Skip to main content
Log in

Production Kinetics and Structural Characterization of Levan Derived from Bacillus megaterium KM3 Using Pretreated Cane Molasses

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study investigated the production of levan biopolymer utilizing cane molasses, an agro-industrial waste, as a substrate. The kinetics of growth, substrate consumption, and levan production by Bacillus megaterium KM3 were examined in bioreactor design employing cane molasses-based media. Experiments were conducted in triplicate to ensure reproducibility, first in a 1L shake flask under optimized conditions, followed by scale-up to a 5L bioreactor, achieving a maximum levan yield as 18.5 g/L. The logistic model for microbial growth and Luedeking–Piret equation for product formation and substrate utilization were found to fit the experimental data, with a maximum specific growth rate constant (µm) as 0.6 h−1. The obtained levan was purified, and monosaccharide analysis by HPLC, confirmed the presence of the fructose monomer. Further structural characterization for the presence of functional group was performed using FTIR. Congo red analysis reveals a triple-helix structure. XRD analysis indicated the levan’s non-crystalline amorphous nature, while thermogravimetric analysis demonstrated its high thermal stability. In addition, the in vitro biological activity of levan was evaluated, where it showed strong antioxidant activities to scavenge DPPH radical, hydroxyl radical, and reducing power in dose-dependent manner. The results showcased the promising structural and functional properties of the obtained levan, positioning it as an attractive biopolymer for a wide range of industrial applications. By turning trash into gold, this study provides a model of clean technology’s potential to boost productivity while simultaneously lessening its negative effects on the environment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shukla A, Mehta K, Parmar J et al (2019) Depicting the exemplary knowledge of microbial exopolysaccharides in a nutshell. Eur Polym J 119:298–310. https://doi.org/10.1016/j.eurpolymj.2019.07.044

    Article  CAS  Google Scholar 

  2. Mehta K, Shukla A, Saraf M (2021) Articulating the exuberant intricacies of bacterial exopolysaccharides to purge environmental pollutants. Heliyon. https://doi.org/10.1016/j.heliyon.2021.e08446

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shukla A, Parmar P, Goswami D et al (2021) Exemplifying an archetypal thorium-EPS complexation by novel thoriotolerant Providencia thoriotolerans AM3. Sci Rep 11:3189. https://doi.org/10.1038/s41598-021-82863-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mulani R, Mehta K, Saraf M, Goswami D (2021) Decoding the mojo of plant-growth-promoting microbiomes. Physiol Mol Plant Pathol 115:101687. https://doi.org/10.1016/j.pmpp.2021.101687

    Article  CAS  Google Scholar 

  5. Tabuchi SCT, Martiniano SE, Cunha MAA et al (2021) Kinetic study of lasiodiplodan production by Lasiodiplodia theobromae MMPI in a Low-shear aerated and agitated bioreactor. J Polym Environ 29:89–102. https://doi.org/10.1007/s10924-020-01857-x

    Article  CAS  Google Scholar 

  6. Moscovici M (2015) Present and future medical applications of microbial exopolysaccharides. Front Microbiol 6:1012. https://doi.org/10.3389/fmicb.2015.01012

    Article  PubMed  PubMed Central  Google Scholar 

  7. Freitas F, Torres CAV, Reis MAM (2017) Engineering aspects of microbial exopolysaccharide production. Bioresour Technol 245:1674–1683. https://doi.org/10.1016/j.biortech.2017.05.092

    Article  CAS  PubMed  Google Scholar 

  8. Valdez AL, Delgado OD, Fariña JI (2021) Cost-effective optimized scleroglucan production by Sclerotium rolfsii ATCC 201126 at bioreactor scale. A quantity-quality assessment. Carbohydr Polym 260:117505. https://doi.org/10.1016/j.carbpol.2020.117505

    Article  CAS  PubMed  Google Scholar 

  9. Schmid J (2018) Recent insights in microbial exopolysaccharide biosynthesis and engineering strategies. Curr Opin Biotechnol 53:130–136. https://doi.org/10.1016/j.copbio.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  10. Tsioptsias C, Lionta G, Deligiannis A, Samaras P (2016) Enhancement of the performance of a combined microalgae-activated sludge system for the treatment of high strength molasses wastewater. J Environ Manag 183:126–132. https://doi.org/10.1016/j.jenvman.2016.08.067

    Article  CAS  Google Scholar 

  11. Xu M, Pan L, Zhou Z, Han Y (2022) Structural characterization of levan synthesized by a recombinant levansucrase and its application as yogurt stabilizers. Carbohydr Polym 291:119519. https://doi.org/10.1016/j.carbpol.2022.119519

