0 L/h (3.79); volume distri-

bution of central compartment (V1), 3.7 L (1.86); inter-

compartmental clearance (Q), 29.7 L/h (5.75); volume of distribution

of peripheral compartment (V2), 38.1 L (4.92). Clearance was the

population parameter associated with the lowest intersubject vari-

ability (58.6 %) while V1 was associated with the highest intersubject

variability (106 %) base model of the lactone data. Interestingly,

inclusion of blood urea nitrogen (BUN) as a covariate explained

23.3 % of intersubject variability of V1 [V1 = EXP(1.35 9 (BUN/

12.7))] and sex was found to account for 24.3 % of V1 intersubject

variability (V1 = 2 L for females and V1 = 5.8 L for males) in the

lactone and total AR-67 model, respectively. Smoking and obesity

had no effect on AR-67 clearance although they have been reported to

interfere with the activity of UGTs [4, 5]. Notably, patients with worst

performance statuses were more susceptible to drug-induced toxicity

(p \ 0.05) and body-measures were not identified as determinants of

the intersubject variability on CL. Finally, incorporation of IOV in the

lactone or total AR-67 model did not decrease the estimated residual

variability (32.7 and 27.7 % for the lactone and total AR-67 base

model, respectively).

Conclusions: The pharmacokinetic profile of AR-67 in phase I

oncology patients with solid tumors was effectively described by a two-

compartment model. Although a covariate model was developed for

AR-67, intersubject variability associated with population parameter

estimates remained[25.1 %; suggesting that genetic polymorphisms

of transporters and metabolic enzymes with a role on the AR-67 dis-

position could contribute to the observed variability. Finally, based on

our analysis, flat or fixed dosing of AR-67 warrants further investigation

as clearance was found to be independent of body-size measures.
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Objectives: The availability of software tools for optimizing clinical

study sampling design for nonlinear-mixed effects models [1–3] have

made it convenient to specify informative sampling schemes and

assess the precision of population PK (PPK) parameter estimates.

Optimal design is of particular importance in pediatric drug devel-

opment, as the characterization of drug PK is usually based on sparse

sampling of PK, given the logistical and ethical challenges in con-

ducting pediatric clinical trials. This is particularly germane to

pediatric drug development, as the approval of drugs for pediatric use

is increasingly based on extrapolation of adult efficacy data based on

a demonstration of similarity of exposure–response in adult and

pediatric subjects. We describe the application of optimal sampling

design and clinical trial simulation to not only ensure the typical PK

parameters of an investigational agent is adequately characterized in

each pediatric age group of interest,4 but also to ensure that the

expected accuracy of individual exposure estimates are adequate to

support exposure–response analyses.

Methods: Optimal sampling schedules were determined using

WINPOPT [1] for a linear two compartment PPK model with zero-

order IV infusion and first-order elimination, for an IV administered

monoclonal antibody (mAb), assuming allometric coefficients of 0.75

and 1 on clearance and volume of central compartment (CL and VC,

respectively). Several alternative sampling scenarios based on the

optimal samples were investigated, taking into account that it is most

convenient to collect pre-dose and post-infusion samples for this IV

administered mAb. PK concentration values and steady-state expo-

sures were simulated with this model for pediatric patients in a

planned phase 2 pediatric study, based on body weight values were

sampled from the CDC growth charts [5]. The scenarios simulated

were as follows: (1) 30 pediatric subjects (target sample size in Phase

2 study) with peak, trough and optimal sample collection (2): 30

pediatric subjects with only peak and trough samples and (3) 30

pediatric subjects combined with 785 adult subjects (from adult

clinical studies) with peak and trough samples. The PPK model

parameters were then re-estimated with simulated PK data from the

simulated virtual subjects PK data, and the precision of the PPK

model parameter estimates in each age group was determined for each

simulation scenario. The power of clearance (CL) and central volume

of distribution (VC) estimation at each adolescent age group were

calculated based on simulation results. Furthermore, the accuracy and

precision of the estimated typical value of CL and VC in each age

group was determined, as well as the accuracy of the individual

estimated exposures.

Results: The simulation results suggested that all tested study design

scenarios had both ipilimumab CL and VC achieve [80 % power of

the 95 % confidence interval within 60 % and 140 % of the point

estimate for the geometric mean estimates of CL and VC. The power

of CL and VC estimations at all adolescent sub-group are all above

95 %, except that the power of CL estimate at age 12 years group is

*85 % in scenario 2 where only 30 pediatric subjects peak and

trough samples were available for trial simulation. In additional, the

precision of individual parameter estimate of CL and VC are also

greater than 85 % which ensures precision of exposure measurement

for future exposure–response analysis.

Conclusions: The clinical trial simulation was used to ensure that

there was sufficient power to obtain accurate estimates of typical

values of CL and VC for each age group, and also to ensure that

individual estimates of exposure were within 20 % of the true values.
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Objectives: To develop a population pharmacokinetic (PK) model to

characterize the PK of tabalumab, a human monoclonal antibody that

neutralizes membrane-bound and soluble B cell activating factor

(BAFF), in patients with active rheumatoid arthritis (RA) in two

sparsely sampled Phase II clinical studies, using a Bayesian approach

to incorporate prior information.

Methods: The population PK model was developed based on data

collected from a total of 183 RA patients over 24 weeks in two Phase

II studies. In the intravenous (IV) infusion study, 30 or 80 mg of

tabalumab was infused over 30 min at weeks 0, 3, and 6, in a total of

63 patients. In the subcutaneous (SC) injection study, doses of 1, 3,

10, 30, 60, or 120 mg were administered at weeks 0, 4, 8, 12, 16, and

20, in a total of 120 patients. The analyses were performed using

NONMEM VI with the ADVAN6 subroutine and first order condi-

tional estimation (FOCE) with interaction. The dataset included 728

tabalumab concentrations from 13 post-dose sampling timepoints

scheduled in the IV study and 736 tabalumab concentrations from 8

post-dose sampling timepoints scheduled in the SC study. Due to

sparse data during the absorption and distribution phase, a Bayesian

approach was employed to inform the analysis, using priors derived

from the combined analysis of three previous Phase I and Phase II

studies. Patient factors including body weight, age, gender, ethnic

origin and baseline BAFF level were evaluated as covariates to tab-

alumab PK.

Results: The PK of tabalumab were adequately characterized by a

2-compartment open model, with both linear and saturable clearance

components. The saturable clearance is believed to be mediated by

specific and saturable binding of tabalumab to membrane-bound BAFF.

The linear clearance was estimated to be 5.25 (95 % CI: 4.83, 5.57,

%SEE = 1.39 %) mL/h, while the saturable clearance was estimated to

be 15.5 (95 % CI: 14.0, 17.1, %SEE = 2.13 %) mL/h. The Michaelis–

Menten constant was 0.586 (95 % CI: 0.474, 0.717, %SEE = 6.76 %)

lg/mL, suggesting that when tabalumab concentration is significantly

above this range, the linear clearance predominates. The mean SC

bioavailability was estimated to be 56.9 % (95 % CI: 52.0, 62.3 %,

%SEE = 2.46 %). The volume of distribution of the central and

peripheral compartment was 2.31 and 1.75 L, respectively. The inter-

patient variability of tabalumab was moderate (\40 %), except for

saturable clearance (83 %). Body weight was found to have a statisti-

cally significant effect on the PK of tabalumab, with linear clearance

increasing with body weight. However, evaluation of the effect of body

weight on the tabalumab concentration profile and area under the

concentration–time curve (AUC) suggested that the effect of body

weight on tabalumab PK is not clinically relevant and does not warrant

dose normalization.

Conclusions: Using a Bayesian approach to incorporate information

from previous clinical studies, a population PK model was developed

to characterize the PK of tabalumab in two sparsely sampled Phase II

clinical studies in RA patients. This approach allowed the charac-

terization of tabalumab in the RA patient population from sparse data,

which would not have been possible without application of the

Bayesian priors. The results of this analysis were used to aid dose

selection for further clinical studies in RA patients.
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Objectives: SIGA is developing an intravenous (IV) formulation of

ST-246� for the treatment of pathogenic orthopoxvirus including

smallpox virus. An oral formulation of ST-246 has previously been

evaluated in cynomolgus monkeys and healthy human volunteers.

Human efficacy trials are not feasible because smallpox was eradi-

cated from the earth by 1980; the FDA’s animal efficacy rule is being

applied to the development of ST-246. The objective of this study was

to use pharmacokinetic modeling and simulation to predict the con-

centration–time profiles of IV ST-246 in humans and ultimately

support dose selection for future studies in humans.

Methods: Data from three preclinical studies following single and

repeated IV administration of ST-246 in cynomogus monkeys were

considered for population pharmacokinetic (popPK) modeling. A

popPK model for IV in monkeys was developed using standard

techniques: building a base structural model, random effect evalua-

tion, covariate identification with exploratory graphing and formal

testing. The final model was evaluated using visual predictive checks.

The following software programs were used: NONMEM7.1.0.,

Phoenix 1.1, S-PLUS 8.1 and R 2.13.0.

The monkey IV model had all PK parameters allometric scaled to a

power of 0.75 for clearance terms and to a power of 1 for volumes.

The goal of the modeling was to find an IV dosing schedule (dose and

infusion duration) in humans that produce similar exposure (AUC,

Cmax, and Cmin) to the one previously observed after oral adminis-

tration of ST-246 in healthy humans. The distribution of human body

weight from a previous clinical study was used in the simulations. The

same relationship between covariates and PK parameters was

assumed to hold in humans. The between subject variability on PK

parameters after IV administration in humans were assumed to be

similar to those after oral dosing (conservative approach). The fol-

lowing scenarios were tested:

Time of Infusion: 1, 2, 3, 4, 5, and 6 h

Doses: BID: 40, 60, 65, 70, 80, 85, 90, 95, 100, 200, and 300 mg

QD: 100, 115, 120, 130, 145, 160, 200, 400, and 600 mg

The treatment duration was 14 days and exposure measures were

computed at steady state.

Simulated data were overlaid on PK information from a clinical

study with repeated oral administration of ST-246 in healthy human

using 400 and 600 mg.

Results: The best structural model describing the disposition of

ST-246 following IV infusion in monkeys was a three-compartment

model. The final model included the body weight as an allometric

scaling factor and dose as a covariate on clearance. This took into

account the reduced clearance at higher doses. Model assessment by
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goodness-of-fit plots revealed that predicted concentrations of ST-246

were consistent with the observed concentrations. Furthermore, the

adequacy of the PK model was verified using a visual predictive

check.

The simulation results predicted that, in general, a regimen that could

generate equivalent Cmin would require longer infusion time with

higher AUC values than the regimen that generates equivalent AUC

and Cmax or alternately require BID IV infusions. An example of the

simulations is shown in Fig. 1.

Overall, repeated IV infusion of 115 mg QD over 5 h or 65 mg

BID over 1 h would provide AUC and Cmax values at steady state

very similar to those observed after oral doses of 400 mg. Repeated

IV infusion of 80 mg BID over 2 h resulted in Cmin values at 12 and

24 h similar to those observed following oral administration of

400 mg QD in healthy uninfected humans. Similarly, repeated IV

infusion of 145 mg QD over 4 h or 95 mg BID over 1 h would

provide AUC and Cmax values at steady state very similar to those

observed after oral doses of 600 mg. Finally, repeated IV infusion of

85 mg BID over 1 h resulted in Cmin values at 12 and 24 h similar to

those observed following oral administration of 600 mg QD in

healthy uninfected humans.

Conclusions: The results of popPK modeling and simulation enabled

to find dosing regimen of IV ST-246 that will provide exposure within

the targeted exposure range determined from observed PK data after

oral administration in humans.

Acknowledgment: This project was supported by Contract No.

HHSN2722008000 41C.
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the Impact of Pharmacokinetic Drug Interaction

on Expected Blood Pressure Lowering Effect

Chun Lin Chen1,*, Nathanael Dirks2, Tatiana Khariton1,

Marc R. Gastonguay2, Stephan Ortiz1, Parviz Ghahramani1

1Forest Research Institute, Jersey City, NJ, USA; 2Metrum Research

Group LLC, Tariffville, CT, USA

Objectives: Nebivolol, a b1-selective b-blocker, is a racemic mixture

composed of d-nebivolol and l-nebivolol for the treatment of hyper-

tension. Valsartan is a nonpeptide, and specific angiotensin II receptor

blocker for the treatment of hypertension. With coadminstration of

valsartan, reductions were seen in mean d,l-nebivolol Cmax and AUC

following single and multiple dose administration. The objective of

this work is to predict the expected clinical impact of reduced ne-

bivolol exposure on seated diastolic blood pressure (DBP) lowering in

the target population.

Methods: Population pharmacodynamic (PD) analysis of nebivolol

effect on DBP was conducted in patients with mild to moderate

hypertension using NONMEM, Version VII, FOCEI method. A satu-

rable maximum effect (Emax) model best described the relationship

between d,l-nebivolol concentration and DBP in hypertensive patients.

Covariates that were investigated included age, gender, race, CYP2D6

genotype, diabetic status, body mass index, and smoking status. The

adequacy of the final model was investigated using posterior-predictive

check. Simulations were performed from the joint distribution of

bootstrapped fixed effect parameter estimates for typical Emax and

EC50, over a range of reductions in Css,max (20–80 %) and Css,avg

(20–50 %) for approved nebivolol doses of 5, 10, and 20 mg.

Results: 760 hypertensive patients were enrolled in the nebivolol

group and 69 in the placebo group. The EC50 estimate of d,l-nebivolol

concentrations was 0.0179 ng/mL. The Emax for DBP reduction was

estimated to be approximately 5 mm Hg after placebo correction. No

significant covariate effects were found on the DBP PK-PD rela-

tionship. Simulation results for 20 % reduction in Css,avg at 5, 10, and

20 mg nebivolol doses indicated a median (95 % CI) decrease in the

typical DBP treatment effect (mmHg) of 0.049 (0.012, 0.12), 0.026

(0.0063,0.066), and 0.013 (0.0032,0.035), respectively. For 50 %

reduction in Css,max at 5, 10, and 20 mg nebivolol doses indicated a

median (95 % CI) decrease in the typical DBP treatment effect

(mmHg) of 0.05 (0.012,0.13), 0.025 (0.006,0.069), and 0.013

(0.003,0.035), respectively.

Conclusions: The population PD model adequately characterized the

relationship between nebivolol concentrations and DBP response.

Despite potential decreases in exposure (50 % of Css,max and 20 % of

Css,avg), the median decrease in blood pressure lowering effect of
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Fig. 1 Predicted AUC, Cmin and Cmax relative to the targeted AUC

range
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nebivolol is B0.05 mm Hg. Therefore, no clinically meaningful effect

is expected from the PK drug interaction by valsartan.

T-034 Integrated Model of Lopinavir

Pharmacokinetics: The Role of a-1-Acid

Glycoprotein Binding
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Background and Objectives: The two major binding proteins for

most drugs in humans are serum albumin and a-1-acid glycoprotein

(AAG). Protease inhibitors (PI) are bound primarily to AAG and with

high affinity, thus PI free plasma concentrations are known to be

inversely related to AAG concentration. The most important deter-

minants of PI activity in vivo are the sensitivity of the virus and the

concentration of free (unbound) drug at the site of action. As an acute

phase protein, AAG synthesis rises significantly in response to

infections and injuries [1], which is one of the contributing factors to

the observed variability in plasma AAG concentrations in HIV

infected patients. Given the PIs high binding affinity for AAG, their

high plasma concentrations in the presence of ritonavir enhancement,

and the low saturation capacity of AAG, it has been speculated that

variations in AAG levels could result in clinically important changes

in PI pharmacokinetics (PK) or pharmacodynamics (PD). Since the

free drug concentration more accurately reflects its availability to the

target cell, changes in AAG levels could have important implications

in HIV pharmacotherapy.

The aim of this work is to develop an integrated population PK model

for lopinavir (LPV) to investigate the role of AAG. The composite

model includes the plasma PK of total LPV and ritonavir (RTV), as

well as the PK of free plasma LPV incorporating the effect of AAG.

Methods: The model was developed based on the results from two

similar studies in treatment-naı̈ve HIV-infected patients initiating

antiretroviral therapy with LPV/RTV 400 mg/100 mg PO BID. The

study population, design and enrollment criteria have been reported in

detail elsewhere [2]. In study 1 (S1), 16 patients had intensive plasma

sampling at 2 and 16 weeks following treatment initiation (1, 2, 3, 4,

6, 8, 10 and 12 h post dose). Concentrations of AAG in the plasma

were quantified using an enzyme-linked immunosorbent assay

(ELISA), while total and free LPV plasma concentrations were

measured by high-performance liquid chromatography (HPLC) with

ultraviolet (UV) detection and equilibrium dialysis methods, respec-

tively. Total ritonavir plasma concentrations were measured by

HPLC. In study 2 (S2) 20 patients had plasma sampling on day 1 and

at weeks 2 and 24 following treatment initiation (sample times on

each day relative to dose administration: -2, 0, 1, 2, 3, 4 h).

Data from both studies were used in the sequential population mod-

eling of total RTV and total LPV, the latter incorporating the action of

RTV on LPV kinetics. A population model relating measured AAG

and total LPV on free LPV was developed and then linked to the

LPV/RTV model resulting in a composite population model relating

LPV and RTV dosing and AAG to total and free LPV. Population

modeling was conducted using ADAPT 5 (MLEM algorithm).

Results: LPV and RTV total plasma concentrations were each

described by a one-compartment model with an absorption lag time,

and an exponential term was used to incorporate the effect of RTV

concentration on the clearance of LPV as illustrated in Fig. 1. Body

mass index (BMI) was found to be a significant covariate contributing

to the interindividual differences in LPV clearance. The population

parameter estimates for the LPV/RTV model in Fig. 1 are shown in

Table 1. Due to the limited sampling the absorption rate for LPV was

fixed. Figure 2 displays the model goodness of fit plots for LPV total

plasma concentration (individual—top left; population—top right,

conditional residuals versus individual predictions—bottom left,

conditional residuals versus time—bottom right). A visual predictive

check is shown in the left panel of Fig. 3 for day 1 of S2. The visual

predictive check in right panel of Fig. 3 is the combination of week 2

and week 16 for S1, and week 2 and week 24 for S2 (Fig. 4).

Fig. 1 PK model for total LPV and RTV

Table 1 Parameter estimation results for the LPV/RTV total model

Parameter Mean (%RSE) HV (%KSE)

cl/f – 24 (62)

V/F 55.7 (15.2) 55 (31)

cl 0.624 (47.5) 38.3 (259)

Tau 0.875 (32.7) 60.5 (63)

M 0.325 –

CL1 5.70 (12) –

CL2 0.055 (34.) –

CLr/F 22.0 (11.9) 50 (18)

Yt/f 177 (29.3) 62 (42)

0.74 (47.0) 107 (57)

Tiur 1.10 70

Fig. 2 Goodness of fit plots for LPV total
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A separate mixed effects analysis relating measured LPV total and

AAG concentrations to LPV free concentration was conducted and

the following model selected:

LPVfi ¼ fu � e �c2�AAGið Þ LPVið Þc3þ ei

where LPVfi and LPVi are the measured free and total LPV con-

centrations. The data from S1 and S2 were pooled, along with the

associated AAG measurements, to estimate the model parameters as

shown in Table 2. Figure 3 displays the model goodness of fit plots

for LPV free plasma concentration (individual—left; population—

right).

Conclusions: The integrated model developed to describe the PK of

LPV, RTV and their interaction, as well as the effect of AAG on LPV

binding, found that over the range of AAG values in the studies

(23.6–479 mg/dL) there is a significant effect of AAG on binding

with effective fraction unbound values ranging from 0.00689 to

0.002, which is consistent with prior protein-free LPV studies.
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Objectives: Plasma ionized calcium (Ca2+) levels are tightly regu-

lated in the body; thus it is not feasible to assess the difference in

calcium absorption directly from them in normal physiologic condi-

tions. This study aimed: (1) to develop a semi-mechanistic model

whose approach is similar to that of K-PD model [1] for parathyroid

hormone (PTH)-Ca2+ system, and (2) to indirectly compare the dif-

ference in Ca absorption after the administration of Ca supplements

using PTH responses.

Methods: A total of 108 PTH and 107 Ca2+ concentrations were

collected from 12 subjects from the clinical trial to evaluate the

change in health indexes after the administration of Geumjin hot

spring mineral water (thermal water) and calcium supplements in

Korean healthy subjects. Six subjects received 240 mL of Geumjin

thermal water that contains 200 mg of Ca, 3 subjects, 500 mg of

calcium carbonate (CaCO3) tablet (equivalent to 200 mg Ca) with

240 mL of purified water, and 3 subjects, 500 mg CaCO3 tablet with

240 mL of normal saline. Blood samples were collected before and up

to 8 h after the administration. While PTH-Ca2+ system is very

complex, it was simplified with the following assumptions: (1) The

net absorbed Ca from each supplement is positive but unobservable

due to the Ca-homeostasis; (2) The decrease in PTH is only due to the

increased but unobserved Ca2+; (3) Feedback mechanism of PTH

drop to Ca2+ level is not considered. Indirect response models with

zero-order input and first-order output rates (Fig. 1) were fitted to the

observed Ca2+ and PTH data, respectively. It is known that increased

Ca2+ levels decrease the secretion of PTH, which was incorporated to

the model in the way that unobservable Ca2+ increases the output rate

of PTH in a linear manner.

ka: first-order absorption rate constant for Ca, kin_ca: zero-order

input rate for Ca2+, kout_ca: first-order output rate constant for Ca2+,

kin_pth: zero-order input rate for PTH, kout_pth, first-order output

rate constant for PTH, *: unobserved.

Fig. 3 Selected goodness of fit plots for LPV free

Table 2 Population estimition results for LPV free model

Parameter Mean (%RSE) Nv (%RSE)

fu 0.00733 (6.99) 27.2 (3 5.9)

c2 0.00262 (23.0) 96.2 (36.2)

c3 1.20 (2.22) 8.15 (31.5)

Fig. 4 The red line is median. The dash lines are the 5th and the 95th

percentiles of observed data. The shaded areas are the corresponding

confidence intervals of simulated data

kout_pth

kin_ca

kout_ca

Depot

Ca*Ca PTH

kin_pthka

kout_ca

slope

Fig. 1 Schematic of the K-PD model
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The analysis was performed using NONMEM 7.2.0 (ICON

Development Solutions, MD) with Pirana 2.6.1 [2] and R 2.15.1 (www.

r-project.org) with RStudio version 0.96.330 (http://www.rstudio.

com/).

Results: The model predicted the half-life of Ca absorption to be

59.4 min (RSE 39.7 %). The slope parameter was estimated to be

2.84 (RSE 29.15 %), which could be interpreted as the effect of

absorbed Ca to PTH response as well as a scale parameter for the

hypothetical Ca2+ concentration (the initial condition of depot com-

partment was assumed to be 1). Other parameter estimates for the

input and output rate constants for Ca2+ and PTH were in similar

magnitudes to the findings from the mechanistic PK/PD modeling [3].

The visual predictive checks (VPCs) demonstrated that the model

provided reasonable predictions Ca2+ and PTH (Fig. 2). The differ-

ence in Ca absorption (ka) or its effect (slope) was not found in this

study, although the number of subjects is considered insufficient for

any meaningful covariate testing.

Conclusions: K-PD modeling was performed to characterize PTH-

Ca2+ system after the administration of Ca supplements in healthy

subjects. With the absence of observable difference in plasma Ca2+

levels, PTH responses were used as a surrogate marker for Ca

absorption, which did not seem to be significantly different among the

Ca supplements in this study.
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Objectives: MK-3222 is a high affinity humanized anti-IL 23 p19

specific MAb being developed for treatment of psoriasis. A semi-

mechanistic model was developed to describe and simulate PASI

scores and PASI75/90 response rates over time. The objective of the

model-based evaluation was (a) to support maintenance dose selec-

tion and (b) to evaluate alternative dosing intervals.

Methods: Data from a Phase 2b dose ranging study (up to week 40),

which was carefully designed to establish a dose–response relation-

ship, were used for this analysis [1]. A total of 355 patients was

randomized to receive MK-3222 (dose levels 5, 25, 100, 200 mg or

placebo) at week 0 and 4 (loading dose). A total of 298 subjects

continued treatment from week 16 in a Q12 W dosing regimen. The

PASI75 responders at week 16 in the 100 and 200 mg groups were

re-randomized in a 1:1 ratio to either continue the current

dose (100 C 100 mg SC and 200 C 200 mg SC) or reduce the dose

(100 C 25 mg and 200 C 100 mg SC).

A semi-mechanistic PK-PD model was developed to describe the

PASI fraction of baseline over time. The structural model is depicted

in Fig. 1. Clinical trial simulations (100 replicates of 300 patients per

cohort) were conducted to explore various maintenance doses and

dosing frequencies. These simulations accounted for parameter

uncertainty and between-patient variability.

Fig. 2 VPCs of Ca2+ (left) and PTH (right)

Fig. 1 Semi-mechanistic structural PK-PD model describing MK-

3222 concentrations and the PASI fraction of baseline over time

0 10 20 30 40

0
20

40
60

80

5 mg -> 5 mg (n= 13 )

0 10 20 30 40

0
20

40
60

80

25 mg -> 25 mg (n= 62 )

0 10 20 30 40

0
20

40
60

80

100 mg -> 100 mg (n= 31 )

0 10 20 30 40

0
20

40
60

80
100 mg -> 25 mg (n= 30 )

0 10 20 30 40
0

20
40

60
80

200 mg -> 200 mg (n= 30 )

%
 P

A
S

I7
5 

re
sp

on
se

Week

0 10 20 30 40

0
20

40
60

80

200 mg -> 100 mg (n= 32 )

Fig. 2 Visual predictive checks of PASI75 response rate in Week 16

responders

J Pharmacokinet Pharmacodyn (2013) 40:S15–S149 S85

123

http://www.r-project.org
http://www.r-project.org
http://www.rstudio.com/
http://www.rstudio.com/


Key assumptions:

• The Phase 2b patient population is representative of the Phase 3

patient population

• PASI profiles based on Phase 2b data up to week 40 can be

extrapolated to later time points and different regimens (16 and 26

weekly dosing)

Results: The model adequately described the observed clinical data

from a Phase 2b study P05495 (Fig. 2). Figure 3 demonstrates that

PASI75 response rates are predicted to be similar for 100 and

200 mg Q12 W dosing regimens. Loss of efficacy is predicted at

lower maintenance doses of 25 or 50 mg Q12 W. Figure 4 shows

that the 12-week dosing interval results in a sustained response at

the 100 and 200 mg dose levels. In contrast, a sustained PASI75

response rate may not be achieved in a less frequent dosing

regimen.

Conclusions: This semi-mechanistic PK-PD model-based analysis

demonstrates that a 12-week dosing frequency using 100 or 200 mg

doses of MK-3222 is expected to result in optimal efficacy for the

treatment of psoriasis.
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Objectives: Naloxegol is a selective peripheral opioid receptor

antagonist. Its action restricted to organs outside the central nervous

system, naloxegol blocks opiate receptors in the gastrointestinal

system and reduces the incidence of opioid-induced constipation

(OIC) without reversal or reduction of opioid-mediated analgesia. The

objectives of this work were (1) to develop an exposure response

relationship for the response rate. (2) Model the dropout rate for

weeks 1–4 and integrate both response rate and dropout rate to sup-

port phase 3 dose selection for naloxegol.

Methods: The analysis dataset included 185 patients with OIC from a

Phase II dose-ranging study. The efficacy variable was the proportion

of responders (i.e. Patients who showed an increase of C3 Sponta-

neous Bowel Movement (sbm)/week and C1 sbm/week increase over

baseline for at least 3 out of 4 weeks). The response rate was cal-

culated as number of responders in a particular treatment group

divided by number of Intent- to- treat (ITT) patients in that treatment

group. The probability (pi i) of having sbm C3/week and C1 sbm/

week increase over baseline was modeled as function of dose.

Dropout was modeled with a Weibull distribution for the time to

event (dropout). The performances of the models were evaluated

using a battery of diagnostic plots and by posterior predictive check.

Model-based simulations for phase 3 were conducted to recommend

Fig. 3 Clinical trial simulations of PASI75 response rate in week 28

PASI75 responders for patients who are initially treated with 100 mg

(left panel) or 200 mg (right panel) SC MK-3222 administered at

weeks 0, 4 and 16 for induction of efficacy, followed by maintenance

doses (25, 50, 100, 200 mg SC) administered in a 12-week dosing

interval

Fig. 4 Clinical trial simulations of PASI75 response rate during

treatment with 100 mg (left) or 200 mg (right) SC MK-3222

administered in 12, 16, or 26-week dosing intervals. Blue symbols:

observed results (P05495), Red curves: model-based predictions

based on 100 replicates for each cohort (P95, P50, P5) including inter-

individual variability for PK and uncertainty for PASI
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naloxegol doses. All models were developed in both NONMEM VII

and Winbugs to compare the parameter estimates across the tow

software. Simulations were conducted in NONMEM VII and ana-

lyzed using S-Plus/R statistical software.

Results: The integrated model for dropout and responder rate

described Phase II data very well. The model predicted median

responder rates were 26.67, 31, 50 and 63.3 % for placebo, 5, 25 and

50 mg respectively (Fig. 1). The observed dropout rate for the 25 mg

was lower than placebo; therefore the observed responder rate for the

25 mg was outside the model predicted 5th-95th percentile. The dose–

response relationship, accounting for dropouts, was simulated and is

shown in Fig. 2. Model parameter estimates in Winbugs and

NONNMEM VII were very similar.

Further simulations of naloxegol dose–response based on phase III

sample size (n = 200) for doses up to 40 mg (Fig. 1) showed that

25 mg dose would have a projected success rate of [90 % (15 %

benefit over placebo and having a statistically significant p value after

adjusting for multiplicity).

Conclusions: The dose–response relationship was well described by

proposed integrated model. Model-based simulations suggest that

doses of 25 mg and higher provides a promising success rate in

phase III. Parameter estimates in NONMEM VII and Winbugs were

similar.

T-038 Simulation and Re-estimation Method

to Evaluate Sample Size and Study Duration

for a Pharmacokinetic Proof of Concept Study

Stefano Zamuner*, Tarjinder Sahota, Daren Austin

GlaxoSmithKline, Clinical Pharmacology Modeling and Simulation,

Stockley Park, UK

Objectives: Pharmaceutical companies have developed or acquired

technologies for producing improved protein and antibody therapeutics

and some have began to develop biobetter biosimilar products.

Proprietary technologies for producing improved biologics include

half-life extension methods, glycoengineering, cell production systems,

and drug delivery systems. We consider the case of a hypothetical mAb

with a terminal half-life of 14 days, administered subcutaneously every

other week that incorporates FcRn protein engineering to reduce

clearance. This modification may offer monthly or even every other

month dosing, greater patient convenience and a reduction in infusion

or injection site reactions. Proof of concept (PoC) for such a mAb is

therefore based on a comparison of apparent clearance between the two

mAbs, and a suitable trial design should have 80 % power to detect a

two-fold reduction in apparent clearance.

Methods: A population pharmacokinetic model was developed based

on published data for typical mAbs, with systemic clearance (9–12 L/h),

volume of distribution (5–6 L), and bioavailability (0.64). Between-

subject variability of 40–50 % was assumed. The new mAb was assumed

to have a reduced apparent clearance of between 1.5 and 4-fold, with a

minimum of two-fold considered clinically relevant. A suitable PoC

study is assumed to test three doses of the modified mAb, plus the original

mAb, in a parallel group design with up to nine subjects per treatment

group and variable study duration (4–12 weeks).

Two-hundred studies were simulated using NONMEM 7.2 and R

software, with uncertainty in the original mAb CL/F incorporated

using the PRIOR option in NONMEM. Success (PoC) was defined as

the ability to detect a 2-fold reduction in apparent clearance for the

simulated design. The proposed model based sample size computation

method was also compared with the method proposed by Kang et al.

[1], although we have included uncertainty in both apparent clearance

and study duration.
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Fig. 2 Distribution of difference from placebo for responder rates

based on simulation of 1000 trials

Fig. 1 Predicted pharmacokinetic profiles (90 % percentiles) for

original and improved mAbs

Fig. 2 X-axis represents the hypothesized NBE CL reduction used

for simulation of PK data and on the y-axis, the corresponding (green)

power (%) or (red) type I error rate
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Results: Simulation profiles for both the original mAb and the one

with improved half-life, with two- and four-fold reductions in clear-

ance, are shown in Fig. 1. Probability of success as a function of

reduction in clearance and study duration is shown in Fig. 2 (with

N = 6 and N = 9 subjects per group).

Conclusions: An eight-week study provides adequate power to detect

a two- to four-fold reduction in clearance of a hypothetical engineered

version of the original mAb. Simulation re-estimation methods show

that using a model-based population-pharmacokinetic methodology

and relatively small cohort sizes controls for Type 1 error, whilst

providing acceptable parameter precision.
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Objectives: NONMEM still uses the local optimization method of

BFGS quasi-Newton algorithm. It usually requires initial parameter

values to lie within a relatively small neighborhood of the true opti-

mum in order to ensure any desired accuracy. To reduce the

sensitivity to the initial values selection for the local search, a global

optimization approach is required.

Methods: Genetic algorithm (GA) is very popular due to its sim-

plicity and robust convergence capability of global optimum search.

GA is based on the mathematics of evolution/selection and survival of

the fittest (Fig. 1). Our search space of GA is restricted to those

originally considered during the evaluation of initial values of fixed-

effects $THETAs of NONMEM. We propose a global optimum

search algorithm called g-NONMEM. It combines the global search

strategy of GA and the local estimation strategy of NONMEM

(Fig. 2). Firstly, initial values (genomes) are randomly generated, and

NONMEM is implemented for each genome to find a local optimum

for fixed effects. GA implements NONMEM 7.2 to calculate the fit-

ness by creating g-control codes. g-control codes duplicate a control

file of NONMEM, except that it contains special values for $THETA,

that are searched for and replaced by GA. And then, g-NONMEM

extracts the required fitness (OFV, number of parameters, eigenvalues

and success of covariance matrix) directly from the NONMEM xml

outputs. g-NONMEM updates the current position with the conver-

gent position of NONMEM for each genome. Model with the lowest

fitness carried to the next generation. Then, g-NONMEM employs

GA to find a global optimum based on every genome’s fitness.

Results: g-NONMEM used the dataset to describe the population PK

of vancomycin in Korean pediatric patients [1]. g-NONMEM is

performed with NONMEM 7.2 and gfortran on 16 Intel Xeon CPU/

HP800 under Ubuntu. Model evaluation uses FOCE estimation with

interaction. In the simulation, g-NONMEM was insensitive to initial

value selection. Even when the initial values are far away from their

global optima, g-NONMEM almost guarantees the global optimiza-

tion (Table 1).

Conclusions: g-NONMEM leads to a global optimization for fixed-

effects of NONMEM (Fig. 3). Furthermore, GA can be implemented

directly to optimize the objective function in NONMEM of nonlinear

mixed effects models without any local optimization-based estimation.

Fig. 1 Pictoral representation of genetic algorithm approach

Fig. 2 Flowchart of steps involved in global optimal search in

NONMEM using genetic algorithm

Table 1 Comparison of models used in NONMEM

Model Step (1) GA GA

40 Genomes/10

0generations

100 Genomes/300

generations

(0 B hi B 5) (0 B hi B 10)

1 CMPT 606.270 606.271 606.271

1 CMPT 606.270 606.271 606.271

2CMPT 583.782 583.794 583.794
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Objectives: The HIV protease inhibitor (PI) darunavir, in combina-

tion with low-dose ritonavir (DRV/rtv) and other antiretrovirals

(ARVs), is approved for the treatment of ARV-naı̈ve and -experi-

enced HIV-1 infected adults and ARV-experienced pediatric patients

aged 3 to\18 years. The objectives of this analysis were (1) to adapt

a previously developed population pharmacokinetic (PK) model of

DRV to integrate data from ARV-naı̈ve pediatric patient from 12 to

\18 years old, and (2) to provide dose recommendations for ARV-

naı̈ve pediatric patients aged 3 to \12 years.

Methods: Rich sampling data after 2 weeks of oral treatment from

two studies performed in adults and three studies performed in chil-

dren with HIV-1 infection were pooled for this analysis. Studies 1 and

2 included 30 ARV-experienced adult patients (18–66 years) treated

with DRV/rtv 600/100 mg b.i.d. Study 3 included 41 ARV-experi-

enced children (6 to \18 years) and explored various DRV/rtv b.i.d.

regimen based on body weight (300/50, 375/50, 450/60 and

600/100 mg) [1]. Study 4 included 19 ARV-experienced pediatric

subjects (3 to \6 years), treated with DRV/rtv 20/3 mg/kg b.i.d. [2].

Ten patients from study 4 were further included in a substudy in

which they were switched to a once daily regimen for 2 weeks and an

intensive PK profile was assessed with rich sampling. The dosing

consisted of DRV/rtv 40/7 mg/kg q.d. for subjects \15 kg and

600/100 mg q.d. for subjects C15 kg. Study 5 included 12 ARV-

naı̈ve children (12 to \18 years) treated with DRV/rtv 800/100 mg

q.d. [3].

An existing population PK model for DRV was established in adults

based on studies 1 and 2 [4]. This was a two-compartment model with

first order absorption. Apparent clearance was dependent on the

concentration of a1-acid glycoprotein (AAG). This model was

adjusted a priori to take bodyweight into account for both CL/F and

VC/F, and the parameters estimated. Models were developed using

NONMEM (version VII) with FOCE. Model selection was based on

standard goodness-of-fit plots, precision of parameters estimates and

the objective function value. Simulations using the final model were

performed for various dosing scenarios in ARV-naı̈ve children 3 to

\12 years old and dose recommendations were proposed based on

comparable simulated total exposures (AUC) as in ARV-naı̈ve adults

receiving the standard oral dose of DRV/rtv 800/100 mg q.d.

Results: All structural parameters were well estimated, and interin-

dividual variability (IIV) could be detected for apparent clearance,

apparent inter-compartmental clearance and the first order absorption

constant. A visual predictive check showed adequate predictive per-

formance for the influence of bodyweight on exposure. Substantial

shrinkage was found for the first order absorption rate constant and for

the inter-compartmental clearance. This is probably due to the fact

that parameters are estimated at steady-state, yielding relatively little

individual information on the distribution of KA and Q/F. However,

this has no impact on the exposure simulation and the model was

therefore fit for purpose.

