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Abstract In this study we demonstrate the added value of mathematical model

reduction for characterizing complex dynamic systems using bone remodeling as an

example. We show that for the given parameter values, the mechanistic RANK-

RANKL-OPG pathway model proposed by Lemaire et al. (J Theor Biol

229:293–309, 2004) can be reduced to a simpler model, which can describe the

dynamics of the full Lemaire model to very good approximation. The response of

both models to changes in the underlying physiology and therapeutic interventions

was evaluated in four physiologically meaningful scenarios: (i) estrogen deficiency/

estrogen replacement therapy, (ii) Vitamin D deficiency, (iii) ageing, and (iv) chronic

glucocorticoid treatment and its cessation. It was found that on the time scale of

disease progression and therapeutic intervention, the models showed negligible

differences in their dynamic properties and were both suitable for characterizing the

impact of estrogen deficiency and estrogen replacement therapy, Vitamin D defi-

ciency, ageing, and chronic glucocorticoid treatment and its cessation on bone

forming (osteoblasts) and bone resorbing (osteoclasts) cells. It was also demonstrated

how the simpler model could help in elucidating qualitative properties of the

observed dynamics, such as the absence of overshoot and rebound, and the different

dynamics of onset and washout.
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Introduction

The objective of disease system analysis is to characterize and predict the status of

biological systems under physiological and pathophysiological conditions as well as

the impact of therapeutic interventions [1–3]. Models characterizing this dynamic

behavior can be established at different levels of complexity, ranging from data

driven and descriptive to completely mechanistic approaches (systems pharmacol-

ogy) [3, 4]. Descriptive approaches usually start at a clinical observation level and

become increasingly more complex in order to understand the system better,

whereas systems pharmacology approaches start at the molecular level and provide

a full description of the pathways involved. While descriptive models may not

predict the clinical response beyond the data on which they were established,

completely mechanistic approaches may face problems with the identifiability of

model parameters [3, 4]. To obtain a sufficient understanding of a biological system,

its dynamics, and the impact of therapeutic interventions, a compromise between the

descriptive and the systems approach is frequently needed. This compromise results

in mechanisms-based disease system models, which strive to characterize a system’s

behavior rather than its complexity [5].

One important challenge to be met when developing mechanism-based disease

system models is the appropriate handling of the different time scales present in

biological systems. While processes on the molecular level, such as receptor binding

or enzymatic reactions, are usually fast (within milliseconds), it can take months or

even years before clinical signs and symptoms of chronic, progressive diseases

become manifest. The design of mechanism-based disease system models conse-

quently relies on a sufficient understanding of the relative speeds of the underlying

(patho)physiological processes. Acquiring this information requires familiarity with

various mathematical analysis techniques including dimensional analysis, dynam-

ical systems analysis, and mathematical model reduction approaches (i.e., singular

perturbation theory (see, e.g. [6]). When applying these techniques for the analysis

of complex dynamic systems, the relative importance and speed of the different

processes involved can be determined. Information on the system’s dynamic

properties thus obtained can then be used to derive simpler models. Such reduced

models yield dynamic properties that are very similar to those of completely

mechanistic models but require the identification of fewer parameters. They also

yield important insights into the impact of different parameters on the full system

and often explicit expressions and quantitative estimates for drug-, system-, and/or

disease-specific characteristics, such as clearance or the area under the curve of

different compounds [6, 7].

The objective of this article is to demonstrate the added value of mathematical

model reduction for establishing mechanism-based disease system models, using

bone remodeling as an example. Bone remodeling is a physiological process that

allows continuous renewal and repair of bone structure [8]. It is accomplished by
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groups of osteoblasts (bone forming cells) and osteoclasts (bone resorbing cells),

which closely collaborate in so-called basic multicellular units (BMU) [9, 10]. The

interaction between osteoblasts and osteoclasts is highly regulated and provides

the basis for a temporally and spatially coordinated bone remodeling process.

Disturbances in the regulation of these cell–cell interactions can result in

pathophysiological conditions, such as osteoporosis [11].

The RANK-RANKL-OPG signaling pathway is one of the key players involved in

the osteoblast-osteoclast regulation [12]. This regulatory pathway consists of three

main components: (i) the receptor activator of nuclear factor jB (RANK), which is

expressed on the surface of osteoclasts, (ii) the RANK ligand (RANKL), a

polypeptide expressed on the surface of osteoblasts, and (iii) osteoprotegerin (OPG),

a soluble decoy receptor for RANKL released by osteoblasts [12]. To date, multiple

conceptual bone cell interaction models have been established [10, 13–18] some of

which specifically incorporate the RANK-RANKL-OPG pathway [10, 13, 16]. Of

these conceptual frameworks, Lemaire et al. were the first to propose a model, where

the interaction between the different types of bone cells within a BMU (responding

osteoblasts (R), active osteoblasts (B), and active osteoclasts (C)) is mediated by the

RANK-RANKL-OPG regulatory pathway [13].

It will be shown how the mechanistic bone cell interaction model proposed by

Lemaire et al. [13] may be mathematically reduced for the parameter values quoted

in [13] and for physiologically and therapeutically relevant time scales. The

dynamic properties of the full and the reduced model will then be compared using

simulations, in which the response of both models to changes in physiological states

and/or therapeutic interventions will be evaluated using physiologically meaningful

scenarios. Estrogen (deficiency and replacement therapy) will be used as the

primary example. In addition, the effects of Vitamin D, ageing, and chronic

glucocorticoid treatment on the bone cell dynamics will be evaluated. The reduced

model will then be used to obtain answers to questions about qualitative properties

of response curves, such as the possibility of overshoot and rebound. Finally, we

will conclude with a discussion of the advantages and limitations of mathematical

model reduction as well as its implications for clinical situations.

Materials and methods

In the conceptual bone cell interaction model proposed by Lemaire et al. [13], both

the osteoblastic and the osteoclastic cell line consist of cells at different levels of

maturation (cf. Fig. 1). Responding osteoblasts (R) are recruited from a large pool of

uncommitted osteoblast progenitor cells (Ru), which then differentiate into active,

bone-forming osteoblasts (B). Active, bone-removing osteoclasts (C), on the other

hand, are recruited from a pool of osteoclast progenitor cells (CP) upon stimulation

of RANK by its ligand. In addition to this receptor-mediated osteoblast-osteoclast

interaction, a number of local and systemic hormones play a role in the regulation of

bone remodeling. Of these factors, transforming growth factor beta (TGF-b) and

parathyroid hormone (PTH) have been incorporated into the Lemaire model [13].
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TGF-b is released from the bone by active osteoclasts and promotes multiple

mechanisms of action: (1) it stimulates the recruitment of responding osteoblasts,

(2) it inhibits the differentiation of responding osteoblasts into active osteoblasts,

and (3) it stimulates the apoptosis of active osteoclasts. PTH, on the other hand,

promotes its effect on osteoblasts and osteoclasts through the RANK-RANKL-OPG

pathway, where it stimulates the expression of RANKL and suppresses the secretion

of OPG.