    Article  CAS  PubMed  Google Scholar 

  12. Srikanth R, Reddy CHSSS, Siddartha G et al (2015) Review on production, characterization and applications of microbial levan. Carbohydr Polym 120:102–114. https://doi.org/10.1016/j.carbpol.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  13. Esawy MA, Amer H, Gamal-Eldeen AM et al (2013) Scaling up, characterization of levan and its inhibitory role in carcinogenesis initiation stage’. Carbohydr Polym 95:578–587. https://doi.org/10.1016/j.carbpol.2013.02.079

    Article  CAS  PubMed  Google Scholar 

  14. Du YH, Wang MY, Yang LH et al (2022) Optimization and scale-up of fermentation processes driven by models. Bioengineering 9:473. https://doi.org/10.3390/bioengineering9090473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. González-Figueredo C, Alejandro Flores-Estrella R, Rojas-Rejón AO (2019) Fermentation: metabolism, kinetic models, and bioprocessing. Curr Top Biochem Eng. https://doi.org/10.5772/intechopen.82195

    Article  Google Scholar 

  16. Sirajunnisa AR, Vijayagopal V, Sivaprakash B et al (2016) Optimization, kinetics and antioxidant activity of exopolysaccharide produced from rhizosphere isolate, Pseudomonas fluorescens CrN6. Carbohydr Polym 135:35–43. https://doi.org/10.1016/j.carbpol.2015.08.080

    Article  CAS  PubMed  Google Scholar 

  17. Luedeking R, Piret EL (1959) Transient and steady states in continuous fermentaion. Theory and experiment. J Biochem Microbiol Technol Eng 1:431–459. https://doi.org/10.1002/jbmte.390010408

    Article  CAS  Google Scholar 

  18. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. https://doi.org/10.1021/ac60147a030

    Article  CAS  Google Scholar 

  19. Tilwani YM, Lakra AK, Domdi L et al (2021) Optimization and physicochemical characterization of low molecular levan from Enterococcus faecium MC-5 having potential biological activities. Process Biochem 110:282–291. https://doi.org/10.1016/j.procbio.2021.08.021

    Article  CAS  Google Scholar 

  20. Kavitake D, Devi PB, Singh SP, Shetty PH (2016) Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food. Int J Biol Macromol 86:681–689. https://doi.org/10.1016/j.ijbiomac.2016.01.099

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Li C, Liu P et al (2010) Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir. Carbohydr Polym 82:895–903. https://doi.org/10.1016/j.carbpol.2010.06.013

    Article  CAS  Google Scholar 

  22. Taylan O, Yilmaz MT, Dertli E (2019) Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. Int J Biol Macromol 136:436–444. https://doi.org/10.1016/j.ijbiomac.2019.06.078

    Article  CAS  PubMed  Google Scholar 

  23. Kumar R, Bansal P, Singh J, Dhanda S (2020) Purification, partial structural characterization and health benefits of exopolysaccharides from potential probiotic Pediococcus acidilactici NCDC 252. Process Biochem 99:79–86. https://doi.org/10.1016/j.procbio.2020.08.028

    Article  CAS  Google Scholar 

  24. Adesulu-Dahunsi AT, Sanni AI, Jeyaram K (2018) Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. Lwt 87:432–442. https://doi.org/10.1016/j.lwt.2017.09.013

    Article  CAS  Google Scholar 

  25. Li W, Ji J, Rui X et al (2014) Production of exopolysaccharides by Lactobacillus helveticus MB2-1 and its functional characteristics in vitro. Lwt 59:732–739. https://doi.org/10.1016/j.lwt.2014.06.063

    Article  CAS  Google Scholar 

  26. Valdez AL, Babot JD, Schmid J et al (2019) Scleroglucan production by Sclerotium rolfsii ATCC 201126 from amylaceous and sugarcane molasses-based media: promising insights for sustainable and ecofriendly scaling-up. J Polym Environ 27:2804–2818. https://doi.org/10.1007/s10924-019-01546-4

    Article  CAS  Google Scholar 

  27. Qiu Y, Sha Y, Zhang Y et al (2017) Development of Jerusalem artichoke resource for efficient one-step fermentation of poly-(Γ-glutamic acid) using a novel strain Bacillus amyloliquefaciens NX-2S. Bioresour Technol 239:197–203. https://doi.org/10.1016/j.biortech.2017.05.005