The q.d. dose regimens based on simulations for children aged 3 to

\12 years should result in exposures close to the target adult expo-

sure after treatment with DRV/rtv 800/100 mg q.d., whilst mini-

mizing the pill burden and allowing to switch from suspension to

tablet as early as possible. Based on the typical value of apparent

clearance obtained from the population PK model, the expected DRV

exposures (AUC) for different q.d. doses were simulated as a function

of body weight and AAG concentrations. Since apparent clearance,

hence exposure, is dependent on AAG, each regimen was simulated

using three different values of AAG which were the 5th, 50th and

95th percentiles of the values observed in studies 4 and 5 and over a

weight range of 10–65 kg. The expected exposures with a DRV/rtv

once daily dosing regimen of 35/7 mg/kg from 10 to \15 kg,

600/100 mg from 15 to \30 kg, 675/100 mg from 30 to \40 kg and

800/100 mg for 40 kg and higher, most closely matched adult

exposure and were therefore recommended.

Conclusions: The population PK model for DRV/rtv in adults was

successfully adjusted to describe and predict the pharmacokinetics of

DRV in both adults and children, treated with once or twice daily

regimen. Simulations of potential once daily dose regimens in chil-

dren aged 3 to \12 years old were applied to explore the resultant

exposures so that, together with efficacy and safety data from previ-

ous pediatric and adult trials an optimal dose could be recommended

for regulatory approval.
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T-041 Incorporating Target Shedding into a Minimal

PBPK-TMDD Model for mAbs

Linzhong Li*, Iain Gardner, Rachel Rose

Simcyp Limited, Sheffield, UK

Objectives: The impact of target-mediated drug disposition (TMDD)

on PKPD of therapeutic proteins has been well appreciated in recent

years. However, target dynamics are more complex than published

TMDD models account for. For instance, virtually all structural and

functional categories of membrane proteins have been found to be

shed from cells [1], and for a large percentage of marketed mono-

clonal antibody therapeutics (mAb), target shedding has been shown

to exist and several clinical studies have also indicated a significant

effect of target shedding on mAbs PKPD [2]. The objective of this

study is to extend existing TMDD models to take into account the

dynamic interaction between a drug and its target in the physiological

or pathophysiological condition, where the target is present as both a

membrane bound and a shed, soluble form.

Methods: Membrane bound targets can exist in the tissues or on

circulating cells in blood, and they are subject to ectodomain shed-

ding to generate soluble target, both of which may coexist in the

blood, interstitial space, or both. Furthermore, drugs may modulate

the shedding, resulting in a high concentration of soluble target. In

order to mechanistically model both target-mediated drug disposition

as well as drug-mediated target disposition, we first generalized the

existing TMDD models to take account for the ectodomain shedding

and interconnection between membrane bound and soluble forms of

targets in addition to TMDD at both forms of the target. The left

diagram in Fig. 1 schematically shows the shedding model used in

this study, where the distribution of shed target from tissue to plasma

is characterized by the first-order rate constant k, and the membrane

target shedding is represented by first-order rate constant kshed. Fur-

thermore, we allow the shedding rate to be modified by the drug.

A general simulation algorithm was developed in Matlab, which

incorporates TMDD models with and without shedding into a mini-

mal PBPK model for mAbs we developed previously [3], whose

model structure is shown in the right diagram of Fig. 1. In general, the

integrated model we developed can take account for different target

properties, including, but not limited to, (1) membrane bound targets

in tissues or on circulating cells in blood without shedding; (2) soluble

targets in the circulation; (3) membrane bound targets in tissue

interstitial space with shedding and the shed target as a soluble form

existing in the interstitial space as well as in the circulation; (4) both

membrane bound and soluble forms of targets coexist due to differ-

ential splicing.

Simulations were run assuming that in the absence of binding to

the target the mAb has typical IgG kinetics (21 day half-life). Sim-

ulations were then conducted with the TMDD model with and without

shedding occurring. The parameters used for the shedding model

are based on a set of parameter values for full TMDD model: kon =

31.375(lM)-1, koff = 0.6083 h-1, ksyn = 0.002312 lM/h, kint =

0.16375 1/h, Rmax = 0.08 lM.

Results: Figures 1, 2 and 3 demonstrate the simulated effect of target

shedding on the plasma levels and receptor occupancy of a mono-

clonal antibody as well as associated drug-mediated free target level

for multiple dosing. Specifically, Fig. 2 shows that when it is assumed

no shedding happens and a full TMDD model is applied, then a

multiple dosing with dosing interval 20 days is sufficient to suppress

the level of membrane bound target. When the shedding is consid-

ered, then the same dosing interval is not able to suppress the free

soluble target level in the interstitial space, as shown in the left plot in

Fig. 3, and instead a doing interval of 10 days is needed to control the

free soluble target level, as demonstrated in the right plot of Fig. 3.

Conclusions: Published TMDD models have been extended to take

into account the effect of target shedding on the behavior of a typical

Fig. 1 RI—free membrane target in interstitial space; RS—shed

soluble target in interstitial space; RP—shed soluble target in plasma;

CP—drug in plasma; CP—drug in interstitial space (left). The model

structure of the minimal PBPK model coupled with the full TMDD

model without shedding (right) [3]

Fig. 2 Simulation of a mAb with 20 days of doing interval, assuming

no target shedding

Fig. 3 Simulation of a mAb with 20 days of doing interval, assuming

target shedding (left). Simulation of a mAb with 10 days of doing

interval, assuming target shedding (right)
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monoclonal antibody in a minimal PBPK model. This simulation

study shows that when a high concentration of soluble target exists

due to membrane target shedding, using a TMDD without consider-

ation of the shedding process could be misleading in determining

dosing regimen.
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Objectives: Hydrocortisone (HC) is commonly used to treat vaso-

pressor-resistant hypotension in critically ill infants with relative

adrenal insufficiency [1]. HC binds to corticosteroid-binding globulin

(CBG) (&80 %) and albumin (&10 %) [2]. Only 5–10 % is unbound

and biologically active [2]. The pharmacokinetics (PK) of unbound

HC in critically ill infants receiving HC treatment are unknown. The

objectives of the present work were to determine the plasma PK of

unbound HC in this unique pediatric population and identify patient-

specific characteristics associated with PK variability.

Methods: Each subject had a single, random, baseline endogenous

HC sample drawn. Stress and maintenance doses of HC (45 or 15 mg/

m2/day divided every 6 h) were administered as a bolus according to

a standard neonatal intensive care unit protocol. For each subject, the

baseline endogenous plasma sample and residual plasma from up to 3

random, post-dose samples drawn for routine clinical laboratory tests

were analyzed for unbound HC concentrations using LC/MS/MS [2].

Several structural models were evaluated including one- and two-

compartment models with baseline endogenous HC modeled as a

constant and as a circadian rhythm function. Model parameter esti-

mates were obtained using the first order conditional estimation with

interaction (FOCE-I) method in NONMEM version 7.2. Available

covariates (median, range) were weight (1.2, 0.5–4.4 kg), postnatal

age (0.7, 0.1–9.3 weeks), gestational age (27, 23–41 weeks), and

postconceptual age (28, 24–41 weeks). Covariate models were

developed based on visual inspection of covariate-parameter rela-

tionships and likelihood ratio testing during stepwise forward

inclusion and backward elimination where a change in the objective

function value of 10.8 units (p \ 0.001, df = 1) was defined as sig-

nificant. Stability of the final model and precision of the parameter

estimates were evaluated by a bootstrap re-sampling procedure with

1000 runs.

Results: 194 unbound HC concentrations from 62 infants less than

3 months old were used in the population PK analysis. 4 baseline

endogenous HC concentrations drawn during exogenous HC admin-

istration were excluded from the analysis. A one-compartment model

with first-order elimination best described the data. Baseline endog-

enous HC was modeled as a constant and added to the individual

predictions. Interindividual variability was modeled exponentially for

clearance (CL) and baseline endogenous HC (BL) but was fixed to

zero for volume of distribution. Postconceptual age (PCA) modeled

by a centered exponential function was a significant shared covariate

on CL and V. PCA accounted for 41.5 % of the interindividual var-

iability in CL. There were no covariate effects on BL. Eta-shrinkages

were 11.7 and 12.1 % for CL and BL, respectively. Final parameter

estimates, relative standard errors (RSE) and 95 % confidence inter-

vals (CIs), as well as bootstrap estimates and 95 % CIs are in the table

below. Successful estimation and covariance steps were achieved in

100 % of the bootstrap runs.

Conclusions: Our findings represent the first population PK report of

unbound HC in critically ill infants with vasopressor-resistant hypo-

tension. The typical half-life value for unbound HC was 3.14 h. The

PK were well described by a one-compartment model that incorpo-

rated baseline endogenous HC into the predictions. The CL of

unbound HC was faster in infants with an older PCA. After

accounting for PCA, the remaining interindividual variability in CL

was large and additional covariates such as sex, measures of hepatic

and renal function, and host genetics associated with HC metabolic

pathways should be examined in future studies.
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Parameter Final

estimate

RSE

(%)

95 % CI Bootstrap

estimate

Bootstrap

95 % CI

CL (L/h) 0.827 10.4 0.659–0.995 0.839 0.666–1.03

PCA effect 0.196 9.74 0.159–0.233 0.197 0.160–0.239

V(L) 3.75 17.3 2.48–5.02 4.03 2.68–6.50

BL (ng/mL) 1.36 21.8 0.778–1.94 1.38 0.887–2.12

Interindividual variability in CL (CV %)

Interindividual

variability in BL

(CV %)

0.296 (54.4 %) 26.9 0.140–0.452

0.290 0.137–0.507

Residual variability

by proportional

error model

(CV %)

2.42 (156 %) 11.7 1.87–2.97

2.36 1.78–2.92

Residual variability

by additive error

model

0.330 (57.4 %) 13.3 0.244–0.416

0.324 0.239–0.420

0.049 16.6 0.033–0.065 0.047 0.033–0.064

RSE(%) 100 % 9 SE/estimate; CV(%) coefficient of variation; SD
standard deviation
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Objectives: Several publications have demonstrated the potential

value of modeling and simulation for drug development and the

resulting increased application of pharmacometric methods through-

out the development process. In the therapeutic area of Alzheimer’s

Disease (AD), the ADAS-cog score is an endpoint of particular

importance and models are developed in order to describe the lon-

gitudinal change of this response. Generally, these models treat the

ADAS-cog score as a continuous variable, therefore ignoring the

underlying discrete nature of the score [1]. In a separate communi-

cation, we present the benefits of an item response theory (IRT) based

analysis of ADAS-cog assessments by linking the subscores of the

ADAS-cog subtests to the non-observable variable ‘‘cognitive dis-

ability’’. The objectives in this part of the work, were to demonstrate

how this approach can be extended to longitudinal Alzheimer’s

Disease trial data. Our aim was to investigate the potential benefits of

this approach in terms of description of the score distribution, drug

effect detection power and flexibility of clinical trial simulations.

Methods: Data: The modeling analysis was based on data from the

placebo arm of a phase III study with mild to moderate AD patients

[2]. The data utilized consisted of item level ADAS-cog assessment

data from 322 patients with 7 scheduled assessments over a time

range of 18 month. A total of 84,907 data entries were available for

the analysis.

Model: The basis for this work was an ADAS-cog IRT model (pre-

sented separately) describing the responses of individual test items

from an ADAS-cog assessment as a function of the hidden variable

cognitive disability. All test specific parameters in the baseline model

were fixed and the longitudinal change of cognitive disability was

characterized through a linear function with subject specific slope and

intercept (model structure as published by Ito et al. [1]). Model

adequacy was assessed through visual predictive checks (VPCs) both

on the ADAS-cog score level and on the item level.

Clinical Trial Simulations: The power to detect a drug effect using

either the ADAS-cog IRT or the summary score model was compared

through clinical trial simulations (CTSs) for various study sizes. First,

500 clinical trials were simulated from the longitudinal IRT model

assuming a placebo controlled trial (mild-moderate AD patients,

18 months duration) for a disease modifying agent (20 % reduction in

disease progression rate, introduced on the hidden variable). Subse-

quently, the resulting datasets were separately analyzed with the IRT

and the summary score models. Drug effect detection power with

each approach was calculated as the fraction of trials for which the

drug effect was statistically significantly different from zero (assessed

through log-likelihood ratio test).

Additionally, the possibility to perform CTSs for different patient

populations and different ADAS-cog variants was demonstrated by

repeating the outlined procedure with baseline parameter values for a

mild cognitively impaired and a mild AD patient population as well as

for an ADAS-cog assessment with and without the delayed word

recall test.

Results: All parameters were estimated with satisfactory precision

from the available data (relative standard error between 4.2 and

10.1 %). The typical baseline ADAS-cog value was found to be 22.2

points and the typical yearly increase, 3.5 points. VPCs indicated

satisfactory data description on the summary score level and for most

items (subscores). Some items of the ‘‘naming objects and fingers’’

and the ‘‘remembering test instructions’’ components presented dis-

crepancies between model simulations and observations, but were

judged marginal for the overall model performance.

Analysis with the ADAS-cog IRT model resulted in a considerably

higher power to detect a drug effect in the CTSs. In order to reach

80 % power the summary score analysis needed more than 600

individuals, whereas the IRT-based analysis achieved the same power

with about 400 individuals, corresponding to a reduction of 33 % in

sample size. CTSs in different patient populations revealed a slightly

higher power to detect a drug effect in the mild cognitively impaired

population than in the mild AD population. Removing the ‘‘delayed

word recall’’ component decreased the power in both populations.

Conclusions: By using an IRT ADAS-cog model, we combined

ADAS-cog data from a longitudinal clinical trial with information

characterizing the relationships between the individual items of a

cognitive assessment as obtained from clinical trial databases. The

resulting longitudinal ADAS-cog accurately describes the underlying

distribution of the summary score by considering the inherent discrete

and bounded nature of the data. In the CTSs, the IRT model showed

considerably higher power to detect drug effects than the continuous

summary score model. An additional feature of this approach is the

separation of test, patient population and drug specific parameters,

increasing the flexibility of CTS and thus providing additional tools

for planning future trials.
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Mediated Renal Tubular Reabsorption
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Objectives: PEPT2, a proton-coupled oligopeptide transporter, plays

a primary role in the renal tubular reabsorption of some drugs

including the antibacterial agent cefadroxil which is essentially

excreted unchanged in the urine of mice. The systemic clearance of

cefadroxil is significantly higher in PEPT2 null mice than in wild-type
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mice due to depletion of this protein [1]. The aim of this study was to

characterize the pharmacokinetics of cefadroxil in wild-type and

PEPT2 null mice using non-linear mixed effects modeling

(NONMEM).

Methods: Pharmacokinetic data of cefadroxil in wild-type and

PEPT2 null mice following intravenous administration (doses ranged

from 1 to 100 nmol/g) were analyzed using NONMEM v7.2. Dif-

ferent models with linear and/or nonlinear elimination kinetics were

then examined. The final model was selected based on the likelihood

ratio test and visual inspection of diagnostic plots.

Results: The pharmacokinetic profile of cefadroxil was best described

by a two-compartment model with linear renal elimination (i.e., fil-

tration and tubular secretion) and nonlinear tubular reabsorption

(mediated by PEPT2) in wild-type mice, whereas, only linear renal

elimination (i.e., filtration and tubular secretion) was considered in

PEPT2 null mice (Fig. 1). The nonlinear kinetics of PEPT2-mediated

tubular reabsorption was well characterized by the Michaelis–Menten

parameters Vmax = 0.08 ± 0.03 nmol/min/g and Km = 9.1 ± 4.0

lM (Table 1). These results are consistent with previously reported

PEPT2 transport kinetics (i.e., Km = 10 to 40 lM).

Conclusions: In the present study, we demonstrated that the phar-

macokinetics of cefadroxil was well characterized by a model that

incorporated linear renal elimination along with nonlinear PEPT2-

mediated tubular reabsorption in mice. This population pharmacoki-

netic model may help to provide mechanistic insight into the

predominant role of PEPT2 in renal tubular reabsorption of cefadroxil

and facilitate the prediction of cefadroxil disposition in human.
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Objectives: Patients with rheumatoid arthritis (RA) experience

adverse events (AEs) attributed to both the disease and its treatment.

Tofacitinib is a novel oral Janus kinase inhibitor being investigated as

a targeted immunomodulator and disease-modifying therapy for RA.

To contextualize events within the tofacitinib clinical trial program, a

meta-analysis of published data sources was completed in patients

with RA receiving biologic drug therapy within a randomized clinical

trial (RCT) setting to quantify safety endpoints of: malignancies

excluding non-melanoma skin cancer (NMSC), serious infections

(SIs), and serious AEs (SAEs).

Methods: Medline, Embase, PubMed, and summary basis of approvals

from regulatory submissions were searched to identify RCTs for

abatacept, rituximab, etanercept, infliximab, certolizumab, golimumab,

adalimumab, and tocilizumab in RA. The search identified[300 papers

from which data from 80 RCTs, representing more than 31,000 subjects,

were extracted for analysis for the three endpoints. Non-RCTs, long-

term extensions, and observational studies were excluded from the

literature results. Tofacitinib results from five RCTs (Phase 3 [P3]) are

presented. The dependent variable for the analysis was the incidence

rate (IR) of an event/100 patient-years (pt-yrs). Data were analyzed

using a random effects meta-analysis model. The IR data were log

transformed to avoid negative confidence intervals (CIs). An imputa-

tion methodology was applied to account for IRs of zero and a

sensitivity analysis was performed to assess the effects of adjustment on

the individual and overall mean, as well as the impact on the estimated

variance surrounding each study arm.

Results: Estimated IRs for endpoints of malignancies, SIs, and SAEs

revealed similar rates among biologic therapies for treatment of RA.

Across all biologic therapies, point estimates ranged from 0.8 to 1.4

events/100 pt-yrs for malignancies; 2.5–6.5 for SIs; and 10.7–22.0 for

SAEs. Event rates for tofacitinib were 0.62 (95 % CI 0.36, 1.07)

events/100 pt-yrs for malignancies (Fig. 1); 2.91 (2.27, 3.74) events/

100 pt-yrs for SIs; and 10.3 (9.00, 11.78) events/100 pt-yrs for SAEs,

all in P3. The 95 % CIs for tofacitinib were contained within the

range of published estimates.

Conclusions: This RCT meta-analysis provides a quantitative

assessment of the incidence of important safety events reported with

therapies for the treatment of RA. Overall, tofacitinib event rates for

Fig. 1 Schematic structural model of cefadroxil after intravenous

(IV) bolus input. (K12 = Q/V1, K21 = Q/V2)

Table 1 Pharmacokinetic parameter estimates of cefadroxil using a

two-compartment model with parallel linear elimination and nonlin-

ear reabsorption in wild-type and PEPT2 null mice

Parameter Mean

population

value (% RSE)

Between subjects

variability (% RSE)

V1 (mL/g) 0.173 (7) 34 (11)

V2 (mL/g) 0.359 (14) 34 (11)b

Q (mL/min/g) 0.039 (28) –

K10 (min-1) 0.152 (12) 18 (21)

Vmax (nmol/min/g) 0.08a (38) –

Km (lM) 9.1a (44) –

Residual (Proportional) 0.101 (7) –

a This pharmacokinetic parameter was estimated in wild-type mice

and set to zero in PEPT2 null mice
b Shared ETA between V1 and V2
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malignancies, SIs, and SAEs were comparable to published rates for

approved biologic therapies. Future analyses are warranted to esti-

mate relative effects (treatment comparisons), model studies with no

events (IR = 0), and account for study population differences.
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Objectives: To propose and evaluate methods for detection of non-

compliance using concentration–time data and for obtaining unbiased

estimates of population pharmacokinetic (PK) model parameters in a

population with prevalent non-compliance.

Methods: Datasets that emulated three studies with different dura-

tion, sampling schemes and different levels of non-compliance were

simulated. A two-compartment model with relatively fast first-order

absorption (with 1–2 h absorption half-life), relatively long terminal

half-life (1–2 days), and significant drug accumulation during

4-weeks to 4-months treatment period of once-a-day dosing was used.

Non-compliance was simulated as drug holidays (of several days)

preceding some observations in 20–80 % of subjects. For each

dataset, the model without accounting for non-compliance was fitted

first to evaluate bias of the parameter estimates. Then, two methods

accounting for non-compliance were tested.

In the first method (referred to as the ETA-on-epsilon method), a

random effect on the magnitude of the residual error was introduced.

High magnitude of the residual error estimated for some subjects was

thought to be associated with non-compliance in these subjects. The

same model was fitted to the simulated datasets where increasing

fractions of subjects with the highest residual errors were commented

out. Association of non-compliant subjects with high-residual-error

subjects was investigated. Parameter estimates of these models were

compared with the true (used for simulations) parameters and the

parameters of the model that did not account for non-compliance.

The other method (referred to as the ‘‘profiles’’ method) was

developed for the data with a specific sampling pattern that included

an outpatient (non-compliant) part with several trough samples fol-

lowed by the rich profile after the inpatient (compliant) dose. The

method is the generalization of the idea proposed in [1] that relies

only on the doses known to be administered (e.g., inpatient doses). In

this method, all concentration measurements during the outpatient

part of the study (except the trough value immediately preceding the

inpatient dose) are removed from the dataset and an additional

parameter (relative bioavailability of the outpatient doses) is intro-

duced. This allows decoupling of the unreliable (outpatient) and

reliable (inpatient) dosing and concentration data. In case of a one-

compartment drug, the method reduces to that proposed in [1]. The

parameter estimates obtained using this method were compared with

the true parameters. Association of the individual estimate of relative

bioavailability during the outpatient part of the study with the com-

pliance status during this period was investigated. The ETA-on-

epsilon method was also tested on the data used for the profiles

method.

Results: Investigation of the ETA-on-epsilon method indicated that the

parameter estimates of the model that did not account for non-com-

pliance could be significantly biased, especially for the datasets that

included high fraction of non-compliant patients. Introduction of the

ETA-on-epsilon parameter significantly reduced the bias. Individual

ETA-on-epsilon values allowed identification of non-compliant sub-

jects. When subjects with high magnitude of the residual error were

removed from the dataset, bias due to non-compliance was further

reduced. During incremental removal of the subjects with the highest

ETA-on-epsilon values the population parameter estimates converged

to the true values until bias disappeared. At the same time, variance of

the ETA-on-epsilon random effect became smaller and then disap-

peared indicating that the ETA-on-epsilon random effect indeed was

caused by non-compliance. However, precision of the obtained

parameter estimates decreased

for the datasets with high fraction of non-complaint subjects that needed

to be removed from the dataset to obtain unbiased parameter estimates.

Investigation of the profiles method indicated that it allowed for the

unbiased estimates of the model parameters in the datasets with any

fraction of non-compliant patients. However, the method heavily

relied on the availability of rich data following the inpatient dose.

Simulated non-compliant subjects were estimated to have low bio-

availability during the outpatient part of the study. Thus, the estimates

of bioavailability can be used as an indication of compliance during

time preceding the inpatient dose.

The proposed methods allowed identification of subjects with non-

compliance and reduced or completely eliminated bias in the

parameter estimates for the simulated datasets with various sampling

schemes and fractions of non-complaint patients. Applications of

these methods to real data are ongoing.

The two proposed methods can be viewed as complimentarily

tools, each with its own advantages and limitations. The profiles

method should provide unbiased parameter estimates for any non-

compliance pattern but it can be applied only for the specific sampling

schemes that include relatively rich data following the inpatient (fully

compliant) dose. The ETA-on-epsilon method is not based on any

assumptions about the sampling schemes but it is unlikely to account

for the completely random non-compliance if it is present in the

majority of patients.

Conclusions: For a number of simulated datasets with various

sampling schemes and various fractions of non-compliant patients,

the proposed ETA-on-epsilon and profiles methods allowed

to identify subjects with compliance problem and to obtain the

unbiased estimates of model parameters. Even without additional

modifications, inclusion of the inter-individual random effect on

the residual error resulted in a significant reduction of the

Fig. 1 Weighted mean IRs (95 % CI) of malignancies (excluding

NMSC) for tofacitinib or biologic therapies used to treat moderate-to

severe RA. *Estimate from 28 TNF inhibitor studies
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estimation bias. The proposed methods offer a way to evaluate

the influence of compliance on the population PK parameter

estimates.
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Objectives: Spinal ropivacaine has been shown to provide effective

anesthesia and pain relief in surgical outpatients, but is currently not

licensed for intrathecal use [1–2]. This study was designed to develop

a population pharmacokinetic-pharmacodynamic (PK-PD) model for

optimizing the clinical use of this drug.

Methods: Ropivacaine (17.5 mg) was administered intrathecally

(L2) to ten orthopedic patients. Current perception thresholds (CPT)

in response to a gradual increase (20 lA every 3 s) in trans-

cutaneous electrical stimulation (primary endpoint) as well as

clinical assessment (ice-cold testing) were conducted in the thigh

area while ropivacaine plasma concentrations were determined up to

24 h after the administration of the local anesthetic. Two parallel

first-order absorption rate constants were used to characterize

the biphasic release of ropivacaine from its site of injection

(absorption compartment). An equilibrium rate constant (ke0)

between the absorption and hypothetical effect compartments was

added. Effect compartment concentrations were fitted to the

simultaneously acquired CPT data using a sigmoid Emax model in

NONMEM.

Results: Ropivacaine maximal response (Emax: 1860 ± 736 lA) was

observed within 10.8 ± 3.2 min of dosing, with a subsequent return

to baseline (E0: 127 ± 33.1 lA) 4.1 ± 0.7 h after the administration

of the local anesthetic. The increase and decrease in CPT correlated

well with the loss and recovery of ice-cold sensation, respectively.

Mean effect compartment equilibrium half-life (T1/2 ke0) was

8.1 ± 1.1 min. Interindividual variability (IIV) for the pharmacody-

namic model parameters (Emax, E0 and ke0) were 96, 80 and 35 %,

respectively. The effect-site amount producing 50 % of the Emax

(AE50) was 7.9 ± 1.5 mg (IIV = 33 %), which is accordance with

the ED50 (8.41 mg, 95 %CI: 7.15–9.67 mg) obtained from a previous

pharmacodynamic study after spinal injection of ropivacaine in

patients [3]. None of the model parameters, including apparent

clearance (Cl/F: 16.6 ± 2.3 L/h, IIV = 41.9 %) and volume of dis-

tribution (V/F: 83 ± 4.1 L, IIV = 25 %) showed sex, age or body

weight dependency.

Conclusions: A population PK-PD model was developed that quan-

titatively describes the time-course of sensory blockade during

intrathecal anesthesia in orthopedic patients. The model may be

useful to optimize ropivacaine dosing regimen.
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Objectives: This presentation will compare the key differences,

advantages, disadvantages, and thus best context for use of the Fisher

Information Matrix and a Decision Analytic objective function for

optimizing clinical trial design. The Fisher Information Matrix (FIM)

has been used as a metric to guide analyses seeking more informative,

and thus more optimal clinical trial designs. It seeks to demonstrate

which alternative sampling strategies, sample sizes, etc., reduce the

uncertainty in the conclusions from a trial’s result, as manifested in

the standard errors from a maximum likelihood model of the results.

Among the alternatives to the FIM is expected Net Present Value

(eNPV), one of the commonly used metrics from the field of Decision

Analysis. eNPV has also been used for years to guide pharmaceutical

decision-making, enabling the overt calculation of how valuable any

additional information gleaned will be using Value of Information

(VoI) analysis. VoI integrates the costs and benefits of alternative

outcomes with their probability of occurring, and the ramifications of

learning. Given its history of usage in the field of Modeling and

Simulation (M&S) FIM will be more familiar to most in that field,

while eNPV will not. Thus the types of problems each is best suited to

may not be clear to many M&S practitioners.

Methods: The presentation will illustrate how FIM and eNPV fare in

a variety of decision types by way of a fictitious drug development

example (this example mimics actual experiences the presenter has in

applying the methods). In it, proprietary data has been used to predict

how a new drug will fare in later stage development given the results

in earlier trials and with similar drugs, and given alternative designs

for a PoC (proof of concept) study. Both FIM and eNPV will be

computed using simulated PoC outcomes. For eNPV, the VoI will be

calculated given the impact on the cost, time to market, and value to

patients and prescribers. The results will be illustrated across types of

decisions (e.g., drivers in the trial, such as observation times, trial

duration, choice of primary endpoint, and sample size). This will be

compared against the ‘‘true’’ underlying simulated outcome for each

drug to gauge which conditions each objective function fares best at

yielding a decision that best benefits patients and the decision-makers.

Results: The example demonstrates under what conditions (e.g., whe-

ther a the design alternatives impact the time to market, cost of

development, the ‘‘option pricing’’ value of delaying decisions until more

is learned, the ability to design a better trial downstream, informing

communications with regulators), each objective function performs best.

Although fictitious to protect proprietary information, the example cites

real-life experiences applying such techniques. Finally, a discussion of

the practical realities of employing each method will be provided.

Conclusions: Both the Fisher Information Matrix and Decision

Analytic objective functions are helpful at informing decisions. How-

ever, the context of when each is better suited to inform truly optimal

decisions is different, with decisions the drivers of time, patient value,

and decision-maker information each being important to consider when

designing a trial. Finally, the practical realities of both methods, given

their technical backgrounds and analytic burden will be discussed.
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of Anastrozole (Arimidex) in Female Pediatric Subjects
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Objectives: (1) To describe the PK of anastrozole in pediatric girls

(age B10 years) with gonadotropin-independent precocious puberty

due to McCune-Albright Syndrome; (2) To identify the influence of

covariates on anastrozole disposition; (3) To estimate the interindi-

vidual and residual variability of anastrozole PK; and (4) To compare

the PK of anastrozole in female pediatric patients suffering from

MAS with adolescent boys with gynecomastia.

Background: McCune Albright Syndrome (MAS) is a rare disorder

characterized by precocious puberty, polyostotic fibrous dysphasia,

and café au lait spots. Traditional therapy of precocious puberty in

this disorder has been characterized by problems with both efficacy

and compliance. Preliminary data suggest that anastrozole may be

useful in suppression of estrogen action in precocious puberty sub-

jects with MAS. Although well studied in adults, the pharmacok-

inetics of anastrozole has not previously been studied in this pediatric

population.

Methods: Anastrozole concentration time data from two clinical

trials were used in this analysis. Study 0046 was an open-label, multi-

center, multi-national trial evaluating the safety and efficacy of a daily

oral dose regimen 1 mg anastrozole in 28 female pediatric (age

B10 years) patients with MAS. The study was prospectively designed

to include sparse blood sampling strategy for the evaluation using

population PK techniques. Four blood samples were taken from each

subject. Study 0001 was an open-label, PK and PD study of anas-

trozole 1 mg in 36 pubertal boys aged 11–18 years inclusive with

gynecomastia of recent onset. Rich data from the adolescent boy’s

study (14 samples per subject) were included in the analysis to

determine the structural PK for anastrozole and for comparison of

pediatric girls and adolescent boys anastrozole pharmacokinetics. The

data set for analysis contained 504 anastrozole concentrations from 36

adolescent male subjects and 111 concentrations from 28 pediatric

female subjects.

Base model development: Models were built using NONMEM soft-

ware (Version V Level 1.1). One- and two-compartment models with

first-order absorption and elimination were fit to the anastrozole

concentration–time data. The models were parameterized in terms of

CL, V and Ka. Interindividual variability for all parameters was

described using exponential error models. Random residual error was

expressed using the proportional model. First order conditional esti-

mate with interaction (FOCEI) method was used for all analyses.

Covariate model building: Statistical significance of each covariate-

parameter relationship was tested individually in a step-wise param-

eter addition method in NONMEM. Significance of parameters was

assessed at the p \ 0.01 level (decrease in the objective function of at

least 6.63 units for 1 df for Chi square distribution.). Covariates tested

included RACE, AGE, WT, HT, BSA, BMI, and LBM. Final model
development: Statistical significance of each covariate-parameter

relationship was tested individually in a stepwise deletion method.

Significance of parameters was assessed at the p \ 0.005 level

(increase of objective function value of at least 7.88 units for 1 df for

Chi square distribution). Model evaluation: Final model was evalu-

ated graphically by comparing the individual and population

predictions with the observed concentration and by bootstrap analysis.

Results: The results are summarized in the table and figures. A two-

compartment model with first-order absorption and elimination ade-

quately described anastrozole PK following a 1-mg once daily oral

dose regimen in female pediatric and male adolescent subjects. Model

parameters were estimated with good precision. Goodness of fit plots

indicated the model described the data well. The model indicated low

to moderate IIV on clearance (37.8 %) and central volume of distri-

bution (28.9 %). Of the covariates tested SEX and BSA were

significantly influential on CL/F and V/F, respectively. The

Table 1 Summary of typical anastrozole population pharmacokinetic

parameters of the final model

Model parameters Estimate (SE); CV % 95 %

confidence

interval

Apparent oral clearance,

CL/F (L/h)

1.83 (0.163) 1.51 to 2.15

Volume of distribution,

V/F(L)

58.9 (3.20) 52.6 to 65.2

Inter-compartmental

clearance, Q/F (L/h)

2.72 (0.321) 2.09 to 3.35

Steady-state volume of

distribution, Vss/F(L)

194 (25.8) 143 to 245

Absorption rate constant,

ka (1/h)

2.80 (0.334) 2.15 to 3.45

Effect of body surface area

on V/F V/F = h (2) + h
(6)*(BSA–1.58)

52.3 (4.22) 44.0 to 60.6

Effect of sex on CL/F

CL/F = h (1)*(1 + h
(7)*SEX)

-0.466 (0.0654) -0.594 to -0.338

Inter-individual variability

CL/F

0.143 (0.0336); 37.8 % 0.0771 to 0.209

Inter-individual variability

V/F

0.0838 (0.0232); 28.9 % 0.0383 to 0.129

Residual variability 0.0187 (0.00295); 13.7 % 0.0129 to 0.0245
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unexplained residual variability was low (13.7 %). The model indi-

cated that girls had a lower predicted CL/F than boys, 0.977 versus

1.83

L/h, a 46.6 % decrease. Anastrozole exposure Cmax and AUC was 70

and 34 %, respectively, higher for girls than boys. Model-predicted

values for steady-state Cmax and AUC were 63.1 ng/mL (range:

35.8–108 ng/mL) and 941 ng h/mL (range: 608–1770 ng h/mL) for

the girls and 37.2 ng/mL (range: 14.5–67.6 ng/mL) and 701 ng h/mL

(range: 236–1330 ng h/mL) for the boys, respectively. The younger

girls (3–6 year old) had the highest exposure to anastrozole, with

mean Cmax and AUC values of 68.2 ng/mL (range: 43.3–108 ng/mL)

and 943 ng h/mL (range: 608–1770 ng h/mL), respectively, which

were 83 and 34 % higher than in boys (Table 1).

Conclusions: The final two-compartment model with first-order

absorption and elimination adequately described the concentration

data well with low to moderate inter-subject variability. Overall, the

exposure of anastrozole was higher in girls than boys (Figs. 1, 2).

T-050 Prediction of Shrinkage of Individual Parameters

Using Bayesian Information Matrix in Nonlinear Mixed

Effect Models with Evaluation in Pharmacokinetics

François Combes1,2,3, Sylvie Retout2, Nicolas Frey2, France Mentré1,*

1INSERM, UMR 738, Univ Paris Diderot, Sorbonne Paris cité, Paris,

France; 2Pharma Research and Early Development, Clinical

Pharmacology, F. Hoffmann-La Roche ltd, Basel, Switzerland;
3Institut Roche de Recherche et Médecine Translationnelle,

Boulogne-Billancourt, France

Objectives: In population pharmacokinetics (PK), precision of pop-

ulation parameter estimates depends on design and are evaluated

using Fisher information matrix. Individual parameters are usually

estimated by the maximum a posteriori (MAP) and precision of

individual estimates can be evaluated using the Bayesian fisher

information matrix (MBF) [1]. Shrinkage of individual parameters

towards the mean occurs when information is sparse and can be

quantified as a reduction of variance of the estimated random effects

(RE) [2]. This study aims at (1) exploring the relationship between

BMF and shrinkage in order to propose a prediction of shrinkage and

(2) evaluating by simulation the prediction of individual parameter

precision and shrinkage.

Methods: We first derived the expression of MBF for additive RE and

constant residual error and then extended it for exponential RE and/or

combined residual error, using first order approximation of the model.

Using the formula of shrinkage in linear mixed effects models, we

derived a prediction of shrinkage from MBF. Regarding the evaluation

by simulation, we simulated data from sparse and rich design for two

PK examples: a simple one (one compartment) with six different

scenarios (additive or exponential RE, with low and high variabilities,

additive or combined residual error); a more complex example

derived from a real case study [3] (two compartment, dual linear and

non-linear elimination). We used NONMEM 7.2 and MONOLIX 4.0

to perform individual estimation via MAP assuming known popula-

tion parameters and fixed to their exact value. We also recorded

individual standard errors (SE). We then compared predicted and

estimated individual SE for each scenario and example as well as the

predicted and estimated shrinkage, evaluated using the formula with

ratio of variances.

Results: For the simple example, considering all scenarios and

designs, predicted SE of the two parameters using MBF were close to

the estimated SE with both software and varied as expected with the

richness of the design and the variabilities. There were also a very

good agreement (almost identity line) between estimated shrinkage

(which varies from 0 to 70 %) and predicted shrinkage. Similar

results were observed for all the parameters of the real example.

Conclusion: The Bayesian Information Matrix allows to evaluate

impact of design on precision of individual parameters and to predict

shrinkage. It can be used for design optimization and will be imple-

mented in PFIM.
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T-051 Enantioselective Pharmacokinetics of Indobufen,

an Inhibitor of Platelet Aggregation
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Fig. 1 Anastrozole plasma concentration—time after dose for girls

(left) and boys (right)
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centration—time after dose for girls—single dose (left), steady-state

(right) (final model)
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Objectives: Ibutstrin� (Indobufen), a reversible inhibitor of platelet

aggregation is effective in the prophylaxis of thromboembolic events

at risky patients [1]. Ibutstrin� exists in two enantiometric forms and

S-indobufen is known to be more potent [2]. This study was per-

formed to characterize the pharmacokinetics (PK) of each enantiomer

of indobufen and its association with genetic polymorphisms of UDP

glucuronosyltransferases (UGT).