Mathematically, this scheme of reactions translates into the following set of

differential equations:

dR

dt
¼ DRpCðCÞ �

DB

pCðCÞ
R

dB

dt
¼ DB

pCðCÞ
R� kBB

dC

dt
¼ DCpLðR;BÞ � DApCðCÞC

8
>>>>>><

>>>>>>:

; ð1Þ

where DR represents the differentiation rate of osteoblast progenitors, DB the

differentiation rate of responding osteoblasts, DC the differentiation rate of

osteoclast precursors, pC(C) the TGF-b receptor occupancy, and pL(R,B) the

RANK receptor occupancy. While pC(C) is dependent on the amount of TGF-b

Fig. 1 Schematic illustration of the bone-cell interaction model. Ru uncommitted osteoblast progenitor,
R responding osteoblast, B active osteoblast responsible for bone formation, Cp osteoclast progenitor,
C active osteoclast responsible for bone resorption, PTH parathyroid hormone, TGF-b transforming
growth factor-b, OPG osteoprotegerin, RANK receptor activator of NF-jB, RANKL receptor activator of
NF-jB ligand. RANK-RANKL-OPG regulatory pathway: RANKL binds to RANK and promotes
osteoclast differentiation, while OPG inhibits this differentiation by binding RANKL. Definitions and
values of the rate constants are provided in Tables 1 and 2. This figure and its legend are taken from Ref.
[13] and were slightly modified
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released from bone by active osteoclasts, pL(R,B) is determined by the amount of

RANKL attached to the surface of active osteoblasts (KL
P) and the OPG production

rate of responding osteoblasts (KO
P) as shown in Eqs. 2–4.

Since binding of TGF-b to its receptor is faster than any changes in the active

osteoclast population, pC(C) can be expressed as a function of C, i.e.

pCðCÞ ¼
C þ f0Cs

C þ Cs
¼ f0 1þ 1� f0

f0

C

C þ Cs

� �

0 \f0\1ð Þ ð2Þ

where f0 equals the minimum receptor occupancy and Cs is half the value of C
necessary to obtain maximum TGF-b receptor occupancy (cf. Eq. 2). For the

dependence of pL on R and B we have the expression,

pLðR;BÞ ¼
aB

1þ bR
a[ 0; b [ 0ð Þ ð3Þ

where a and b can be computed from equation (4) in which pP represents the

fraction of occupied PTH receptors,

a ¼ k3

k4 þ k3K
KP

L pP and b ¼ k1

k2 � kO

k4

k4 þ k3K

KP
O

pP
: ð4Þ

The impact of changes in the underlying physiology or therapeutic interventions is

reflected in changes of some of the parameters in Eqs. 1–4. Specifically, estrogen

affects KP
O and hence b, Vitamin D affects pP and hence a and b, ageing affects Cs

and hence pC Cð Þ, and glucocorticoid treatment affects DR. As a result, physiological

processes and therapeutic interventions will cause these parameters to change with

time (cf. Evaluation of model behavior).

We assume that initially, the values of all the parameters are those given by

Lemaire et al. [13] (cf. Table 1), and that the system starts from the baseline values

R0, B0, and C0 for those parameters:

Rð0Þ ¼ R0; Bð0Þ ¼ B0; Cð0Þ ¼ C0: ð5Þ
Plainly, R0, B0, and C0 satisfy the algebraic equations

DRpCðC0Þ �
DB

pCðC0Þ
R0 ¼ 0

DB

pCðC0Þ
R0 � kBB0 ¼ 0

DC
aB0

1þ bR0

� DApCðC0ÞC0 ¼ 0

8
>>>>>>><

>>>>>>>:

; ð6Þ

in which the parameters that change with time are taken at their initial values, i.e.,

their values at time t = 0. The respective values of the parameters used in Eqs. 1–6,

as given by Lemaire et al. [13], are presented in Table 1. Numeric values for the

baseline concentrations are computed in Appendix A:

R0 ¼ 1:82� 10�4 pM; B0 ¼ 1:58� 10�3 pM; C0 ¼ 3:285� 10�3 pM: ð7Þ
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Mathematical model reduction

When attempting to gain insight into the dynamics of the system of Eq. 1 and

identify its characteristic properties, it is important to assess the relative importance

of the individual terms in the three equations and the relative speed and time scales

of the different processes involved. In order to do so, we cast the system into

dimensionless form. Using the baseline values R0, B0 and C0 as reference values for

the concentrations, we put

x ¼ R

R0

; y ¼ B

B0

; z ¼ C

C0

ð8Þ

and we introduce the dimensionless function related to pC(C):

pzðzÞ ¼
zþ f0zs

zþ zs
where zs ¼ Cs

C0

: ð9Þ

Table 1 Parameter values provided by Lemaire et al. [13]

Symbol Unit Value Description

DR pM day-1 7 9 10-4 Differentiation rate of osteoblast progenitors

DB day-1 0.7 Differentiation rate of responding osteoblasts

kB day-1 0.189 Elimination rate of active osteoblasts

DC pM day-1 2.1 9 10-3 Differentiation rate of osteoclast precursors

DA day-1 0.7 Osteoclast apoptosis rate due to TGF-b

f0 Dimensionless 0.05 Positive constant characterizing the minimum TGF-b receptor

occupancy

Cs pM 5 9 10-3 About half the value of C to get maximum TGF-b receptor

occupancy

k1 pM-1 day-1 10-2 Rate of OPG-RANKL binding

k2 day-1 10 Rate of OPG-RANKL dissociation

k3 pM-1 day-1 5.8 9 10-4 Rate of RANK-RANKL binding

k4 day-1 1.7 9 10-2 Rate of RANK-RANKL dissociation

k5 pM-1 day-1 0.02 Rate of PTH binding to its receptor

k6 day-1 3 Rate of PTH dissociation from its receptor

K pM 10 Fixed concentration of RANK

KL
P pM/pM cells 3 9 106 Maximum number of RANKL attached to the cell surface of

each active osteoblast

kO day-1 0.35 Elimination rate of OPG

KO
P pM day-1/pM

cells

2 9 105 Minimum OPG production rate per responding osteoblast

IP pM day-1 0 Rate of PTH administration

SP pM day-1 250 Rate of PTH synthesis

kP day-1 86 Rate of PTH elimination
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In terms of these new variables, the system (1) becomes

dx

dt
¼ DR

R0

pzðzÞ � DB
x

pzðzÞ
dy

dt
¼ DB

R0

B0

x

pzðzÞ
� kBy

dz

dt
¼ DC

B0

C0

ay

1þ bR0x
� DApzðzÞz

8
>>>>>>><

>>>>>>>:

ð10Þ

and the baseline is given by

xð0Þ ¼ yð0Þ ¼ zð0Þ ¼ 1: ð11Þ
For the sake of transparency, we derive the Reduced Model for the estrogen

scenario, where b is the only parameter that changes with time, i.e. b = b(t). We

denote the initial value of b by b0, i.e. b(0) = b0, and write

bðtÞ ¼ b0f ðtÞ; where f 0ð Þ ¼ 1: ð12Þ
For the other scenarios we obtain the same Reduced Model. For these scenarios

the derivation is very similar and we shall not reproduce it here.

We use the three equations in (6) to eliminate the baseline concentrations B0 and

C0 and the parameter a, which is constant in this scenario. This results in the system

dx

dt
¼ DR

pzð1Þ
rðzÞ � x

rðzÞ

� �

dy

dt
¼ kB

x

rðzÞ � y

� �

dz

dt
¼ DApzð1Þ �

1þ b0R0

1þ b0f ðtÞR0x
y� rðzÞz

� �

8
>>>>>>><

>>>>>>>:

rðzÞ ¼ pzðzÞ
pzð1Þ

ð13Þ

where pz(1) is the baseline value of pz(z).

To complete the transformation to dimensionless variables, it remains to make

the independent variable, time, dimensionless as well. This involves selecting a

characteristic time scale for the system (13). Since the elimination rate of y or B is

given by kB, with a corresponding half-life of ln(2)/kB, a characteristic time scale

T = 1/kB was chosen. The new dimensionless time s is consequently defined as:

s ¼ t

T
¼ kBt: ð14Þ

When s is incorporated into (13), the system becomes

e
dx

ds
¼ rðzÞ � x

rðzÞ
dy

ds
¼ x

rðzÞ � y

dz

ds
¼ l

1þ b0R0

1þ b0f ðsÞR0x
y� rðzÞz

� �

8
>>>>>>><

>>>>>>>:

with f ðsÞ ¼ f ðtÞ ð15Þ
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where we have introduced the dimensionless numbers:

e ¼ kB

DB
pzð1Þ and l ¼ DA

kB
pzð1Þ: ð16Þ

For the parameter values used by Lemaire et al. [13] (cf. Appendix A), we obtain

e = 0.11 and l = 1.58. The small value of e, relative to the other coefficients in the

system, implies that x(s) rapidly converges to a zero of the right hand side of the first

equation of (15), while z(s) changes only slowly. Thus, after a brief initial period,

x(s) and z(s) are to good approximation related by the equation

rðzÞ � x

rðzÞ ¼ 0 ð17Þ

i.e., x and z are in quasi-equilibrium or quasi-steady state. For more details of this

‘‘quasi-steady state approximation’’ we refer to [6, 7, 19, 20].

Equation 17 can now be used to eliminate x from the second and third equation

of the system (13) and so to obtain a simpler system, which only involves the

dimensionless concentrations y and z:

dy

ds
¼ rðzÞ � y

dz

ds
¼ l

1þ b0R0

1þ b0f ðsÞR0r2ðzÞ
y� rðzÞz

� �

8
>><

>>:

: ð18Þ

Returning to the original variables, we obtain the Reduced System (see Appendix

C for details),

dB

dt
¼ DRpCðCÞ � kBB

dC

dt
¼ DC

aB

1þ bR
� DApCðCÞC

8
>><

>>:

; ð19Þ

in which the function R = R(C) is defined by the expression:

RðCÞ ¼def DB

DR
p2

CðCÞ; ð20Þ

obtained by equating the right-hand side of the first equation in (1) to zero.

Thus, we have shown that for the parameter values used in Lemaire et al. [13],

after a brief initial period we may put the right-hand side of the equation for dR/dt to

zero and use the resulting equation to express R in terms of C, which allows one to

reduce the original system involving the three dependent variables R, B, and C
to one of two with the dependent variables B and C. We refer to the latter system as

the Reduced System.

For the other three scenarios we arrive at the same Reduced System (19) and (20).

However, different parameters may vary with time. Thus, in the Vitamin D scenario,

both a and b vary with time, in the ageing scenario it is pc(C) that changes and in the

glucocorticoid scenario DR changes with time.

The reduced system (19), is of a type recently discussed by Zumsande et al. [21].

However, in their study they focused on the stability of steady states. As we shall
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see, this is no issue in our study because for the parameter values from Lemaire

et al. the baseline is stable, and remains so when it slowly changes under the impact

of disease progression and therapeutic interventions.

Reduction to a two-dimensional system opens the way for a transparent

discussion of its dynamics. The state of a system at a given time t, is given by the

pair (B(t), C(t)), which can be represented by a point in the (B, C)-plane (in terms of

dimensionless variables this is the (y, z)-plane), often referred to as the Phase
Plane. In Appendix B we describe how the state (B(t), C(t)) moves through the

phase plane as time progresses and show what information about the system we can

derive from it.