    Article  CAS  PubMed  Google Scholar 

  28. Niknezhad SV, Kianpour S, Jafarzadeh S et al (2022) Biosynthesis of exopolysaccharide from waste molasses using Pantoea sp. BCCS 001 GH: a kinetic and optimization study. Sci Rep 12:10128. https://doi.org/10.1038/s41598-022-14417-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ragab TIM, Malek RA, Elsehemy IA et al (2019) Scaling up of levan yield in Bacillus subtilis M and cytotoxicity study on levan and its derivatives. J Biosci Bioeng 127:655–662. https://doi.org/10.1016/j.jbiosc.2018.09.008

    Article  CAS  PubMed  Google Scholar 

  30. Wu FC, Chou SZ, Shih IL (2013) Factors affecting the production and molecular weight of levan of Bacillus subtilis natto in batch and fed-batch culture in fermenter. J Taiwan Inst Chem Eng 44:846–853. https://doi.org/10.1016/j.jtice.2013.03.009

    Article  CAS  Google Scholar 

  31. Hamid KRA, Elsayed EA, Enshasy HAE et al (2018) Bioprocess optimization for levan production by Bacillus subtilis B58. J Sci Ind Res 77:386–393

    Google Scholar 

  32. Erkorkmaz BA, Kırtel O, Ateş Duru Ö, Toksoy Öner E (2018) Development of a cost-effective production process for Halomonas levan. Bioprocess Biosyst Eng 41:1247–1259. https://doi.org/10.1007/s00449-018-1952-x

    Article  CAS  PubMed  Google Scholar 

  33. Mehta K, Shukla A, Saraf M (2023) From waste to wonder : harnessing the potential of agro-industrial waste (Cane Molasses) in systemic optimization for the levan type of exopolysaccharide by Bacillus megaterium KM3 and physiochemical characterization. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-023-02236-y

    Article  Google Scholar 

  34. Öner ET, Hernández L, Combie J (2016) Review of Levan polysaccharide: from a century of past experiences to future prospects. Biotechnol Adv 34:827–844. https://doi.org/10.1016/j.biotechadv.2016.05.002

    Article  CAS  PubMed  Google Scholar 

  35. Domżał-Kędzia M, Ostrowska M, Lewińska A, Łukaszewicz M (2023) Recent developments and applications of microbial levan, a versatile polysaccharide-based biopolymer. Molecules 28:5407. https://doi.org/10.3390/molecules28145407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kovanda L, Zhang W, Wei X et al (2019) In vitro antimicrobial activities of organic acids and their derivatives on several species of Gram-negative and Gram-positive bacteria. Molecules 24:3770. https://doi.org/10.3390/molecules24203770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim KH, Chung CB, Kim YH et al (2005) Cosmeceutical properties of levan produced by Zymomonas mobilis. J Cosmet Sci 56:395–406. https://doi.org/10.1111/j.1467-2494.2006.00314_2.x

    Article  CAS  PubMed  Google Scholar 

  38. Pantelić I, Lukić M, Gojgić-Cvijović G et al (2020) Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: from basic colloidal considerations to actual pharmaceutical application. Eur J Pharm Sci 142:105109. https://doi.org/10.1016/j.ejps.2019.105109

    Article  CAS  PubMed  Google Scholar 

  39. El Halmouch Y, Ibrahim HAH, Dofdaa NM et al (2023) Complementary spectroscopy studies and potential activities of levan-type fructan produced by Bacillus paralicheniformis ND2. Carbohydr Polym 311:120743. https://doi.org/10.1016/j.carbpol.2023.120743

    Article  CAS  PubMed  Google Scholar 

  40. Lakra AK, Ramatchandirane M, Kumar S et al (2021) Physico-chemical characterization and aging effects of fructan exopolysaccharide produced by Weissella cibaria MD2 on Caenorhabditis elegans. Lwt 143:1111000. https://doi.org/10.1016/j.lwt.2021.111100

    Article  CAS  Google Scholar 

  41. Abid Y, Casillo A, Gharsallah H et al (2018) Production and structural characterization of exopolysaccharides from newly isolated probiotic lactic acid bacteria. Int J Biol Macromol 108:719–728. https://doi.org/10.1016/j.ijbiomac.2017.10.155

    Article  CAS  PubMed  Google Scholar 

  42. Mathivanan K, Chandirika JU, Vinothkanna A et al (2021) Characterization and biotechnological functional activities of exopolysaccharides produced by Lysinibacillus fusiformis KMNTT-10. J Polym Environ 29:1742–1751. https://doi.org/10.1007/s10924-020-01986-3

    Article  CAS  Google Scholar 

  43. Xu X, Gao C, Liu Z et al (2016) Characterization of the levan produced by Paenibacillus bovis sp. nov BD3526 and its immunological activity. Carbohydr Polym 144:178–186. https://doi.org/10.1016/j.carbpol.2016.02.049