Methods: Serial blood samples were collected from 12 Korean

healthy adult male volunteers after single oral administration of

ibustrin�, 200 mg, to characterize the PK of indobufen. Plasma

concentrations of S- and R- enantiomer of indobufen were measured

by validated high performance liquid chromatography, respectively.

Six common UGT1A genotypes were determined by SNaPshot or

real-time PCR method. PK was analyzed by non-compartmental

(NCA) methods using WinNonlin� 5.2 (Pharsight Corporation,

Mountain View, CA), and by compartmental modeling using NON-

MEM� 7.2 (ICON Development Solutions, USA).

Results: Mean AUCinf and Cmax of R-indobufen (319.7 h*mg/L,

27.8 mg/L) were higher than those of S-indobufen (222.4 h*mg/L,

22.5 mg/L). Both of S- and R-indobufen were best fitted by two

compartment disposition model. The absorption was complex and

weibull model with first order kinetics (Ka) and mixed zero (D1) and

with absorption lag (ALAG1) best described the concentration–time

data in the absorption phase. There was no significant association

between the PK and UGT1A genotypes in both of S- and R-indobufen.

Conclusions: This study provided us the basic phasic PK information

comparing both form of indobufen enantiomers. This result could be

useful for the optimal drug therapy, and for the development of

enantioselective, novel indobufen formulation.
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T-052 Model-Based Meta-Analysis in Rhematoid

Arthritis: Correlation of DAS28 and ACR50 Treatment

Effects
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Objectives: ACR20/50/70 and DAS28 are clinical efficacy endpoints

for rheumatoid arthritis (RA) studies. Studies powered for DDDAS28

(i.e., DAS28 change compared to baseline and control) require

smaller sample sizes than those powered for DACRs (i.e., ACRs

change from control), while ACRs are ultimately required for drug

approval in the US. Thus quantitative understanding of the correlation

between the two endpoints could aid interpretation of earlier-stage

study results and provide justification for study designs powered for

DDDAS28 assessment.

Methods: Data were obtained from published randomized controlled

RA trials in patients with minimum treatment duration of 12 weeks.

Paired data on DAS28 and ACR50 (logit transformed) at the pre-

determined primary time point (ranged from 12 to 54 weeks) for each

trial were analyzed using a nonlinear regression model implemented

in S-PLUS 8.2. Numerous covariates were also tested in the model.

Results: Data used in the analysis were from 26 trials, representing over

11,000 patients and 7 drug classes, including anti-TNF (infliximab,

adalimumab, certolizumab, golimumab), anti-IL17 (ixekizumab), anti-

CD28 (abatacept), anti-CD20 (rituximab), anti-IL6R (tocilizumab),

DMARD (methotrexate), and glucocorticoids. The correlation of

DDDAS28 and DACR50 was well described by the model. The esti-

mated mean scaling factors (SC) between DDDAS28 and DACR50

were significantly different across drug classes, i.e., -1.46, -0.95, -

1.25 for anti-TNF, anti-IL6R, and other drug classes combined,

respectively. In addition, trials with higher baseline DAS28 were more

likely to show lower DACR50 than trials with lower baseline DAS28.

However, the effects of DAS28 in control groups, DDDAS28, and

treatment duration on SC were not statistically significant.

Conclusions: Treatment effects of DAS28 and ACR50 are moder-

ately correlated. The correlation can be affected by drug class and

baseline DAS28. The model may be applied to aid clinical trial

designs with the sample size powered based on target DDDAS28.

The results in this abstract have been previously presented at the

ASCPT 2013 Annual Meeting. Indianapolis, Indiana, March 5–9,

2013 and published in the conference proceedings.

T-053 Clinical Trial Simulation to Evaluate

Concentration-controlled Regimens and Probability

of Trial Success for Tofacitinib in Kidney Transplant
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and Michael Tortorici5
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Objectives: Tofacitinib is a novel, oral Janus kinase inhibitor being

investigated as a targeted immunomodulator. Tofacitinib achieved

similar rates of biopsy-proven acute rejection and improved renal

function compared with cyclosporine (CsA) in a Phase 2b study in de

novo kidney transplant (KT) patients. Using data from this study,

time-to-event models, driven by subject-specific two-hour post-dose

concentrations (C2) were developed for four endpoints: biopsy-pro-

ven acute rejection (BPAR), cytomegalovirus disease (CMVD),

serious infection (SI), and post-transplant lymphoproliferative disease

(PTLD) [1]. The objective of this investigation was to evaluate,

through simulation, several real-world therapeutic drug monitoring

(TDM) regimens and two dose-adjustment algorithms with respect to

their predicted twelve-month BPAR, CMVD, SI and PTLD incidence

rates. The purpose was to assess the probability of success for an

active-control Phase 3 study of tofacitinib in kidney transplant

patients. In this case, successful optimization of the tofacitinib TDM/

dose-adjustment algorithm was defined as demonstrating non-inferi-

ority to active control in Month 12 BPAR incidence under the

proposed trial design.

Methods: Each simulated trial was a parallel group, active controlled

trial with 225 patients per arm. The clinical trial simulations were

comprised of the following steps. First, longitudinal C2 values con-

ditional on the TDM regimen and dose-adjustment algorithms were

simulated. Conditional on the simulated C2 values, the four clinical

endpoints of interest were simulated. The proposed Phase 3 program

consists of an active comparator arm of the standard-of-care agent

tacrolimus. Therefore, for each simulated clinical trial in this analysis,
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the tacrolimus BPAR rates were simulated. The TDM/dose-adjust-

ment regimens that were evaluated in this investigation included three

concentration-controlled regimens (for which the target concentration

window and target duration in the window varied over time) and two

hybrid regimens (which combined elements of concentration-con-

trolled and fixed-dose regimens). For the concentration-controlled

regimens, two dose selection algorithms were evaluated. The ‘Sim-

ple’ algorithm selects the dose using a simple decision-tree based on

the most recent C2 value. The alternative was a novel Bayesian

algorithm that maximizes the probability of placing the patient in the

target concentration range based on the aggregate subject-specific C2

data. In total, there were 8 combinations of TDM regimen and dose

adjustment algorithms.

TDM regimen type TDM regi-

men name

Dose adjustment algo-

rithms evaluated

Concentration-controlled High

exposure

(HE)

‘Simple’ and Bayesian

Low

exposure

(LE)

‘Simple’ and Bayesian

Gradual

decline

‘Simple’ and Bayesian

Hybrid (concentration-

controlled to fixed dosing)

Hybrid high

exposure

Bayesian

Hybrid

gradual

decline

Bayesian

For the active comparator, the posterior predictive distribution for

twelve-month BPAR rates was obtained by fitting a Beta-binomial

model to the summary-level data from Ekberg [2], and an estimate of

the between-study variability in twelve-month BPAR rates was

obtained from a random effects meta-analysis model fit to data from

five tacrolimus trials using regimens similar to those which are

planned for the Phase 3 study [2–6].

All simulation was done in R, version 2.14.1. Uncertainty in the

exposure–response models was incorporated using bootstrap distri-

butions, which were generated using the metrumrg R package [7] and

NONMEM version 7.2.0.

Results: In the assumed patient population, the expected twelve-

month BPAR rates for tofacitinib ranged from 16.5 to 19.7 % across

the 8 regimens/algorithms, as compared to 13.1 % for tacrolimus. The

expected CMVD infection rates ranged from 1.6 to 5.9 %; the

expected SI rates ranged from 28.4 to 31.4 %; and the expected PTLD

rates ranged from 1.1 to 1.6 %. In general, regimens/algorithms with

lower exposures had lower CMVD, SI and PTLD rates and higher

twelve-month BPAR rates.

Comparing the dose adjustment algorithms, the Bayesian algorithm

performed better than the Simple algorithm (Fig. 1). The Bayesian

algorithm placed 10–20 % more patients in the target concentrations

ranges, and the Simple algorithm placed 5–20 % more patients above

the target concentration ranges, resulting in higher median C2 values.

Using a non-inferiority margin for a difference in twelve-month

BPAR rates of 20 %, 6 of 8 regimens/algorithms have a probability of

achieving non-inferiority, or probability of technical success (PTS) of

greater than 80 %, with the concentration-controlled regimen that

targeted the highest concentrations achieving &90 % PTS. However,

the PTS drops considerably as the non-inferiority margin is decreased

(Fig. 2).

Conclusions: For the three concentration-controlled regimens, the

majority of patients can be put into the target concentration ranges

using either the Bayesian or Simple dose selection algorithm. How-

ever, in these simulations the Simple algorithm results in a larger

fraction of patients above the target ranges than the Bayesian algo-

rithm. These higher average exposures lead to corresponding higher

infection rates and lower BPAR with the Simple algorithm. Further,

use of real-world simulation scenarios and TDM/dose adjustment

schedules has the potential to achieve improved outcomes in clinical

trials.

Fig. 1 Comparison of dose adjustment algorithms for placing

patients in the target concentration range

Fig. 2 Comparison of algorithms for probability of declaring non-

inferiority
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T-054 Preliminary Mechanistic Pharmacokinetic Model

for the Quantitative Determination of Ropivacaine

Systemic Absorption during Femoral Nerve Block

in Anesthetized Rabbits

Fady Thomas1,*, Pierre Drolet2, France Varin1

1Faculté de pharmacie, Université de Montréal, Montréal, QC,

Canada; 2Département d’anesthésie et réanimation,
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Objectives: Peripheral nerve block represents the best balance between

analgesia and side effects as a choice of postoperative analgesic tech-

nique for major knee surgery [1]. Current recommendations on the use

of local anesthetics (LA) do not take into account factors such as the

varying local disposition at different sites of administration. To provide

the most appropriate and safe peripheral nerve block, a characterization

of local disposition is highly needed [2]. In order to thoroughly describe

in a quantitative manner, the systemic absorption of LA during a fem-

oral nerve block, we developed a mechanistic pharmacokinetic model

in rabbits by simultaneously fitting unbound ropivacaine plasma and

perineural concentrations.

Methods: A femoral nerve block guided by neurostimulation was

performed under isoflurane anesthesia in seven New Zealand male

rabbits. Adequate placement was confirmed when a motor response

was elicited with a current less than 0.3 mA. A microdialysis probe

was concomitantly implanted at the injection site (depot) and left to

equilibrate [3]. Ropivacaine 0.5 % (6 mg in 4 min) was then injected.

Dialysates and plasma samples were collected for up to 12 h and

subsequently analyzed for ropivacaine concentration using a previ-

ously developed HPLC–UV method [4]. Unbound plasma and local

concentration–time profiles were obtained and simultaneously fitted

using NONMEM� (version VII). The absorption rate (k13) estimated

by our mechanistic model was compared with that obtained using

Loo-Riegelman method, a deconvolution technique often used in

clinical settings where local concentrations are ethically unobtainable.

For this purpose, we used ropivacaine disposition parameters previ-

ously obtained after intravenous administration in three rabbits.

Results: After testing different pharmacokinetic models, the follow-

ing mechanistic model was identified to best describe local and

systemic unbound ropivacaine concentration–time data following a

femoral nerve block.

Dose

k12 k21

Depot 
(1)

Tissue 
(2)

CL13 CL30

k34

Peripheral 
(4)

k43

Central
(3)

Local 
distribution

Systemic 
distribution

It consisted essentially of two local compartments: deposit (1) and

tissue (2) and two systemic compartments: central (3) and peripheral

(4). Intercompartmental rate constants from tissue to depot com-

partment (k21), from depot to the tissue compartment (k12), from

central to peripheral (k34) and from peripheral to central compart-

ment (k43) were obtained. Parameters such as clearances from the

depot (CL13) and central (CL30) compartments, and their respective

volumes of distribution (V1 and V3) were also estimated. Preli-

minary parameter estimates with their interindividual variability

are presented in Table 1. Systemic absorption (k13 = CL13/V1)

and elimination (k30 = CL30/V3) first-order rate constants were

calculated.

Deconvolution results indicate that only 60.5 % of the dose was

absorbed after 12 h with a slow absorption rate constant of

0.004 min-1. This value is almost tenfold slower than that estimated

in our model (k13 = 0.027 min-1) but not significantly different from

that of k21 (0.0077 min-1).

Conclusions: This study represents the first mechanistic pharmaco-

kinetic model for LA after a peripheral nerve block. It suggests that

the rate-limiting step for ropivacaine disposition after a femoral nerve

block is the rate of release from the surrounding nerve tissues and not

that of systemic absorption. This knowledge will provide support to

the assumptions made during the development of a pharmacokinetic/

Table 1 Preliminary parameter estimates with interindividual vari-

ability (CV %) using the mechanistic pharmacokinetic model for local

and systemic unbound ropivacaine concentrations after femoral nerve

block with a dose of 6 mg during 4 min in anesthetized rabbits

Parameter Unit Estimate (CV %)

k12 min-1 0.0288 (42.5)

k21 min-1 0.0077 (25.5)

CL13 mL min-1 0.0268 (17.5)

V1 mL 0.996 (42.3)

CL30 mL min-1 101.3 (20.4)

V3 mL 27100 (22.2)

k34 min-1 0.022 (47.4)

k43 min-1 0.0072 (41.9)

k13 min-1 0.027 –

k30 min-1 0.0037 –

CV % coefficient of variation of parameter estimates
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pharmacodynamic model that would predict LA analgesic effect in

patients receiving a femoral nerve block.
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Objectives: Sildenafil (REVATIO�), 20 mg TID, received approval

for the treatment of adult PAH in US and Europe. A pediatric study

had been performed in patients (1–17 years) [1] and sildenafil

(REVATIO�) was subsequently approved in Europe for the treatment

of pediatric PAH, with a dose regimen of 10 mg for children B20 kg

body weight, and 20 mg for children above 20 kg. The long-term

extension of the pediatric study revealed very good overall survival

results with 84 % of patients still alive after 4 years of treatment.

However, an increase in mortality with higher doses was also

observed [2]. The objectives of this analysis were to adequately

characterize the exposure-mortality relationship by accounting for

longitudinal changes of potential covariates on mortality and to utilize

the resulting model to assess the design of a mortality trial in adults

for its interpretability [3].

Methods: During the extension of the pediatric trial (n = 234,

1–17 years), patients were randomized to a Low, Medium or High

dose group with nominal doses ranging from 10 to 80 mg depending

on patients body weight, with dose adjustments according to body

weight changes. A survival analysis using a time varying hazard

model was performed in NONMEM7 to characterize the relationship

between survival, etiology, and baseline or time varying covariates,

body weight and WHO functional class, and drug exposure. Clinical

trial simulations were performed in R to assess a survival trial in

adults using three dose levels, 5/20/80 mg TID, to quantify the impact

of confounding factors such as add-on therapy on its readout.

Results: Survival in pediatrics was found to be mainly impacted by

etiology in addition to sildenafil exposure: a hazard ratio of about 2

was estimated for primary versus secondary PAH patients at the same

exposure level. The higher mortality with higher doses was ade-

quately described using average steady state concentration as a time

varying variable which integrated sildenafil clearance and dose, and

body weight changes over time. Simulations revealed, that if the

exposure-mortality response observed in children would apply to

adults, the risk of wrongly concluding non-inferiority of 80 mg versus

5 mg is predicted to be very low. But this risk could significantly

increase if the trial conduct is impacted by longitudinally confounding

factors especially their combination.

Conclusions: The adequate characterization of survival drivers made

it possible to assess the outcome of a non-inferiority survival trial in

adults and the potential impact of external confounding factors during

the study conduct. This work contributes to the design of an adult

mortality trial and the assessment of its interpretability.
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Objectives: EFB0027 (MetDR; Elcelyx Therapeutics, Inc., San

Diego, CA) is a delayed-release (DR) metformin tablet formulated to

target delivery of metformin to the lower gut to promote incretin-like

effects while decreasing systemic exposure. MetDR has been dem-

onstrated in Phase I studies to provide similar glucose reduction to

metformin immediate-release (MetIR), despite lower metformin

exposures. The decreased systemic exposure of metformin should

reduce accumulation, resulting in improved safety, especially in

subjects with declining renal function, while maintaining efficacy.

Thus, this formulation may overcome current contraindications and

tolerability issues with approved formulations of metformin in type II

diabetes mellitus (T2DM) patients. The objective of this analysis was

to characterize the pharmacokinetics of MetDR and compare the

absorption and bioavailability to MetIR.

Methods: Data from a four-period randomized cross-over Phase I

study in 21 middle-aged and elderly male and female T2DM patients

with normal renal function were used to construct a dataset for

population pharmacokinetic (popPK) modeling. In each period,

MetIR and/or MetDR was administered with food for 5 days

according to one of the following treatments: (A) 2000 mg MetIR

daily given as 1000 mg twice daily (BID), (B) 2000 mg MetDR daily

given as 1000 mg BID, (C) 1000 mg MetDR daily given as 500 mg

BID, or (D) 1000 mg MetIR + 2000 mg MetDR daily given as

500 mg BID MetIR + 1000 mg BID MetDR. Plasma samples were

collected on Day 4 immediately prior to and 120 min after the

evening (PM) dose and on Day 5 immediately prior to and up to 11 h

after the morning (AM) dose. Data from Treatments A, B, and C were

used for modeling. NONMEM� (version 7.2.0) with the FOCE-I

estimation method was used to develop the popPK model. Selection

of the final metformin model was based on goodness-of-fit plots, the

minimum value of the objective function as a statistical evaluator, and

parameter estimate precision as measured by the percent relative

standard error (%RSE). To assess the predictive ability of the popPK

model, a visual predictive check (VPC) was done. Model- and non-

compartmental analysis- (NCA) derived areas under the concentration–

time curves from the time of dosing to the time of the last quantifiable

concentration (AUC0-t) were also compared.
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Results: A one-compartment model with linear elimination charac-

terized the disposition of both metformin formulations. MetIR was

well described by a first-order absorption model with no lag time. To

describe the complex concentration–time profiles following MetDR

administration, a number of different absorption models were inves-

tigated for MetDR that explored first-order and saturable absorption,

time-of-dose and dose dependent bioavailability, and circadian vari-

ations in the absorption process. MetDR absorption was best

described by a model with saturable absorption, with a maximum

absorption rate that follows a circadian rhythm, an absorption lag

time, and a bioavailability relative to 1000 mg BID MetIR (Frel) that

is dependent on dose and time of dose administration (AM vs. PM).

Between-subject variability was identified on CL/F and on the amount

of drug at the absorption site at which the absorption rate is half-

maximal. Between-occasion variability was identified on the circa-

dian rhythm phase shift for MetDR and the bioavailabilities of MetIR

and MetDR. A proportional residual error model was applied. Most

fixed effect parameters were well estimated, as was the residual error.

Frel of 500 mg BID and 1000 mg BID MetDR following the AM dose

were estimated as 82.0 % (20 % RSE) and 56.6 % (14 % RSE),

respectively. MetDR bioavailability was predicted to be higher fol-

lowing the PM dose than the AM dose, although additional sampling

at night will be required to accurately quantitate the difference. The

lag time for MetDR absorption was estimated to be 3.86 h (0.8 %

RSE). The model was also able to adequately capture concentration–

time profiles following administration of MetIR and both doses of

MetDR. VPC results also indicated good model performance for the

different treatments. The model-derived AUC0-t values corresponded

well to those calculated by NCA.

Conclusions: A popPK model was developed that described the

absorption and disposition of IR and DR metformin formulations,

capturing the unique absorption properties of the MetDR formulation.

The results are consistent with saturable absorption of metformin [1]

and current understanding of gastrointestinal function associated with

circadian rhythms [2]. This popPK model will be updated as more

data become available and will serve as a framework for performing

simulations to understand metformin accumulation in T2DM patients

in order to determine safe and effective doses of MetDR.
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Objectives: Although preclinical evaluation of uricosuric agents is

limited due to presence of uricase enzyme in small animals, the

isolated perfused rat kidney model (IPRK) is a potentially useful

tool to evaluate the disposition and activity of novel uricosuric

compounds. The objectives of this research are: (1) To develop a

PBPK model for uric acid disposition in the IPRK. This PBPK model

was used to predict baseline uric acid excretion for evaluation of

uricosuric activity of the test compound. (2) To develop a PBPK-PD

model to characterize the renal disposition and uricosuric effect of test

compound in the IPRK. The test compound is a novel chemical entity

with demonstrated high affinity for the rat URAT1 transporter. The

compound also exhibits relatively high protein binding.

Methods: IPRK experiments were conducted using male Sprague–

Dawley rats (250–350 g). Baseline uric acid excretion data were

obtained over a range of initial uric acid concentrations (1–7 mg/dL).

Uricosuric activity was evaluated at two different concentrations of test

compound (50 and 100 lg/mL), at 1 mg/dL uric acid concentration. In

order to increase filtration fraction of the compound, experiments were

performed at low perfusate albumin level (0.25 % W/V). Urine samples

were collected for 10 min interval with perfusate sample withdrawn at

midpoint. Drug and uric acid concentrations in perfusate and urine

samples were analyzed using HPLC. GFR was determined as inulin

clearance. As shown in Figs. 1 and 2, PBPK models for baseline uric

acid excretion (Fig. 1) and uricosuric activity (PBPK-PD model, Fig. 2)

were developed through modification of a published model [1]. Per-

formance of PBPK model to predict baseline uric acid excretion in the

IPRK was evaluated by simulating 1000 replicates of data set (result not

shown). Population PK-PD analysis was performed by NONMEM VII

using FOCE-I method. Goodness of fit was assessed by visual inspec-

tion of diagnostic plots, uniform distribution of random errors, standard

errors of parameter estimates and parameter plausibility.

Results: Viability of kidney preparations was monitored throughout

experiments and found acceptable for all IPRK experiments though

performed at low perfusate albumin level. %FEUA (percentage of

Fig. 1 PBPK model for uric acid disposition in the IPRK
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filtered uric acid excreted in urine) was directly related to uric acid

reabsorption, and the parameter was used as a biomarker to quantify

uricosuric activity of test compound. %FEUA was found to increase

with perfusate uric acid concentration, and this nonlinear behavior of

uric acid excretion was best described by incorporating Michaelis–

Menten kinetics for URAT1-mediated uric acid reabsorption into the

model (Fig. 1). Due to the absence of experimental data at higher uric

acid concentrations that could achieve maximum reabsorption capacity

(i.e., saturation), maximum transport rate (TMAX) for uric acid could not

be estimated, and its value was fixed at 110 lg/mL based on best-fitting

of data observed in diagnostic plots. The PBPK model for uric acid

disposition in the IPRK fitted individual profiles well (Fig. 3). Final

population estimates of KM, CL32,UA, V1,UA and V2,UA for the model

were 505 lg/mL, 0.228 mL/min, 83.1 mL and 0.639 mL, respectively.

Interindividual variance implemented on TMAX and V1,UA were esti-

mated as 18.3 and 11.0 %. The model-generated estimate of KM was

higher compared to the value obtained in vitro using membrane vesicles

(KM * 190 lg/mL) [2]. The PBPK model for uric acid disposition was

used to predict baseline %FEUA in perfusion experiments evaluating

uricosuric activity of test compound. Activity was quantified as an

increase in %FEUA from predicted baseline, and correlated with con-

centration of test compound in the tubular urine using an Emax model

(Fig. 2). Concentrations of test compound as well as uricosuric effect

were well characterized by the proposed PBPK-PD model (Fig. 4).

Final population estimates of CL23,D, CL32,D, CL34,D, V1,D, Emax and

EC50 for the test compound were 6.24 mL/min, 0.0751 mL/min,

0.0169 mL/min, 76.2 mL, 22.8 and 16.6 lg/mL, respectively whereas

interindividual variance on CL23,D was estimated to be 36.3 %. Relative

standard errors for all parameters estimates ranged from 1.9 to 80 %.

Conclusions: The PBPK model for uric acid disposition developed in

this research successfully predicts baseline uric acid excretion in the

IPRK model. Likewise, the PBPK-PD model allowed for precise

characterization of the disposition of test compound and its uricosuric

activity in the system. However, caution must be used when extrap-

olating these results in humans, as species differences in URAT1

transporter activity may prevent successful correlation to the clinical

setting.
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Objectives: Optimal experimental designs have been successfully

applied to increase the efficiency and minimize cost of PK/PD clinical

trials by optimizing dose allocation and sampling schedules [1, 2].

Fig. 2 PBPK-PD model for disposition and uricosuric activity of test

compound in the IPRK

Fig. 3 PBPK model for uric acid disposition in the IPRK: Observa-

tions and individual predictions of perfusate concentration, urine

concentration and %FEUA versus time for a representative perfusion

experiment (solid line, predicted PK profile; open circles, observed

data)

Fig. 4 PBPK-PD model for disposition and uricosuric effect of test

compound in the IPRK: Observations and individual predications of

perfusate concentration, cumulative amount excreted in urine and

FEUA versus time for a representative perfusion experiments (dotted
line, baseline %FEUA predicted from PBPK model; solid line,

predicted PK and PD profile for test compound; open circles,

observed data)
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These techniques rely on the maximization of the information content

which can be extract from a particular experiment, allowing to

improve precision and accuracy of parameter estimates.

Typical optimal design (OD) algorithms use the model description of

the investigated system to set the experimental variables by mini-

mizing the estimation error of model parameter estimates [3].

However, OD requires detailed information about the model of the

investigated system and reliable prior values for its parameters.

On the contrary, Adaptive optimal designs (AOD) have been

proposed for the sequentially optimization of the design in population

studies [4, 5]. These are sub-optimal approaches which combine the

information gathered from previous experiments with model-based

prediction of the investigated system. Differently from OD, AOD

allows to refine the choice of experimental variables while the

experiment is still running. This approach could provide greater

robustness in the presence of prior parameter misspecifications

compared to OD. On the other hand, change of experimental design

may represent a cost and it cannot be always performed. Thus, the

type of experimental design strategy to be used should be evaluated

case by case, considering all the experimental constraints of the

system.

In this work we present AODware, an integrated package for

experimental design evaluation via model-based simulations.

Methods: The software. AODware consists of three independent

functional blocks: simulation, estimation and optimization (Fig. 1).

The simulation block generates simulated data based on a particular

model of system, including population parameter values (fixed and

random effects), measurement error variance and experimental setting

considered by the user. From simulated data, the estimation block
provides the corresponding nonlinear mixed effect model estimates.

The estimates are computed automatically using NONMEM [6]. The

optimization block provides optimal doses and sample times given a

certain model and a set of parameter priors. The optimization block is

based on the POPED package [7] a software tool specifically devel-

oped for optimal design in population kinetics. The integration of

these elements allows the user to easily quantify and to compare the

performance of different experimental designs. AODware has been

designed with particular attention to some structural elements: (1) a

multi-level architecture, (2) the presence of expandable libraries and

(3) the use of external software automatically driven by the program.

This choice was done to maximize the robustness and efficacy of the

program.

The simulation studies. We applied AODware in three cases of

interest: oral dosing of Cadralazina [8], oral dosing of Theophylline

[9], and receptor occupancy PET studies [5]. For each case different

experimental designs (optimal and adaptive optimal) were tested and

the estimates of population PK/PD model parameters were compared

with the corresponded true values. Prior parameter misspecification

was considered to evaluate the robustness of AOD performance

respect to OD. Parameter %biases and RMSE error were used as

performance indexes.

Results: The presence of a unique environment for both data simulation

and parameter estimation has allowed AODware to easily compare the

performances of different experimental design algorithms (adaptive

and non-adaptive) in different PKPD contexts, by providing a direct

indication about the advantages of a specific experimental design

respect to others. In the Cadralizina case, for example, the application of

optimal design with uncorrected hypothesis about the drug kinetic

demonstrated to be almost comparable to the optimal non-misspecified

design (Fig. 2), with the only exception of the distribution volume

which resulted significantly biased. In the case of PET receptor binding

model, instead, AODware showed the possibility to use adaptive opti-

mization to recover from the application of an initial uninformative

dose (Fig. 3). This use of AODware allows also to perform a sensitivity

Fig. 1 AODware hierarchical organization. The scheme shows the

organization of the functional blocks and the data flow adopted in the

program. The program architecture follows the model-view-controller

design pattern

Fig. 2 Comparison between optimal and adaptive optimal designs in

Cadralazine. Bias % and RMSE % are reported for all the population

parameters and all the tested designs. Kel and V indicate respectively

Caladrazine drug elimination and distribution volume. Black bars

refer to OD applied without misspecification (D-optimality criteria);

light-gray bars refer to OD applied with misspecification (+150 % per

parameter); dark-gray and white bars indicate AOD results respec-

tively after first and second iteration, starting with a misspecified

hypothesis

Fig. 3 AOD in receptor occupancy PET studies. Bias % and

RMSE % are evaluated after 3 following iterations of the algorithm

(black, gray and white bars respectively). Optimization was per-

formed over both time sampling and administered drug dose. a The

results obtained with initial informative dose. b The results achieved

starting with uninformative dose. The same initial time setting was

applied to both scenarios. In both cases, independently from the

starting conditions, adaptive optimization produced a significant

decrease of estimate precision and accuracy
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analysis, by quantifying the variability of precision and accuracy of

model parameter estimates to a particular experimental variable.

Conclusions: AODware represents an integrated solution for exper-

imental design evaluation, generally applicable to a wide range of

PKPD studies. The use of simulations and subsequent estimations

allows evaluating the effects of experimental variables (i.e., doses,

number of subjects, sampling time, …) on the model parameter

estimation. Moreover, it offers the possibility to evaluate the impact

that biased initial parameter assumptions have on the experiment

definition. In light of these results, AODware may represent a useful

tool to guide the experiment settings in PKPD studies.
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Objectives: Non-Hodgkin’s lymphoma (NHL) is a B cell neoplasm

and the most common hematological cancer in adults. Rituximab, a

CD20-targeting monoclonal antibody, induces death of B cells

through immune-mediated effector functions, direct effects on tumor

cells, and sensitization to chemotherapy [1, 2]. One possible mecha-

nism of cellular sensitization to cytotoxic drugs by rituximab is the

inhibition of the NFjB pathway with subsequent downregulation of

the mitochondrial anti-apoptotic protein Bcl-xL as shown in Ramos

cells [3]. Although rituximab-based therapies are standard treatment

for NHL, design of combination regimens remains empirical.

An integrated systems pharmacodynamic model, linking molecular

mechanisms of rituximab action to tumor responses, has been

developed to predict synergistic antitumor effects of rituximab

administered with fenretinide or rhApo2L in NHL xenografts [4].

Such an approach might facilitate the design and optimization of new

combination regimens. This study aims to assess the predictive per-

formance of this model for a second rituximab-based chemotherapy in

a xenograft system of NHL.

Methods: Our prior model [4] was modified to predict the combi-

natorial efficacy of rituximab and doxorubicin in Ramos lymphoma

xenografts in mice. Pharmacokinetics of rituximab and doxorubicin

drive the subsequent pharmacodynamics. Binding of rituximab to

CD20 on the cell surface triggers tumor growth inhibition, direct

apoptosis, and intracellular signal transduction. The cytotoxic effect

of doxorubicin is sensitized through modified signaling when used in

combination with rituximab (Fig. 1). Parameters associated with

single-drug disposition and efficacy were identified separately from

literature sources and a pilot study, and the system-specific parameter,

natural tumor growth, was determined from a control group in this

xenograft study. Ramos human B lymphoma cells were injected

subcutaneously into severe combined immunodeficiency (SCID)

mice. Once tumors were palpable, three groups of mice received

rituximab (once dose weekly), doxorubicin (three doses weekly), or

their combination. Tumor volumes were monitored over time, and

four tumor samples from each treatment group were excised at the

end of the experiment for biomarker measurement. Expression of

anti-apoptotic protein Bcl-xL was quantified by western blot, and the

relative changes of Bcl-xL/b-actin levels in treated tumors were

compared with the controls. Unperturbed tumor growth was estimated

from fitting control tumor volume profiles in ADAPT 5. Simulations

were performed in Berkeley Madonna to predict preclinical combi-

natorial efficacy of rituximab and doxorubicin on Ramos cell tumor

progression.

Results: Mice treated with doxorubicin alone showed minimal tumor

inhibition at the 2nd week of therapy. Rituximab alone produced a

moderate tumor growth delay that was significantly greater than

control and doxorubicin treatment groups on the last day. Inhibition of

tumor progression by combination therapy was detectable in the 1st

week of treatment, and was significantly more effective during the

2nd week. A two-way ANOVA revealed a significant effect of

treatment (p \ 0.01) and time (p \ 0.01), with no significant inter-

action between treatment and time variables. Tumor growth in the

control group was well described by a linear function with a zero-

Fig. 1 Schematic of PK/PD model describing combination therapy

with rituximab and doxorubicin in mice bearing Ramos B cell

lymphoma xenografts
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order growth rate constant of 11.2 mm3 h-1 (CV % = 5.16 %). Only

unperturbed tumor growth was estimated, and the integrated systems

pharmacodynamic model accurately described tumor growth kinetics

in all treatment groups. In addition, tumor biomarker expression (Bcl-

xL) was slightly decreased after two-weeks of treatment with ritux-

imab alone, which agreed well with model prediction. Tumors treated

with doxorubicin alone also exhibited a minor decrease in Bcl-xL,

whereas the combination was associated with statistically significant

Bcl-xL inhibition that correlated well with in vivo antitumor efficacy.

Conclusions: A systems pharmacodynamic model of rituximab

combination treatment of NHL was extended to capture the enhanced

efficacy with a second cytotoxic drug (doxorubicin), thereby

expanding model conditions and supporting its use for exploring

novel rituximab-based combination regimens in NHL.
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Objectives: Monomethyl auristatin E (MMAE) containing antibody–

drug-conjugates (ADCs) are being developed in patients for treating

various types of cancers. ADCs are complex mixtures, therefore their

pharmacokinetics are assessed by evaluating multiple analytes

including total antibody (TAB), antibody-conjugated MMAE (acM-

MAE) and unconjugated MMAE after dosing. Both TAB and

acMMAE concentrations represent mixtures of various drug-to-anti-

body ratio (DAR) species. The objective of this analysis is to develop

a semi-mechanistic multiple-analyte population model to better

understand the major pathways of ADC elimination and unconjugated

MMAE formation after ADC administration. The pharmacokinetic

(PK) and toxicokinetic (TK) data in cynomolgous monkeys were used

for this analysis.

Methods: The PK data of multiple analytes for anti-CD79b ADC was

quantified at single dose of 0.3, 1, 3 mg/kg in PK study and 1, 3,

5 mg/kg every-three-week for 4 doses in a TK study in cynomolgous

monkeys. The PK data of MMAE after intravenous administration of

unconjugated MMAE at single dose of 0.03 and 0.063 mg/kg were

also obtained in monkeys from a separate study. The data from

these 3 studies were used for modeling. Multiple semi-mechanistic

integrated models were explored to describe the PK of TAB, acM-

MAE and unconjugated MMAE simultaneously. Parallel hybrid ITS-

MCPEM estimation algorithm was used for parameter estimation in

S-ADAPT 1.57. The observed below quantification limit data were

modeled using M3 method. The best model was chosen based on log

likelihood ratio test or Schwarz criterion.

Results: ADC elimination clearance pathways are comprised of both

deconjugation and proteolytic degradation pathways (Fig. 1). A

multiple-compartment PK model which assumes a sequential de-

conjugation from high DAR species to low DAR species adequately

described the PK data of TAB and acMMAE. A Weibull model was

found to best describe the deconjugation rate constant change with the

DAR. The proteolytic degradation clearance is modeled with

Michaelis–Menton kinetics. The unconjugated MMAE exposure in

plasma is mainly contributed by the FcRn and target-mediated pro-

teolytic degradation pathway but not the deconjugation pathway. The

fraction of conversion from the proteolytic degradation pathway to

form the unconjugated MMAE is estimated to be *66 % by the

model, while the fraction of conversion from the deconjugation

pathway is only *2 %.

Conclusions: The final integrated model well described the observed

TAB, acMMAE and unconjugated MMAE PK data in cynomolgous

monkeys. The best model structure suggested that the ADC is elim-

inated via both the deconjugation pathway and the FcRn and target-

Fig. 1 Final model structure of semi-mechanistic multiple-analyte

population model for MMAE containing ADCs. DAR8c, DAR7c, …,

DAR1c, DAR0c: concentrations of anti-CD79b ADC in the central

compartment with DAR = 0–8. DAR8p, DAR7p, …, DAR1p,

DAR0p: concentrations of anti-CD79b ADC in the peripheral

compartment with DAR = 0–8. MMAEc: concentration of unconju-

gated MMAE in the central compartment. MMAEp: concentration of

unconjugated MMAE in the peripheral compartment. KADC8, KADC7,

…, KADC1: deconjugation rate constants for each DAR species

(DAR = 8, 7, …, 1) of the ADC. Vc: central volume of distribution

for ADC; Vp: peripheral volume of distribution for ADC; Vm: central

volume of distribution for unconjugated MMAE; Vmp: peripheral

volume of distribution for unconjugated MMAE; CL: non-specific

proteolytic degradation clearance of ADC; Emax: maximal target-

mediated proteolytic degradation rate of ADC; Km: concentration of

ADC to reach half of the maximal Emax; CLd: distributional clearance

of ADC; Fmpp: fraction of formation to unconjugated MMAE in the

central compartment from the proteolytic degradation pathway of

ADC (mediated by FcRn and targets); Fmd: fraction of formation to

unconjugated MMAE in the central compartment from the deconju-

gation pathway of ADC; CLmd: distributional clearance of

unconjugated MMAE; CLm: systemic clearance of unconjugated

MMAE from the central compartment
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mediated proteolytic degradation pathway. However, the unconju-

gated MMAE is formed mainly via the degradation pathway. This

finding suggested that the unconjugated MMAE level generated after

ADC dosing might be modulated by modifying the binding affinity of

the ADC to FcRn and/or target and consequently the rate of FcRn

and/or target-mediated proteolytic degradation.

W-007 Model-Based Meta-Analysis for Time Courses

of Percent Responders in Diabetic Peripheral

Neuropathy, Postherpetic Neuralgia and Fibromyalgia

Pain Trials

Chih-Wei Lin*, Wei Liu, Walid Awni, Sandeep Dutta

Clinical Pharmacology and Pharmacometrics, AbbVie, North

Chicago, IL, 60064, USA

Objectives: The objective of this work was to characterize the time

courses of percent responders and relative efficacy of medications

evaluated in clinical trials for neuropathic pain including diabetic

peripheral neuropathy (DPN), postherpetic neuralgia (PHN) and

fibromyalgia (FM) using a model-based meta-analysis (MBMA).