Evaluation of the model behavior

To evaluate the dynamic properties of both models, the four physiologically

meaningful scenarios outlined by Lemaire et al. [13] (estrogen deficiency, Vitamin

D deficiency, ageing, and chronic glucocorticoid treatment) were used for

simulations. Simulation parameters are provided in Table 2. It should be noted

Table 2 Simulation parameters

Scenario Parameter Unit Value Description

Estrogen b0 pM-1 21985 Value of b at time zero

Imax Dimensionless 0.9994 Maximum inhibition of OPG production

kdis day-1 0.0015 Rate at which estrogen production

declines

kint day-1 0.015 Rate at which estrogen production

increases during estrogen replacement

therapy

Db pM-1 3000 Maximum increase in b

Vitamin D a0 pM-1 1479 Value of a at time zero

a1 pM-1 1460 Maximum value of a at maximum

deficiency (6 months)

b0 pM-1 21985 Value of b at time zero

b1 pM-1 22274 Value of b at maximum deficiency

(6 months)

Ageing C0
s pM 5 9 10-3 Value of Cs at time zero

k Dimensionless 5.5 Factor by which Cs increases

kage day-1 6 9 10-4 Rate at which Cs increases

Glucocorticoids DR(0) pM day-1 7 9 10-4 Differentiation rate of osteoblast

progenitors at time zero

DR(?) pM day-1 1.7 9 10-4 Differentiation rate of osteoblast

progenitors at time infinity

kdis day-1 7.8 9 10-4 Rate of onset of glucocorticoid-induced

side effects

kwash day-1 7.8 9 10-3 Rate at which glucocorticoid-induced side

effects wash out
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that estrogen deficiency, Vitamin D deficiency, and ageing characterize changes in

physiological states, whereas chronic glucocorticoid treatment leads to drug-

induced side effects.

Estrogen

Estrogen promotes its action, at least in part, through the RANK-RANKL-OPG

pathway by stimulating the production of OPG [13]. As estrogen production

increases significantly during menarche, the RANKL/OPG ratio decreases resulting

in a relative decrease in osteoclast activity leading to a substantial increase in

longitudinal and radial bone growth as well as rapid skeletal mineralization [22]. On

the other hand, a decrease in estrogen production by 85–90% during menopause

results in rapid bone loss and subsequently in an increased risk of bone fracture [22].

The decrease in estrogen production during menopausal transition does not occur

instantaneously but slowly evolves over a period of several years.

For this analysis, it was assumed that the main decrease in estrogen production

takes place during early post menopause over a period of 5 years [23]. It is further

assumed that this decrease in estrogen corresponds to a decrease of the OPG

production rate (KO
P) [8]. It was assumed for this simulation that KO

P decreases from

2 9 105 pM day-1/pM cells to 158 pM day-1/pM cells [13], resulting in a

corresponding drop in b (cf. (4)). We assume a mono-exponential decline of b
over a period of 5 years (which corresponds to a t1/2 of 1.25 years and

kdis = 0.0015 day-1),

bðtÞ ¼ bbasðtÞ ¼ b0 1� Imax 1� e�kdist
� �� �

ð21Þ

where bbas(0) = b0 is the initial baseline value and bbas(?) = b0(1-Imax) with

Imax = 0.9994 as the maximum inhibition of OPG production.

The increasing lack of endogenous estrogen in post-menopausal women can be

compensated for by supplying exogenous estrogen (hormone replacement therapy).

Studies have shown that hormone replacement therapy is usually well tolerated by

women during the first few years of treatment, whereas the risk for cardio vascular

disease, stroke, venous thromboembolic events and possibly breast cancer is

increased after more than 5 years of treatment [24–26]. For this analysis, treatment

with estrogen was started 1 year post menopause and continued for 3 years.

Respective changes in bone cell populations were simulated using Eq. 22 to account

for the natural decline in estrogen production as well as the effect of hormone

replacement therapy on the OPG production rate,

bðtÞ ¼ bbasðtÞ þ bintðtÞ ð22Þ

where bbas(t) is the baseline value of b as it evolves with time, given by (21), and

bint(t) the change in b caused by the therapeutic intervention. An additive term was

used for characterizing the therapeutic intervention, where the loss of endogenous

estrogen is balanced by a supply of exogenous estrogen:

bintðtÞ ¼ Db 1� e�kint t�t1ð Þ
� 	

� H t � t1ð Þ½ � � 1� e�kint t�t2ð Þ
� 	

� H t � t2ð Þ½ �
n o

: ð23Þ
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In this equation, Db represents the maximum increase in b due to estrogen

replacement, kint the rate at which the corresponding OPG production increases, t1 the

time at which treatment with exogenous estrogen starts, t2 the time at which treatment

is discontinued (t1 = 1 year and t2 = 4 years), and H the Heaviside function.1

Vitamin D

Vitamin D plays an important role in maintaining the body’s calcium and phosphate

homeostasis and is consequently important for the formation as well as the

maintenance of bone [27]. While recent morphogenetic studies also suggest a direct

effect on the osteoblastic phenotype expression [28], Vitamin D promotes its main

effect on bone by regulating PTH levels and thus the RANKL/OPG ratio. At

physiological levels, Vitamin D decreases the synthesis and secretion of PTH [29] as

well as the number of PTH receptors [30, 31] resulting in a decrease in RANKL

expression and an increase in OPG secretion. In case of Vitamin D deficiency, this

inhibiting effect on PTH diminishes leading to an increased RANKL/OPG ratio and

increased bone resorption.

Calcitriol, the bioactive form of Vitamin D, is formed from mainly two

biologically inert precursors, cholecalciferol and ergocalciferol, via biotransforma-

tion in the liver and the kidneys [27]. Cholecalciferol is formed in the skin when

7-dehydrocholesterol is exposed to ultraviolet B light (UVB, 290–320 nm), whereas

ergocalciferol is produced by plants and taken up by diet. Assuming that the dietary

intake of ergocalciferol does not significantly change during the course of 1 year,

changes in Vitamin D levels, and thus changes in bone mineral density, are

correlated with seasonal differences in sunlight exposure [32].

For this analysis, it was assumed that these seasonal differences in Vitamin D

production result in periodic changes in PTH production (SP) of the following form:

SPðtÞ ¼
1

2
SP;max þ SP;min

� �
� SP;max � SP;min

� �
cos

2pt

365

� �
 �

; ð24Þ

where SP,min = 250 pM/day is the normal value and SP,max = 3765 pM/day is the

value characterizing maximal Vitamin D deficiency (cf. Lemaire et al.). If no

additional PTH is administered, the PTH receptor occupancy pP is proportional to

SP (cf. (Appendix A, Eq. 28)) This fluctuation in SP results in periodic changes in

the values of a and b.