    Article  CAS  PubMed  Google Scholar 

  44. Yang Z, Zeng Y, Hu Y et al (2023) Comparison of chemical property and in vitro digestion behavior of polysaccharides from Auricularia polytricha mycelium and fruit body. Food Chem X 17:100570. https://doi.org/10.1016/j.fochx.2023.100570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li S, Xia H, Xie A et al (2020) Structure of a fucose-rich polysaccharide derived from EPS produced by Kosakonia sp. CCTCC M2018092 and its application in antibacterial film. Int J Biol Macromol 159:295–303. https://doi.org/10.1016/j.ijbiomac.2020.05.029

    Article  CAS  PubMed  Google Scholar 

  46. Zhao D, Jiang J, Liu L et al (2021) Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. Int J Biol Macromol 178:306–315. https://doi.org/10.1016/j.ijbiomac.2021.02.182

    Article  CAS  PubMed  Google Scholar 

  47. Shimazu A, Miyazaki T, Ikeda K (2000) Interpretation of d-spacing determined by wide angle X-ray scattering in 6FDA-based polyimide by molecular modeling. J Membr Sci 166:113–118. https://doi.org/10.1016/S0376-7388(99)00254-9

    Article  CAS  Google Scholar 

  48. Krishnamurthy M, Jayaraman Uthaya C, Thangavel M et al (2020) Optimization, compositional analysis, and characterization of exopolysaccharides produced by multi-metal resistant Bacillus cereus KMS3-1. Carbohydr Polym 227:115369. https://doi.org/10.1016/j.carbpol.2019.115369

    Article  CAS  PubMed  Google Scholar 

  49. Lakra AK, Domdi L, Tilwani YM, Arul V (2020) Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. Int J Biol Macromol 143:797–805. https://doi.org/10.1016/j.ijbiomac.2019.09.139

    Article  CAS  PubMed  Google Scholar 

  50. Domżał-Kędzia M, Lewińska A, Jaromin A et al (2019) Fermentation parameters and conditions affecting levan production and its potential applications in cosmetics. Bioorg Chem 93:102787. https://doi.org/10.1016/j.bioorg.2019.02.012

    Article  CAS  PubMed  Google Scholar 

  51. Mendonça CMN, Oliveira RC, Freire RKB et al (2021) Characterization of levan produced by a Paenibacillus sp. isolated from Brazilian crude oil. Int J Biol Macromol 186:788–799. https://doi.org/10.1016/j.ijbiomac.2021.07.036

    Article  CAS  PubMed  Google Scholar 

  52. Nambiar RB, Sellamuthu PS, Perumal AB et al (2018) Characterization of an exopolysaccharide produced by Lactobacillus plantarum HM47 isolated from human breast milk. Process Biochem 73:15–22. https://doi.org/10.1016/j.procbio.2018.07.018

    Article  CAS  Google Scholar 

  53. Pei F, Ma Y, Chen X, Liu H (2020) Purification and structural characterization and antioxidant activity of levan from Bacillus megaterium PFY-147. Int J Biol Macromol 161:1181–1188. https://doi.org/10.1016/j.ijbiomac.2020.06.140

    Article  CAS  PubMed  Google Scholar 

  54. Bouallegue A, Casillo A, Chaari F et al (2020) Levan from a new isolated Bacillus subtilis AF17: purification, structural analysis and antioxidant activities. Int J Biol Macromol 144:316–324. https://doi.org/10.1016/j.ijbiomac.2019.12.108

    Article  CAS  PubMed  Google Scholar 

  55. Xiao L, Han S, Zhou J et al (2020) Preparation, characterization and antioxidant activities of derivatives of exopolysaccharide from Lactobacillus helveticus MB2-1. Int J Biol Macromol 145:1008–1017. https://doi.org/10.1016/j.ijbiomac.2019.09.192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors are thankful to Department of Microbiology and Biotechnology, School of Sciences, Gujarat University, DST-FIST Sponsored Department, for providing necessary facilities to perform experiments. We acknowledge Education Department, Government of Gujarat, India for the providing research fellowship to Krina Mehta under the ScHeme Of Developing High-quality research (SHODH).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

KM and AS contributed in the conception and experiment design. KM performed the experiment and wrote the manuscript. KM prepared tables and figures. MS and AS reviewed the manuscript.

Corresponding author

Correspondence to Meenu Saraf.

Ethics declarations

Competing interests

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, K., Shukla, A. & Saraf, M. Production Kinetics and Structural Characterization of Levan Derived from Bacillus megaterium KM3 Using Pretreated Cane Molasses. J Polym Environ 32, 1602–1618 (2024). https://doi.org/10.1007/s10924-023-03054-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-03054-y

Keywords

Navigation