Methods A database was developed by a systemic search for all

publicly available efficacy and safety information on drugs evaluated

for treatment of neuropathic pain including DPN, PHN or FM. The

initial database included summary-level efficacy and safety data for

82 trials. Based on efficacy endpoints, imputation methods and

medications of interest, the final analyzed data contained *13000

subjects within 31 trials with 4 medications approved by FDA for

treating neuropathic pain: duloxetine, pregabalin, gabapentin, and

milnacipran. A MBMA was conducted to describe the time courses of

the 30 or 50 % pain reduction responder rate over the treatment

period and the dose–response relationship for the drugs used in the

trials. The effect of using baseline observation carried forward

(BOCF) or last observation carried forward (LOCF) imputation on

responder rates was also evaluated.

In the final model the number of responders was described by a

binomial distribution. The responder rates for different times and

doses were described by a function combined an inverse logit Emax

mixed function to characterize the dose–response relationships, and a

cumulative exponential function to describe the time course of the

responder rate for each indication.

Nresponder t;dð Þ�binomial P%Responder t;dð Þ;N t;dð Þ
� �

P%Responder t;dð Þ ¼ logit�1 E0;endptþ gtrialþ ILOCFþ
ðEmax � dÞ

dþ exp LNED50;drug

� �

 !

� 1� exp �k � tð Þð Þ

where the probability of binomial distribution is described by

P%responder(t, d), where t represents time and d represents dose.

P%responder(t, d) is described as a product of an inverse logit Emax

function and a cumulative exponential function. E0,endpt is placebo

response for 3 or 50 % responder rate in the logit domain. gtrial is

random effect to account for between trial variability in the placebo

response. ILOCF is the effect of LOCF imputation over BOCF. The

drug effect was described by a Emax function, where Emax is the

maximum pain reduction effect and ED50,drug is the dose to achieve

50 % maximum response. k is the rate constant for the accumulation

of pain reduction effect. The correlation between observations within

an arm was evaluated by a compound symmetry correlation structure.

Analyses were performed in S-PLUS.

Results: The placebo response rate for 30 % pain reduction (BOCF)

was estimated to be 34, 22 and 26 %, and for 50 % pain reduction

was estimated to be 22, 12 and 15 % for DPN, PHN and FM,

respectively. LOCF provided 7.8, 7.0 and 4.3 % higher response than

BOCF for DPN, PHN and FM, respectively. Evaluated drugs provide

an additional 10–17 % increase in 30 % responder rate and 8–13 %

increase in 50 % responder rate for DPN, an additional 16–24 %

increase in 30 % responder rate and 11–16 % increase in 50 %

responder rate for PHN, and an additional 8–11 % increase in 30 %

responder rate and 7–8 % increase in 50 % responder rate for FM

over placebo effect. The times to achieve drug effect plateau (cal-

culated as 5 half-lives from k) for DPN, PHN and FM were estimated

to be 5.0, 8.4, and 8.4 weeks. At approved maximum doses, dul-

oxetine gave the highest responder rate in DPN with estimated rates

of 51 and 35 % to achieve 30 % and 50 % pain reduction. Pregabalin

gave the highest responder rate in PHN with estimated rates of 46 and

28 % to achieve 30 and 50 % pain reduction. Duloxetine gave the

highest responder rate in FM with estimated rates of 37 and 23 % to

achieve 30 and 50 % pain reduction (Table 1).

Conclusions: These results suggest the trial durations for DPN, PHN

and FM of at least 5–8 weeks would be required to observe clinically

meaningful separation of pain response between drugs included in this

analysis from placebo. Duloxetine was most efficacious in DPN and

FM, while pregabalin was most efficacious in PHN.

W-008 Population Analysis Characterizing

the Relationship between Citalopram Exposure

and QTc Interval

Timothy J Carrothers2,*, Tatiana Khariton1, Antonia Periclou1,

Michelle Green2, Parviz Ghahramani1

1Forest Research Institute, Jersey City, NJ, USA; 2Pharsight,

Sunnyvale, CA, USA

Objectives: To develop a population PK-QTc model for citalopram

(CIT) to evaluate the relationship between drug concentrations and

the time-matched drug-placebo differences for heart rate corrected

change in QT interval for citalopram doses ranging 20–60 mg/days.

Methods: Data from 119 healthy volunteers from a dedicated Phase

IV TQT study were used in the population pharmacokinetic and,

subsequently, PK-QTc analysis of CIT. The primary goal of the

population PK modeling was to predict individual plasma concen-

trations of S-CIT, R-CIT and their metabolites S-demethyl-CIT and

R-demethyl-CIT at times matching the ECG measurements (collected

by Holter monitoring). The population PK analyses for all four

moieties were developed using the first-order conditional estimation

(FOCE) method with interaction in NONMEMTM (version VI).

Table 1 Parameter estimate from the efficacy endpoint models

Model parameter DPN PHN FM

E0_30 % reduction -0.65 -1.3 -1.1

E0_50 % reduction -1.3 -2.0 -1.7

Emax 0.79 1.8 0.55

LNED50 Duloxetine 2.2 – 1.4

LNED50 Pregabalin 5.6 5.2 4.8

LNED50 Gabapentin – 7.7 –

LNED50 Milnacipran – – 4.2

LOCF effect 0.37 0.44 0.25

k 0.69 0.41 0.41

xBT (SD) 0.25 0.27 0.21

q (Within arm correlation) 0.60 0.47 0.02
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For S-demethyl-CIT and R-demethyl-CIT, a strategy was applied

where-

by the metabolites’ concentrations were each modeled using a stan-

dard disposition model, parameterized with clearances and volumes,

with first order absorption. Under this approach, S-CIT and R-CIT

doses were assumed to drive the S-demethyl-CIT and R-demethyl-

CIT models. The doses for S- and R-demethyl-CIT were set to 0.3 and

0.5 times of the dose of S and R-CIT, respectively, based on the

observed ratio between the mean steady state concentrations for

demethyl-CIT vs. CIT. The exposure–response analysis examined the

relationship between individual corrected QT interval (QTcNi) and

the individual predicted plasma concentrations of S-CIT, R-CIT,

S-demethyl-CIT and R-demethyl-CIT following exposure to 20 and

60 mg/day doses of citalopram. The measured QT intervals were

corrected for heart rate using individualized heart rate correction,

wherein a linear regression model was applied to the baseline QT data

to derive the individual correction (QTcNi). A non-linear mixed-

effects model for QTcNi was developed in S-PLUS� v.6.2 for Win-

dows and consisted of additive effects of baseline, placebo, drug

effect, and a normally distributed residual error: QTcNi = Base-

line + Placebo + Drug Effect + Error. The influence of citalopram on

QTcNi drug effect was modeled using either individual predicted

plasma concentrations of each moiety alone, or the sum of the pre-

dicted plasma concentrations of the moieties scaled by their

respective molecular weights. Drug effect was modeled either as a

linear or an Emax relationship. Inter-individual variability terms were

added on each model parameter but were removed if either numerical

convergence was not achieved by the estimation algorithm, or no

significant improvement (p [ 0.001) in the fit was achieved. To

assess mean QTc change at 20 and 60 mg/day doses of citalopram,

QTcNi associated with drug effect was simulated for typical steady-

state Cmax values at the 20 and 60 mg/day doses allowing for PK-QT

model uncertainty.

Results: The population PK models were based on 1893 observations for

each of the 4 moieties, collected from 112 subjects. A 2-compartment

model, parameterized on clearance and volume of distribution, with

linear elimination and dose-dependent bioavailability best described the

plasma concentration–time data of S-CIT. One-compartment models,

parameterized on clearance and volume of distribution, with linear

elimination best described the plasma concentration–time data of R-CIT,

S-demethyl-CIT and R-demethyl-CIT. The QTcNi exposure–response

model was based on 27,262 QT observations collected from 119 subjects

during baseline and active-treatment visits. Baseline, placebo, and drug

effects for CIT were well estimated (Table 1). For a male subject, typical

baseline QTcNi was estimated at 392 ms, with inter-individual vari-

ability of 16 ms. Mean baseline QTcNi for a female was 13 ms higher. As

expected, baseline measurements also followed a strong diurnal pattern; a

typical study subject experienced up to a 10 ms range of fluctuation in

QTcNi over the course of the full 24-h day. After accounting for baseline

and diurnal pattern, placebo effect was found to reduce the QTcNi by

1 ms. A modest diurnal pattern was present in placebo effect as well.

After exploration of different linear combinations of R-CIT and S-CIT,

the sum of S-CIT and R-CIT concentrations was chosen as the most

appropriate moiety for use as a predictor in the model. The relationship

between QTcNi and S-CIT + R-CIT concentrations was best described

by an Emax model. The maximal QTcNi change (Emax) attributed to the

sum, (S-CIT + R-CIT) was estimated to be 26 ms. Between-subject

variability in Emax was estimated at 51 %. No evidence of hysteresis in

the S- and R-CIT exposure-QTc effect relationship was found. After

accounting for baseline, placebo, citalopram, and moxifloxacin effects, a

9 ms residual variability in QTcNi measurements remained. Residuals

from the final citalopram QTcNi model were explored for their associ-

ation with individually predicted S- and R-demethyl-CIT concentrations;

however, no evidence of any association was detected. Hence, the QTcNi

increases observed after repeated administration of citalopram can be

described by the sum of S- and R-CIT moieties alone. The estimated

typical maximum QTc increase following administration of citalopram,

was 26 compared to the 17 ms estimated for S-CIT alone (reported in a

separate study on, see the adjoining abstract [1]). This additional 9 ms

QTc increase observed following administration of citalopram is con-

cluded to be related to R-citalopram. An independent analysis was also

performed assuming a linear relationship between the natural logarithm

of the observed PK concentrations and time-matched, placebo-corrected

changes in QTcF following 20 and 60 mg/day doses and interpolated for

the 40 mg/day dose [2] (Fig. 1).

Table 1 Final parameter estimates for QTcNi-plasma exposure model with bootstrap standard errors

Main model parameters Population mean Additive inter-individual variability

Estimate SE, %CV Estimate SE

Baseline for males (msec) 392.1 0.6 15.9 6.1

Increase in baseline for females (msec) 13.0 23 – –

Placebo (msec) -0.78 47 – –

Log (Emax, msec) for S-CIT + R+CIT effect 3.24 4.4 0.51 9.1

Log (EC50, ng/mL) for S-CIT + R+CIT effect 4.7 5.4 – –

Residual variability (as st. dev.), msec 8.5 1.7 – –
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Fig. 1 Time-matched and placebo-subtracted QTcNi associated with

drug effect at a range of predicted concentrations for the sum of

S-CIT and R-CIT
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Conclusions: From the final PK-QT model of citalopram, simulations

estimated a placebo-corrected 8.2 ms (95 % 1-sided upper bound of

10.4 ms) QTcNi increase at typical Cmax at steady-state following a

20 mg/day dose and a 15.5 ms (95 % 1-sided upper bound of

19.7 ms) increase at typical Cmax at steady-state following a 60 mg/

day supra-therapeutic dose. This is compared to 5.2 and 11.2 ms

increases estimated at typical steady-state Cmax at 10 mg/day and

supratherapeutic 30 mg/day doses of escitalopram alone, respectively

(see adjoining abstract [1]). Given the fact that the pharmacologic

effect of citalopram in depression is primarily due to S-citalopram,

the outcome of this study suggests a higher risk of QTc prolongation

with citalopram treatment compared with escitalopram without

additional clinical benefit. The independent analysis using linear

model and observed concentrations provided comparable estimates

with a mean increase in QTcF of 12.6 ms (with 95 % UCI of 14.3 ms)

for a 40 mg/day dose of citalopram [2].

References

[1] Population Exposure–Response Analysis for an Escitalopram

Thorough-QT Study. ACOP, 2013

[2] Prescribing Information for Celexa� (citalopram hydrobromide)

tablets/oral solution, last modified on 12/2012. http://www.frx.

com/pi/celexa_pi.pdf. Accessed on January 24, 2013

W-009 Additional Features and Graphs in the New

NPDE Library for R

Emmanuelle Comets, Thi Huyen Tram Nguyen, France Mentré*

INSERM, UMR 738, Paris, France; Univ Paris Diderot,

Sorbonne Paris Cité, Paris, France

Objectives: Over the last few years, several new approaches includ-

ing Visual Predictive Check (VPC), prediction discrepancies (PD) [1]

and normalised prediction distribution errors (NPDE) [2, 3] have been

proposed to evaluate nonlinear mixed effect models. In the new

library of npde, includes methods to handle data below the limit of

quantification (BQL) [4] and new diagnostic graphs with prediction

bands [5]. We also develop a new method to re-scale the NPDE in the

original observations scale.

Methods: The prediction discrepancy (PD) for an observation yij is

obtained as the quantile of yij within its predictive distribution.

Normalised prediction distribution errors (NPDE) are obtained using

a similar approach but after decorrelation of both the observed and

simulated values used to obtain the predictive distribution. Visual

assessment of the fit is usually performed through scatterplots of PD/

NPDE versus time or model predictions, which are akin to residual

plots. Under the null hypothesis of model adequacy, PD are expected

to follow a uniform distribution while NPDE should follow a normal

distribution.

Several new features are implemented already in the NPDE library

version 2.0 (released in October 2012, available at www.npde.biostat.

fr). S4-class programming provides a more user-friendly interface,

and the library includes new graphical diagnostics, with prediction

intervals which can be added to each graph, and diagnostic graphs

for covariate models [7]. Tests can be performed to compare the

distribution of the NPDE relative to the expected standard normal

distribution.

We have proposed methods to impute the PD for a BQL obser-

vation by sampling in U(0,pLOQ) where pLOQ is the model-

predicted probability of being BQL, and the NPDE by imputation

methods: censored observations are first imputed from the imputed

PD, using the predictive distribution function obtained by simulations,

then NPDE are computed for the completed dataset [4].

We also develop new plots for PD/NPDE which preserves the

observation shape using predicted profiles from the model. For

unbalanced designs, where binning is applied, this is performed for

each bin, with an option to choose a reference class for the typical

profile.

Results: We illustrate the new library on data simulated using the

design of the COPHAR3-ANRS 134 trial. In the trial, viral loads were

measured for 6 months in 34 naı̈ve HIV-infected patients after initi-

ation of a tri-therapy, and up to 50 % of data were BQL. The decrease

in viral loads was modelled assuming a biexponential decline and

parameters estimated using MONOLIX. In the simulation study, the

same model and design points were used as for the original data;

simulated datasets were generated using the estimated parameters and

five evaluation datasets were generated either with the same set of

parameters or by modifying the value of the second slope or its

variability, to illustrate the new diagnostics for models under the null

or under alternative hypotheses. For the NPDE and PD, the new re-

scaled graphs yield pattern close to VPC, with the added advantage

that PD/NPDE naturally handle design heterogeneity.

Conclusions: The new graphs for PD/NPDE allow to preserve the

shape of the process being modelled, while preserving the statistical

properties of PD/NPDE which are particularly valuable in unbalanced

designs, and distinguish these metrics from VPC and their many

flavors (pcVPC [8]). They will be available in the new version of

NPDE.
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W-010 Cellular Pharmacodynamic Model

of Bortezomib Effects on U266 Myeloma Cells

Vaishali L Chudasama*, Donald E Mager

University at Buffalo, SUNY, Buffalo, NY, USA

Objectives: Bortezomib, a reversible proteasome inhibitor, is com-

monly used in the treatment of multiple myeloma alone and in

combination with other chemotherapeutic agents [1, 2]. However,

mechanisms underlying bortezomib signal transduction pathways are

poorly understood [3–6]. Understanding the mechanisms of bortezo-

mib, and how it influences the behavior of intracellular proteins

involved in regulation of cell cytotoxicity is necessary to optimize

bortezomib mono- or combination regimens. A Boolean network

model was previously developed [7] to identify critical proteins

involved in bortezomib-mediated signal transduction pathways [8].

The Boolean network could not account for complete temporal pro-

files of proteins and cell dynamics. Therefore, the objective of this

study is to develop a cellular pharmacodynamic model to characterize

the time-course of bortezomib-mediated cell cytotoxicity in U266

human myeloma cells.

Methods: Relative expressions of pNFjB, Bcl-xL, and cleaved

parp were measured using immunoblotting after exposure to bort-

ezomib (20 nM) at various time points from 0 to 33 h. Cell

proliferation was measured at 0, 24, 48, 72, and 96 h using WST-1

reagent assay kit after exposure to a range of bortezomib concentra-

tions (0.001–1000 nM). Different model structures were evaluated for

describing protein dynamics and cell proliferation profiles. Linear

functions were used to define stimulation or inhibition mechanisms.

The final model was selected based on AIC, precision of parameter

estimates, and visual inspection. All data were fitted simultaneously

using MATLAB (2011). The final model was used to predict the

overall bortezomib dose–response curve, which was compared to

experimental data.

Results: The final cell-based pharmacodynamic model (Fig. 1) cap-

tured the data well (Fig. 2). The model includes a precursor pool with

a transit compartment to describe pNFjB (NFKB) dynamics, indirect

effects with two transit compartments to describe Bcl-xL dynamics, a

transit compartment series to describe cleaved parp (CL_PARP), and

an exponential growth model to describe cell proliferation (Cell).

Fold-change in NFjB expression was used to stimulate Bcl-xL pre-

cursor production, whereas fold-change in CL_PARP was used to

stimulate Bcl-xL degradation. Cell killing was regulated by Bcl-xL-

mediated inhibition and CL_PARP induced stimulation of cell death

(kkill). All parameters are estimated with good precision (%CV

\50 %), except for the Bcl-xL degradation rate constant (127 % CV).

The final model predicted bortezomib potency after 48 h of drug

exposure (3.80 nM) was comparable to the experimentally observed

value (1.51 nM).

Conclusions: Bortezomib exposure was successfully linked to cell

proliferation via protein dynamics as a driver (Fig. 2). The model

accurately describes cellular proteins and cell proliferation after

bortezomib exposure simultaneously and is able to reasonably predict

the in vitro IC50. The model could serve as a basis for development of

bortezomib regimens in combination with other anti-myeloma agents

such as curcumin. Furthermore, this type of model holds great

promise for optimizing bortezomib single-agent and combination

regimens, predicting interaction potency of anti-myeloma agents, and

potential scaling from in vitro to in vivo systems.
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W-011 Using Qualitative Modeling in Drug

Development

Rebecca Baillie*, Christina Friedrich, Michael Reed
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Objectives: Qualitative modeling, creating a graphical and precise

representation of known and hypothesized biological relationships, is

used to systematically compare and integrate disparate data, link

disease mechanisms to clinical outcomes, and prioritize drug targets.

Feedback from the users of qualitative models indicated that addi-

tional benefits may derive from those models that are different than

originally expected. This study was undertaken to objectively identify

and quantify results derived from qualitative modeling projects, both

pre-specified targets and additional outcomes that were identified

during the course of the project. A secondary objective was to

determine if project targets or additional outcomes were related to the

drug development stage or biology of the drug compounds being

modeled.

Methods: We retrospectively compared the results from eight qual-

itative modeling projects with each modeling effort having a different

decision focus and different goals for that decision. Statement of work

contracts were used to identify the disease area, drug development

stage at the start of the project, and specified deliverables, i.e., pre-

specified targets, while final project reports were used to identify

outcomes. The two lists were compared and outcomes were defined as

pre-specified targets or additional outcomes. Additional outcomes fell

into categories: improving experimental design, facilitating commu-

nication, identifying data gaps, or clarifying mechanisms of action.

Disease areas were defined as immunology, oncology, metabolism, or

neurology. The drug development stages were preclinical (5 projects)

or clinical (3 projects).

Results: All projects met pre-specified targets, and five projects had

additional outcomes that were identified during the model develop-

ment. Some outcomes were clearly related to the drug development

stage of the project, while others, such as clarifying mechanism of

action, occurred in both preclinical and clinical development. In 3

preclinical projects, additional outcomes included improving experi-

mental design and identification of data gaps in addition to the

expected targets. Facilitating communication across multidisciplinary

teams occurred in projects in both preclinical and clinical develop-

ment. No effect of disease area was found on project outcomes.

Conclusions: In this analysis, we found that a majority (5/8) of

qualitative modeling projects had additional outcomes. While some of

these outcomes were correlated to the stage of the drug development;

others occur in both preclinical and clinical development stages.

Some additional outcomes, such as facilitated communication, may

be difficult to quantify in terms of impact on the development pro-

gram. Other outcomes, such as optimized experimental design and

identification of data gaps, may have clear and quantifiable impact.

Further research is needed to evaluate the impact of these additional

outcomes on the drug development programs.

W-012 Population Analysis of Total Kidney Volume,

a Prognostic Marker of Disease Progression in Patients

with Autosomal Dominant Polycystic Kidney Disease:

Effect of Genotype and Imaging Modalities

Mohamad-Samer Mouksassi1,*, Jean-Francois Marier1,

Lamia Sid-Otmane2, Fredrik Jonsson1, Klaus Romero2

1Pharsight, a Certara Company, Montreal, QC, Canada;
2Critical Path Institute, Tucson, AZ, USA

Objectives: Autosomal dominant polycystic kidney disease (ADPKD)

is the most common hereditary kidney disease affecting 1:400–1:1000

individuals. The development and growth of cysts over time causes

increased kidney size leading to interstitial fibrosis and renal failure.

ADPKD patients suffer from increasing morbidity due to their

enlarging kidneys including severe pain, increasing abdominal girth,

hypertension, hematuria, renal stones and renal infection. End stage

renal disease (ESRD) has been shown to develop in approximately

50 % of affected patients by age 53. Quantitative radiological imaging

can be used to measure total kidney volume (TKV) as prognostic

markers for monitoring the rate of disease progression and response to

therapy. The goal of this project was to characterize the rate of growth

of TKV in patients with ADPKD and assess potential sources of

between subject variability.

Methods: TKV data collected by the Consortium for Radiologic

Imaging Studies of Polycystic Kidney Disease (CRISP), as well as

multiple, longitudinal, well-characterized research registries main-

tained over decades by leading institutions conducting clinical

investigation in ADPKD (University of Colorado - Denver, Emory

University, and Mayo Clinic) were used. Longitudinal TKV data from

ultrasonography (US), computer assisted tomography (CT) scan and

magnetic resonance imaging (MRI) were included. Nonlinear mixed-

effect (Phoenix NLME 1.2) modeling was used to assess longitudinal

TKV data. Patients with a least two TKV measurements separated by

at least 6 months apart were included in the analysis. Various kidney

volume growth models were evaluated. Sources of variability such as

age, sex, race, ethnicity, weight, height, mutations (PKD1, PKD2, No

Mutation or unknown), eGFR, creatinine clearance (CrCL), and

serum creatinine (Scr) were analyzed. A separate model was fit to

each imaging modality (US, CT, MRI).

Results: A total of 1140 (US), 868 (MRI) and 832 (CT) patients with

ADPKD were included in the analysis. The total number of obser-

vation was 2664 (US), 2164 (MRI), 1053 (CT). Overall median

(range) values of age of first TKV measurement was 40 (0-93.05).

TKV was best described with the following exponential growth

model:

TKVi tð Þ ¼ TKV0;ix e½ 0:693�Timeð Þ=HLi�

where TKVi(t) = TKV (mL) at time t for ith individual, TKV0,i =

baseline TKV for ith individual, HLi = half-life of disease progres-

sion (half-life to doubling of TKV) for ith individual. The model was

qualified using visual predictive check and goodness of fit plots

(Fig. 1). The effect of imaging modality was significant. Based on US
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data, typical population values of TKV0 and HL were 772 mL and

11.0 years, respectively. MRI and CT data gave similar typical pop-

ulation values of TKV0/HL: 1207.8 mL/17.1 years and 1210.3/

18.3 years, respectively. Yearly growth rate of the kidney volumes

were estimated to be: 6.5 % (US), 4.1 % (MRI) and 3.8 % (CT). The

best residual error was a proportional one with a CV % of: 19.3, 7.3

and 13.1 % for US, MRI and CT respectively. Using observed

baseline TKV did not improve the models. On the other hand, height

was identified as a covariate explaining the variability in TKV0. The

HL was an intrinsic characteristic of each individual patient and it was

not related to genetic mutations (Fig. 2).

Conclusions: A population analysis of TKV was performed to

characterize disease progression in patients with ADPKD and identify

sources of variability. The typical half-life of disease progression

(based on MRI/CT) was approximately 18 years which translate to a

yearly growth rate of 4 %. This is in line of literature information on

this disease. As expected, TKV data measured with US imaging

modality was associated to a higher variability and higher estimated

growth rate due to the limitations of this imaging method. Data

sources using MRI or CT modalities could be potentially combined

into future analyses since no significant differences were observed.

The above model may be used to monitor and longitudinally predict

the long term behavior of TKV growth in patients with ADPKD.

Future work will attempt to link the growth of TKV over time as a

biomarker to predict clinically relevant negative outcomes of

ADPKD, such as worsening of renal function, ESRD and mortality.

The ultimate goal will be to construct a ‘‘drug-biomarker (TKV)-

disease outcome (ADPKD-ESRD, mortality,…)’’ model that can

support the use of TKV as a drug development tool to help enrich

trials for new therapies.

W-013 Hemoglobin and Red Blood Cell Modeling After

Chronic Oral Administration of GSK1278863

to Cynomolgus Monkeys

Aline Barth1,*, Brendan Johnson2, Herbert Struemper2, David Adams3

1University of Florida, Gainesville, FL, USA;
2GlaxoSmithKline, Research Triangle Park, NC, USA;
3GlaxoSmithKline, Upper Merion, Pennsylvania, PA, USA

Objectives: To evaluate models that can be used to describe the

erythropoietic effects of GSK1278863 after chronic administration to

cynomolgus monkeys with future application to modeling and sim-

ulation to support Phase 2 dose selection.

Methods GSK1278863 is in development for the treatment of anemia

in patients with chronic kidney disease. A 9 month toxicology study

with 24 male and 24 female cynomolgus monkeys was performed

with 4 dose groups: 0 (vehicle), 3, 10 and 50 mg/kg once per day via

oral gavage. Blood samples were withdrawn at: -3, -1, 4, 13, 26 and

39 weeks (the beginning of the treatment was at week 0). The

recovery phase of the study included 4 males and 4 females (2/sex at 0

and 50 mg/kg/day dose levels) from the previous main study. The

dosing in these animals was suspended at week 39 and a blood sample

was taken at week 45. All studies were conducted in accordance with

the GSK Policy on the Care, Welfare and Treatment of Laboratory

Animals and were reviewed the Institutional Animal Care and Use

Committee either at GSK or by the ethical review process at the

institution where the work was performed.

The impact of GSK1278863 on the red blood cell (RBC) count and

hemoglobin (Hgb) concentration was modeled through different

approaches. Instead of using the full pharmacokinetic profile, the dose

was used to drive the pharmacodynamic (PD) response, i.e., a K-PD

approach [1]. It uses a virtual compartment (biophase) in which the

concentration is in equilibrium with the observed effect. The model

depends only on the dosing information and PD data for the esti-

mation of all parameters. For the PD portion of the model, cell

lifespan and transit compartment models were evaluated, both with

and without a precursor compartment. Cell lifespan models assume

that the cells are produced, survive for a certain amount of time and

then are eliminated due to senescence [2]. The transit compartment

approach uses a series of transit compartments to describe the aging

and elimination of RBC and Hgb, effectively reflecting a varying cell

lifespan within a population of cells, in contrast to the assumptions of

the cell lifespan models [3].The data was modeled using the software

NONMEM 7.1.2. Initial parameter estimates and model characteris-

tics were explored with the software Berkeley Madonna and the

diagnostic plots were generated with the software R, including the

package Xpose.

Results: The evaluation of transit models with and without precursor

and lifespan model with precursor resulted in poor relative standard

errors (RSE), as high as 158 % for RBC models and 342 % for Hgb

models and also inadequate visual predictive check plots. Analysis of

the data with the basic life span model provided appropriate baseline,

SC50 (50 % of the maximum response), Smax (maximal stimulation)

and KDE (elimination rate constant from the virtual compartment)

estimates for both the RBC and Hgb models. Fixing the cell life span

parameter to a literature value was also evaluated. For the RBC model

the use of the physiological literature value was adequate. In order to

fit the Hgb data, estimation of the life span parameter provided an

Fig. 1 Goodness of fit for the MRI (first row), CT (second row) and

US (third row) models

Fig. 2 Random effects versus mutation (MRI model shown)
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overall better fit. With these models, the fixed-effect parameter esti-

mates were in accordance with the observed data and with low RSE

(\26 %). Random-effect parameters were also well estimated; inter-

individual variability RSE\56 % for RBC model and\39 % for Hb

model, and additive residual error RSE of \15 % for both models.

Conclusions: The basic life span model without precursor provided

better results when fitting the observed hemoglobin and red blood cell

data. Therefore it is likely to be a useful model for the evaluation of

pharmacodyamic effects after chronic administration of GSK1278863

in clinical trials.
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W-014 Population Pharmacokinetics

of the Ofatumumab in Combination
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Objectives: Ofatumumab is a human monoclonal IgG1j-antibody

targeting a distinct CD20 epitope. It is active against B cell lymphoma

cell lines and chronic lymphocytic leukemia, including cell lines with

low CD20-antigen density and an increased expression of comple-

ment inhibitory molecules. The present work aims to characterize the

pharmacokinetics (PK) of ofatumumab after three cycles of intrave-

nous (IV) infusions in combination with ICE (ifosfamide, carboplatin,

etoposide) or DHAP (dexamethasone, cytarabine, cisplatin) chemo-

therapy in subjects with relapsed or refractory CD20-positive

aggressive lymphoma (diffuse large B cell lymphoma, transformed

lymphoma, or grade 3b follicular lymphoma).

Methods: Data were obtained from 61 subjects with relapsed or

refractory aggressive lymphoma who received ofatumumab in com-

bination with ICE or DHAP chemotherapy (NCT00823719).

Ofatumumab was given as 2 weekly doses in the first cycle, followed

by an infusion on Day 1 of two subsequent 21-day cycles. The first

ofatumumab infusion was initially 300 mg, which was increased to

1000 mg by protocol amendment; all other infusions were 1000 mg.

Nonlinear mixed-effects modeling was performed for the population

pharmacokinetic analysis, using NONMEM program version 7.1.2

(ICON, Ellicott City, MD). A two-compartment structural model with

linear first-order elimination was selected as the structural model after

evaluation of linear and nonlinear two-compartment models to

describe the pharmacokinetic data. Final model selection was based

on evaluation of goodness-of-fit plots, biological plausibility, preci-

sion of parameter estimates, and the minimum objective function

value. Nonparametric bootstrap and visual predictive checks were

implemented for final model evaluation.

Results: The pharmacokinetics of ofatumumab in relapsed or

refractory aggressive lymphoma in combination with chemotherapy

was adequately described by a two-compartment model with linear

first-order elimination. The typical value for CL was 9.1 mL/h. The

typical value for the population volume of central compartment was

3.81 L. The inter-compartment clearance (Q) was 57.4 mL/h and

peripheral volume was 3.95 L. Body surface area was found to be a

covariate for clearance, volume of the central compartment, and

volume of the peripheral compartment. Sex was found to be a pre-

dictor of volume for the central compartment, with females having

approximately 20 % smaller volume than males.

The inclusion of a target-mediated clearance component in the model

was not required for this analysis in subjects with aggressive lymphoma

including DLBCL, unlike prior population analyses combining subjects

with chronic lymphocytic leukemia (CLL), follicular lymphoma (FL),

and rheumatoid arthritis (RA) [1,2]. As previously noted [2], the relative

contribution of target-mediated clearance was highest for CLL, where

circulating B-cell counts are typically very high, and was smaller in FL

and RA; like FL and RA, DLBCL typically has lower numbers of

circulating B cells than CLL. Other factors that may have reduced the

need for target-mediated clearance in the model include the effect of

concomitant chemotherapy in reducing tumor cells in the peripheral

blood and the sparse sampling schedule.

Conclusions: The two-compartment population pharmacokinetic

model with linear elimination developed following IV infusion in

combination with ICE or DHAP chemotherapy in subjects with

aggressive lymphoma including DLBCL adequately characterized the

pharmacokinetics of ofatumumab in this study.
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Objectives: Mycophenolic acid (MPA) is a broadly used immuno-

suppressive drug to prevent allograft rejection in pediatric kidney

transplantation. Large inter- and intra-individual variability in drug

exposure especially in the absorption phase has been observed [1].

The purpose of this study was to develop a population pharmacoki-

netic (PK) model of MPA with an emphasis on characterizing the

absorption phase, and to identify covariate factors to predict exposure

variability in the early post-transplant period (days 4–9) in pediatric

renal transplant recipients.
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Methods: A total of 224 MPA plasma concentration–time data points

from 25 pediatric renal transplant patients between ages 2–20 years

were available for model development. Population PK analysis was

performed using nonlinear mixed effect modeling by NONMEM 7.2

with first-order conditional estimation with interaction (FOCE-I).

Multiple absorption models, including first-order with lag time, zero-

order with lag time, first-order and zero-order parallel, Weibull

function, and a transit compartment model, were explored to describe

the variable absorption phase. Patients’ demographics and laboratory

data were included in the covariate analysis. The final model was

evaluated by non-parametric bootstrap analysis and prediction-cor-

rected visual predictive check (PC-VPC) [2].

Results: A two-compartment with a transit absorption model best

described the data. Allometric scaling using normal fat mass and

estimated creatinine clearance were identified as significant predictors

of apparent clearance. A non-linear relationship between dose and

MPA exposure was observed and was well described by the model.

The final population parameter estimates were: CL/F, 37.9 L/h/70 kg;

Vc/F, 31.6 L/70 kg; Q/F, 38.8 L/h/70 kg and Vp/F, 980 L/70 kg.

Conclusions: The final model successfully described MPA PK data in

the population studied. The transit compartment model may provide a

better approach than traditional absorption models in describing MPA

absorption.
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Objectives: Phase I clinical pharmacology studies contribute a sig-

nificant cost of early clinical development and employ rich PK

sampling schemes. Typically serial PK sampling schemes are not

substantially altered after initial studies in man despite greater

available pharmacokinetic knowledge. Therefore, there exists an

opportunity to reduce cost and blood draws for trial participants.

A non-parametric sampling reduction algorithm was developed with a

user friendly interface for this purpose. The algorithm leverages

existing dense sampling PK schemes for a compound to propose a

reduced sampling scheme that balances having the fewest number of

time-points with obtaining adequate characterization of non-com-

partmental PK parameters (Cmax and AUC).

Methods: This is an R-language based algorithm adapted and

expanded in scope from a previously developed sample reduction

algorithm developed by Reyderman et al. The algorithm creates

scenarios reflecting all possible permutations of time points based on

the user supplied minimum and maximum time points and presents

the % bias from observational data in AUC and Cmax for each

scenario. It selects a list of possible scenarios that satisfy the pre-

specified criteria. Based on the user’s choice, the algorithm can fur-

ther evaluate a given scenario or compare multiple scenarios or

evaluate a modified sampling scheme. Some of the features included

in this algorithm are removing/including pre-defined time points in

the final selection of time points, linear and linear-up/log-down AUC

trapezoidal rule implementation, steady state versus non-steady state

differentiation, AUC0-inf, AUC0-last, AUCall and AUCextrapolated

calculations, scoring functions to rank the schemes that satisfy the

user defined selection criteria, compare multiple selected scenarios,

summary tables and figures for each of the evaluations.

As a representative example, a case study is demonstrated using a

hypothetical example of sampling scheme for Study X based on prior

dense pharmacokinetic profiles from historical studies A and B. The

original full sampling schedule from studies A and B consisted of a

total number of 19 unique sample times (0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6,

8, 12, 16, 24, 36, 48, 72, 96, 120 and 144 h). The following pre-

specifications were applied: the last time point would be 144 h, a 16 h

sample would not be included and each scenario would have at least

10 time points: 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 6, 144 h. The remaining 8

time points were subject to additional selection. The maximal % bias

of the individual Cmax and AUC values were set at\5 % for AUC0-

last and \5 % for Cmax.

Results: Based on application of the above selection criteria, 8 sce-

narios with 11 samples, 28 scenarios with 12 samples, 56 scenarios

with 13 samples, 70 scenarios with 14 samples, 56 scenarios with 15

samples, 28 scenarios with 16 samples, 8 scenarios with 17 samples

and 1 scenario with 18 samples were evaluated. Based on the scoring

function: 0.75*(Number of Samples) + 0.25*(Sum of Range of %

Bias for Cmax & AUC), 8 scenarios that satisfied the selection criteria

Fig. 1 Representative figure for evaluation of a scenario (16.26)

Fig. 2 Representative figure for comparison of three scenarios

(15.43, 16.26 and 17.8)
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were identified. This included 1 scenario with 15 samples, 2 scenarios

with 16 samples, 4 scenarios with 17 samples and 1 scenario with 18

samples. Based on comparisons of summary tables/figures, a scenario

was chosen that had the lowest score based on the scoring function

and the minimum number of samples (15) (Figs. 1, 2).

Conclusions: This novel algorithm can be applied for designing PK

sampling schemes for phase I studies such as single ascending dose

studies after 1st PK break, multiple ascending dose studies, control

drug arms of clinical pharmacology studies. It directly reduces patient

and study design burden due to a smaller number of blood draws and

decreases bioanalytical costs. Some of the limitations are it can be

applied only when studies with similar design criteria are planned

(such as sampling time points, no. of subjects). However, this is offset

by the consideration that the algorithm can be applied relatively

quickly and is useful when compartmental modeling is not yet in

place.

W-017 Exposure–Response Analysis of the Effect

of Trametinib, a MEK inhibitor, on Tumor Size

in Patients with V600 BRAF Mutation Positive

Melanoma

Joannellyn Chiu*, Daniele Ouellet

GlaxoSmithKline, Research Triangle Park, NC, USA

Objectives: Trametinib is a reversible, highly selective, allosteric

inhibitor or mitogen-activated extracellular signal regulated kinase 1

(MEK1) and 2 (MEK2) that is currently under development for

treatment of patients with metastatic BRAF V600 mutation-positive

melanoma. The objectives of this analysis were to characterize the

relationship between trametinib exposure and tumor size over time,

and to identify covariates that may influence response.