Ageing

Ageing is associated with significant bone loss in both men and women [33]. The

extent of this loss can differ between the different bone sites and has been associated

with a decrease in TGF-b production as well as its release from bone [34–36]. Once

TGF-b levels decrease, their stimulating effect on osteoclast apoptosis decrease

resulting in increased osteoclast activity and increased bone resorption. In addition,

1 The Heaviside function H(s) is defined as follows: H(s) = 0 for s \ 0 and H(s) = 1 for s [ 0. Thus, for

any time T [ 0, H(t-T) = 0 for t \ T and H(t-T) = 1 for t [ T.
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the differentiation of OPG-secreting responding osteoblasts to RANKL-expressing

active osteoblasts is no longer inhibited. This gradual loss of regulatory feedback

leads to an increased RANKL/OPG ratio and further stimulation of osteoclasts.

The age-dependent loss of the bone’s TGF-b content was modeled by Lemaire et al.

[13] by decreasing the value of pC(C) by a factor of 5.5. However, pC(C) is a non-linear

function, which depends on C, f0, and Cs as shown in Eq. 2. Decreasing this function by

a constant factor does consequently require additional assumptions. For this analysis,

it was assumed that the decrease in pC is caused by an increase in Cs (about half the

value of C necessary to obtain maximum TGF-b receptor occupancy) since more bone

needs to be resorbed to yield the same amount of TGF-b. It was further assumed that

these age-dependent changes in TGF-b become clinically relevant for individuals

aged 65 and older and manifest themselves over a period of approximately 12.5 years

(average life expectancy in Western World: 75–80 years). The change of the bone’s

TGF-b content over time (Cs(t)) can be computed according to Eq. 25,

CsðtÞ ¼ Cs
0 k� k� 1ð Þ � e�kaget
� 


; ð25Þ

where C0
s represents the bone’s TGF-b content at the age of 65, kage the rate and

k[ 1 the extent by which Cs increases in the elderly.

Glucocorticoids

Bone loss and increased fracture risk due to long-term glucocorticoid therapy is the

most common cause of drug-induced osteoporosis [37]. The extent of this drug-

induced side effect seems to be dependent on the cumulative glucocorticoid dose

and affects trabecular bone more than cortical bone [37, 38]. Although glucocor-

ticoid receptors are present in almost every vertebrate cell, glucocorticoids seem to

primarily affect bone formation by decreasing the expression of osteoblastic

differentiation factors, such as core binding factor A1 [39–41].

Glucocorticoid-induced effects on bone were modeled by Lemaire et al. [13] by

decreasing the differentiation rate of osteoblast progenitors (DR). Since these drug-

related adverse effects only emerge after a chronic treatment with glucocorticoids, it

was assumed for this simulation that DR decreases slowly from 7 9 10-4 to

1.7 9 10-4 pM/day at a rate kdis over 5 years as shown in Eq. 26 [13]. In this

simulation we take kdis = 0.00078 day-1.

DRðtÞ ¼ DRð1Þ þ DRð0Þ � DRð1Þ½ � � e�kdist ð26Þ
Once treatment with glucocorticoids is discontinued after 6 years

(T = 2190 days), the system completely recovers and equilibrates at its original

baseline DR(0). Results from a study in patients with rheumatoid arthritis receiving

low-dose prednisone suggest that this recovery process is relatively fast and occurs

within 1 year [42]. Respective changes in bone cells during (0 \ t B T) and after

(T \ t \?) treatment with glucocorticoids can be computed according to Eq. 27.

DRðtÞ ¼
DRð1Þ þ DRð0Þ � DRð1Þ½ � � e�kdist ð0\t� TÞ
DRð0Þ þ DRðTÞ � DRð0Þ½ � � e�kwashðt�TÞ ðT\t\1Þ

(

ð27Þ
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Here, T represents the time at which treatment with glucocorticoids was

discontinued and kwash represents the first-order rate constant characterizing the

offset of the glucocorticoid effect.

Software

Simulations were performed in MatLab version R2011a. In light of the stiffness of

the system, the ode-solver ‘‘ode23s’’ was used.

Results

Application of dimensional analysis to the conceptual bone cell interaction model

by Lemaire et al. [13] allowed us to evaluate (i) the relative importance of its model

terms, (ii) the relative speeds of the processes involved, and (iii) the critical

dimensionless numbers (often combinations of parameters), which determine the

qualitative character of the dynamics of the system. In particular, we were able to

show mathematically that responding osteoblasts (R) rapidly reach a quasi-steady

state with active osteoclasts (C) for the model parameters provided in [13]. Thus,

for R and C the quasi-steady state assumption was shown to hold and the original

three-dimensional system containing R, B, and C could be reduced to a simpler,

two-dimensional system, whose dynamics is determined by B and C. Reduction to a

two-dimensional system further allowed for a graphical representation of its

dynamics in the planar State Space. While the state of the system can be depicted as

a point in the state space, its evolution is characterized by a respective curve

parameterized by the time t (the orbit, cf. Fig. 9 in Appendix B). Representation in

the state space also enables a transparent discussion of the system’s dynamics and

readily reveals qualitative properties, such as the absence of overshoot and rebound.

When evaluating the performance of both the full Lemaire model and the reduced

model following rapid interventions, such as a sudden decrease or increase in

estrogen levels (Appendix B), our findings show that the dynamic properties of both

models are very similar but not identical (Fig. 8 in Appendix B). Small

discrepancies between the dynamic properties of the two models exist during the

first 10–20 days after the rapid intervention. Once the speed of the onset and/or

offset of these interventions decreases to more (patho)physiological/therapeutic

levels, the profiles of both models become more and more similar. On the time scale

of disease progression and therapeutic intervention both the full Lemaire model and

the mathematically reduced model show negligible differences in their ability to

characterizing the dynamic interaction between osteoclasts and osteoblasts.

Estrogen

In particular, results of our first scenario (estrogen deficiency) indicate that once

estrogen levels are declining, their inhibiting effect on bone cell proliferation is

gradually lost, leading to an increased differentiation and activation of both

osteoblasts and osteoclasts. This estrogen-mediated effect is more pronounced for
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C than for R and B resulting in an elevated C/B ratio (high turnover) and thus

increased bone resorption (Fig. 2). On the other hand, the system equilibrates at a

new steady-state upon start of the estrogen replacement therapy (Fig. 3, ‘‘Materials

and methods’’ section), which is different from its original baseline. The

establishment of a new steady-state results in a slow-down or even halt of

osteoporotic processes. It should be noted though that for symptomatic therapeutic

interventions, such as estrogen replacement therapy, the underlying disease is still

progressing at its natural rate [3]. The status of patients having received symptomatic

treatments will consequently be indistinguishable from that of untreated patients

once the treatment has been discontinued and the drug effect has washed out.