Methods: Tumor size (TS) data (sum of longest diameter) were

pooled from 348 patients with V600 BRAF mutation positive mela-

noma enrolled in Phase II and Phase III studies. Patients included in

the analysis received either 2 mg of trametinib once daily (N = 257)

or chemotherapy (i.e. dacarbazine (DTIC) 1000 mg/m2 or paclitaxel

175 mg/m2) (N = 91). TS over time was described based on the

model by Claret et al. [1] with estimates of baseline (BSL), tumor

growth (KL), drug effect (KD), and resistance/progression (k); ran-

dom effects were explored on all 4 parameters using NONMEM VII.

Different measures of exposure and covariates were investigated in

the model building. A drop out model based on RECIST criteria was used

for visual predictive check (VPC) to simulate clinical data (n = 1000).

Simulated TS data from subjects who have progressive disease (PD) were

retained up to the time point when the subject first becomes progressive.

Progressive disease (PD) is defined as when the sum of the total lesions

increase by 20 % and demonstrates an absolute increase of at least 5 mm.

Simulations (n = 200) were performed to better understand the effect of

different exposure levels on tumor kinetics.

Results: Median baseline TS was 64.0 mm. More lesions, high level

of lactate dehydrogenase (LDH), and Eastern Cooperative Oncology

Group (ECOG) performance status of[1 were associated with higher

baseline TS, and inclusion of these covariates decreased between-

subject variability in BSL from 74 to 45 %. In a typical patient

receiving chemotherapy, a median increase of 3.1 mm in TS is pre-

dicted after 6 weeks (+5 %). LDH was a significant predictor of

disease progression with patients with high LDH levels progressing

2.46 times more rapidly in chemotherapy arm (+12 % increase in TS

at 6 weeks). In a typical patient receiving trametinib, rate of tumor

shrinkage (KD) is estimated to be 0.00801/day resulting in a median

decrease in TS of 23 % after 6 weeks, while resistance/progression

(k) develops at a rate of 0.0343/day. Trametinib exposure was sig-

nificant on the parameter describing progression (k), suggesting that

progression is delayed with higher trametinib concentrations (Cmin).

There was no difference in response between BRAF V600E and

V600 K mutations.

The median TS over a 6-month period is shown below assuming

patients received either chemotherapy or trametinib doses of 1.0, 1.5,

or 2.0 mg once-daily. Simulation results are shown assuming that

patients remained on study despite increases in TS, i.e. no drop-out,

(left panel) and after accounting for drop out (right panel)
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Conclusions: Change in tumor size was related to trametinib expo-

sure, with more sustained response with higher trametinib Cmin. Total

number of lesions, LDH, and ECOG performance status were sig-

nificant covariates on baseline TS, and patients with high LDH levels

progressed more rapidly.
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Objectives: Colistin is used to treat MDR GNB infections and

administered as a prodrug, CMS [1, 2]. Characterizing colistin

tissue distribution is important in order to optimize bacteria kill

and to reduce toxicity. Whole Body Physiologically-Based Phar-

macokinetic (WBPBPK) models are valuable tools to predict tissue

drug disposition [3]. The aim of this work was to develop a

WBPBPK model describing plasma PK of CMS and colistin in

six animal species simultaneously and predicting their tissue

distribution.

Methods: 40 mice (1 per time point), 6 rats, 3 rabbits, 3

baboons, 2 pigs and 12 healthy volunteers were included in the

study. A single dose of 15 mg/kg CMS was administered to mice

(SC), rats and rabbits (IV bolus). Single doses of 32, 160 and

80 mg CMS were administered to baboons (10 min-infusion) pigs

and humans (1 h-infusion), respectively. Venous blood was col-

lected between 0 and 4 h after administration for mice, 0 and 3 h

for rats, 0 and 7 h for rabbits, 0 and 9.16 h for baboons, 0 and 8 h

for pigs and 0 and 18 h for humans. CMS and colistin were

assayed at each time point [4].

CMS is eliminated renally and via hydrolysis into colistin

whereas colistin is mainly eliminated non-renally [1, 2]. Hydrolysis

of CMS to colistin is assumed to occur in all tissues [5] with the

same rate in all species. A WBPBPK model was developed

describing each tissue as a single, perfusion limited and well-stirred

compartment. Specific tissue volumes and blood flows for each

species were used in the model. All clearances and Kp factors of

CMS and colistin were estimated sequentially using the prior

functionality in NONMEM 7. Prior information was from literature

[1–3], physiological description of tissues [6] and in vitro

experiments.

Results: The CMS to colistin hydrolysis half-life was estimated to

0.92 h. PK parameter estimates are summarized in Table 1.

Conclusions: The model reasonably well described CMS and colistin

PK profiles in all studied species. The PK parameters were scaled

across species with respect to the physiological differences. This

model may be a valuable tool for PKPD scaling across species to

predict bacteria kill in target tissues.

References

[1] Couet et al (2011) Clin Pharmacol Ther

[2] Mohamed et al (2010) Antimicrob Agents Chemother

[3] Hall et al (2012) J Pharm Sci

[4] Gobin et al (2010) Antimicrob Agents Chemother

[5] Bouchene et al (2012) ICAAC

[6] Björkman et al (2001) J Pharm Sci

W-019 A New Mechanism-based PK/PD Model

for Antimicrobial Combinations of Colistin

and Doripenem against Pseudomonas aeruginosa

Neang S Ly1*,, Brian T Tsuji1, Gauri G Rao1, Pamela A Kelchlin1,

Patricia N Holden1, Alan Forrest1, Phillip J Bergen2, Roger L Nation2,

Jian Li2, Jurgen B Bulitta1,2

1School of Pharmacy and Pharmaceutical Sciences, SUNY Buffalo,

Buffalo, NY, USA; 2Monash Institute of Pharmaceutical Sciences,

Monash University (Parkville campus), Melbourne, Australia

Objectives: The rapid emergence of resistant gram-negative bacteria

such as P. aeruginosa and a severe lack of antibiotics against these

pathogens are causing a global health crisis. There is an urgent need

to rationally optimize dosage regimens of available antibiotics in

mono- and combination therapy. While current antibiotic combination

regimens have only been designed empirically, quantitative approa-

ches for optimizing antibiotic combinations are very promising to

combat multidrug-resistant bacteria. Colistin, an old antibiotic, has

been resurfaced owing to its activity against multidrug-resistant gram-

negatives; however, emergence of resistance during colistin mono-

therapy occurs and colistin combination therapies with other agents

are beneficial to prevent the emergence of colistin resistance and

ensure good therapeutic outcome. Previous models accounted for two

bacterial subpopulations quantified on antibiotic-free and antibiotic-

containing agar plates, but described antibiotic monotherapy and did

not model multiple drug plates [1]. Our primary objective was to

develop a mechanism-based pharmacodynamic model to characterize

the rate and extent of bacterial killing and suppression of resistance

and to identify and evaluate the mechanisms of synergy of colistin

and doripenem. Secondly, we sought to develop a new approach to

model data from multiple drug-containing agar plates.

Methods: Three P. aeruginosa strains, including a reference strain

(colistin hetero-resistant ATCC 27853, MIC to colistin and doripe-

nem are 1.0 and 0.25 mg/L) and two clinical isolates (colistin hetero-

resistant C390, MIC to colistin and doripenem are 1.0 and 1.0 mg/L)

and colistin resistant 19147, MIC to colistin and doripenem are[128

and 1.0 mg/L) were employed in in vitro hollow fiber infection

models over 10 days with an initial inoculum of 109 colony forming

units per mL (CFU/mL). Six clinically relevant dosage regimens of

colistin and doripenem alone and in combination were simulated

against all strains. The dosage regimens were growth control, colistin

given as continuous infusion with steady state concentrations of 2

mg/L or 5 mg/L, doripenem given as Cmax of 25 mg/L every 8 h

(half-life of 1.5 h), colistin 2 mg/L and doripenem Cmax 25 mg/L, and

colistin 5 mg/L and doripenem Cmax 25 mg/L. The total bacterial

population and resistant subpopulations were quantified over 10 days.

The colistin resistant subpopulations were quantified on agar plates

containing 0.5, 1, 2, 3, 4, 6, 8 and 10 mg/L colistin. All viable counts

were modeled simultaneously using the MCPEM importance sam-

pling algorithm (S-ADAPT, pmethod = 4, v1.57) via SADAPT-

TRAN. The bacterial concentrations on colistin containing agar plates

were modeled as time-dependent functions of the different subpop-

ulations. An additive residual error model on log10 scale was used for

high bacterial concentrations and a Poisson error was included for low

colony counts per agar plate.

Results: For ATCC 27853 and C390, three subpopulations were

identified; including a colistin susceptible/doripenem susceptible,

colistin intermediate/doripenem resistant, and colistin resistant/do-

ripenem susceptible subpopulation. Two subpopulations were needed

for colistin resistant strain 19147 (colistin resistant/doripenem inter-

mediate and colistin resistant/doripenem resistant) as displayed in

Fig. 1. A life cycle growth model [2] was able to describe the viable

count profiles over 10 days for all strains with mean generation times

Table 1 Typical estimates for CMS and colistin PK parameters

Species CLr-CMS

(mL/min/

kg)

CLr-col

(mL/min/

kg)

CLnr-col

(mL/min/

kg)

Vss-CMS

(mL/kg)

Vss-col

(mL/kg)

Mouse 17.1 0.043 3.4 171.9 444.9

Rat 6.4 0.019 6.6 382.8 537.1

Rabbit 5.62 0.017 0.1 79.6 391.6

Baboon 1.62 0.048 5.4 167.8 468.3

Pig 3.45 0.018 14.4 80.9 416.7

Human 2.96 0.0092 2.36 167.4 212.0
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of 1.77, 2.50, and 12.5 h for ATCC 27853, C390, and 19147. A

previously described colistin target site model was used [3]. Killing

by colistin was modeled as a second-order process, and net killing by

doripenem was model as a first order saturatable killing. To charac-

terize the time course of synergy between colistin and doripenem, two

models were developed: ‘subpopulation synergy’ mechanism

(whereby antibiotic A kills the resistant subpopulation of antibiotic B

and vice versa) [4] and ‘mechanistic synergy’ (i.e. antibiotic A

enhances the activity of antibiotic B). Mechanistic synergy in addition

to subpopulation synergy was needed to adequately describe killing

by the combination. Modeling suggested that colistin enhanced killing

by doripenem and that killing by colistin was not affected by do-

ripenem. Doripenem alone was inactive against the doripenem-

resistant subpopulation. However, in the presence of colistin, mod-

eling suggested that colistin enhanced the killing activity by

doripenem against its resistant subpopulation with a maximum rate

(KmaxR) of 0.239 1 h for strain ATCC 27853 and 1.08 1 h for C390.

In colistin resistant strain 19147, doripenem did not elicit any activity;

however, in combination, colistin increased the maximum killing by

doripenem for the doripenem-intermediate subpopulation from 0 to

0.3951 h without altering activity against the colistin resistant and

doripenem resistant subpopulation. The population fits of all strains

were reasonably precise and unbiased both for the total population

and bacteria growing on colistin containing agar plates (Figs. 2, 3, 4).

Conclusions: Colistin combined with doripenem displayed rapid

killing and suppressed emergence of resistance over 10 days in a

dynamic hollow fiber infection model at clinically relevant drug

concentrations. Colistin and doripenem achieved both subpopulation

synergy and mechanistic synergy with colistin enhancing the rate of

killing by doripenem. This is one of the first mechanism-based models

to simultaneously characterize the time course of synergy and quan-

tify multiple resistant subpopulations. This new approach holds great

promise to rationally optimize innovative polymyxin combination

regimens in patients and may serve as a framework to advance

combination modeling for other infections.
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Fig. 1 Sup-population model including a colistin susceptible (ColS),

colistin intermediate (ColI), colistin resistant (ColR) and the respec-

tive doripenem (Dor) populations for strains: a) ATCC 27853 and

colistin hetero-resistant C390, and b) colistin resistant 19147
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Fig. 2 Observed vs. population fitted log10 CFU/mL on antibiotic

free and colistin containing agar plates for a ATCC27853, b colistin

hetero-resistant C390, and c colistin resistant 19147
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Fig. 3 Observed and population fitted log10 CFU/mL for strains

a ATCC 27853, b colistin hetero-resistant C390, and c colistin

resistant 19147
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Objectives: To develop a whole-body physiologically-based phar-

macokinetic (PBPK) model describing an oral absorption of

atorvastatin acid and the formation of its major metabolites in stable

kidney transplant recipients with diabetes mellitus using in silico and

experimentally measured input parameters.

Methods: A clinical study was conducted in stable kidney transplant

recipients with diabetes mellitus. Following a single oral administration

of 40 mg atorvastatin calcium (Lipitor�, Pfizer Pharmaceuticals, NY,

USA), several blood samples were collected at various time points 12 h

post-dose. Quantitative determination of atorvastatin acid and its

metabolites in plasma samples were performed using previously

described validated liquid chromatography-tandem mass spectrometry

method [1]. The absorption and pharmacokinetics of atorvastatin acid

and three metabolites (atorvastatin lactone, ortho-hydroxy atorvastatin

acid and ortho-hydroxy atorvastatin lactone) were simulated using

GastroPlusTM 8.0 (Simulations Plus, Inc., Lancaster, CA, USA) simu-

lation and modeling software. The program’s Advanced Compart-

mental and Transit (ACATTM) model coupled with its generic PBPKTM

module and Population Estimates of Age-Related Physiology (PEARTM)

feature were used to predict systemic exposure of parent drug and its

metabolites. The kinetic parameters of cytochrome P450 3A4 mediated

metabolic clearance of atorvastatin acid and atorvastatin lactone mea-

sured using diabetic liver microsomes [2] were integrated in the model.

In vitro dissolution studies of Lipitor� were carried out in different pH

media to assess pH dependent acid-lactone inter conversion and release

profile. The essential input parameters to construct PBPK model of

atorvastatin acid were determined experimentally, in silico predicted

and/or obtained from the literature. Tissue/plasma partition coeff-i

cients were calculated using Berezhkovskiy and modified Rodgers

algorithm for permeability (liver) and perfusion-limited (non hepatic)

tissues, respectively. Parameter sensitivity analysis feature of Gastro-

PlusTM was utilized to assess the sensitivity of predicted disposition

parameters to key input parameters. Part of the validation process

included virtual trial simulations to evaluate the combined effects of

inter-individual variability in population physiology and the predicted

disposition parameters along with formulation/compound specific

properties using a whole-body PBPK model linked with Monte Carlo

simulation.

Results: The predicted plasma concentration–time profiles of ator-

vastatin acid and three metabolites were in a good correlation with

mean plasma concentration–time curves observed in study patients

(Fig. 1a, b). Berezhkovskiy algorithm utilized to determine tissue

distribution of permeability-limited tissues as it successfully esti-

mated observed large volume of distribution of atorvastatin acid.

Atorvastatin acid (BCS and BDDCS class II drug) was completely

dissolved in dissolution medium with high pH such as C6.8 (Fig. 2a).

However, dissolution studies performed in low pH medium including

1.2 and 3 indicated poor dissolution and simultaneous formation of

lactone metabolite which is in accordance with results reported by

Kearny et al. [3]. The formation of lactone form was higher at very

low pH (pH 1.2) as compared to pH 3 (Fig. 2b) and its absence at

higher pH reflected instability in basic medium. The systemic expo-

sure of atorvastatin acid was under-predicted when measured in vitro

dissolution vs time data were integrated in dissolution model could be

because of significant differences between its aqueous and biorelevant

solubility. The model under-predicted the observed plasma concen-

tration–time profile when in vitro metabolism data measured using

non diabetic livers were incorporated. The stochastic simulation

performed using virtual trail feature of the software showed that the

observed mean plasma concentration–time curve of atorvastatin acid

lie between 90 % confidence interval, maximal and minimal simu-

lated concentrations of ten virtual patients (Fig. 3). Parameter

sensitivity analysis revealed that systemic exposure of atorvastatin

acid is most sensitive to change in intestinal transit time. The pre-

dicted peripheral tissue distribution of atorvastatin acid was highest in

muscle tissue that possibly explains higher incidences of myotoxicity

in diabetic population [4].

Conclusions: A whole-body PBPK model was constructed to simu-

late systemic exposure of an orally administered atorvastatin acid and

formation of major metabolites in stable kidney transplant recipients
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with diabetes mellitus. This study also demonstrated that disease

specific in vitro metabolic clearance data are superior for the appro-

priate prediction of systemic exposure of a drug that undergoes

extensive metabolism, which might changed due to altered activity of

drug metabolizing enzymes in specific disease state [5].

References

[1] Macwan JS, Ionita IA, Dostalek M, Akhlaghi F (2011) Anal

Bioanal Chem 400(2):423–433

[2] Dostalek M, Sam WJ, Paryani KR, Macwan JS, Gohh RY,

Akhlaghi F (2012) Clin Pharmacokinet 51(9):591–606

[3] Kearney AS, Crawford LF, Mehta SC, Radebaugh GW (1993)

Pharm Res 10(10):1461–1465

[4] Graham DJ, Staffa JA, Shatin D, Andrade SE, Schech SD, La

Grenade L, et al (2004) JAMA 292(21):2585–2590

[5] Dostalek M, Court MH, Yan B, Akhlaghi F (2011) Br J

Pharmacol 163(5):937–947

Solid line shows the mean of simulated concentrations of ten subjects.

Square with error bar represents the mean of observed clinical plasma

concentrations. The green highlighted area represents 90 % confi-

dence interval of simulated concentrations data around mean. The

solid blue, dashed, and dotted lines represent individual simulated

results that incorporate 100, 95, 90, 75, 50, 25, and 10 % of the range

of simulated data.
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Background and Objectives: nmDBMD is a childhood disease

caused by a genetic mutation resulting in the lack of production of

functional dystrophin protein required to stabilize muscle cell mem-

branes. Ataluren can enable ribosomal readthrough of premature stop

codons and is under development for the treatment of nmDBMD.

Despite increased production of the missing dystrophin protein

in vitro, there was an attenuation of response at higher ataluren

concentrations resulting in a bell-shaped concentration–response

relationship. The goals here were to: (A) develop an integrated pop-

ulation PK-PD and disease progression model to characterize the

impact of ataluren therapy on ambulation in pediatric and adolescent

nmDBMD patients, and (B) use the integrated model to assess the

potential impact of ataluren on disease progression of nmDBMD.

Methods: Data were obtained from a randomized, multicenter, dou-

ble-blind, placebo-controlled, dose-ranging Phase 2b study conducted

by PTC Therapeutics in 173 pediatric nmDBMD patients ages

5–17 years. Patients were randomized (1:1:1 ratio) to one of three

thrice daily (morning/midday/evening) treatment regimens to receive

placebo or ataluren at either 10/10/20 mg/kg or 20/20/40 mg/kg for

48 weeks. At the completion of blinded treatment, patients were

eligible to receive open-label ataluren (20/20/40 mg/kg) for an

additional 48 weeks. Blood samples were collected on multiple

occasions to determine plasma ataluren concentrations. Patient height

(HTCM) and weight was recorded, and ambulation was assessed

using a modified American Thoracic Society (ATS) 6-min walk test

(6MWT) to determine 6-min walking distance (6MWD), at screening,

at baseline and every 6 weeks during treatment for up to 96 weeks.

The approach used to develop the integrated nmDBMD disease-

progression and ataluren PK-PD model, as well as the process used to

support ataluren dose selection, is highlighted in Fig. 1. All analyses

were conducted using NONMEM 7.

Results: In Stage 1, a 2-compartment (CMT) population PK model

was shown to best describe the ataluren PK data from healthy adults.

The adult ataluren PK model was subsequently bridged to the pedi-

atric and adolescent nmDBMD patient data using body weight and

disease-state indicators as covariate effects (ISoP 2013 abstract by

Murad Melham). For each patient, a steady-state area under the

plasma concentration–time curve over 24 h was calculated and divi-

ded by 24 to obtain an average steady-state ataluren concentration

(Cave) for use in PK-PD analyses. In Stage 2, a sigmoidal Hill-type

model best characterized the expected increase in 6MWD (GROW) as

a function of HTCM in healthy children using a naı̈ve pooled mod-

eling approach and data obtained from literature studies by Lammers

Fig. 1 Development of integrated nmDBMD disease progression and

ataluren PK-PD model to support dose selection

Fig. 2 Sigmoidal Hill-type model for the relationship between

6MWD and HTCM in healthy children
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et al. [1] and McDonald et al. [2]. Statistically significant differences

in 6MWDmax were detected between studies (Fig. 2), while HTCM50

and c were similar. The equation for the McDonald data (Eq. 1) was

used to project 6MWD in nmDBMD patients as HTCM increased

during the study, since this investigator used the same modified ATS

6MWT as did PTC Therapeutics.

GROWðtÞ ¼
696 � HTCM5:72

ðtÞ

90:75:72 þ HTCM5:72
ðtÞ

ð1Þ

An indirect response (IDR) model was used to characterize the time-

course of 6MWD in nmDBMD patients receiving placebo for

48 weeks. The maximum possible zero-order growth rate [kin,max(t)]

was determined as the product of GROW(t) and kout (estimated to

be 0.520 week-1). The core underlying assumption for the disease

model was that nmDBMD patients function at some fraction

(FUNC) of the 6MWD expected for a HTCM-matched healthy

child. The initial starting 6MWD was the product of GROW(t) and

FUNC, which was significantly related to age (Eq. 2) suggesting

older children at same HTCM are more debilitated. Individual

FUNC estimates were constrained between 0 and 1 using a logistic

transform. Examination of the placebo nmDBMD patient data

showed the onset of disease progression may be delayed or even

non-existent during the study. A 3-CMT transduction model

featuring a first-order disease progression rate [kdis(0), which was

parameterized as a function of baseline 6MWD as shown in Eq. 3]

was used to allow FUNC to decline to FUNC2 to account for

continued and potentially delayed disease progression in the IDR

model (Eq. 4).

FUNC ¼ 1� Age

11:1þ Age
ð2Þ

kdisð0Þ ¼ 0:0106 � Baseline6MWD

350

	 
�3:06

ð3Þ

d6MWD

dt
¼ FUNC2 � kin;maxðtÞ � kout � 6MWD,

IC ¼ GROW � FUNC
ð4Þ

In Stage 3, both sigmoidal Hill-type and bell-shaped [3] PK-PD

models were evaluated to characterize the reduction in kdis(0) (slowing

nmDBMD disease progression) as a function of ataluren Cave using

data from both placebo and on-treatment groups. The bell-shaped

model (estimating KD = 9.29 mg/L and K2 = 0.540 mg/L as shown

in Eq. 5) provided the better fit to the data. As shown in Fig. 3, the

maximum reduction in kdis(0) was 18.2 %; ataluren Cave between 0.97

and 17.6 mg/L produced C50 % of the maximum reduction and

served as the targeted therapeutic ataluren exposure range.

kdis ¼ kdisð0Þ �
kdisð0Þ � Cave

9:29þ Cave þ 0:540 � ðCaveÞ2

 !

ð5Þ

In Stage 4, Monte Carlo simulations were performed to generate

5000 virtual pediatric nmDBMD patients having similar demographic

distributions as the studied nmDBMD patients. The virtual nmDBMD

patients were administered various ataluren dosing regimens and

Bayesian ataluren PK parameters and Cave values were obtained. A

greater number of nmDBMD patients treated with 10/10/20 mg/kg

ataluren (98.3 %) were predicted to have ataluren Cave in the targeted

therapeutic exposure range as compared to the 20/20/40 mg/kg

ataluren (65.2 %), supporting use of the 10/10/20 mg/kg ataluren

treatment regimen.

Conclusions: An integrated nmDBMD disease progression and

ataluren PK-PD model, incorporating data across multiple studies and

data sources, was developed and used to support ataluren dose

selection for this indication.
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Objectives: On December 14 2012, FDA approved pasireotide for the

treatment of adult patients with Cushing’s disease for whom pituitary

surgery is not an option. Cushing’s disease is a rare endocrine disease

caused mostly by histologically benign ACTH-secreting pituitary

tumors. Currently there are *17,000 patients living with Cushing’s

disease in United States. The registration trial included two arms with

two different dosing regimens, 0.6 mg b.i.d. and 0.9 mg b.i.d., but the

trial was not powered to compare the efficacy and safety between two

dose regimens. At Month 6, the percentages of responders for the

primary efficacy endpoint were 15 and 26 % in the 0.6 mg b.i.d. and

0.9 mg b.i.d. groups, respectively. Only 0.9 mg b.i.d dose met the

pre-specified primary end point. The objective of this analysis is to

compare the efficacy and safety profile for the two dosing regimens

from exposure–response (E–R) perspective.

Methods: A multivariate logistic regression was conducted to assess

the E–R relationship for efficacy and safety endpoints and identify the

covariates that predict response. The exposure metric used in E–R

analysis was observed steady state pre-dose Cmin (or average Cmin) of

each individual at a corresponding time of interest (e.g., Month 3 or

6). The efficacy assessment was based on mean of urinary free cor-

tisol (mUFC) values. The primary efficacy variable was defined as the

proportion of responders in each dose arm. A responder was defined

as a patient who attained mUFC B ULN (145 nmol/day) at Month 6

and whose dose was not increased relative to the randomized dose

Fig. 3 %Reduction in kdis(0) as a function of ataluren Cave; shaded

area depicts Cave producing C50% maximal effect
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prior to Month 6. Since the main adverse event associated with the

pasireotide therapy was hyperglycemia, the E-R analysis for safety

focused on the proportion of the patients who had post-baseline

increase of more than 1 % in HbA1C. The following covariates were

evaluated in the analysis: baseline mUFC, baseline HbA1C, baseline

ALT, prior medication, prior pituitary irradiation, prior pituitary

surgery, gender, race, age, and BMI.

Results: Despite the fact that the median trough concentration is

50 % higher in 0.9 mg b.i.d. dose group compared to 0.6 mg b.i.d.

dose group, there is a substantial overlap in exposures between these

two dose groups due to the high inter-subject variability in pharma-

cokinetics. We did not find a clear relationship between exposure (i.e.,

average trough concentration) and probability of response at Month 3

(Fig. 1), suggesting no significant additional benefit of 0.9 mg b.i.d.

over 0.6 mg b.i.d. The results are consistent if response at Month 6 is

used as the response variable and average steady state concentration

over 6 months as the exposure variable. In addition, exposure–

response analysis was also conducted using mUFC as a continuous

variable for efficacy and conclusions regarding the E-R relationship

for efficacy remain the same. E-R analysis for safety indicated that

there is a clear trend toward increasing probability of experiencing

C1 % post-baseline increase of HbA1C with the increasing exposures

(Fig. 2), suggesting that 0.9 mg b.i.d. may result in a higher proba-

bility of post-baseline hyperglycemia than the 0.6 mg b.i.d. dosing

regimen.

Conclusions: Overall, exposure–response analysis suggests that

0.6 mg b.i.d. may be as effective as 0.9 mg b.i.d., and will provide better

hyperglycemia-related safety profile than 0.9 mg b.i.d. for all patients.

However, due to the high unexplained variability in response, 0.9 mg

b.i.d. may be beneficial for some patients as a starting dose or for whom

not responding to 0.6 mg b.i.d. and should be allowed as an option. Even

though 0.6 mg b.i.d dose did not meet the primary end point, both

0.6 mg and 0.9 mg b.i.d were approved as starting doses with an option

of titrating based on response and tolerability. Exposure–response

analyses were pivotal in enhancing our understanding of the adequacy

of the proposed starting dose for Pasireotide.
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Fig. 1 No evident relationship between exposure and response rate

after adjusting for baseline mUFC. Logistic regression model includes

the probability of responder at month 3 as a function of average

pasireotide concentration at month 3 after controlling for baseline

mUFC (Ctrough p value = 0.65; Baseline mUFC p value = 0.046).

The mean and 95 % CI of the observed response rate versus the

median of observed trough concentration quartile is represented by

black bars while dashed green line and purple band represent the

model predicted mean and 95 % interval of response rate. The box

plots at the bottom represent the distribution of trough concentration

in each dose group

Fig. 2 Increase in probability of developing post-baseline hypergly-

cemia ([1% HbA1c increase from baseline) at month 2 with the

Increase of Exposure in all Patients after adjusting for baseline

HbA1c. Logistic regression model includes the probability of post-

baseline hyperglycemia at month 2 as a function of average

pasireotide concentration at month 2 after controlling for baseline

HbA1c (Ctrough p value = 0.0004; baseline HbA1c p value = 0.045).

The mean and 95 % CI of the observed response rate versus the median

of observed trough concentration quartile is represented by black bars

while dashed green line and purple band represent the model predicted

mean and 95 % interval of probability of post-baseline hyperglycemia.

The box plots at the bottom represent the distribution of trough

concentration in each dose group
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Objectives: nmDBMD is a childhood disease caused by a genetic

mutation resulting in the lack of production of functional dystrophin

protein required to stabilize muscle cell membranes. Ataluren can

enable ribosomal readthrough of premature stop codons and is under

development for the treatment of nmDBMD. The objectives of this

analysis were to: (a) characterize ataluren PK in both healthy subjects

and the intended patient population of pediatric and adolescent

patients with nmDBMD, bridging any potential PK differences

among age groups or between healthy subjects and patients; and

(b) generate ataluren exposure measures to facilitate the exploration

of efficacy PK-PD relationships in pediatrics and adolescents with

nmDBMD.

Methods: Data for the development of a population PK model for

ataluren were derived from two Phase 1 studies in healthy adult

volunteers (ages 18–30 years) and four Phase 2 studies conducted in

nmDBMD patients (ages 5–17 years). All subjects had at least one

PK sample and the majority (approximately 70 %) had 35 or more

samples following single or multiple dose administration of ataluren.

Structural population PK compartmental models were evaluated using

data from healthy adult volunteers. The 2-compartment model was

parameterized using a first-order absorption rate constant (ka),

apparent clearance (CL/F) and central volume of distribution (Vc/F),

and the apparent distribution clearance (CLd/F) and peripheral vol-

ume of distribution (Vp/F). The impact of food on the rate and extent

of absorption, and the impact of diurnal variation on CL/F were also

assessed. The model parameters were re-estimated after pooling the

data from both the healthy adults and nmDBMD patients to allow

testing for potential differences between healthy adults and nmDBMD

patients, as required. To explore subject covariates as predictors of

PK parameters, a formal covariate analysis was conducted using

forward selection (a = 0.01) followed by backward elimination

(a = 0.001) procedures. The final model was evaluated/qualified

using a prediction-corrected visual predictive check (pcVPC) [1]. All

population PK analyses were conducted using NONMEM�, Version

7, level 1.2 [2].

Results: A two-compartment model with first-order absorption and

linear elimination (Table 1) best described ataluren plasma concen-

tration–time profiles in pooled data from healthy adults (N = 61) and

nmDBMD patients (N = 211). Interindividual variability in parame-

ters were estimated using exponential error models, while residual

error was modeled as an additive error structure in the logarithmic

domain. The population PK model estimated a higher relative bio-

availability (1.91-fold higher) for healthy adults relative to that of

nmDBMD patients. Diurnal variation for the ataluren CL/F was also

included in the final model to account for higher observed drug

concentrations following evening doses. The model estimated a

39.2 % higher ataluren CL/F following morning or mid-day doses

relative to the CL/F following evening doses. Body weight was also

identified as a statistically significant predictor of both CL/F and Vc/

F; ka was predicted to decrease with increasing dose using a power

function. No statistically significant effect of food was detected on

either the rate or extent of ataluren absorption (p = 0.103 and 0.109,

respectively).The results of the pcVPC (Fig. 1) suggested negligible

prediction bias. Generally, the bulk of the prediction-corrected

observed data are contained within the prediction interval and the

central tendencies in corrected observed data were adequately cap-

tured with corrected predictions.

Conclusions: A two-compartment population PK model was devel-

oped to describe ataluren disposition in healthy volunteers and

patients pediatric/adolescent with nmDBMD. The model estimated a

39.2 % higher ataluren CL/F following morning or mid-day doses

relative to the CL/F following evening doses. A higher relative bio-

availability was estimated in healthy adults relative to nmDBMD

patients. Body weight was identified as a statistically significant

predictor of both apparent oral clearance and apparent oral central

volume of distribution. Ataluren absorption rate was predicted to

decrease with increasing dose. The final population PK model was

qualified and was subsequently used for generating ataluren exposures

in nmDBMD patients in order to assess the pharmacokinetic-phar-

macodynamic relationships for efficacy.

Table 1 Parameter estimates and associated standard errors from the final population PK model fit to the pooled data from healthy adults and

nmDBMD patients

Parameter Final parameter estimate %SEM

CL/F for evening (PM) dosing (L/h)a 5.63 3.27

Vc/F(L)b 38.9 8.46

Vp/F(L) 1.28 29.5

CLd/F (L/h) 0.0668 51.5

Power coefficient from the relationship between ataluren dose (in mg) and kac 16.8 78.0

Power exponent from the relationship between ataluren dose (in mg) and ka -0.436 32.8

Proportional shift in CL/F for morning or mid-day dosing (AM) 0.392 12.2

Fold increase in F for healthy subjects relative to nmDBMD patients 1.91 10.1

Power coefficient from the relationship between weight and CL/F 0.438 20.8

Power coefficient from the relationship between weight and Vc/F 0.299 62.9

xCL/F
2 0.139 (37.28 %CV) 10.9

Covariance (CL/F, Vc/F) 0.123 16.4

xVc/F
2 0.202 (44.99 %CV) 22.4

xVp/F
2 0.168 (40.99 %CV) 40.1

Residual variability (log SD) 0.606 3.57

a Population mean CL/F (L/h) = [5.63•(1 + 0.392•AM)]•(WTKGj/31.4)0.438, where AM = 0 for an evening dose and 1 for either morning or

mid-day doses
b Population mean Vc/F(L) = 38.9•(WTKGj/31.4)0.299

c Population mean ka (h-1) = 16.8•Dose-0.436
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Objectives: The aim of individual optimal design with a population

prior (inter individual variability, IIV) is to optimize the experimental

design with respect to the precision of the maximum a posteriori

(MAP) estimated individual parameters. Methods of individual opti-

mal design have been investigated by Merlé and Mentré [1] and a

variant of the Bayesian information matrix termed FIM maximum a

posteriori (FIMMAP) has been applied by, e.g. Hennig et al. [2].

Frequently in mixed effect models inter occasion variability (IOV) is

present, but how to handle this additional variability in individual

optimal design has not been investigated. This work aims to explore

additions to the previously described FIMMAP to handle the presence

of IOV in terms of individual parameter precision and calculation run-

times for the design of a colistin PK study.

Methods: To calculate the FIMMAP the prior population model is

transformed to an individual model which is integrated over all

possible individual values, i.e. the prior population variance, X
(Eqs. 1 and 2). The expected variance of the individual parameters

may then be minimized by maximizing the determinant of the

FIMMAP.

pi;k ¼ hk � egik )
gik!hik

hk � ehik ; hik�N 0;x2
k

� �

ð1Þ

where pi,k is the kth parameter for individual i, hk is the kth typical

population parameter, gik is the individual deviation from hk for

individual i in the population model, hik is the deviation from hk in the

individual model and xk
2 is the population variance of gk

FIMMAP ¼ EX FIM X;Hð Þ½ � þ X�1 	 1

n

X

n

i¼1

FIM X;Hið Þ þ X�1 ð2Þ

where n is the number of individual parameter sets sampled, X is the

design, Hi is the parameter vector for individual i, and X the popu-

lation prior IIV covariance matrix

Three strategies to include IOV in the FIMMAP were investigated:

(i) Inflate—The prior was inflated with the IOV through model re-

estimation (Eq. 3) (ii) Random—The IOV variability was included in

the individual FIM as a population occasion random effect parameter.

(Eq. 4) (iii) MAPocc—The occasion variability was added to the

individual FIM as fixed effect occasion parameter sampled per occasion

from the prior IOV distribution (Eq. 5). As comparison the optimization

was performed without IOV included, termed Ignore below.

Inflate:FIMMAP;i ¼ FIM X; Hh;Hgi

� �� �

þ X��1 ð3Þ

where Hh is the vector of population parameters, Hgi is the vector of

deviations from the typical population parameters for individual i, and

X* is the population prior covariance matrix inflated to include IOV

Random:FIMMAP;i ¼ FIM X; Hh;Hgi;P
� �� �

þ diag X�1; 0p;p

� �

ð4Þ

where P is the covariance matrix for the IOV, 0p,p is a zero matrix of

dimension p*p and p is the number of occasion effects in the

population model.

MAPocc FIMMAP;i ¼ FIM X; Hh;Hgi;Hj1;i;Hj2;i. . .;HjK;i

� �� �

þ diag X;P1;P2. . .;PKð Þ�1 ð5Þ

where Hjj,i is the vector of occasion deviations for the jth occasion of

the ith individual, K is the number of occasions and Pj = P
The investigated Colistin PK model included IIV and IOV vari-

ability [3], with the optimization focused on precision of the

individual deviations of colistin and CMS clearance (gCL), inter-

compartmental CL of CMS (gQ) and colistin residual error (gRE). The

design was based on a dosing regimen of 9 MU (720 mg) CMS as

load (30 min infusion), followed by a maintenance dose of 4.5 MU

q12 with one occasion per dose interval. Schedules of 3 or 6 sampling

times over 36 h (three occasions) were investigated with sampling

prohibited during or up to 15 min post infusion.

The optimization was performed by the EDs criteria in combina-

tion with a prior FIM in the PopED optimal design software [4] based

on 45 samples per FIM evaluation with the individual deviation

parameters (gCL, gQ, gRE) set as interesting.

The designs were evaluated based on 300,000 individual simula-

tions and MAP re-estimations in NONMEM7 for which the expected

standard deviation (SD) of the parameter Empirical Bayes estimates

(EBE:s) were obtained as well as the observed Root Median Squared

Error (RMSE). These were compared with the expected SD as cal-

culated from the expectation of the PopED inverse FIMMAP.