Fig. 2 Effect of slowly decreasing endogenous estrogen production on bone turnover. Top panel Impact
on responding osteoblasts (R, red), active osteoblasts (B, blue), and active osteoclasts (C, green); Bottom
panel Impact on the active osteoclasts/osteoblast (C/B) ratio. An increase in the C/B ratio results in bone
loss, whereas a decrease results in bone gain. The solid lines represent the simulated change in bone cells
using the full model, whereas the dashed lines represent the respective changes using the mathematically
reduced model
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Vitamin D

In comparison, changes in Vitamin D exposure have a bigger impact on osteoclasts

than on osteoblasts (Fig. 4). The seasonal nature of these changes leads to a

periodically elevated C/B ratio, which is maximally elevated during the winter when

Vitamin D levels are lowest.

Fig. 3 Effect of estrogen replacement therapy on the dynamics of bone cells (I) prior to the start
of treatment (disease progression due to estrogen deficiency), (II) during treatment, and (III) after
treatment cessation. Top panel Impact on responding osteoblasts (R, red), active osteoblasts (B, blue), and
active osteoclasts (C, green); Bottom panel Impact on the active osteoclasts/osteoblast (C/B) ratio. The
solid lines represent the simulated change in bone cells using the full model, whereas the dashed lines
represent the respective changes using the mathematically reduced model. Treatment starts after
1 year (t = 365 days) and is discontinued after 4 years (t = 1460 days) and is depicted by a black solid
arrow
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Fig. 4 Effect of seasonal changes in Vitamin D exposure on bone turnover. Top panel: Impact on
responding osteoblasts (R, red), active osteoblasts (B, blue), and active osteoclasts (C, green); Middle
panel Impact on responding osteoblasts (R, red), active osteoblasts (B, blue), and active osteoclasts
(C, green) with focus on R and B; Bottom panel Impact on the active osteoclasts/osteoblast (C/B) ratio.
The solid lines represent the simulated change in bone cells using the full model, whereas the dashed lines
represent the respective changes using the mathematically reduced model. The simulation starts at the
highest Vitamin D exposure in the summer and peaks during the winter
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Ageing

Changes in the bone’s TGF-b content due to ageing also result in a rapid

increase of the active osteoclast to active osteoblast ratio as shown in Fig. 5. Our

findings further indicate that these changes in the C/B ratio are non-reversible

and lead to a rapid increase in the breakdown of bone in subjects 65 and

older.

Fig. 5 Effect of ageing on bone turnover. Top panel Impact on responding osteoblasts (R, red), active
osteoblasts (B, blue), and active osteoclasts (C, green); Bottom panel Impact on the active osteoclasts/
osteoblast (C/B) ratio. The solid lines represent the simulated change in bone cells using the full model,
whereas the dashed lines represent the respective changes using the mathematically reduced model
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Glucocorticoids

Finally, simulated profiles for the chronic glucocorticoid treatment scenario

(Fig. 6) show that a drug-mediated decrease of the osteoblast precursor

differentiation has a much bigger effect on the maturation and activation of

osteoblasts than that of osteoclasts. These differences in effect size result in a

rapid increase in the C/B ratio (i.e., high bone turnover) and a subsequent decrease

Fig. 6 Effect of chronic glucocorticoid treatment on bone turnover. Top panel Impact on responding
osteoblasts (R, red), active osteoblasts (B, blue), and active osteoclasts (C, green); Bottom panel Impact
on the active osteoclasts/osteoblast (C/B) ratio. The solid lines represent the simulated change in bone
cells using the full model, whereas the dashed lines represent the respective changes using the
mathematically reduced model
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in bone mass. However, these glucocorticoid-induced site effects are reversible as

the maturation of osteoblast progenitors can recover upon termination drug

treatment (Fig. 7, ‘‘Materials and methods’’ section). The system’s recovery also

results in the reestablishment of the original C/B ratio and subsequently no further

bone loss.

Fig. 7 Effect of glucocorticoid treatment on bone turnover before (I) and after (II) treatment cessation.
Top panel Impact on responding osteoblasts (R, red), active osteoblasts (B, blue), and active osteoclasts
(C, green); Bottom panel Impact on the active osteoclasts/osteoblast ratio (C/B) during treatment/
washout. The solid lines represent the simulated change in bone cells using the full model, whereas the
dashed lines represent the respective changes using the mathematically reduced model. Treatment
with glucocorticoids is discontinued after 6 years (t = 2190 days) and is depicted by a black solid
arrow
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Discussion

The effects of both local and systemic control mechanisms on the regulation of bone

remodeling result in the establishment of a complex framework that contains

multiple spatial and temporal levels. To obtain a sufficient understanding of this

framework, its dynamics, and the impact of therapeutic interventions and disease

processes, the use of mathematical models is required (for a more elaborate

conceptual discussion of the role of mathematical modeling for characterizing bone

turnover see also [43]). Mathematical modeling provides a powerful tool as it allows

incorporation of information from different in vitro and in vivo experiments into a

single approach. Once developed and validated, these models can be used in silico

to explore the cause-effect relationship and to assist the formulation of new

hypotheses as well as the design of new experimental studies. However, as these

frameworks become more complex, problems with identifying the key mechanisms

that cause a system to undergo pathophysiological changes may arise [3, 4]. To

identify these key components, sufficient understanding of a system’s dynamic

properties is often more informative than characterizing its complexity. One way of

exploring a system’s dynamic properties is to mathematically reduce completely

mechanistic models in order to evaluate (1) the relative importance of the various

model components and (2) the relative speed of the processes involved for the

overall performance of the system.

To demonstrate the benefits and limitations of model reduction, we analyzed the

well-known bone-cell interaction model proposed by Lemaire et al. [13], which is

based on the RANK-RANKL-OPG signaling pathway. By performing a dimen-

sional analysis, we identified critical properties, such as overall and relative time

scales, on the basis of the parameter values quoted in [13]. We found that for these

parameter values the dynamics of the responding osteoblasts was relatively fast

compared to that of active osteoblasts and osteoclasts. The dynamics of the system

were thus primarily driven by changes in osteoclasts and active osteoblasts, whilst

responding osteoblasts follow their lead. Although not all of the parameter values

provided in [13] seem to have been previously validated, corresponding model-

predicted bone cell dynamics are in agreement with clinical observations [44],

where rapid changes in bone resorption markers during/after treatment with

conjugated estrogen and/or alendronate are followed by respective changes in bone

formation markers.

Based on these findings, the conceptual bone cell interaction model by Lemaire

et al. [13] could be reduced from a three- to a two-dimensional system. Reducing

the model’s complexity allowed for a transparent discussion of its dynamics and

also opened the way for a geometric, two-dimensional analysis. This approach

added significantly to the transparency of the system as it allowed its representation

in the Phase Plane. Results of this geometric analysis indicate that there can be no

overshoot at onset and no rebound at washout for the reduced model. Given the

proximity of the concentration curves of the reduced and full model this implies that

any overshoot or rebound the full model might exhibit will be very small (cf.

Appendix B).
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When simulating the response of both the full Lemaire model and the

mathematically reduced model to rapid changes, such as a sudden onset/offset of

effect, we showed that there is overall a good match between the two models (cf.

Fig. 8). Small discrepancies in their dynamic properties were only observed during

the first 10–20 days after the onset/offset of the effect. However, once the relative

speeds of the underlying (patho)physiological processes and therapeutic interven-

tions were taken into account, both models were at any time at quasi-equilibrium

(Figs. 2, 3, 4, 5, 6, 7). Consequently, both models can be used interchangeably for

characterizing bone cell dynamics on the time scale of disease progression and

therapeutic intervention. From a data analysis point of view, the use of the simpler

model is advantageous as fewer parameters have to be identified and estimated. This

aspect becomes particularly important for the analysis of clinical data, where

usually only few samples per subject are available. On the other hand, the

development and validation of disease system models heavily depends on current

knowledge about the biological system, the availability of sufficient data on

different spatial/temporal levels, and the availability of appropriate software tools

that allow running and visualizing these models based on widely accepted modeling

standards [4, 45].

The application of advanced mathematical and statistical tools, such as

mathematical model reduction, can guide the development of disease system

models as it allows one to identify the rate-limiting steps within complex, dynamic

systems. The joint use of systems pharmacology and mathematical model reduction

approaches provides, therefore, a powerful combination as it can guide the

identification of drug-, system-, and disease-specific parameters, informative

biomarkers as well as the generation of data, where such information can be

obtained from. In particular, knowledge on the system’s dynamics and the time

scales involved in the establishment of disease and drug effects can guide clinical

trial design as it allows to identifying its maximal susceptibility to changes in the

underlying physiology and/or therapeutic interventions. For example, the response

of the reduced model to a step-decrease in estrogen suggests that in this case a

washout design would be superior to a delayed start design for characterizing the

impact of this physiological change on bone remodeling. This is due to the fact that

in this case equilibrium is reached much faster after washout of the intervention than

following its onset (cf. Appendix B; Figs. 8, 9). These findings are in agreement

with those of Ploeger and Holford, who found a washout design superior to a

delayed start design for characterizing and distinguishing treatment effect types in

Parkinson’s disease [46].

In conclusion, mathematical model reduction is a valuable approach for

analyzing disease systems and simplifying complex models while maintaining

their dynamic properties. A significant decrease in the number of parameters to be

identified and estimated in addition to an increased system transparency qualifies

reduced models as tools to evaluate the impact of changes in physiological states

and/or therapeutic interventions with respect to the different time scales involved.
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Appendix A: Model parameters

From the parameter values provided by Lemaire et al. (Table 1) [13], the fraction of

occupied PTH receptors (pP) can be computed according to Eq. 28:

pP ¼
Pþ P0

Pþ Ps
¼ 0:019; P ¼ IP

kP
¼ 0 pM; P0 ¼ SP

kP
¼ 2:9 pM;

Ps ¼ k6

k5

¼ 150 pM

ð28Þ

where P is the amount of externally administered PTH, P0 is the amount of

endogenous produced PTH, which is produced at a rate SP, and Ps is the amount of

PTH at which 50% of the receptors are occupied. The baseline values of a and b are

given by a0 and b0 (cf. Eq. 29).

a0 ¼
k3

k4 þ k3K
KP

L pP � 1479 pM�1; b0 ¼
k1

k2 � kO

k4

k4 þ k3K

KP
O

pP
� 21985 pM�1;

ð29Þ
Based on these values, we find the following baseline concentrations R0, B0, and

C0 for the full as well as for the reduced system:

R0 ¼ 1:82 � 10�4 pM; B0 ¼ 1:58 � 10�3 pM; C0 ¼ 3:285 � 10�3 pM:

ð30Þ
When the internal PTH production increases (from 250 pM/day to 3765 pM/day)

due to decreased Vitamin D exposure, corresponding values for a and b are given by

a1 and b1:

a1 � 22274 pM�1; b1 � 1460 pM�1; ð31Þ

and the baseline changes accordingly.

Appendix B: Systems analysis

In this paper we have shown that the full Lemaire model and the mathematically

reduced model show negligible differences in their dynamic properties for relatively

slow processes that occur on the time scale of disease progression and/or therapeutic

intervention. In this appendix we compare the performance of the full and the

reduced model on the time scale of very rapid interventions, such as a temporary
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drop in estrogen levels, where onset and offset are instantaneous and have no

dynamics of their own. This sudden drop and equally sudden rebound of estrogen

levels results in a function for b that has the form

bðsÞ ¼ b0IðsÞ ð32Þ

where

IðsÞ ¼ 1 for 0\s\s1 and s [ s2

1� Imax for s1\s\s2




with 0\Imax\1: ð33Þ

Thus, the estrogen level drops instantaneously from a normal to a constant,

deficient level at s = s1 and abruptly returns to the normal level at s = s2.

(Throughout this appendix we use the dimensionless variables.)

Although physiologically unrealistic, we choose this form of exposure because it

focuses attention on the dynamics of the two systems we wish to compare and

challenges them maximally because of the sudden changes at onset and offset.

In Fig. 8 we show graphs of the dimensionless concentrations computed with the

full model (drawn; in color) and with the reduced model (dashed; black). Clearly,

the match is very good, even after onset and offset.