Results: The results from the design optimization and evaluation are

summarized in Table 1. The methods MAPocc and Random place

all samples in the first occasion (first 12 h) whereas methods Ignore

and Inflate provide identical designs and populate all three occa-

sions. The PopED and NONMEM expected SD corresponds well for

methods MAPocc and Random whereas the PopED expected gCl SD

is severely underpredicted for methods Ignore and Inflate. The

designs for methods MAPocc and Random improves the NONMEM

expected SD for parameter gQ and the NONMEM simulated RMSE

for parameters gQ and gER. The design is saturated (addition of

more samples result in replicates) at three samples for methods

Fig. 1 Prediction-corrected visual predictive check for the final

population PK model for ataluren in pooled data from healthy adults

and nmDBMD patients
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Ignore and Inflate and at four samples for methods MAPocc and

Random.

The runtimes for one FIM calculation in PopED were 0.06, 0.06, 0.11

and 2.3 s for methods Ignore, Inflate, MAPocc and Random respec-

tively for the 3 sample design.

Conclusions: Methods MAPocc and Random that directly include the

IOV in the FIMMAP improve on ignoring IOV both with respect to the

correspondence between PopED and NONMEM predicted EBE SD as

well as the overall NONMEM predicted and simulated EBE impreci-

sion and bias. Methods Ignore and Inflate resulted in identical designs

and similar PopED predicted parameter SD, possibly due to the small

difference between the prior and the IOV inflated relative to the FIM.

Here methods MAPocc and Random place all samples in the first

occasion which minimize the contribution of IOV to the FIM. Method

MAPocc is in this case faster and results in slightly improved predicted

and simulated EBE SD and RMSE compared to method Random. In

conclusion, three methods to include IOV in individual optimal design

were tested. It was found that including the IOV directly in the FIM was

superior to either ignoring IOV or inflating the prior to include IOV.
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Modeling of Amoxicillin in Neonates and Infants
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Objectives: An amoxicillin PBPK model was previously developed

and validated in typical healthy adults as well as adults with altered

renal function. The purpose of this study was to explore the utility of

the model in describing amoxicillin pharmacokinetics (PK) in neo-

nates and infants.

Methods: An absorption/PBPK model for amoxicillin was previously

developed [1] using GastroPlusTM 8.0 (Simulations Plus, Inc., Lan-

caster, CA). The program’s Advanced Compartmental Absorption and

Transit (ACATTM) model described the absorption of the drug, while

PK was simulated with its PBPKPlusTM module. Intestinal absorption

and tissue distribution included components of both passive diffusion

and carrier-mediated transport. Total clearance consisted of renal

(major) and hepatic (minor) components. Physiological parameters

were generated by the program or obtained from literature. Certain

drug-dependent parameters were obtained by fitting against reported

plasma concentration–time (Cp-time) profiles and amounts secreted in

urine after amoxicillin i.v. and p.o. administration in healthy volunteers.

The model was further validated by predicting amoxicillin PK in dif-

ferent adult populations [2]. Physiologies for infants and neonates were

based on information collected from literature. Aside from body weight,

height and individual tissue sizes and blood flows, the parameters with a

large effect on amoxicillin pharmacokinetics include changes in

extracellular water in very young infants, glomerular filtration rate, and

renal transporters. Fraction unbound in plasma and blood-to-plasma

concentration ratio were also adjusted to account for infant plasma

protein levels and hematocrit. Literature information on ontogeny of

relevant renal transporters was not found. The PBPK model, along with

observed amoxicillin Cp-time profiles after i.v. administration was used

to estimate the expression of renal transporters in different groups of

infants.

Results: The previously developed adult PBPK model for amoxicillin

correctly predicted amoxicillin volume of distribution in neonates and

infants after incorporating physiological parameters relevant for this

population, i.e., tissue sizes, extracellular water volume, and slow

passive diffusion across tissue membranes. In adults, the renal

clearance consisted of contributions from both passive glomerular

filtration and active tubular secretion. In the current model, the glo-

merular filtration rate (GFR) was incorporated as reported in the

literature for different ages of full-term and pre-term infants [3-4].

Transporter expression levels in kidney were fitted against observed

Cp-time profiles from some studies and validated by using the final

model to simulate amoxicillin PK in subjects of similar age from

different studies. Results for the youngest group (1–3-day-old neo-

nates born on average 11 weeks premature) are shown in Fig. 1. The

data after 25 mg/kg i.v. administration [5] was used to scale the renal

transporters (Fig. 1a). The final model was used without any further

changes to predict amoxicillin PK after 50 mg/kg i.v administration

(Fig. 1b) from a different study [6].

Both GFR estimated from literature data [3–4] and fitted renal

transporter levels were very low for these premature neonates: esti-

mated GFR was *10 % of the adult value (when expressed per

1.73 m2), fitted renal transporter levels per g of tissue were 1 % of

adult levels. The differences in scaling for GFR and renal transporter

levels are in line with the reported different rates of maturation of

GFR and active tubular secretion [5]. The final model was used to

explore potential sources of observed variability in amoxicillin PK in

infants.

Conclusions: Amoxicillin is eliminated primarily by renal secretion

with a minor contribution from liver clearance (metabolism and bil-

iary secretion). A physiological model that included relevant

distribution and clearance mechanisms was previously fitted and

validated against data for different adult populations. In the current

work the model was applied to simulations of amoxicillin PK in

neonates and infants: (1) to fill-in missing pieces of physiological

Table 1 The optimal sampling times (3 or 6) for the three IOV

inclusion methods, Inflate, MAPocc and Random, as well as the

comparator, Ignore, are summarized below along with the expected

(expressed in SD) and simulated (expressed as RMSE) uncertainty for

the individual EBE:s. Sampling points in the first occasion are coded

in blue, in the second purple and in the last red
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information (scaling of renal transporter expressions) using available

in vivo data which could be used to predict PK of similar drugs; and

(2) to explore sources of variability in amoxicillin PK in young

children and provide useful insights into the drug’s behavior in

populations where large scale clinical studies are not feasible.

References

[1] Lukacova V (2012) Poster presentation (#6366), AAPS Annual

Meeting, Chicago

[2] Lukacova V (2012) Poster presentation (#6367), AAPS Annual

Meeting, Chicago

[3] DeWoskin RS (2008) Regul Toxicol Pharmacol 51:66–86

[4] Arant BS (1978) J Pediatr 92:705–712

[5] Huisman-de Boer JJ (1995) Antimicrob Agents Chemother

39(2):431–434

[6] Charles BG (1997) J Pharm Sci 86(11):1288–1292

W-026 PK/PD Index Versus Mechanism-Based PKPD

Modeling to Describe Antibacterial Efficacy

of Ciprofloxacin and Colistin
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Objectives: PK/PD indices are generally used when deciding on

dosing regimens for antibiotic drug treatment. The PK/PD indices

are based on the assumption that the antibacterial drug efficacy is

correlated to one of the three PK/PD indices; maximum unbound

drug concentration over MIC (fCmax/MIC), area under the unbound

drug concentration–time curve over MIC (fAUC/MIC), or the

percentage of a 24 h time period where the unbound drug con-

centration exceeds the MIC (fT [ MIC). For both ciprofloxacin and

colistin, fAUC/MIC has been reported to be the best PK/PD index

[1–3].

By using the PK/PD indices as endpoint, there is a risk of losing

information as the indices only reflect the efficacy at a single time

point, typically at 24 h. Mechanism-based PKPD models developed

from in vitro time-kill curve experiments consider the whole time

span of the experiment rather than just the 24 h time point. It has

previously been shown that PKPD models can predict the PK/PD

indices for several different antibiotics [4]. The aim of this project

was to evaluate recently developed mechanism-based PKPD models

for ciprofloxacin and colistin for prediction of the PK/PD indices and

to consider advantages/disadvantages of using PK/PD indices vs.

mechanism-based PKPD models for dose optimization, for optimizing

across half-lives and varying degree of resistance.

Methods: We have previously developed PKPD models for E.coli
exposed to ciprofloxacin and P. aeruginosa exposed to colistin

[5, 7]. These models were developed with static time-kill curve

data for wild type and well characterized mutans of E.coli, and

wild type and resistant clinical isolate of P. aeruginosa. Both

model structures include sensitive growing and resting non-growing

bacteria. The model for E.coli also includes pre-existing resistant

bacteria while the P. aeruginosa model features an adaptive resis-

tance mechanism.

In this simulation study, human or mice PK was driving the PKPD

models to predict the change in bacterial count following different

dosing regimens. For ciprofloxacin, a two compartment PK model

was used for human PK while a one compartment model was used for

mouse PK. PK parameters were taken from the literature, with ter-

minal half-lives of 4 h for man and 46 min for mouse [4, 5].

Predictions were also made for longer and shorter half-lives (8 h and

1 h) in man.

A PK model for CMS and colistin in patients and an in vitro PKPD

model for colistin [6, 7] were combined to predict PK/PD index for

colistin. A typical colistin half-life of 18 h was studied as well as a

4.5 h half-life. Dosing regimens with tau of 24, 12, 8 and 4 h were

studied for both colistin and ciprofloxacin and a wide range of doses

were studied. The best predicted PK/PD index was assessed by fitting

the different indices to an Emax model and calculating the R2 value.

The influence of PK and resistance on the choice of PK/PD index and

target magnitude was investigated.

Results: For normal ciprofloxacin plasma half-life of 4 h, the model

predicted fAUC/MIC to be the best PK/PD index in humans, however

fT [ MIC was nearly as good. A fAUC/MIC of 50 was predicted to

be required for 3 log kill. When the half-life increased, fAUC/MIC

remained the best PK/PD index. For the shorter ciprofloxacin half life

of 1 h, fT [ MIC was however shown to be the most predictive PK/

PD index while the fAUC/MIC index was predicted to not be as good

(R2 0.90 from 0.99). In concordance with the short half-live in mice

for ciprofloxacin, fT [ MIC was predicted to be the best PK/PD index

in this species. When excluding 24 h dosing in mice, fAUC/MIC and

fT [ MIC were both predicted to be good PK/PD indices. For

colistin, both fCmax/MIC and fAUC/MIC correlated well with the

antibacterial efficacy when assessed after 24 h of treatment, for the

two evaluated half-lives.

Conclusions: As earlier found in clinical studies [3, 5], fAUC/MIC

was identified by the mechanism-based model to be the best PK/PD

index for ciprofloxacin when allowing the human PK profile to drive

the killing effect on the bacteria. With a shorter ciprofloxacin half-

life, fT [ MIC was predicted to be more closely related to the effect

than fAUC/MIC. This indicates that the selection of the PK/PD index

for a drug is sensitive to the PK characteristics in the studied popu-

lation and hence there is a risk of not using the optimal dosing

regimen if strictly dosing after an established PK/PD index. For

colistin both fCmax/MIC and fAUC/MIC were predicted to have good

correlations to the 24 h efficacy for all evaluated half-lives. fAUC/

MIC has previously been shown to be the best PKPD index for

colistin in mice [8]. A colistin fAUC/MIC of 5 was predicted to

achieve a 3 log kill in humans. In mice, a fAUC/MIC of 55 has been

reported to achieve a 3 log kill for the same P. aeruginosa strain

Fig. 1 Simulated (lines) and observed (points) PK profiles of

amoxicillin after i.v. administration in preterm neonates (average

gestational age 29 weeks). a 25 mg/kg dose on day 3 after birth

(observed data are from [5]), b 50 mg/kg dose on days 1–3 after birth

(observed data are from [6])
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(ATCC 27853) [1]. In summary, the mechanism-based PKPD models

were shown to predict PK/PD indices for ciprofloxacin and colistin as

earlier been shown for other antibiotics [1]. As illustrated for cipro-

floxacin, PK/PD indices may not extrapolate well to all patient-

populations or between animals and humans. This study provides

further support that mechanism based models based on in vitro data is

a useful tool to improve dosing regimens and clinical outcome within

the infectious disease area.
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Objectives: Physiological and biochemical changes that occur during

pregnancy often alter the pharmacokinetics of drugs, thus affecting

their safety and efficacy for the mother and fetus. Glyburide is an oral

anti-diabetic agent that has been increasingly used to treat gestational

diabetes mellitus. The oral clearance of glyburide was increased by

2-fold in pregnant women compared to non-pregnant controls [1]. The

mechanism by which pregnancy changes glyburide pharmacokinetics

remains largely unknown. In vivo and in vitro studies suggest that

glyburide is extensively metabolized in the liver by CYP3A and

CYP2C9 [2], and hepatic CYP3A activity is significantly induced

during pregnancy [3]. Therefore CYP3A induction might be one

possible mechanism for decreases in maternal glyburide exposure

during pregnancy. Since the levels of hepatic Cyp3a content in

pregnant mice and its activity are also significantly increased com-

pared with non-pregnant controls [4], we have used the pregnant

mouse as an appropriate animal model to study gestational age-

dependent effects on glyburide disposition during pregnancy. Thorough

characterization of pregnancy-induced changes in the disposition of

glyburide (including fetal exposure) will be important for optimizing

dosing regimens for use in pregnant women. In this study, we deter-

mined gestational age-dependent changes in maternal glyburide

pharmacokinetics in pregnant mice. While the maternal disposition of

glyburide has been studied in humans, due to ethical and logistical

reasons, no data is available regarding fetal exposure, particularly

during early gestation, which ultimately determines the toxicity of the

drug to the developing fetus. Thus, we also determined fetal exposure

to glyburide throughout gestation in pregnant mice.

Methods:
Timed mating and sample collection: Male and female FVB wild-type

mice, aged 7–10 weeks, were mated overnight. Under anesthesia,

pregnant (Gd 7.5, 10, 15, and 19) or non-pregnant (Gd 0) mice were

administered 20 lg glyburide by retro-orbital injection. At various

times (0.5, 5, 10, 20, 40, 60, 120, 180, and 240 min) after glyburide

administration, animals (n = 3–4 per time point) were sacrificed and

maternal plasma and fetuses were collected.

Maternal plasma and fetal extraction of glyburide: For every 100 lL

of maternal plasma, 450 lL of methanol and 20 lL of internal

Fig. 1 Maternal plasma concentration–time profiles of glyburide in

FVB-wild-type mice. Data from gestation day (Gd) 0 (red squares),

Gd 7.5 (blue triangles), Gd 10 (purple upside-down triangles), Gd 15

(green diamonds), and Gd 19 (black circles) are shown. Mice were

administered 20 lg of glyburide by retro-orbital injection. Smaller

concentration–time profiles in the upper right-hand corner were

plotted using a linear scale. Shown are mean ± S.D. (n = 3–4 mice

per time point)
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standard (0.5 ng/lL glyburide-d11) were added. Fetal samples were

homogenized in 1.25–2.5 mL of PBS using an Omni bead ruptor

homogenizer. For every 500 lL of fetal homogenate, 50 lL of 2 M

HCl, 4 mL of 60:40 (v/v) n-hexane:methylene chloride, and 20 lL of

internal standard (0.5 ng/lL glyburide-d11) were added. Samples

were briefly vortexed and centrifuged at 14,000 rpm for 10 min at

4 �C. Supernatants were evaporated using nitrogen gas. Maternal

samples were reconstituted in initial mobile phase (57.5 % 5 mM

ammonium formate, pH 6.0 and 42.5 % methanol containing 5 mM

ammonium formate). Fetal samples were reconstituted in 75 lL of

1 % formic acid in methanol. 2 lL were injected per sample for

LC/MS analysis.

LC/MS Analysis: An Agilent HPLC/MS series 1100 G1956B with a

single quadrupole mass spectrometer and an Ace 3 C8 column

(150 mm x 2.1 mm) were used for the separation and analysis of

glyburide (494 m/z). The mobile phases consisted of methanol

(B) and water (A), both containing 0.5 mM ammonium formate at pH

6.0. The flow rate was 0.4 mL/min. The gradient was 42.5 % meth-

anol for the first 5 min, then increased linearly to 90 % for 5.1 min,

and finally decreased back to 42.5 % for the remainder of the 11 min

run time. The mass spectrometer was run in API-ES ionization mode

using a capillary voltage of 3500 V and a fragmentation voltage of

115 V.

Pharmacokinetic and Statistical Analysis: The following maternal

pharmacokinetic (PK) parameters were estimated using the pseudo-

profile-based bootstrap method and R programming language as

previously described: AUC0–240min, CL, and Vss. The confidence

intervals of PK parameters from Gd 7.5, 10, 15, and 19 data were

compared to Gd 0 to determine statistical significance. Fetal

AUC0–240 min was calculated by non-compartmental analysis using

WinNonlin Pheonix software.

Results:In this study we characterized gestational age-dependent

changes in maternal-fetal glyburide pharmacokinetics in FVB wild-

type mice. Preliminary results are shown below (Fig. 1; Table 1).

Maternal glyburide exposure (AUC0–240 min) steadily decreased

throughout gestation by as much as 50 % on Gd 15 and 19 compared

to Gd 0. In addition, maternal glyburide CL and Vss nearly doubled by

Gd 15, and remain increased on Gd 19 by 2-fold. Fetal exposure to

glyburide appeared consistent throughout gestation. It is important to

note that while individual fetuses were assayed on Gd 15 and 19, the

entire fetal-placental unit had to be assayed on Gd 7.5 and Gd 10

because the fetus is not visibly distinguishable at earlier gestational

ages. Therefore, the actual embryonic exposure may be slightly

smaller on Gd 7.5 and Gd 10. The fetal:maternal plasma AUC0–240 min

ratio was similar between Gd 7.5 and 10 (*0.20) but doubled on Gd

15 and 19 (*0.40). This increase seems to be due to decreases in

maternal glyburide exposure throughout gestation.

Conclusions:The largest alterations to glyburide pharmacokinetics

occur during mid-late gestation. Maternal glyburide CL and Vss

steadily increased throughout pregnancy and doubled by mid-late

gestation in pregnant FVB wild-type mice. Increased CL has also

been observed in pregnant women taking glyburide to treat gesta-

tional diabetes mellitus, therefore increased dosages of glyburide

may be necessary during the latter part of human pregnancy to

achieve euglycemia. In FVB wild-type mice, fetal exposure to

glyburide increased as gestation progressed, and was as much as

40 % of maternal exposure levels. One clinical study found that the

mean ratio of umbilical cord:maternal plasma glyburide concentra-

tions was 0.7 ± 0.4 (70 % of maternal plasma levels). The FVB

mouse seems to adequately model maternal-fetal glyburide dispo-

sition during human pregnancy. Fetal exposure to glyburide is most

concerning during late gestation.
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Objectives: To illustrate how to evaluate and optimize among strat-

egies for developing backup compounds in conjunction with a lead

compound, accounting for cross-compound learning, development

costs, and value of speed to market. This is important to manage risk

and improve productivity in drug development.

Methods: The approach is illustrated with the following compounds

(Table 1), in a therapeutic area in which competition is high, so speed

to market is a key factor (such as Hepatitis C treatments). The lead

compound (L) has low but positive expected market value, e.g., due to

Table 1 Pharmacokinetic parameters of glyburide in FVB wild-type pregnant mice

Parameter Gd 0 Gd 7.5 Gd 10 Gd 15 Gd 19

AUC0-240 min (min*ng/mL) 50,090 43,917 31,755 24,467 23,137

CL (mL/min) 0.40 0.46 0.63 0.82 0.86

Vss (mL) 25.0 32.3 49.7 53.1 63.4

Fetal AUC0-240 min (min*ng/g) 8,637 5,341 10,632 9,357

AUCfetal/AUCmaternal 0.20 0.17 0.43 0.40
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disappointing POC results, raising the question of whether and how

the backup compounds (B1 and B2) should be advanced.

Alternative strategies were compared through Monte Carlo simulation

with random draws of the unknown true efficacy and tolerability

levels and Bayesian learning about these from additional random

draws of Phase 1-3 study outcomes. Strategies included: develop each

compound on its own (terminate the others), develop L and B1 in

parallel, develop L and B2 in parallel, and develop all three in par-

allel. Each compound initially had positive expected net value after

development costs, but was stopped if this value fell negative when

updated by the simulated trial results. Development costs by phase

were included in the value measure, so that simulations recognized

that early stop decisions save money relative to later stop decisions.

To keep the example easily tractable, normal models of efficacy and

tolerability were assumed with learning in each phase summarized by

equivalent sample sizes, and dosing decisions were left implicit.

Results: Simulation results showed that a high correlation of B1 with

L makes B1 not worth developing: if L fails, cross-compound

learning makes B10s net value negative, while if L succeeds, B1

would likely be too similar to L to be worthwhile. However, a lower

correlation would make B1, like B2, worth developing in parallel with

L (re-evaluating at each stage). B20s independence, with higher

expected efficacy offsetting its earlier position in development, make

it worth developing further as long as it appears to be sufficiently

superior to L.

Conclusions: Pharmacometricians typically build detailed exposure–

response models for efficacy and sometimes tolerability of individual

compounds, using Monte Carlo simulation to test and optimize dosing,

sample sizes, and other trial design factors. These models can provide

input into more strategic Monte Carlo simulation models for designing

development programs, and in particular for supporting decisions about

whether and how to advance backup compounds. Many factors com-

plicate these decisions, including the potential to learn from lead

compound results to a correlated backup, the risk that a backup is so

correlated with the lead compound that it will perform no better, the

value of speed to market (which may give the lead compound an

insurmountable advantage), differing remaining development costs

(ignoring sunk costs), and the loss of value when a second success-

fully developed compound must share market with the first. However,

strategy simulations can account for such issues and properly weigh

alternative strategies—and may even be critical to making and justi-

fying difficult backup decisions. To evaluate many backups simul-

taneously, optimization techniques [1, 2] can be combined with simulation,

though diminishing returns are expected from multiple backups [3].
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Objectives: Drug-A is a potent and selective antagonist for Receptor-

X, which may contribute to its clinical efficacy and is currently under

clinical development. Phase-I clinical pharmacology studies in heal-

thy volunteers showed that Drug-A binds to its target Receptor-X;

however, it was also observed that it results in mechanism based

increase in the release of Biomarker-Y, which is not considered

clinically desirable for its target indication. Additionally the Drug-A

also prolongs QTcF. Greater than 75 % receptor occupancy (RO) at

Cmax and at least 50 % RO at Ctrough at steady state were considered

to be required for clinical efficacy. The objective of current analyses

was to perform pharmacometric analyses of the pharmacokinetic,

target RO, Biomarker-Y and QTcF data to guide dose selection for a

Proof of concept (PoC) or Phase-II study.

Methods: Data from three studies: Phase-I single ascending dose

(SAD) study (N = 56), multiple ascending dose (MAD) study

(N = 36) and single dose Positron Emission Tomography (PET)

imaging study (N = 9) were used for the analyses. In the SAD study,

doses up to 1200 mg, in the MAD study, doses up to 400 mg QD for

7 days, and in the PET imaging study, doses up to 1000 mg were

orally administered to healthy volunteers. Drug-A concentrations in

plasma were measured intensively up to 96 h in the SAD study, on

day 1 and day 7 up to 96 h post dose in the MAD study, and during

PET scans in the PET imaging study. Biomarker-Y levels were

Table 1 Compound stage and market characteristics

Compound Next stage Efficacy (uncertainty:

? = Low ??? = High)

Tolerability

(uncertainty)

Expected net

market valuea

(uncertainty)

Correlation with

lead compound

L (Lead) Phase 2B Moderate (??) Moderate (??) Low (??)

B1 Phase 1 Moderate (???) High (???) Low (???) High: same MoA, similar

chemistry

B2 Phase 1 High (???) Moderate (???) Moderate (???) Low: different MoA

& chemistry

a Expected value before further study: a function of efficacy, tolerability, and time to market (value declines over time due to competition).

Value is also reduced if multiple compounds reach the market due to ‘‘cannibalism’’ of market share
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measured at 0, 2, 4, 6, 8 and 12 h post dose in the SAD and at baseline

(day -1) and on day 7 in the MAD study. QTcF was measured at 0, 2,

4, 6, 9, 12 and 24 h post dose in the SAD and at 0, 2, 4, 6, 12 and 24 h

post dose on day 1 and 7 in the MAD studies. In the PET imaging

study, two PET scans were obtained per subject, and target Receptor-

X occupancy was calculated as % of receptors bound to Drug-A in the

region of interest.

The population PK and PD models for Drug-A concentrations, Bio-

marker-Y, QTcF and RO were developed sequentially using FOCE-I

method in NONMEM 7 (Ver 1.0). First, the Drug-A PK model was

developed. The delay in absorption was modeled using transit com-

partments. Compartment models with up to 3 compartments for drug

disposition were tested during model building. Next, QTcF model was

developed using a single cosine function to capture the diurnal

changes in QTcF values. Linear and Emax models were tested to

incorporate the effect of Drug-A on QTcF during model development.

Baseline QTcF (at time = 0) was also evaluated as a covariate during

QTcF model development. Next, the PD model for Biomarker-Y was

developed. During biomarker model development, both plasma con-

centrations of Drug-A, as well as dose in the form of K-PD model

were explored to describe the time course of Biomarker-Y [1].

Finally, the RO model was developed. Sigmoid Emax and simple Emax

models were tested to describe the relationship between RO and

average plasma concentration during the duration of the PET scan.

Inter-individual variability in the PK and PD parameters was

described by a log normal distribution. Proportional and combined

error models were tested to describe the residual variability in the

data. Model comparison was performed by likelihood ratio test at a
level of 0.05 as well as goodness-of-fit plots. Model evaluation was

performed by visual predictive check by simulating 500 datasets.

Following the development of population PK and PD models,

simulations were performed to predict the distribution of RO at Cmax

and Ctrough, QTcF increase, and Biomarker-Y levels at Cmax at doses

50–800 mg at steady state. Simulations were performed under two

scenarios. In scenario I, one trial of 1000 subjects was simulated to

provide information about the population distribution of the RO,

QTcF increase and Biomarker-Y levels at various dose levels. In

scenario II, 200 trials were simulated with 50 subjects at each dose

level and distribution of mean RO, QTcF increase and Biomarker-Y

levels at trial level were generated. In selection of doses for a PoC

study, a mean QTcF increase of 10 ms and peak levels of Biomarker-

Y greater than 59 upper limit of normal (ULN) were considered

undesirable, while mean RO of greater than 75 % at Cmax and 50 % at

Ctrough were considered desirable .

Results: Data from 69 subjects with 1193 Drug-A, 330 Biomarker-Y

concentrations, 494 QTcF and 17 RO measurements were used to

build the PK and PD models. A 2-compartment model with extra-

vascular administration and 4 transit compartments to describe the

delay in absorption best described the Drug-A plasma concentration–

time data. Diurnal changes in QTcF measurements were best

described by a single cosine function. A linear model best described

the effect of Drug-A concentrations on QTcF prolongation. The time

course of Biomarker-Y was adequately described by the K-PD model

with a linear model to describe the effect of Drug-A on Biomarker-Y

levels. The RO data was optimally described by an Emax model. A

proportional error model best described the residual variability in

Drug-A and Biomarker-X measurements, while an additive error

model best described the residual variability in QTcF and RO mea-

surements. The visual predictive checks did not provide any apparent

evidence of model misspecification.

During simulations, doses B300 mg were associated with mean QTcF

increase of B10 ms; doses C250 mg were needed to achieve mean

RO of C75 % at Cmax and C50 % at Ctrough; and doses B300 mg were

associated with \2xULN increase in Biomarker-Y levels. Hence,

based on the above results doses in the range of 250–300 mg were

recommended for the Phase 2 development of Drug-A.

Conclusions: In the present work, we integrated information pre-

dictive of efficacy, as well as safety, and provided recommendation

about the doses (250–300 mg) at which we can attain success in the

proof of concept study while minimizing the risk based on our current

knowledge about the therapy.
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Objectives: Phenytoin (PHT) sodium injection, a narrow therapeutic

index antiepileptic, administered through nasogastric tube in con-

junction with enteral nutrition supplements, has been associated with

suboptimal PHT absorption. Fospheny-toin (FPHT), a prodrug of

PHT, has better solubility. The oral bioavailability FPHT injectable is

unknown. The primary objective of this study was to determine the

relative oral bioavailability (FREL) of FPHT compared to PHT, in

healthy adult volunteers, based on pharmacokinetic (PK) modeling.

Methods: 10 healthy volunteers were studied in an open-label, ran-

domized, single-dose, 2-period crossover design, with a minimum

7 day washout between periods. Both drugs were administered orally

at doses equivalent to 400 mg of PHT acid. Blood samples were

collected at pre-dose and at 0.5, 1, 2, 4, 6, 12, 24, 48 and 72 h after

dosing. Serum PHT concentrations were determined by fluorescence

polarization immunoassay (LOQ 0.5 ng/mL, interday CV \10 %).

Since PHT exhibits non-linear PK and as these doses do not generally

achieve concentrations needed for precise estimates of the maximum

rate of elimination (Vmax) and the Michaelis constant (Km), the MAP-

Bayesian algorithm in ADAPT5 (1) was used to fit candidate models

to the data (2 stage analysis); model discrimination was by the

Generalized Information Criterion; Bayesian priors, for Vmax and Km,

were obtained from the literature (2); non-informative priors were

used for the rest of the model parameters. PHT pro-files, from the 2

periods, were co-modeled with no interoccasion variability; the

residual error model included additive and pro-por-tional compo-

nents; the Beal M3 was used to accommodate observations that

were \ LOQ. The areas under the curves (AUCPHT & AUCFPHT)

were determined by numerical integration and the AUCRATIO was

also computed (AUCFPHT/AUCPHT).

Results: The study subjects included 8 females and 2 males with an

average ± sd age of 37.1 ± 16.3 years, weight of 91.8 ± 38.9 kg

and height of 144 ± 45.8 cm. PHT doses showed irregular absorption

profiles; the Cmax values, following FPHT doses, were significantly

higher than after PHT [median (range) 10.7 (9.00–19.4) vs. 5.00

(3.20–8.90) mg/L, p = 0.002]; and the Tmax, for FPHT doses was

faster [1.00 (0.500–2.00) vs. 6.00 (2.00–24.0) h, p = 0.008). The

final PK model (Fig. 1; Table 1) included 2 distributional volumes

(Vc and Vp), linear distributional clearance (CLd) & parallel
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non-linear (Km and Vmax) & linear clearance (CL). PHT absorption

was modeled with 2 phases (Fr1 is the fraction of the dose absorbed in

phase 1), each with a fit-ted ka, and TLag delaying absorption in phase

2; FPHT had 1 absorption phase, with TLag, ka and a fitted relative

bio-avail-ability (FREL). The model fit the data well [median (range)

r2 for PHT 0.94 (0.89–0.99) and 0.98 (0.95–1.0) for FPHT]. FPHT

bio-availability is greater than that of PHT (FREL mean was 1.21 and

95 % CI was 1.07–1.35). The fitted FREL differed from AUCRATIO

overall (p = 0.0051), due to indi-vid-uals with differences in Cmax,

between drugs (Fig. 2).

Conclusions: FPHT was absorbed to a greater extent and more rap-

idly than PHT. Relative bioavailability of drugs with non-linear

clearance should not be quantified by AUC ratios, unless both

formulations achieve a similar Cmax. The data should, instead, be

co-modeled with relative bioavailability as a fitted parameter.
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Fig. 2 Example fitted PK profiles of phenytoin following oral

administration of parenteral phenytoin (a–c) and fosphenytoin (d–f)

Table 1 Fitted and derived PK parameter estimations

Parameters Unit Minimum Maximum Median Arithmetic % CV

Mean

Km mg/L 6.06 9.59 7.67 7.83 14.6

Vmax mg/h 13.1 17.2 15 15 9.54

Fr1 – 0.217 0.678 0.407 0.428 33.6

Vc mL 8.96 27.9 19.9 19.9 28.4

Vp mL 27.3 34.3 31 31.1 7.83

Vss mL 40.1 60.8 50.4 50.8 14.0

CLD mL/h 35.7 64.8 61.8 59.4 14.7

CL mL/h 0.00 0.42 0.013 0.116 161

CLint mL/h 1.40 2.80 1.86 1.98 23.5

ka1_PHT h-1 0.494 4.39 1.57 1.86 60.9

ka2_PHT h-1 0.0334 0.376 0.0642 0.104 106

ka3_FPHT h-1 1.85 5.39 3.36 3.38 36.4

TLag_PHT H 0.00 1.00 0.389 0.351 87.9

TLag_FPHT H 0.00 0.786 0.412 0.388 49.1

FREL – 1.04 1.64 1.15 1.21 15.8

AUCPHT mg•h/mL 197 364 238 263 22.8

AUCFPHT mg•h/mL 277 665 327 373 31.7

AUCRATIO – 1.19 2.00 1.34 1.42 18.8

CLint = Vm/Km; Vss = Vc + Vp
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W-031 A Pharmacokinetic Evaluation of Tobramycin

Administered One, Two, and Three Times Daily
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Objectives: Tobramycin is frequently used in the treatment of acute

pulmonary exacerbations of cystic fibrosis. Debate surrounds the

optimal dosing scheme and the frequency of tobramycin administra-

tion. The objective of this study was to characterize the pharma-

cokinetics of tobramycin administered one, two, or three times daily

and to develop an optimal dosing scheme for children with cystic

fibrosis.

Methods: Therapeutic drug monitoring data were obtained from

children\18 years of age, who were hospitalized from January 2005

through December 2012 at three academic medical centers. Popula-

tion pharmacokinetic models were constructed using NONMEM 7.2

and pharmacokinetic parameters were compared for each dosing

regimen. Dosing schemes were developed and evaluated

against optimal aminoglycoside pharmacodynamic targets in Matlab

R2012b.

Results: The pharmacokinetic analysis involved 257 patients (193

dosed once per day, 49 two times per day, and 15 three times per

day). Overall, the median age was 8.1 years [interquartile range

(IQR): 4.6–13.9]. Clearance was highest among children dosed once

per day (5.90 L/hr/70 kg) and declined with more frequent dosing

(5.11 and 4.96 L/h/70 kg for two and three times per day, respec-

tively). The volume of distribution was smallest among children

who received tobramycin once per day (17.6 L/70 kg). Children

dosed two and three times per day had volumes of distribution

of 20.3 and 21.1 L/70 kg, respectively. Mean (±SD) peak con-

centrations were highest among patients dosed once per day

(56.6 ± 12.3 mg/mL) and were lower among patients dosed two

and three times per day (37.7 ± 6.4 and 23.9 ± 5.4 mg/mL,

respectively).

Conclusions: This is the first study to evaluate the pharmacokinetics

of tobramycin administered one, two, and three times per day to

children with cystic fibrosis. Once daily tobramycin dosing resulted in

increased clearance and a lower volume of distribution when com-

pared to multiple-daily dosing. This suggests that once daily dosing

may be preferable based on its pharmacokinetic profile, however

further clinical evaluation is needed to establish the safety and effi-

cacy of this dosing regimen.

W-032 Application of Model-Based Meta-Analysis

(MBMA), Population PK/PD, and Exposure–Response

(E–R) Analysis to Evaluate the PD Drug–Drug

Interaction (DDI) in an Oncology Phase Ib trial

Tong Lu*, Dan Lu, Gillian Smelick, Ray Lin, Steven Gendreau,

Gallia Levy, Mark Dresser, Joseph Ware, Jin Yan Jin

Genentech Inc., South San Francisco, CA, USA

Objectives: To determine whether neutropenia observed in an

oncology Phase Ib dose-escalation study (GDC4629 g) [1] of

GDC0941 in combination with 90 mg/m2 QW Paclitaxel (PAC) with

or without Bevacizumab is comparable to historical PAC mono-

therapy, and whether an E-R relationship exists for GDC0941 and

neutropenia in this study.

Methods: Three pharmacometrics approaches were utilized to eval-

uate the effect of GDC0941 on neutropenia:

1) MBMA: A literature database of PAC mono-therapy in cancer

patients was constructed to better understand its PK, efficacy, and

safety, and to better design/interpret combination trials. PAC

dose–response relationship was developed for neutropenia based

on summary-level data for 1886 patients from 35 dosing arms in

24 trials using Logistic regression [2]. The investigators reported

neutropenia event rate in the GDC0941 combination study was

compared with the predicted median and 90 % CI of the MBMA

dose–response, to evaluate whether GDC0941 magnifies PAC’s

effect on myelosuppression.

2) Population PK/PD: A historical population PK/PD model for the

effect of PAC mono-therapy on myelosuppression [3] was

applied to evaluate the neutrophil count-time profiles in the

Phase Ib study. The semi-mechanistic model incorporated the

drug-sensitive proliferating compartment, three transit compart-

ments that represented cell maturation, and a compartment of

circulating neutrophils. Visual predictive check (VPC) was used

to compare the simulated neutrophil count-time profiles based on

PAC monotherapy with the observed Phase Ib profiles in

combination with GDC0941 (n = 35).

3) E–R: E–R relationship for GDC0941 exposure and the

worst neutropenia grade or the nadir of neutrophil counts was

evaluated for patients with both PK and safety data available

(n = 31).

Results: (1) From the MBMA which included PAC QW and Q3 W

regimens, neutropenia event rate was found best correlated with

administered PAC dose (mg/m2) with saturable dose response rela-

tionship, but not correlated with average dose (mg/m2/wk). This result

implied that PAC safety may be better correlated with Cmax than

AUC. Observed neutropenia event rate in the Phase Ib study was

consistent with the prediction from PAC mono-therapy, suggesting

GDC0941 did not magnify PAC’s effect on myelosuppression. (2)

Based on the VPC, the observed neutrophil count-profiles from 35

patients in the combination setting were in line with the PK/PD model

prediction for PAC mono-therapy. The mean neutrophil count-profiles

stratified by GDC0941 dosage also showed no dose related pattern.
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(3) In the E-R analysis, no effect of GDC0941 exposure was observed

on the worst neutropenia grade and the nadir of neutrophil counts.

Conclusions: Evaluation of the DDI potential in cancer therapeutics

is of critical importance in the development of targeted agents, which

are added to standard of care chemotherapy to treat cancer. Neutro-

penia is a common adverse event that is associated with PAC. For this

Phase Ib dose-escalation study, three modeling approaches have been

utilized to evaluate the effect of GDC0941 on neutropenia when given

in combination with PAC. Overall, the neutropenia observation in this

Phase Ib study was consistent with PAC mono-therapy with no E–R

relationship for GDC0941, suggesting no decreased tolerability for

the combination therapy.
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W-033 Population Pharmacokinetics of Vancomycin

Used in the Treatment of Pediatric Cystic Fibrosis

Pulmonary Exacerbations

Chris Stockmann1,2,*, Catherine M.T. Sherwin1,2, Jeffery T. Zobell3,4,

Lisa Lubsch5, David C. Young6,7, Jared Olson1,3,

Blakeslee E. Noyes8, Krow Ampofo1, and Michael G. Spigarelli1,2

1Department of Pediatrics, University of Utah School of Medicine,
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Medical Center, Salt Lake City, UT, USA; 4Intermountain Cystic
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Objectives: Vancomycin is the drug-of-choice for the treatment of

methicillin-resistant Staphylococcus aureus (MRSA) infections in

children with cystic fibrosis. However, no studies have characterized

the pharmacokinetic profile of vancomycin among children with

cystic fibrosis. This study evaluated the pharmacokinetics of inter-

mittent vancomycin administration in children with cystic fibrosis and

characterized the covariates that significantly influence vancomycin

efficacy and safety.

Methods: Therapeutic drug monitoring data were obtained from two

cystic fibrosis care centers that identified children \18 years of age

who received vancomycin for the treatment of an acute pulmonary

exacerbation from January 2005 through December 2012. Trough and

peak serum concentrations were determined before and after the third

or fourth dose. Nonlinear mixed effects models were developed to

evaluate the population pharmacokinetics of vancomycin using

NONMEM 7.2.

Results: Sixty-seven children were identified with a mean (±SD) of

12.1 ± 5.3 years of age. The mean vancomycin dose was 17.4 ±

4.4 mg/kg. The mean trough concentration was determined to be

10.3 ± 3.8 mg/L. The mean area under the serum concentration time

curve (AUC) was 282.5 ± 816.9 mg*h/L. A one-compartment model

with first-order elimination best described the data. Weight signifi-

cantly influenced vancomycin clearance (P \ 0.001). In the final

model, clearance was estimated as 5.57 (95 % CI: 5.11–6.03) L/h/

70 kg and the volume of distribution was 44.1 (95 % CI: 38.5–49.7)

L/70 kg. The between subject variability for clearance was 27 CV %

and 40 CV % for the volume of distribution.

Conclusions: This is the first study to investigate the pharmacoki-

netics of vancomycin among children with cystic fibrosis.

Vancomycin pharmacokinetics were well described with a one-

compartment model, which identified a strong relationship between

vancomycin clearance and increasing weight. Additional pharmaco-

dynamics studies are needed to define an optimal vancomycin dosing

regimen for the treatment of cystic fibrosis pulmonary exacerbations

in children.

W-034 Population Pharmacokinetics of Foretinib

in Adult Asian Subjects with Hepatocellular Carcinoma

Rajendra P. Singh1,*, Bela Patel1, Howard Kallender2, Lone Ottesen3,

Donna Cox1

1Clinical Pharmacology Modeling Simulation, GlaxoSmithKline,

King of Prussia, PA, USA; 2Oncology Clinical Development,

GlaxoSmithKline, Collegeville, PA, USA; 3Oncology Clinical

Development, GlaxoSmithKline, Stockley Park, UK

Objectives: Foretinib is an investigational, oral, multikinase inhibitor

that inhibits multiple receptor tyrosine kinases with growth promoting

and angiogenic properties with potential for treatment of solid tumors.

The primary targets of foretinib are c-MET, RON, AXL, TIE-2 and

VEGFR. Hepatocellular carcinoma (HCC) pathogenesis is associated

with over-expression c-MET and inhibition of c-MET activation by

agents such as foretinib may be of therapeutic benefit in this patient

population. Studies conducted in vitro have shown that foretinib

undergoes nicotinamide adenine dinucleotide phosphate (NADPH)-

dependent oxidative metabolism by CYP3A4 in human liver micro-

somes. However, physiologic changes in the liver in HCC patients

may decrease metabolism by CYP3A4 resulting into increase in the

systemic exposure of foretinib. The objective of this analysis was to

characterize the population pharmacokinetics (Pop PK) of foretinib

based on HCC and non-HCC cancer studies, identify covariates

influencing foretinib PK and to evaluate the differential impact of

tumor type (HCC versus other tumor type) and formulations on

exposure.

Methods: Data from 4 phase I/II studies (1 HCC study in Asia and 3

non-HCC cancer studies in the US) were used for the population

pharmacokinetic analysis. A total of 89 advanced-cancer patients

(1556 observations) were included in the model development dataset.

The subjects were dosed with an oral solution formulation, but were

later switched to a bisphosphate salt capsule and free-base tablet

formulation. Nonlinear mixed-effects modeling was performed for the

population pharmacokinetic analysis, using NONMEM program

version 7.1.2 (ICON, Ellicott City, MD). All models were analyzed

using first-order conditional estimation (FOCE) with or without

interaction. Once the base model was identified, covariates were

included in the model and tested for improvement in objective

function value using the likelihood ratio. Final model selection was
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based on evaluation of goodness-of-fit plots, biological plausibility

and precision of parameter estimates. Nonparametric bootstrap and

visual predictive checks were implemented for final model evaluation.

Results: A two-compartment PK model with linear elimination and

lag time in absorption was used to describe foretinib pharmacoki-

netics. Inter-occasion variability (IOV) was estimated on clearance,

volume of central compartment and rate of absorption (ka). The

bioavailability of the formulations was scaled to that of solution. The

population estimate of apparent clearance (CL/F) was 79.3 L/h,

apparent central volume (Vc/F) was 2150 L, inter-compartmental

clearance (Q/F) was 238 L/h, and apparent peripheral volume (Vp/F)

was 2,340 L. The absorption rate was 0.56 h with a lag time of

0.36 h. Age and AST levels were found to be predictors of foretinib

clearance and weight was found to be the predictor of central volume

of distribution. The inter-individual variability on CL/F and Vc/F was

19.2 and 13.9 % with IOV’s of 31 and 29.5 % respectively. HCC

patients showed *13.6 % lower clearance as compared to non-HCC

cancer patients at equivalent doses. The volume of the central com-

partment (Vc) was *21 % lower in HCC patients when similar

formulations were compared.

Conclusions: The two-compartment Pop-PK model adequately

characterizes the difference in the pharmacokinetics of foretinib in

HCC versus non-HCC cancer patients and identified an effect of

formulations on bioavailability. HCC patients showed lower clear-

ance which could be a result of differences in metabolism in HCC

patients or differences between Asian and American cancer patients.

W-035 Assessment of Actual Significance Levels

for Covariate Effects of Monte-Carlo Parametric

Expectation–Maximization Algorithm

Chee M. Ng1,2, Heather E. Vezina1*,

1The Children’s Hospital of Philadelphia, Philadelphia, PA, USA;
2University of Pennsylvania, School of Medicine, Philadelphia, PA,

USA

Background and Objectives: Monte-Carlo parametric expectation–

maximization (MCPEM) method has been increasingly used in ana-

lyzing population PK/PD data. Due to the inherent sampling noise

from the Monte-Carlo random samples that are used to evaluate the

expectation steps of the MCPEM, objective function (-2LL) vari-

ability is always observed at the final stationary phase and never

converged to a single final objective function value like in the FOCE

method. This variability in objective function introduces an additional

level of uncertainty for using the standard likelihood ratio test for

nested model selection. Therefore, the objective of this study was to

assess the differences between actual and nominal significance levels,

as judged by the likelihood ratio test, for hypothesis tests regarding

covariate effects using the MCPEM algorithm in NONMEM.

Methods: Pharmacokinetic (PK) data without covariate relationships

were simulated from a one compartment IV bolus model for 50 and

100 individuals. The typical values for CL and V were 0.1 L/h and

1 L, respectively. The inter-individual variability in the parameters

was described by a lognormal distribution and variances were set to

0.1 for both CL and V. The proportional error with a variance of 0.1

was used to describe the residual error model. PK data collected at

0.5, 1, 2, 4, 6, 8, 12, and 24 h after single IV bolus doses of 1000 units

were used for the analysis. Two nested models were used to analyze

the simulated data. The reduced model is the same model (without

covariate relationships) that was used to simulate the data and the full

model differed from the reduced model in that covariate relationships

influencing model parameters were introduced and several covariate

distributions were included in the analysis [1]. MCPEM algorithm in

NONMEM version 7.3 (beta) with AUTO option for METHO-

D = IMP INTERACTION (with the exception of NITER which was

set to 100 instead of 500) was used to generate the final results. The

standard NONMEM setting for MCPEM convergence (CTYPE = 3,

CITER = 10, and CALPHA = 0.05) was used. Monte-Carlo random

samples (ISAMPLE) of 300 (default setting in NONMEM), 600, and

1000 were used to assess the effect of random sample size on the

significant levels for hypothesis testing. Both reduced and full models

were then fitted to the simulated data (N = 2000) and the differences

in the objective function values (DOFV) between the reduced and full

models were calculated, and actual significance levels (p = 0.01, 0.05

and 0.10) were determined and compared to nominal significance

levels. Two different objective functions were selected to compute the

DOFV: the last objective function and the average of the objective

Table 1 Results from Simulation Study

Changes from

Default

Actual levelc

corresponding

nominal 0.05

DOFVd

for

actual

level

0.05

Actual level

corresponding

nominal 0.01

DOFV

for

actual

level

0.01

ISAMPLE = 300

(NONMEM

Default)

Covariate

Characteristicsb

Model 1A: 5:95 0.030 2.76 0.005 5.65

Model 1B: 10:90 0.026 2.88 0.005 5.28

Model 1C: 25:75 0.028 2.84 0.006 5.21

Model 1D: 50:50 0.034 3.01 0.006 5.39

Model 1E: Normal 0.026 2.86 0.007 5.77

ISAMPLE = 600

Covariate

Characteristics

Model 2A: 5:95 0.063 4.22 0.011 6.73

Model 2B: 10:90 0.053 3.90 0.011 6.81

Model 2C: 25:75 0.055 3.98 0.011 6.87

Model 2D: 50:50 0.063 4.11 0.014 7.13

Model 2E: Normal 0.047 3.74 0.011 7.10

ISAMPLE = 1000

Covariate

Characteristics

Model 3A: 5:95 0.062 4.23 0.010 6.63

Model 3B: 10:90 0.055 3.94 0.011 6.81

Model 3C: 25:75 0.054 3.95 0.012 6.82

Model 3D: 50:50 0.062 4.11 0.014 7.05

Model 3E: Normal 0.048 3.77 0.011 7.02

a The results were obtained using the DOFV computed from the last

objective function in MCPEM run. Number of subject in the

data = 50. Number of replicates = 2000. The results were very

similar for data with 50 and 100 subjects
b Covariate model is described as P = h1 *(1 + h2*COV). P is the

model parameter; COV is individual-specific covariate that assumes

the value 0 and 1. Each individual in the data set is randomly assigned

one of these values according to different distribution probability and

function. For models A, a probability of assigned value of 1 is 5 %

and for 0 is 95 %. In model E, normal distribution (zero mean, unit

variance) was used to assign the individual-specific value. c The

fractions of the DOFV from 2000 simulated datasets showing a dif-

ference of more than 3.84 (p = 0.05) and 6.64 (p = 0.01). d Based on

the estimated percentile from 2000 replicates
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function from the last 10 iterations that were used to assess MCPEM

convergence.

Results/Conclusions: In this simulated study with a rich PK data

design, all MCPEM runs achieved model convergence and terminated

before the maximum iteration was reached. When NONMEM default

ISAMPLE = 300 was used, the actual significance levels for

including a covariate relationship in a model were lower than the

nominal significance level (Table 1). However, the use of ISAM-

PLE = 600 or 1000 resulted in close agreement between actual and

nominal significance levels. This finding suggested that the selection

of the ISAMPLE (the Monte-Carlo random samples used for expec-

tation-step calculation) can affect the actual significance levels of the

likelihood ratio test and ISAMPLE higher than the default NONMEM

setting ([300) is needed to achieve more reliable likelihood ratio test

results for covariate model selection. Further study is ongoing to

investigate other potential factors (frequency of PK sampling, residual

error magnitude and structure, magnitude of population variability

and others) that may influence the actual significance level of the

likelihood ratio test in MCPEM to confirm the findings in this study.
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Objectives: The azole antifungal voriconazole is widely used as a

first-line agent in the treatment of life-threatening invasive fungal

infections (IFIs) [1]. Voriconazole is known to display non-linear

pharmacokinetics and high inter-individual variability, primarily due

to saturable metabolism via CYP2C19 [2, 3]. Coupled with the narrow

therapeutic index observed with voriconazole, with low concentrations

(\2 mg/L) associated with treatment failure and high concentrations

([5 mg/L) with neurotoxic adverse events [4], these factors complicate

voriconazole dose selection and adjustment. Despite its widespread use,

relatively few population pharmacokinetic analyses are available for

voriconazole in adults [5–7]; linear [5], non-linear [7] and mixed linear

and non-linear elimination [6] have been used to describe voriconazole

elimination in these analyses. Importantly, the effects of clinical covari-

ates (drug–drug interactions in particular) on the disposition of voriconaz-

ole are yet to be comprehensively investigated in a population model.

The objectives of this analysis were to develop an integrated popu-

lation pharmacokinetic model for voriconazole incorporating multiple

sources of data, as well as investigating a range of important demographic

and clinical covariates that may affect voriconazole pharmacokinetics.

Table 1

Methods: Four studies undertaken in a total of 63 healthy volunteers

with rich pharmacokinetic sampling were included [8–11] in addition

to sparsely sampled data from 146 patients receiving voriconazole for

the treatment of IFIs [4]. A total of 3024 voriconazole concentrations

were included in the analysis. Non-linear mixed effects modeling was

carried out with NONMEM 7.2. Studies were added in a stepwise

manner and a base model developed from the richly sampled data;

sparsely sampled patient data was then incorporated into the model

[12]. Goodness-of-fit criteria such as significant decreases in the

objective function value (OFV; p \ 0.05) and goodness-of-fit plots

such as conditional weighted residuals vs. time and conditional

weighted residuals vs. population-predicted concentration plots, as

well as visual predictive checks (VPCs) were used to guide model

selection and development. The confidence intervals of the parameter

estimates and visual improvement of the individual plots were also

used to evaluate the models. Covariate relationships were tested

against several criteria including a significant reduction in OFV,

reduction in the inter-individual variability (eta) of the associated

structural parameter, and the precision of the additional estimated

parameter.

Results: A two compartment model with an absorption lag time and

Michaelis–Menten elimination adequately described the dataset; a

model incorporating linear elimination resulted in a significant

increase in OFV whereas models incorporating mixed linear and non-

linear elimination did not improve goodness-of-fit over non-linear

elimination alone. Voriconazole elimination was significantly faster

following a single dose than at steady state due to auto-inhibition of

metabolism [6]; for single dose studies in the model a parameter

incorporated on Vmax estimated a 255 % higher Vmax (95 % CI

137–373 %) over a single dose than at steady state.

Covariate screening identified significantly higher voriconazole

exposure in participants with one or more CYP2C19 alleles that are

associated with a poor metabolizer (PM) phenotype (CYP2C19*2)

compared to participants without these alleles (CYP2C19*1/*1,

extensive metabolizer phenotype) (Fig. 1). Participants with a CYP

2C19 heterozygous extensive metabolizer phenotype (CYP2C19*1/*2)

or poor metabolizer phenotype (CYP2C19*2/*2) had a 57 % (95 % CI

42–72 %) lower Vmax compared to homozygous extensive metabolisers

(CYP2C19*1/*1).

A number of concomitant medicines were found to significantly

affect voriconazole pharmacokinetics. Co-administration of the CYP3A4

inhibitor ritonavir decreased Vmax by 44 % (95 % CI 36–51 %) whereas

co-administration of St John’s wort increased Vmax by 108 % (95 % CI

82–134 %). The strong CYP450 inducers phenytoin and rifampicin

increased Vmax 207 % (95 % CI 144–270 %). Co-administration of a

glucocorticoid (prednisolone, methylprednisolone or dexamethasone)

increased Vmax by 31 % (95 % CI 13–49 %). Internal validation of the

final model using VPCs verified that the model adequately describes the

observed voriconazole concentrations (Fig. 2).

Table 1 Population parameter estimates for the structural model

Parameter Estimate (%RSE) IIV [CV %] (%RSE)

Vmax (mg/h) 30.7 (15.9) 28.1 (20.7)

Km (mg/L) 2.56 (35.8) 72.3 (9.9)

V2 (L) 25.1 (17.7) 101 (56.8)

V3 (L) 123 (6.1) 30.4 (37.5)

Q (L/h) 33.8 (10.5) 49.1 (47.3)

F1 0.879 (2.8) 24 (30.3)

Ka (h-1) 0.561 (11.2) 55 (24.6)

Alag (h) 0.205 (6.2) NE NE

IIV inter-individual variability; NE not estimated due to numerical

difficulties with the first order conditional estimation with interaction

(FOCE + I) algorithm
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Conclusions: A two-compartment model of oral and intravenous

voriconazole pharmacokinetic data was developed from five studies

and resulted in good precision in parameter estimates and predictive

performance. CYP2C19 genotype is an important intrinsic determi-

nant of voriconazole disposition while a number of drug–drug

interactions lead to clinically significant changes in voriconazole

exposure. Future work will utilize this model in dosing simulations to

target the narrow therapeutic range recommended for voriconazole

therapeutic drug monitoring (trough concentration of 2–5 mg/L [4]),

and investigate the utility of this model in a Bayesian dose forecasting

tool to aid clinicians in voriconazole dose selection and adjustment.
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Objectives: PK data were obtained from two phase 3 trials in APOE

e4 allele carriers and non-carriers with mild-moderate Alzheimer’s

disease (AD) following multiple IV doses of bapineuzumab ranging

from 0.5 to 2 mg/kg. A prior population PK model built from subjects

with AD from earlier phase clinical studies with both IV and SC

administrations was also available. The structural model was a two-

compartment model with first-order absorption, with body weight as

the only covariate affecting bapineuzumab PK. The confirmatory

population PK approach [1] was applied to estimate bapineuzumab

pharmacokinetics for the phase 3 study population and to assess the

influence on bapineuzumab exposure for all covariate factors, such as

demographics or baseline disease characteristics, that the data can be

expected to support in a prospective manner.

Methods: A total of 8,040 serum bapineuzumab concentration mea-

surements from 1,458 subjects with AD (787 subjects from Study

301, and 671 subjects from Study 302) who received multiple IV

doses of bapineuzumab ranging from 0.5 to 2 mg/kg were included in

the population PK analysis. The population PK base model was pre-

specified based on a prior population PK model built from subjects

with AD from earlier phase clinical studies, along with the phase 3

study design. The covariate list, assessed on only CL, was pre-spec-

ified based on only the individual covariate values. More specifically,

the covariate list was determined with the criteria: (1) there were at

least 20 subjects for each parameter to be estimated; and (2) covari-

ates were not highly correlated ([0.5).

Results: The typical population values for CL and Vc in a Caucasian

subject with a standardized body weight of 70 kg were 0.17 L/day

[95 % confidence interval (CI): 0.15–0.18 L/day) and 3.13 L (95 %

CI: 1.45–3.18 L)], respectively. The BSV in terms of %CV was

28.1 % for CL and 33.0 % for Vc. Covariate analysis confirmed that

bapineuzumab CL and Vc increased with body weight. In addition,

CL was 15 % higher in non-Caucasian subjects compared to Cauca-

sian subjects; however, this was not considered clinically relevant.

None of the other assessed covariates had a meaningful impact on

bapineuzumab CL. The median terminal elimination half-life of

bapineuzumab was estimated to be approximately 29 days. Addi-

tional sensitivity analyses along with goodness of fits suggest that the

model adequately described the data.

Fig. 2 Prediction-corrected visual predictive checks (pcVPCs) for

single dose studies (left) [8–10] and multiple dose studies (right) [11,

12]. Open circles represent the prediction-corrected observed con-

centrations. The red solid and dashed lines represent the median and

5th and 95th percentiles of the observed prediction-corrected

concentrations, respectively. The green and blue shaded areas around

the lines represent the simulation-based 95 % confidence intervals for

the median and 5th and 95th percentiles, respectively

Fig. 1 Voriconazole concentration–time profiles for participants with

C1 CYP2C19 poor metabolizer alleles (red, n = 30) and without

(blue, extensive metabolizers, n = 25) following a 400 mg oral dose.

The bold lines show the median concentration–time profiles
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Conclusions: A robust population PK model was developed for

bapineuzumab following multiple IV administration in subjects with

mild to moderate AD. The population PK analysis confirmed that

body weight was a significant covariate affecting the systemic

exposure to bapineuzumab and may need to be taken into account

when bapineuzumab is administered to subjects with AD.

Reference

[1] Hu C, Zhang J, Zhou H (2011) Confirmatory analysis for phase

III population pharmacokinetics. Pharm Stat 10(1):14–26

W-039 A Population PK Model for Cariprazine

and the Metabolites

Tatiana Khariton1*,, Luann Phillips2, Sebastien Bihorel2,

Jill Fiedler-Kelly2, Margit Kapás3, Antonia Periclou1,

Parviz Ghahramani1

1Forest Research Institute, Jersey City, NJ, USA; 2Cognigen

Corporation, Buffalo, NY, USA; 3Gedeon Richter Plc., Budapest,

Hungary

Objectives: To develop population pharmacokinetic (PK) models of

cariprazine (CAR) and its two main metabolites, desmethyl-caripr-

azine (DCAR) and didesmethyl-cariprazine (DDCAR) in patients

with schizophrenia or bipolar mania following once daily dosing with

CAR; and to evaluate the influence of selected demographic charac-

teristics, renal function, CYP2D6 genotype and certain classes of

concomitant medications.

Methods: Data from 12 studies (3 Phase 1, 3 Phase 2, and 6 Phase 3)

in patients with schizophrenia and bipolar manic or mixed episodes

associated with Bipolar I disorder were used to develop the popula-

tion PK models for CAR, DCAR and DDCAR. The three Phase 1

studies used rich PK sampling schemes, while 9 others (placebo-

controlled efficacy and safety studies as well as open-label long-term

safety studies) collected sparse PK samples. All of the studies

included dose titration with target dose levels ranging from 0.5 to

24 mg/day and treatment periods of up to 48 weeks. The 3 population

PK models were fitted sequentially, with individual PK parameters for

CAR fixed and serving as input to the DCAR population PK model,

and with individual PK parameters for CAR and DCAR fixed and

serving as input to the DDCAR population PK model. The base

population PK models were developed using the data from the 3

Phase 1 studies and were then updated with the addition of the Phase

2 and 3 studies. Covariate analysis was performed on PK parameters

with measurable variability. The influence of demographic, hepatic

and renal characteristics of interest was explored on each PK

parameter separately using a step-wise generalized additive model

(GAM) procedure in SAS and S-Plus. The direction of each step-wise

search was both forward and backward. The final model for each PK

parameter obtained from GAM analysis was then fit to the data in

NONMEM. Univariate step-wise backward elimination of covariates

in NONMEM proceeded until all the remaining covariates were

significant (p \ 0.001). Next, the effects of the concomitant medi-

cation classes (CYP2D6 inhibitors, CYP3A4 inhibitors, and general

CYP inducers) on apparent clearance (CL/F) were added simulta-

neously to the model for each moiety. The backward elimination

procedure (p \ 0.001) was then followed to determine which con-

comitant medication covariates were statistically significant. As a last

step of the covariate analysis, the effect of CYP2D6 genotype status

on the clearance of CAR, DCAR and DDCAR was evaluated. This

was done using the data solely from four clinical studies in which

blood samples were tested for CYP2D6 genotype status identifying

subjects as poor CYP2D6 metabolizers and non-poor metabolizers

(ultra-extensive, extensive, intermediate metabolizers). The post hoc

Bayesian individual parameter estimates for apparent clearance, dose-

normalized AUC0–24, Cmax, and Cmin at steady state were used in a

Wilcoxon signed-rank test to evaluate the effect of CYP2D6 metab-

olizer status on the PK of CAR, DCAR and DDCAR. The final

population PK models were evaluated using visual predictive check

and bootstrapping methods. All population modeling was performed

in NONMEM, Version 7.1.2, on an Intel cluster with the Linux

operating system. The first-order conditional estimation (FOCE)

method with interaction was used.

Results: A total of 14,613 CAR measurable plasma concentrations

from 2,392 patients, 14,380 measurable DCAR plasma concentra-

tions from 2,387 patients and 13,531 measurable DDCAR plasma

concentrations from 2,344 patients were used in the development of

the population PK models. The population PK analyses were per-

formed using doses ranging from 1.5 to 18 mg/day. The most

parsimonious structural model describing CAR was a two-com-

partment disposition model with first-order elimination and sigmoid

absorption, characterized by a zero-order input of the dose in a

depot compartment followed by a first-order transfer into the central

compartment. Typical apparent clearance (CL/F) and central volume

of distribution (Vc/F) of CAR were estimated to be 22.8 L/h and

454 L, respectively. The most parsimonious structural model

describing DCAR or DDCAR was a one-compartment model with

first-order elimination. Typical CL/F and Vc/F of DCAR were

estimated to be 70.9 L/h and 176 L, respectively, and for DDCAR

were 6.74 L/h and 2220 L, respectively. The CL/F and Vc/F of each

moiety were statistically dependent upon a function of body weight.

Race, gender, and age were also statistically significant predictors of

the CL/F or Vc/F of some moieties. However, none of the covariates

were found to be clinically relevant (their effect ranged between 2

and 32 %). Other variables describing hepatic (albumin and NCI

liver dysfunction classification) and renal (creatinine clearance and

classes of renal impairment) functions were found to be no statis-

tical significance. The concomitant administration of CYP2D6

inhibitors (N = 106, 5.2 % of patients), mild or moderate CYP3A4

inhibitors (N = 21, 1 % of patients), and CYP inducers (N = 52,

2.5 % of patients) did not show a statistically significant effect on

the apparent clearance of any of the moieties. A total of 895 patients

were genotyped for CYP2D6 status. Of these, 39 patients were poor

metabolizers. There were no statistical differences (p [ 0.05) in

CAR and DCAR exposures and no clinically relevant differences in

DDCAR exposures for poor metabolizers as compared to others

(16 % statistically higher in poor metabolizers, p B 0.05). Final

CAR, DCAR, and DDCAR population PK models predicted the

median time to achieve 90 % of absolute steady-state to be 4, 4, and

31 days, for CAR, DCAR, and DDCAR, respectively and the

functional half-life was 1, 1, 9 days, respectively. The PK of CAR,

DCAR and DDCAR were found to be linear within the 1.5-18 mg/

day dose range.

Conclusions: The linear population PK models adequately described

the PK profiles of CAR and its two major active metabolites in

patients with schizophrenia or bipolar manic or mixed episodes

associated with Bipolar I disorder after exposure to doses ranging

from 1.5 to 18 mg/day. No statistically significant effect on the PK of

any of the moieties were noted for hepatic function, renal function,

concomitant administration of CYP2D6 inhibitors, CYP3A4 inhibitors,

or CYP inducers. Patients classified as CYP2D6 poor metabolizers had

no clinically relevant difference in exposure compared to non-poor

metabolizers. The typical functional half lives of CAR, DCAR and

DDCAR (1 day, 1 day, and 9 days, respectively) support once daily

dosing for cariprazine in the patient population described above

(Fig. 1).
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Objectives: Bapineuzumab is a humanized anti-amyloid-beta mono-

clonal antibody given intravenously and was evaluated in four phase 3

clinical trials for the treatment of Alzheimer’s disease (AD). Amyloid-

related imaging abnormalities—edema/effusion (ARIA-E) are radio-

logical findings detected by magnetic resonance imaging (MRI) as an

area of high signal intensity on T2-weighted or fluid-attenuated inver-

sion recovery (FLAIR) sequences. ARIA-E occurrence appears to be

related to bapineuzumab treatment (i.e., a treatment emergent event) in

a dose dependent manner based on early phase clinical studies. The

primary objectives of this pharmacokinetic/pharmacodynamic (PK/PD)

modeling effort were (1) to develop a PK/PD model relating time to

event (TTE) of ARIA-E to bapineuzumab exposure and (2) to develop a

PK/PD model relating the total radiological score (RS), a measurement

of severity of ARIA-E, to bapineuzumab exposure. The secondary

objectives were to evaluate covariates of clinical interest that may affect

the risk of an ARIA-E event, or given an event, modify the RS.

Methods: Data are from two phase 3 clinical studies of bap-

ineuzumab in patients with mild to moderate Alzheimer’s disease

who are APOE e4 carriers (Study 301) and non-carriers (Study 302).

Total number of subjects enrolled, n = 2,452. Patients received either

bapineuzumab (0.5 or 1.0 mg/kg) every 13 weeks for 6 doses and

were followed until study endpoint at 78 weeks. MRIs were per-

formed per protocol 6 weeks after bapineuzumab treatment at 13

weeks intervals. Two pharmacokinetic/pharmacodynamic (PK/PD)

models have been developed: one relating TTE of an ARIA-E event

to bapineuzumab exposure, and one relating RS as determined by

MRI to bapineuzumab exposure in subjects with mild to moderate

AD—from two phase 3 trials. The onset of an ARIA-E event was the

interval starting at the time immediately after the prior MRI with no

findings, up to and including the time of the following MRI at which

the abnormalities were discovered, therefore, interval censoring

methods were implemented for the TTE analysis. A log-additive

hazard model was used to describe the TTE of ARIA-E. Overall

goodness of fit was assessed using simulation-based diagnostics such

as the Visual Predictive Check (VPC). Complete use of the observed

trial design for simulation was not possible for ARIA-E; per protocol,

once a patient was indentified with ARIA-E, the bapineuzumab

treatment was stopped until the event resolution and subsequent

treatment was initiated at a lower dose and additional MRIs were

performed at intervals less than 13 weeks for clinical monitoring and

evaluation. However, not all patients with ARIA-E underwent a

temporary suspension of dose followed by a dose reduction. During

the course of the clinical trial, a protocol amendment was imple-

mented resulting in the downward titration of the 2 mg/kg cohort to

1 mg/kg. Therefore, models were constructed to account for the

randomness in the scheduled MRI times and doses as well as the

timing of the titration for the 2 mg/kg group. A traditional VPC for

survival, concordance of observed and simulated survival curves, was

computed using Turnbull’s nonparametric estimator of survival for

interval censoring. Comparisons of survival curves can lack resolu-

tion for determining the adequacy of a parametric hazard, because

survival curves are based on the exponentiation of the area under the

hazard curve (cumulative hazard function). Therefore, to aid in

evaluating specific components of the hazard, a binned hazard VPC

was also performed. The concept is to compute a data-based hazard

profile to compare data and model on the scale on which the data are

modeled.

RS is a bounded outcome score (BOS) ranging from 0 to 180,

inclusive. Because a few placebo and approximately 20 percent of the

treated patients had ARIA-E events, RS was modeled conditionally—

considering RS data from patients who had an ARIA-E event. The

BOS methodology as described by Hutmacher et al. was modified

accordingly. A VPC was also performed to evaluate the RS model.

Base models were developed for both endpoints. Study-specific

effects were evaluated to check the adequacy of pooling the carrier

versus non-carrier studies. Next, covariates which were pre-specified

to a large extent were added in the attempt to formulate full models

for the endpoints. The Wald approximation method was then imple-

mented to determine a set of candidate models, one of which was

selected as the final (most likely) covariate model. APOE e4 copy

number (the effect of 2 alleles) was then evaluated for its affect on

risk of an event and severity in an ad hoc fashion.

Results: A total of 2423 subjects were included in the ARIA-E

analysis, of whom 243 were identified with ARIA-E. The parameter

estimates of the ARIA-E final model suggested that the hazard for an

ARIA-E event is 988-fold greater in subjects with maximum drug

effect (Emax; effect when bapineuzumab concentration are several

fold higher than the EC50) relative to placebo. The predicted inci-

dence rate of an ARIA-E event was found to attenuate as time

progresses. The baseline ARIA-E hazard (i.e., hazard without con-

sideration of treatment) was 69 % lower for APOE e4 non-carriers

(Study 301) relative to carriers (Study 302). Microhemorrhage at

baseline (presence versus absence) and an effect of APOE e4 copy

number of 2 alleles were added as covariates in the final model.

Presence of microhemorrhage increased the baseline ARIA-E hazard

1.85-fold. Additionally an APOE e4 copy number of 2 increased the

maximum drug effect risk by 4.33 fold. The incidence of ARIA-E

events was primarily driven by bapineuzumab concentration, as evi-

denced by the low number of placebo subjects that had events. In

addition, the results demonstrated that the bapineuzumab exposure is
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slightly higher in heavier subjects than in lighter subjects using the

weight based dose and such an increase could amplify the risk of

ARIA-E despite the slight difference. As a result, heavier subjects

receiving higher doses of bapineuzumab, with microhemorrhage

present at baseline, and with an APOE e4 copy number of 2 had the

greatest risk for an ARIA-E event.

A total of 243 subjects contributed to the RS analysis. The maximum

effect of bapineuzumab concentration on RS response attenuated over

time for both Study 302 (carriers) and Study 301 (non-carriers). A

larger Emax value was observed in APOE e4 carriers than non-carriers.

No other covariates were found to be predictors of RS.

Conclusions: Overall, the results of the modeling indicate that the

incidence of ARIA-E events and their severity (RS) are dose (con-

centration) dependent and attenuate with time since treatment

initiation. The parameter estimates of the final model and the visual

predictive check results indicate that the baseline risk is low, and the

risk of an event is highest after the first dose of bapineuzumab. The

incidence of ARIA-E events was driven by bapineuzumab concen-

tration, confirming that the risk of an ARIA-E event is mechanism

related. The primary risk factors for an event are serum bap-

ineuzumab concentration, APOE e4 copy number, and the presence of

baseline microhemorrhage. The maximal effect of bapineuzumab

concentration on severity (RS) attenuated over time, which might be

due to the recovery of vascular integrity after removal of amyloid

deposition.

W-041 Reduction in Interindividual Variability

and Clinical Significance Ratio in Covariate Assessment

Susan Willavize*, Jill Fiedler-Kelly

Cognigen Corporation, Buffalo, NY, USA

Objectives: Covariate analysis has become a customary and expected

part of population PK and PK/PD modeling [1]. The covariate sub-

model describes, explains, and predicts the impact of patient char-

acteristics on drug exposure and effects. Various criteria have been

discussed for assessing the utility of a covariate. These criteria

include reduction in interindividual variability (IIV) [2] and measures

of the clinical importance [3].

Using creatinine clearance (CrCL) as an example covariate, this study

aims to investigate the relationships between the clinical significance

ratio (CSR) and

• Reduction in inter-individual variability between base and covar-

iate models

• Design factors such as the number of subjects, number of PK

samples per subject (n) and the diversity of the covariate

observations (in terms of the corrected sum of squares (CSS) of

the observed covariates).

Methods: Basic statistical properties of the covariate submodel alone

indicate that the probability of detecting a covariate relationship is

dependent on the true value of the slope and CSS. A simulation study

was undertaken to explore, in the population PK context, the effects

of these factors as well as the sparseness of sampling within subjects

on the CSR and the change in unexplained IIV. SAS9.2 was used to

create the simulation data and to summarize the results. NONMEM

7.2 was used for nonlinear mixed-effect modeling.

Simulation data:

• 1-cmt, bolus dose PK model with first order elimination, single

dose, CL = 3 L/h, Vc = 50 L, dose = 100 mg

• TVCL = h0 + hC * CrCL; h0 = 50 mL/min, hC = 0, 0.0850,

0.4225, 0.83 (corresponding to true CSR values of 1, 0.9, 0.7, and

0.6, respectively)

• CrCL ranges from 30 to 140 mL/min; 4 differently distributed

samples from this range of CrCL values which provide differing

patterns of diversity, and hence different values of CSS

• R = 1,000 simulation replications/scenario

• N = 50, 100 subjects/simulated clinical trial

• n = 12 or 5 samples per subject (at times t = 0, 1, 2, 3, 4, 6, 8, 10,

12, 16, 20, 24 h or t = 0, 1, 4, 12, 24 h)

• xCL = 25 % CV, xVc = 25 % CV (CLi = h1 � exp(g1i), Vci = h2 �
exp(g2i)), r = 30 % CV (proportional residual variability,

variance = 0.09)

Estimation methods:

• NONMEM 7, with FOCEI

• Base model with covariate effect at null value

• Linear covariate model: TVCL = THETA(1) + THETA(2) *

(CrCL - 80);

• Power function covariate model: TVCL = THETA(1) * (CrCL/

80) **(THETA(2))

• Statistical significance based on P value computed by v2

(delta_MVOF, 1); where delta_MVOF is computed by difference

in MVOF for base model (THETA(2) fixed at 0) versus covariate

model

• Reduction in interindividual variability as the percent reduction in

the estimated iiv (expressed as SD) for base model versus

covariate model

Results: Example results for sparse sampling and the most extreme

CSS values are provided below. Results for full profile sampling were

essentially the same as those for sparse data and results for True

CSR = 0.6 were essentially the same as those for True CSR = 0.7.

While the proportional reduction in IIV decreased with increasing

CSS, the estimated CSR was essentially constant.

When the True CSR was equal to 1 (indicating no clinically important

effect), the estimated CSR was unbiased. P values for the null case

averaged about 0.5, while the proportional reduction in IIV was low

and sometimes negative (indicating an increase in IIV).

In non-null cases the CSR was underestimated, but seemed to

plateau for values of True CSR\0.9. P-values for these cases usually

indicated statistical significance (mean\0.01 and maximum was less

than 0.1). Proportional reduction in IIV varied inversely with esti-

mated CSR.

Scenario 1 (CSS = 83,000)

Mean (SD) True CSR

1.0 0.9 0.7

Sparse Proportional

reduction in

IIV

0.007 (0.011) 0.30 (0.035) 0.42 (0.047)

Estimated CSR 1.00 (0.077) 0.54 (0.035) 0.43 (0.027)

Scenario 3 (CSS = 28,000)

Mean (SD) True CSR

1.0 0.9 0.7

Sparse Proportional

reduction

in IIV

0.007 (0.015) 0.13 (0.047) 0.21 (0.054)

Estimated CSR 1.01 (0.15) 0.55 (0.071) 0.44 (0.058)
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Conclusions:

1. Under the null-case, the p-value alone provided unreliable

indication of the absence of effect. But the lack of reduction in

IIV in this case provided an indication that there was no strong

covariate effect.

2. In the null-case, the estimated CSR was unbiased and in the non-

null cases, it was generally underestimated, but decreased with

the True CSR, indicating the presence of a covariate effect.

3. For the scenarios studied, the findings were insensitive to the

sparseness of the sampling strategy.