It is interesting to note that (i) after onset the concentrations increase

monotonically to their new steady-state values, i.e., there is no overshoot, and

similarly, after washout, they drop monotonically back to baseline without any

Fig. 8 Effect of rapidly changing estrogen concentrations on bone cell dynamics (I) at normal (non-
deficient) estrogen levels, (II) following a step-decrease to a constant, deficient estrogen level, and (III)
following a step-increase back to normal (non-deficient) estrogen levels. Solid red lines represent
simulated changes in responding osteoblasts (x), solid blue lines those in active osteoblasts (y), and solid
green lines those in active osteoclasts (z) based on the full model, whereas dashed lines represent the
respective changes based on the mathematically reduced model. The duration of the step-change is
depicted by a black solid arrow. Note that the time t can be computed as t = s/kb

J Pharmacokinet Pharmacodyn (2011) 38:873–900 895

123



rebound, and (ii) after onset, the time to equilibrium is much longer than after

washout.

To understand how this comes about, we turn to a geometric analysis of the

reduced system, which we restate below

dy

ds
¼ rðzÞ � y

dz

ds
¼ l

1þ b0R0

1þ b0IðsÞR0r2ðzÞ y� rðzÞz
� �

8
>><

>>:

: ð34Þ

Because this system consists of only two equations involving the concentrations y
and z, we can describe its dynamics by following the state of the system (y,z) as a

point in the (y,z)-plane, also called the Phase Plane, as it moves with time [47].

In the phase plane one can identify two useful curves, the Null Clines Uy and Uz,

along which dy/ds = 0 and dz/ds = 0, respectively. We readily see from (34) that

the null clines are given by:

Cy : y ¼ rðzÞ ð35Þ

the blue curve in Fig. 9 and, depending on whether the value of b is normal

(I(s) = 1) or decreased (I(s) = 1-Imax),

Cn
z : y ¼ zrðzÞ 1þ b0R0r2ðzÞ

1þ b0R0

normal ð36Þ

Fig. 9 Orbit of the reduced system (34) (in red) in the (z,y)-plane. At normal estrogen levels, the system
is at baseline (y,z) = (1,1), which is characterized by the intersection point of the solid blue line (Uy) and
the solid green line (Uz (normal)). Once estrogen levels change, Uz changes and the system starts moving
towards a new steady-state (yss,zss). In case of a sudden drop in estrogen levels, realized here by a step-
decrease in b, yss,zss is now determined by the intersection point of Uy and the new Null Cline
Uz(decreased) (dashed green line). As a result, the system starts moving from (1,1) towards (yss,zss). Once
estrogen concentrations return to their baseline levels, the system moves back to its original baseline (1,1)
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Cd
z : y ¼ zrðzÞ 1þ b0ð1� ImaxÞR0r2ðzÞ

1þ b0R0

decreased

the green curves in Fig. 9 (Cn
z solid and Cd

z dashed).

Plainly, at any point of intersection of Uy and Cn
z or Cd

z , both dy/ds = 0 and dz/

ds = 0, so that such a point is an equilibrium point. When I(s) = 1, the null clines

Uy and Cn
z intersect at the point (y,z) = (1,1), the baseline. We see that when b is

decreased Uy and the new null cline Cd
z still intersect, but now at the point (yss,zss)

and that yss [ 1 and zss [ 1.

At each point in the (y,z)-plane we can read off from the system of Eq. 34 the

values of dy/ds and dz/ds and hence the direction of the orbit. Thus, we see that the

orbit leaves the baseline point (1,1) in a horizontal direction and thereafter moves up

and towards the right. We also see that it cannot cross Uy and the new Cd
z so that it

must move towards the new equilibrium point (yss,zss). Thus, both y(t) and z(t) are

increasing and hence there is no overshoot. Similarly, at washout the orbit leaves

(yss,zss) in a horizontal direction, moving down and to the left. Again, y(t) and

z(t) are monotone and there is no rebound.

Appendix C Transformation of (18) into (19)

In this appendix we show how the system (18) expressed in terms of dimensionless

variables results in the system (19), which is written in terms of the original

variables. Recall that

x ¼ R

R0

; y ¼ B

B0

; z ¼ C

C0

; s ¼ kBt ð37Þ

The first equation of (18): When converting the original variables R, B, and C in

the first equation of (18) we obtain

dB

dt
¼ B0kB

dy

ds
¼ B0kB rðzÞ � B

B0

� �

¼ B0kBrðzÞ � kBB ð38Þ

where r(z) = pz(z)/pz(1). Note that

pzðzÞ ¼
zþ f0zs

zþ zs
¼ C þ f0Cs

C þ Cs
¼ pCðCÞ

and

pzð1Þ ¼
1þ f0zs

1þ zs
¼ C0 þ f0Cs

C0 þ Cs
¼ pCðC0Þ

Thus, Eq. 39 can be written as

dB

dt
¼ B0kB

pCðCÞ
pCðC0Þ

� kBB ð39Þ

By definition, the baseline values B0 and C0 are related through the equation
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DRpCðC0Þ � kBB0 ¼ 0

When we use this expression in (39) we obtain

dB

dt
¼ DRpCðCÞ � kBB; ð40Þ

which establishes the first equation of (19).

The second equation of (18): Proceeding as with the first equation, we now obtain

dC

dt
¼ C0kB

dz

ds
¼ C0kB �

DA

kB
pCðC0Þ �

1þ bR0

1þ bR

B

B0

� pCðCÞ
pCðC0Þ

C

C0

� �

ð41Þ

Since r2(z) = x = R/R0 and l = (DA/kB)pC(C0), this equation can be further

simplified to

dC

dt
¼ C0DApCðC0Þ

1þ bR0

1þ bR

B

B0

� pCðCÞ
pCðC0Þ

C

C0

� �

ð42Þ

By definition, the baseline values B0 and C0 are related through the equation

DC
aB0

1þ bR0

� DApCðC0ÞC0 ¼ 0

This means that

1þ bR0

B0

¼ DC

DA

a
pCðC0ÞC0

Substitution into (42) yields

dC

dt
¼ DC

aB

1þ bR
� DApCðCÞC ð43Þ

Finally, since

R ¼ R0x ¼ R0rðzÞ ¼ R0

p2
z ðzÞ

p2
z ð1Þ
¼ R0

p2
CðCÞ

p2
CðC0Þ

ð44Þ

and R0 and C0 are related through the equation

DRpCðC0Þ �
DB

pCðC0Þ
R0 ¼ 0 or p2

CðC0Þ ¼
DR

DB
R0

we can write (44) as

R ¼ RðCÞ ¼def DB

DR
p2

CðCÞ ð45Þ

This completes the transformation of the two equations of the system (18) into

those of the system (19).
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