4. In the absence of a clearly defined clinical significance function,

the proportional reduction in IIV together with statistical

significance may provide an indication of the presence of a

covariate effect, with the extent of reduction in IIV indicative of

the size of the CSR.
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W-042 Utility of Model-based Meta-analyses

for Evaluation of Phase 2 Results and Phase 3 Study

Design for Trials in Patients with Advanced Pancreatic

Cancer

Dana J Nickens*, Michael A Amantea

Pfizer, Inc., San Diego CA, USA

Objectives: New therapies are needed for pancreatic cancer as it is a

difficult disease to treat and has a 5 year overall survival rate of less

than 4 % [1]. A completed meta-analysis of the current literature on

pancreatic cancer drug therapies [2] was used to (1) evaluate treat-

ment effects of overall survival from a completed phase 2 study; (2)

combine the phase 2 data with the meta-analysis results for an

updated model for overall survival; (3) provide performance metrics

for a proposed phase 3 design relative to the current knowledge about

a new drug therapy; (4) compare the completed Phase 3 trial results

with the model-based meta-analysis predictions.

Methods: A completed phase 2 study in pancreatic patients with

gemcitabine as the control arm and gemcitabine + new drug therapy

was available for comparison with a pancreatic cancer meta-analysis.

A completed meta-analysis of drug therapies used a linear model for

therapies based on drug class with between study random effects for

median overall survival [2]. The model was used to generate a predictive

distribution for the gemcitabine arm and for a 2 drug combination arm

with gemcitabine with which to compare the phase 2 results.

Bayesian methods with non-informative priors were used to combine

aggregate data from the phase 2 trial with the pancreatic meta-analysis

to provide an updated model. Based on an assumed parametric survival

distribution, the updated model was used to estimate the hazard ratio of

gemcitabine versus the combination arm. The updated meta-analysis

results were also compared to the actual phase 3 trial results.

The updated pancreatic meta-analysis with an assumed parametric

survival distribution was used to generate results for 10,000 simulated

future phase 3 trials based on a chosen study design. Comparisons

were made between the simulated data-analytic results and the pre-

dictive distribution (10,000 simulations for 596 patients in each future

clinical trial) for the hazard ratio of the treatment effect of using the

updated meta-analysis model. Performance metrics (e.g., probability

of technical success, probability of making a correct decision, prob-

ability of a go decision) were calculated and the phase 3 trial design

evaluated based on these metrics

Results: The phase 2 overall survival result for gemcitabine

(5.6 months; n = 34) was compared to the meta-analysis model

based predictive distribution for that size study, and had probability of

18 % of being smaller indicating that the phase 2 gemcitabine result

was toward the lower end of the predictive distribution. The overall

survival result for gemcitabine + new drug (6.9 months; n = 69) was

compared to the meta-analysis model based predictive distribution for

a combination with gemcitabine arm of that size study and had

probability of 82 % of being larger indicating that the phase 2 com-

bination arm result was toward the lower end of the predictive

distribution.

The updated Bayesian meta-analysis showed that the gemcitabine +

new drug combination provided only a 0.3 month improvement over

gemcitabine versus a 1.3 month improvement based on the phase 2

result alone. The observed phase 2 hazard ratio for gemcitabine vs.

combination therapy was 0.79 while the updated model based hazard

ratio was 0.97. The hazard ratio for the treatment comparison in the

actual phase 3 trial was 1.04.

Based on the simulations using the updated meta-analysis model,

the probability of success in a phase 3 trial is 13 %. The probability of

a correct decision for the phase 3 trial was 54 %. A go decision had a

probability of 59 %. These metrics relating the compound and study

design performance indicated that overall success in phase 3 would be

poor.

Conclusions: The availability of a meta-analysis of recent pancreatic

trials was useful: (1) to evaluate the results of phase 2 trial; (2) to

assess the performance of proposed phase 3 designs; (3) to augment

phase 2 results in evaluating the future success of a compound under a

selected phase 3 design.; (4) for providing a more systematic and

quantitative framework to inform the transition strategy between

phases of drug development.
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W-043 Detection of Immunogenicity and Unbiased

Estimation of Model Parameters for Monoclonal

Antibodies
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Objectives: To propose and evaluate methods for detection of

immunogenic increase of elimination using concentration–time data

and for unbiased estimation of model parameters in the presence of

immunogenicity.
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Methods: A large dataset (1,000 subjects) was simulated with sam-

pling scheme that included the rich data following the first and the last

doses, and also trough and peak values for all other doses. Intravenous

doses were administered on days 1, 8, 15, 28, and then every 4 weeks

during the 24-weeks treatment period. A two-compartment model

with parallel linear and Michaelis–Menten elimination, and pharma-

cokinetic parameters typical for the monoclonal antibodies with

membrane-bound targets were used. Random effects with moderate

(CV = 20 %) inter-subject variability were included for all parame-

ters. The exponential residual error (CV = 20 %) was implemented

as an additive error in the log-transformed variables. Immunogenicity

was simulated in non-specific clearance in approximately 30 % of

subjects as (a) 5-fold increase following the doses at days 56, 84, 112,

or 140 (with equal probability of each of these onset times), or

(b) according to a steep Hill function of time with inter-individual

variability in Emax and T50 parameters.

First, the model that did not account for immunogenicity was fitted to

evaluate bias of the parameter estimates. Then, two methods of

accounting for immunogenicity were tested.

The first method (called ETA-on-epsilon method) introduced the

random effect on the magnitude of the residual error, hypothesizing

that subjects with immunogenicity would have higher magnitude of

this parameter. The same model was then fitted to the sequence of

datasets where the increasing fractions of subjects with the highest

residual error were commented out. Association of subjects with

immunogenicity and subjects with high residual error was investi-

gated. The obtained parameter estimates of each model were

compared with the true parameters of non-immunogenic subjects.

The second method used the Nonmem mixture model routine. For

the data set (a) it was assumed that the study population consisted of 5

subpopulations. Subpopulation 1 did not have immunogenicity while

subpopulations 2, 3, 4, and 5 were allowed to have an increase in

clearance following the doses at days 56, 84, 112 or 140 (to match the

simulated pattern of immunogenic increase in clearance). For the data

set (b) 2 subpopulations represented non-immunogenic and immuno-

genic subjects with increase in non-specific clearance modeled by the

Hill function of time. The parameter estimates were compared with the

true parameters, and the ability of the models to correctly identify

presence and onset time of immunogenic response was investigated.

Results: The parameter estimates of the model that did not account

for immunogenic increase of clearance were significantly biased and

the estimate of the inter-individual variability in clearance was greatly

inflated. Introduction of ETA-on-epsilon reduced, but not eliminated

bias. High individual ETA-on-epsilon values identified immunogenic

subjects. When subjects with high magnitude of the residual error

were removed from the datasets, bias due to the unaccounted

immunogenic increase of clearance was eliminated. At the same time,

the variance of the ETA-on-epsilon random effect decreased to zero

indicating that the ETA-on-epsilon random effect indeed accounted

for immunogenicity.

The mixture models provided the unbiased estimates of the model

parameters in both cases (a) and (b). The simulated immunogenic

subjects were correctly assigned to the appropriate subpopulations.

Thus, the estimates of the mixture model can be used to identify the

onset of immunogenic increase of clearance.

The proposed methods allowed identification of subjects with

immunogenic increase of clearance; they also reduced or completely

eliminated bias of the parameter estimates in the simulated datasets.

Conclusions: For the simulated datasets with rich sampling, the

proposed ETA-on-epsilon and mixture model methods identified

subjects with immunogenic increase of clearance, provided unbiased

individual estimates of the onset time and magnitude of immunoge-

nicity, and unbiased estimates of population parameters. The

proposed methods offer the approach to evaluate and describe influ-

ence of immunogenicity on the population PK parameters of

monoclonal antibodies.

This work should be viewed as proof-of-concept investigation as it

was applied in nearly perfect simulated conditions, with rich sampling

before and after the onset of immunogenic reaction. Application to

the real data will likely face more difficulties. However, the proposed

methods provide useful tools for detection and evaluation of changes

in the PK parameters related to immunogenicity.

W-044 A Novel Method of Covariate Selection

for Analyzing a Large Number of Covariates:

Application to Pharmacogenetics Variables

Chaitali Passey1,*, Kyle T. Baron2, Pamala A. Jacobson1,

Richard C. Brundage1, Angela K. Birnbaum1

1Department of Experimental and Clinical Pharmacology, University

of Minnesota, Minneapolis, MN, USA; 2Metrum Research Group

LLC, Tariffville, CT, USA

Objectives: When the number of covariates is large, covariate

analysis with the conventional forward selection-backward elimina-

tion approach in NONMEM� can be a very time consuming or

impractical approach. Software limitations may also arise when such

a large number of covariates need to be tested alone and in com-

bination. We were presented with 119 single nucleotide polymor-

phisms (SNPs) (identified through standard regression analyses as

potentially important) that could have an association with tacrolimus

apparent clearance (CL/F). The objective of this analysis was to

devise a novel ‘‘winnowing method’’ that could screen the 119 SNPs

to (1) select important SNPs, (2) include SNPs that are only

important in the presence of another covariate, and (3) remove

noncontributory SNPs. We illustrated this method with the help of a

simulated dataset.

Methods: We first obtained the base model (structural PK model with

no covariates) and empirical Bayes estimates (EBEs) from NON-

MEM�. Next, a series of generalized additive modeling (GAM) runs

were devised using the GAM function in the R statistical package. In

the first GAM run, the EBEs of CL/F from the base model were

regressed on a subset of 25 SNPs out of the 119 SNPs. In our method,

we refer to this as the group size of the random selection process. The

subset of 25 SNPs was randomly selected from the available 119

SNPs. The most important combination of SNPs in a set of 25 ran-

domly chosen SNPs was identified based on the Akaike Information

Criterion (AIC). The process of randomly selecting 25 SNPs and

subjecting them to a GAM analysis was repeated 500 times and

referred to as the number of GAM repetitions. A SNP index (0.0–1.0),

which defines the relative importance of SNPs, was created. It was

defined as the proportion of the number of times a SNP was selected

to the number of times it was randomly sampled (Eq. 1).

SNP Index ¼ Number of times SNP is selected

Number of times SNP is sampled
ð1Þ

The most important SNPs (index = 1.0) were included in an updated

NONMEM� model, while unimportant SNPs (index = 0.0) were

removed from further consideration. The remaining ambiguous SNPs

(index = 0.1–0.9) were subjected to this winnowing process again

using the EBEs from the updated NONMEM model and the same

group size and number of GAM repetitions as used previously. This

process was repeated until all SNPs were categorized as 0.0 or 1.0.

The important SNPs were obtained by this process. Backward elim-

ination was then performed to obtain the final SNPs affecting

tacrolimus CL/F.

Illustration of the method: We further explored this approach using a

simulated dataset. PK data were simulated from a one-compartment

intravenous (i.v.) bolus model. The dataset consisted of 500
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individuals with 7 samples per individual drawn at 0.25, 0.5, 1, 2, 4, 6

and 8 h after administration of a 500 mg dose. The typical value of

CL was set to 5 L/hr and the typical volume of distribution (Vd) was

set to be 14.5 L. An exponential error model was assumed for inter-

individual variability (IIV) on CL and Vd and was set to 30 % for

both PK parameters. A proportional error model was assumed for

random unexplained variability (RUV) and set to 10 %. Using the R

statistical package, 100 SNPs with specific allele frequencies were

simulated. The effects of 10 important SNPs on CL were incorporated

into the model and the corresponding observed concentrations were

simulated using NONMEM�. The objective was to determine if the

10 important SNPs were selected from the 100 SNPs in the simulated

dataset by this approach. Type I (false positive) and type II (false

negative) error rates were also calculated.

Results: The winnowing scheme selected 26 SNPs from the 119

SNPs as the full model from the clinical dataset. It involved a total of

5 updated NONMEM� covariate models and 5 runs in GAM to attain

the full model. A total of 19 SNPs affecting tacrolimus CL/F were

obtained after backward elimination.

For the simulated data set, a total of 18 SNPs were picked up by the

winnowing method for the full model. All true positive SNPs

(n = 10) and 8 false positive SNPs were selected by the winnowing

approach. The type I and type II error rates were 9 and 0 %,

respectively.

Conclusions: We developed a novel method for selection of signifi-

cant covariates when a large number of potential covariates are

available. We used tacrolimus pharmacogenetics as a motivating

example to develop this method. Using this method, followed by

backward selection, we were able to select 19 SNPs from the 119

SNPs. The SNPs selected included the widely established

CYP3A5*1, which is well known to increase tacrolimus CL/F. We

illustrated this method using a simulated dataset. The method was

able to select all of the 10 important SNPs from the 100 SNPs in the

simulated dataset yielding a 0 % false negative rate. In addition to the

true positive SNPs, 8 false SNPs were also selected putting the false

positive rate of the method in the simulated dataset to be about 10 %.

It is to be noted that the clinical and simulated datasets are not

comparable and the simulation was an illustration of the approach.

More comprehensive simulation studies will help establish the per-

formance of this method for covariate selection.

W-045 Fasting Glucose Model-Based Meta-analysis:

A Tool for Designing and Interpreting Early Diabetes

Studies

William S. Denney*, Gianluca Nucci

Pfizer, Clinical Pharmacology, Cambridge, MA, USA

Objectives: Fasting Glucose (FG) is a key parameter of the overall

diabetes diagnosis, progression, and treatment, ideally complement-

ing postprandial glucose (PPG) and comprehensive measurements

(HbA1c) [1–2]. FG is also a critical parameter for assessment of

glucose control in short term trials and as such it is important to be

able to quantify the time course and FG effect of available oral anti-

diabetic agents to offer a quantitative framework for decision making

of novel agents undergoing early signal of efficacy studies. To this

end, we have undertaken a model-based meta-analysis (MBMA) [3]

of FG in published clinical studies with sulfonylureas (SU) thiazolid-

inediones (TZD), metformin (MET), dipeptidyl peptidase-4 inhibitors

(DPP4), and sodium/glucose cotransporter 2 inhibitors (SGLT2).

Methods: A database of 169 published, double-blind, clinical trials of

oral anti-diabetic treatments with a combined 66772 subjects was

constructed by Pfizer and Quantitative Solutions. The meta-analysis

was limited to summary level data from 0 to 26 weeks. Models were

fit using R 2.15.1 using nonlinear mixed effect modeling (nlme

library). Baseline fasting glucose (BFG) was reported in most studies;

when not reported, it was estimated as a function of baseline HbA1c,

prior treatment, and disease duration. The inverse standard error

squared of FG was used as the per-measurement weighting. During

stepwise-selection, models were chosen based on the Akaike infor-

mation criterion (AIC) and physiological plausibility. Model forms

tested included a combination of Emax time to effect (collapsed to

step-changes in time when T50 was too small to be estimated) with

Emax dose response (collapsed to step-changes in dose when ED50

was not estimated). Treatment effect was baseline-adjusted with a

power function.

Results: Goodness of fit plots indicated that the model adequately

described the trial data. All model parameters were estimated with

low relative standard errors. The rate of FG change was fastest with

SGLT2, SU, and DPP4 while MET and TZD were the longest con-

sistent with the insulin sensitizing mechanism of action.

Conclusions: A FG model-based meta-analysis was developed

informing the design of clinical studies of novel anti-diabetic agents

by comparison to existing oral agents. The estimated times to half-

maximal FG effect suggests the duration of FG studies to allow for

this uncertainty range from \1 week to *6 weeks and allowed to

benchmark comparative effectiveness of novel agents in development

against current oral anti-diabetic treatments.
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W-046 Model-based Characterization of the Clinical

Pharmacokinetics of Nivolumab, a Fully Human Anti-

PD-1 Monoclonal Antibody

Yan Feng*, Shruti Agrawal, Georgia Kollia, Sally Saeger,

Martin Ullmann, Vindira Sankar, Dan McDonald, Ashok Gupta,

Eric Masson, Amit Roy

Bristol-Myers Squibb, Princeton, NJ, USA

Background: The immune checkpoint receptor programmed death-1

(PD-1) negatively regulates T cell activation. Nivolumab, a PD-1

receptor blocking antibody, demonstrated durable clinical benefit in a

phase 1 study in pts with various tumors [1]. The aim of this study is

to characterize the PK profile of nivolumab and to assess the effects of

intrinsic and extrinsic factors on nivolumab exposure in support of the

development of nivolumab for the treatment of melanoma, non-small

cell lung cancer (NSCLC), and renal cell carcinoma (RCC).

Methods: Nivolumab time-concentration profiles were described by a

population pharmacokinetic (PPK) model with 2,760 post-nivolumab

treatment serum PK samples from 325 subjects enrolled in 2 clinical

studies: a single ascending dose (SAD) and a multiple ascending dose
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(MAD) study in with advanced solid malignancies. Nivolumab doses

of 0.3–10 mg/kg single IV dose were tested in SAD study and doses

of 0.1–10 mg/kg dose every 2 weeks were tested in the MAD study.

The relationships between PK parameters (clearance (CL) and vol-

ume of central compartment (VC)) and various baseline covariates were

examined, including: body weight (BW), age, sex, estimated glomer-

ular filtration rate (eGFR), baseline lactate dehydrogenase, albumin,

absolute lymphocyte count, C-reactive protein and total bilirubin.

Visual predictive check was applied for PPK model validation.

Results: The PPK of nivolumab was well characterized by a linear

two compartment model with zero-order IV infusion and first-order

elimination. Typical CL and VC estimates are: 0.0104 L/h and

4.56 L, with 52.8 and 29.6 % interindividual variability. Baseline

BW, sex, C-reactive protein, albumin, appear to have[20 % effect on

clearance (CL); BW and sex also appear to have a [20 % effect on

VC. BW normalized dosing produces relatively constant nivolumab

steady-state exposures across a wide BW range (40–150 kg).

Conclusions: The PPK analysis indicate that nivolumab PK is linear

and a BW-normalized dosing regimen is appropriate for nivolumab

therapy. These results will be confirmed with additional data from the

phase 2 and 3 studies of nivolumab in melanoma, NSCLC, and RCC.
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W-047 Power Calculations for Pharmacodynamic

Crossover Studies Conducted to establish

Bioequivalence of Inhaled Corticosteroids Through

Monte Carlo Simulations
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FL, USA; 2Department of Statistics, University of Florida,
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Background: To establish bioequivalence (BE) of generic inhaled

corticosteroids (ICS) at the site of action, the FDA recommends

pharmacodynamic/clinical studies[1] monitoring effects of ICS on

fractional exhaled nitric oxide (FeNO). There is limited literature

available on effects of ICS on surrogate markers of inflammation and

there are no BE studies reported to date.

Objectives: To perform power calculations for pharmacodynamic (PD)

crossover studies through a clinical trial simulation model by (a) pre-

dicting the dose response to ICS using FeNO, (b) incorporating different

patient populations (high responders [2] vs. intermediate responders

[3]), and (c) applying a bootstrap based non-parametric approach to

construct distributions of relative bioavailability [4] # (FDS).

Methods: Crossover studies (Fig. 1) were simulated with sample

sizes of 48, 64 and 128 patients and a wide range of identical refer-

ence (R) and test (T) products. The mean responses for R and T doses

were obtained from an Emax model (Eq. 1) with relevant Emax and

ED50 values. Two patient populations, high responders and interme-

diate responders were simulated with Emax values of 75 and 50 % of

E0 respectively. Within- and between-subject variability estimates

were obtained from literature.

FeNO values from each simulated dataset were analyzed using a

linear mixed effects model with restricted maximum likelihood esti-

mation. Dosing sequence, treatment (3 doses of R and one dose of T)

and period were fixed effects, while patient nested within sequence

was a random effect. Baseline FeNO values were added to the model

as covariate. The study power, defined as the % of the 200 simulated

datasets showing bioequivalence i.e. if 90 %CI of FDS (Eq. 2) is

within 0.8-1.2 was calculated via bootstrap procedure (R 2.14.1).

Emax Model:

Response ¼ E0 �
Emax � Dose

ED50 þ Dose
ð1Þ

Relative Bioavailability:

FDS ¼
/�1

R ETð Þ
DT

ð2Þ

FDS is the relative bioavailability of T and R at site of action; UR is the

Emax model describing the dose response of R, ET, DT are the

response and claimed does of the T respectively.

Results: Highest power was achieved in general when the test dose is

close to ED50 (Fig. 2). 90 % power was obtained in high responders

using sample size of 128 subjects, whereas in intermediate responders

it was 50 % with the same number of subjects (Figs. 2, 3). When the

BE criteria is relaxed to 0.7–1.3, 90 % power was obtained using 64

and 128 subjects in high and intermediate responders respectively. A

33 % change in Emax, expressed as a percent of E0 (75–50 %)
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Fig. 1 Simulated crossover study design

Fig. 2 Power versus test dose (ED50 = 100)
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between high and intermediate responders decreased the study power

by 44 % (Fig. 2).

Conclusions: Power calculations were performed by applying a

bootstrap approach to crossover studies and constructing 90 % CI on

FDS without any distributional assumptions. The pharmacodynamic

approach for establishing BE of ICS seems feasible only when the

study population consists of high responders to establish a significant

dose response relationship and the test dose chosen is close to the

estimated ED50 value of the drug and biomarker combination. The

clinical trial simulation model developed can be used to optimize

other BE studies design.
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W-048 A Technique for Identifying an Optimal

Threshold Value of a Continuous Predictor of Clinical

Outcomes
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1Pharmacometrics, Pfizer Inc., Groton, CT, USA; 2Clinical

Pharmacology, SCBU, Pfizer Inc., Groton, CT, USA; 3Ann Arbor
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Objectives: In situations where a clinical outcome (e.g. infection) is

causally linked to a continuous measure (e.g. neutrophil counts), it is of

interest to drug developers and clinical practitioners to determine a

threshold value for the continuous measure that could be used to optimize

outcomes (e.g. changing the dose, discontinuing treatment, seek alternative

therapy), and/or characterize the therapeutic index during development.

Various techniques have been employed to identify such thresholds

including empirical methods based on years of clinical experience, con-

tingency tables, and Receiver Operating Characteristics (ROC) analysis,

all of which have their benefits and limitations. These approaches are

limited by the fact that they are static with respect to time and do not take

into account changes in the continuous measure over time, a common

phenomenon in clinical trials. We propose a general profiling method using

a Cox proportional hazards model that combines both the development of

the relationship between the continuous measure and the clinical outcome,

while providing a quantitative framework to identify the threshold value.

The method captures nonlinear aspects of the relationship, yet can also be

used to take advantage of software intended for linear models.

Methods: The ‘extended’ Cox proportional hazards model used includes

a second covariate derived from the time-varying continuous measure of

interest that estimates the contribution of this continuous predictor when it

is beyond a specified, fixed threshold value. The profiling technique

generates diagnostic statistics from the model fits as the threshold values

are varied. These statistics are analyzed and the threshold value achieving

the minimum such statistic is considered the optimal threshold. The

process is similar to obtaining confidence intervals by likelihood profiling.

We compare and discuss the merits of using the minimum of the sum of

the relative standard errors as the indicator of the optimum threshold

versus using the minimum objective function value.

Results: Example: Top plot: Incidence rates are graphed at the

median values of the 5th percentiles of the continuous predictor. A

threshold effect appears to exist in the data at low values of the

continuous predictor. Bottom plots: various measures of model fits

using the Cox PH model using different threshold values of the

continuous predictor: Left: sum of the relative standard errors; Right:

objective function values
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Fig. 3 Power in different patient populations
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Conclusions: In situations when time-varying continuous measures

may have a threshold value, for which values of the continuous

measure above or below this threshold become predictive of a clinical

outcome or of clinical concern, the threshold profiling technique

proposed using diagnostic statistics from a Cox PH model, specifically

the sum of the relative standard errors of the effects, can quantitatively

identify the threshold value that provides a predictive range of the

continuous measure. Identifying such thresholds for the continuous

predictor may be valuable for advising on a change in dose, guiding a

treatment decision, or helping to delineate a therapeutic index.
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Objectives: One of the most difficult aspects of drug development is

reliably detecting increased incidence of rare adverse events or events

with significant latency and developing a sufficient understanding to

assess the benefit-risk ratio, guide dosing, and/or inform clinical

management decisions. Frequently, an ad hoc process based on

clinical judgment is employed in order to associate the occurrence of

an event with drug dose or a laboratory safety marker. While clinical

judgment is a critical component to such decision making, pharma-

cometricians can play a role in informing those decisions by applying

model-based approaches and doing so in an efficient and consistent

manner across the plethora of safety data typically collected during

the drug development process. The primary objective of this work

was to develop a simple and informative screening method to explore

such relationships in a consistent and timely manner to answer

development/regulatory questions.

Methods: Data requirements to use this function are as follows, one

record per subject with the following data, (a) subject identifier,

(b) predictor variables, e.g., clinically relevant drug exposure metrics,

such as time weighted average Cmax or Cavg for the duration of the

treatment, or complete blood counts (CBC) at baseline i.e. before a

subject started therapy with the given drug, c) types of AE (dichot-

omous), i.e. occurrence of an event defined as 1 (yes) 0 (no); d) total

duration of therapy for the patient up to the time of event or dis-

continuation or duration of follow-up. Method of Analysis: The

exposure or biomarker values are sub-divided into a user-specified

number of bins based on clinical relevance (e.g., quartiles or deciles).

The observed mean incidence rates [IR] (e.g. events per 100 patient

years) and 90 % confidence intervals (CI) are calculated using the

‘‘cipoisson’’ function (Terry Therneau, (http://mayoresearch.mayo.

edu/mayo/research/biostat/splusfunctions.cfm). The model predicted

IR is obtained by regressing the observed IR in each bin vs. the

median of the predictor variable within each bin through a generalized

linear model with log link and Poisson errors. This is implemented

using the ‘‘glm’’ function in S-Plus 8.0 (Insightful Corporation,

Seattle, Washington, USA) or R12.2.2 (http://www.R-project.org)

(http://mayoresearch.mayo.edu/mayo/research/biostat/upload/81.pdf).

Results: The following flowchart illustrates the steps that are per-

formed in the user defined (squares) and the function (circles) steps to

obtain desired outcomes. Steps 1-8 do not need user input.

A typical plot from the function where quartiles of the predictor

variable are used to model the incidence rate of an AE is given below.
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Symbol ‘x’ represents observed incidence rate (per 100 patient years

for example); bars represent 90 % confidence intervals (CI) of the

incidence rate; solid line represents mean model prediction and blue

band represents 90 % CI of the model prediction;

Conclusions: A simple and computationally rapid methodology that

allows for efficient screening of multiple endpoints and/or adverse event

outcome relationships is proposed. The tool allows communication of

results in a consistent and easy-to-visualize manner. Future efforts for

moving from screening to inferential analysis using pharmacologically-

based models (e.g. to better address latency) are warranted.

W-050 In Vitro Study to Characterize Antiplatelet

Effect of Ticagrelor and its Active Metabolite
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Hyeong-Seok Lim
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Medical Center, Seoul, Republic of Korea

Objectives: Ticagrelor is a reversible P2Y12 receptor antagonist

which has been developed as a treatment of acute coronary syndrome.

Although both ticagrelor per se and its metabolite, AR-C124910XX,

are known to be pharmacologically active for P2Y12 receptor, their

pharmacodynamic interaction has not been studied. This is an in vitro

study to evaluate the pharmacodynamic interaction between ticagrelor

and AR-C124910XX.

Methods: Twenty pairs of the randomized concentrations of ticagr-

elor and AR-C124910XX were studied within 2 h using the plasma

from an individual. The ranges of the randomized concentrations of

ticagrelor and AR-C124910XX were 0–10,000 and 0–5,000 ng/mL,

respectively. The primary variable was the platelet aggregation (%) of

each mixture which was measured with a light transmission aggre-

gometry using ADP as an agonist. NONMEM version 7 was used to

analyze their pharmacodynamic interaction by building a response

surface model.

Results: A total of healthy volunteers donated their blood to conduct

the in vitro study. Platelet aggregation was measured in 576 samples

including 96 blank ones. In the response surface model, the syner-

gistic interaction was identified in the mixtures of ticagrelor and

AR-C124910XX. Although both ticagrelor and AR-C124910XX

inhibited platelet aggregation, ticagrelor was more potent than AR-

C124910XX with the IC50 of approximately 17 % compared to AR-

C124910XX in this study. The median predicted platelet aggregation

response surface was visualized and compared to the observed values

in Fig. 1. Figure 1 shows the median response surface with the ref-

erence lines of average steady state plasma concentrations of

ticagrelor and AR-C124910XX on ticagrelor 90 mg q 12 h, at which

dosing regimen, ticagrelor is predicted to exert its near-maximum

anti-platelet effect.

Fig. 1 Comparison of the predicted versus observed platelet aggre-

gation (%) by the plasma concentrations of ticagrelor and AR-

C124910XX

Fig. 2 Visualization of the median predicted platelet aggregation (%)

in the concentration ranges around Css of ticagrelor and

AR0C124910XX when orally administered with ticagrelor 90 mg

twice a day
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Conclusions: This study suggested that ticagrelor is more potent than

AR-C124910XX and that there is the synergistic pharmacodynamic

interaction on the inhibition of platelet aggregation between ticagrelor

and AR-C124910XX.
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Objectives: In-vitro in vivo correlation (IVIVC) methods can play an

important role in improving the efficiency of drug development by

providing predications for the physiological responses in multiple

tissues to modest drug formulation changes without requiring the

completion of costly clinical studies.

There are a number of different approaches to IVIVC described in the

literature, but one that shows particular promise with respect to its

flexibility is the direct, differential equation IVIVC (DDE-IVIVC)

method presented in [1]. By removing the requirement for solving for

convolutions to link the in vitro and in vivo components of IVIVC,

DDE-IVIVC makes employing more sophisticated kinetic models

relatively straightforward.

With this in mind, the goal of this work was to present a revised

DDE-IVIVC approach with two proposed modifications. First, by

using a physiologically based pharmacokinetic (PBPK) model in

place of a classical one- or two-compartment pharmacokinetic model

it becomes possible to monitor the effects of formulation changes not

only on plasma concentration time-courses, but also tissue-specific

time courses as well. And secondly, by employing Markov chain

Monte Carlo techniques to solve for the IVIVC parameters we are

able to not only incorporate prior knowledge about both the in vitro

and in vivo models, but also to gain significantly more information

about the relationships and correlations between the IVIVC parame-

ters themselves.

Methods: We developed a generic, extensible ‘‘In-vitro Dissolution’’/

‘‘In-vivo PBPK’’ model on which to apply DDE-IVIVC. The in vitro

model components were modeled directly from [1], the in vivo

dynamics modeled as a typical multi-compartment PBPK model with

a scalable number of compartments set up to use drlg/formulation-

specific parameters (intrinsic clearance and octanol:water coeffi-

cients) to describe the pharmacokinetics.

Next an MCMC statistical model was developed which can incor-

porate any prior information for the parameter values that solved for

the probabilistic distributions of the in vitro and in vivo values via a

likelihood function that considers the rate of dissolution and obser-

vations from clinical trials for available formulations.

After running the MCMC analysis to convergence, we use the

resulting chains to make inferences about the distributions for the

in vitro and in vivo parameters, and then forward Monte Carlo studies

to generate tissue specific time-course predictions for different for-

mulation candidates.

Results: The modified DDE-IVIVC approach employed here was

able to predict levels of diltiazem that were relatively close to the

values presented in [1], in that the median values from our study were

within 10–20 % of the mean values reported by [1].

Conclusions: The approach employed was able to match the obser-

vations of the withheld data set as well as provide predictions for

other tissues of interest for different formulations. By using a PBPK

model in place of a classical pharmacokinetic model, predicted time-

course concentrations for multiple tissues are available instead of just

plasma (allowing us to ensure therapeutic dose levels in the desired

tissues while monitoring toxicity in others). The use of MCMC

analysis to quantify the relationship between the IVIVC parameters

instead of deterministic optimization analysis we gain significant

insight into the correlations of the IVIVC parameters as well as the

physiological parameters that would otherwise be missed.
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Objectives: There is evidence that TFV 1 % vaginal gel can be used

for pre-exposure prophylaxis in women [1] and oral Truvada (ten-

ofovir disoproxyl fumarate/emtricitabine) in men. [2] Rectal

microbicides are currently being evaluated to reduce HIV transmis-

sion via unprotected receptive anal intercourse. This population PK

model describes TFV gel’s disposition in the rectum and plasma.

Methods: Subjects in the RMP-02/MTN-006 study were given a

single oral dose TDF (300 mg), followed 4 weeks later by a single

rectal dose of 1 % TDF gel (44 mg) [3]. Blood plasma and rectal

sponge samples were collected at various times up to day 12 post

dose. The dataset used for this model contains 12 subjects. TFV

concentration was determined by validated LC–MS/MS methods

[4, 5]. Mixed effects population modeling was done using NONMEM

7.2.0 (ICON, plc) with FOCE-interaction algorithm. Inter-individual

variability is described with an exponential error model, and residual

variability is described using an additive and proportional error

model. The additive error is fixed to 1 ng/mL, and proportional error

fixed to 32 % CV. Linear kinetics in the model is assumed. Model

discrimination is with AIC. After model parameter estimates and

inter-individual variability are obtained, 1000 simulations are per-

formed for the visual predictive check. Data pre/post-processing and

plotting is done with R [6]; additional R libraries used includes lattice,

reshape2 and plyr [7–9] Initial parameter estimates and model

exploration is done with Berkeley Madonna (UC Berkeley).
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Results: A four compartment, bolus input, linear kinetic model with a

rectal compartment (Vr) leading to a plasma compartment (Vc) and a

distributional compartment for each matrix (Vrp, Vp) best describes

the data (Fig. 1) The parameter estimates are in Table 1. The good-

ness of fit plots shows that the model predicts TFV concentrations

well in both matrices. There is good correlation between the indi-

vidual predicted and observed (Fig. 2). There is no systematic under

or over prediction in either compartment (Fig. 3). The visual pre-

dictive check shows good model performance and that the model

adequately describes the data in both matrices, though there is some

over-prediction in the plasma and under-prediction in rectal sponge at

the later time points (Fig. 4).

Conclusions: This model is useful for predicting rectal and plasma

TFV concentrations. The ability to predict and characterize rectal

TFV exposure from the gel formulation is important once targets for

preventing HIV transmission are defined. This model also allows for

simultaneous prediction of plasma TFV concentration, which is

important for estimating systemic toxicity. Finally, this model allows

for prediction of plasma concentration based on rectal sponge con-

centration alone, eliminating blood draws. Once the required

concentration is known for preventing transmission, this model can be

used to optimize the dose and regimen by maximizing efficacy and

Fig. 1 Structural Model

Table 1 Parameter estimates

Fixed effects Random effects (CV %)

Vr 0.0247 L 33.3

Vpr 0.753 L

Vc 5.66 L 30.9

Vp 16500 L

CLt 77.4 L/h 70.5

CLd 169 L/h 27.3

CLf 0.027 L/h 127

CLdr 0.235 L/h 310

Fig. 3 Conditional weighted residuals versus time (—LOESS line)

Fig. 2 Observed versus individual predicted (—LOESS line)

Fig. 4 Visual predictive checks (-50th percentile, —5th, 95th

percentile, 1000 simulations)
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minimizing toxicity through simulations. A possible future direction

would be to incorporate tissue and other intracellular compartments

into the model with active TFV diphosphate concentrations.
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Objectives: With rising cost of phase III development and high

failure rate, a decision to continue investment in a back-up compound

is really critical. Quantitative approaches promise early No Go for

compounds with low probability of success and faster path of phase

III for those with high probability of success. We will present a case

study incorporating probabilistic decision making where the lead

compound showed favorable benefit-risk profile and back-up mole-

cule demonstrated further improvement over the lead compound. The

development of the back-up compound is then not only a public

health decision but also an important business decision. The presen-

tation will demonstrate rigorous approach to LEARN from the lead

compound and APPLY to back-up compound to support Go-No Go to

Phase III. We will also present a thought process and methodology to

support the decision making.

Methods: For a lead compound, successful phase III studies dem-

onstrating favorable risk benefit was available. However, with

growing interest in the area, additional unmet medical needs were

realized. For a back-up compound, a successful Phase II study was

available. The key question to the product development team was:

Does the compound represent best in class (BIC) efficacy and safety

with clinically meaningful improvement? Realistically, a me-too

compound from the same company is neither desired nor useful.

The lead and back up compound shared similar mechanism and target

population with subtle differences in preclinical species and phar-

macokinetic properties. The molecules also shared several important

similarities in Phase II study designs (4 arm, placebo controlled,

4 week studies with 300 patients).

A multi-disciplinary team approached the decision in the follow-

ing way:

1. Learn: Assessment of predictive value of Phase II study for the

lead compound

Key question: Does Phase II study of the lead compound reasonably

predict observed Phase III results? To answer the question, categor-

ical data analysis to assess responder rate on a key endpoint was

conducted using a proportional odds model using Phase II data.

Model checking for was done by traditional diagnostics. The model

was used to predict Phase III using covariate distribution similar to

that of observed Phase III data. Similarity between observed and

predicted Phase III results was assessed by comparing responder rates.

2. Apply: Prediction of Phase III results for the back-up compound

and probabilistic assessment of improvement over the lead

compound

Given reasonable predictive value of model based analysis for the

lead compound, the team developed model for back-up compound

using Phase II data and predicted Phase III results using clinical trial

simulations. From the simulation, 1000 Phase III studies were simu-

lated and probability of observing better outcome than the lead

compound in the Phase III was assessed.

The following Figure demonstrates a quantitative application of

Learn—Apply to support Go-No Go decision to Phase III for a back-

up compound.

For the presentation, drug identity and therapeutics will be concealed

for confidentiality purposes and it not central to the methodology.
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Results: Using quantitative approach, a predictive value of Phase II

study towards Phase III studies was successfully demonstrated. Using

trial simulations, phase III studies were simulated for the back-up

compound to demonstrate potential for improvement in efficacy and

safety over the lead compound. Further, model approach allowed

probabilistic approach to decision making. Most importantly, quan-

titative approach allowed assessment of areas of improvements for the

back-up compound that is leading to design of a market research to

understand commercial viability.

Conclusions: A decision to continue development of a back-up

compound while comparing to the lead compound is an important

business decision. Quantitative approach allows further insights into

comparative benefit risk of compounds in development. With a

rational thought process and appropriate statistical tools, such com-

parisons can be rigorously conducted. These insights are an important

aspect of development with multi-disciplinary decision making.
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