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Abstract
Despite the sustainability, biodegradability, and biocompatibility of microbial polyesters, as well as their potential to replace 
polyolefins, the market share of these biopolymers is still marginal. The primary factors that impede the success of micro-
bial polyesters are related to their poor thermal stability and the degradation during processing that negatively affects the 
mechanical performance of the final product. Due to the complexity of the mechanism of degradation and the vast number 
of factors that influence the mechanism, the outcome of the degradation cannot be predicted with high confidence. Our pre-
sent work addresses both difficulties. First, the thermal stability of poly(3-hydroxybutyrate) was successfully improved by a 
stabilizer system based on pomegranate extract. Second, we have developed a computational method that can be used for the 
estimation of the mechanical properties of processed microbial polyesters from IR data. The computational method is based 
on an unprecedented hybrid model that incorporates both linear and nonlinear components. The linear component is based 
on multivariate data analysis and quantizes the correlation between IR data and the extent of degradation. In contrast, the 
second component consists of a power function in order to be able to describe the nonlinear correlation between the extent 
of degradation and the mechanical properties. By using the hybrid model, indicators of mechanical performance, such as 
tensile strength, can be estimated from IR data, which was not achieved before.
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Introduction

Although the future prospects of the polymer industry are 
subject to intense debate, the vast majority of researchers 
agree that goals such as sustainability and independence 
from fossil resources are of equal importance. Moreover, 
the lifecycle of polymers must also be completely circular, 
i.e., the metabolites of the degradation should be used as a 

feedstock for the synthesis of new polymers. Biopolymers, 
for instance, meet these requirements. According to the defi-
nition of IUPAC, biopolymers are macromolecules formed 
by living organisms; i.e., an artificially synthesized polymer 
cannot be regarded as a biopolymer. Microbial polyesters 
satisfy all criteria related to sustainability and recyclability 
and are also considered biopolymers as per IUPAC defini-
tion, since they are natively synthesized by bacterial strains 
that utilize them as intracellular material and energy storage. 
Microbial polyesters are fermented using various carbohy-
drates [1–3] and lipids [4, 5] originating from plants. To 
improve the efficiency of production, several research pro-
jects were carried out over the past few decades that targeted 
the fermentation of microbial polyesters using waste mate-
rials. These sources include agricultural waste [6], kitchen 
waste [7], or even wastewater [8].

The first material source (carbohydrates) is produced in 
vast quantities by photosynthesis in the biosphere, amount-
ing to approximately 220 billion metric tons per year [9]. As 
long as photosynthesis occurs on Earth, this material source 
cannot technically be depleted. Similarly, the materials 
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belonging to the second category (lipids) are available in 
the form of plant oils [4, 5, 10]. The produced volume of 
these materials has already been scaled up due to the high 
demand for biodiesel, which is heavily dependent on the 
availability of plant oils [11, 12]. Recent reports have also 
proven that even the side-product of the biodiesel industry, 
e.g., glycerol, can be a feedstock for polyester production 
[13]. The third source of materials for the fermentation of 
microbial polyesters (agricultural waste) is also abundant. 
For instance, the extraction of carbohydrates from plants 
also yields vast amounts of lignin as a byproduct. Currently, 
most of this byproduct is used in a rather rudimentary way: 
lignin is burned in order to salvage at least some energy. 
However, Herrera and his coworkers reported that lignin 
could also be used as a substrate for the fermentation of 
microbial polyesters [14].

These findings clearly show that the substitution of con-
ventional polymers with microbial polyesters could shift 
the polymer industry towards a sustainable model. Unlike 
several of their competitors (e.g., polyolefins), microbial 
polyesters can be degraded and completely decomposed 
hydrolytically [15]. Although their depolymerization in a 
strong alkali or acidic medium is technically feasible, there 
are more sophisticated methodologies. For example, the 
depolymerization of microbial polyesters might be catalyzed 
enzymatically [16, 17]. Enzymes generally prefer mild con-
ditions: neutral or near-neutral pH and temperatures close 
to room temperature. Therefore, enzyme-catalyzed degrada-
tion of microbial polyesters could also be a significant step 
towards a green and sustainable polymer industry.

Although the list of beneficial features of microbial poly-
esters presented and discussed above is quite extensive, there 
are a number of disadvantages as well. For example, the 
replacement of conventional polymers with microbial poly-
esters in the packaging industry faces two obstacles. The first 
one is their price: despite the efforts that target the fermenta-
tion of these biopolymers using inexpensive material sources 
[1–3], their price is still higher than that of their competitors, 
e.g., polyolefins. The second one concerns the processing of 
microbial polyesters: technologies of high throughput, e.g., 
injection molding or extrusion, process the polymer in the 
melt. Consequently, heating the material above its melting 
temperature (Tm) is inevitable. Unfortunately, above their Tm, 
neat microbial polyesters tend to degrade rapidly.

The first difficulty outlined above is addressed by several 
research projects that target their fermentation using cheap 
substrates [18–22]. As a result, the price of microbial poly-
esters was reduced to the range of $4–6/kg (i.e., five to six 
times that of polyolefins) and is expected to decrease even 
further [23]. Since the stabilization of microbial polyesters 
has not been extensively studied yet, the second challenge 
appears to be formidable. There are, however, a handful of 
publications dedicated to the investigation of the degradation 

of microbial polyesters [24, 25]. Santos et al. studied the 
thermal degradation of microbial polyesters [24], while 
Michalak attempted to provide a detailed and comprehen-
sive description of the thermo-oxidative degradation of these 
macromolecules [25]. Although the mechanism was reported 
to be highly complex and many questions were left unan-
swered, there are a few characteristics of the thermo-oxi-
dative degradation of microbial polyesters that are certain. 
One of the most important ones is the dominant degradation 
mechanism, which is statistical chain fragmentation [25].

Statistical chain fragmentation must be impeded; other-
wise, the process deteriorates mechanical performance con-
siderably. For this purpose, stabilizers may be used. Due to 
their importance in the polymer industry, stabilizers are very 
intensively studied and thoroughly characterized [26–28]. 
However, the vast majority of conventional stabilizers are 
artificially synthesized compounds that are derived from 
fossil material sources. In order to create a completely sus-
tainable polymer industry, natural materials should be pre-
ferred over those produced by traditional synthetic methods. 
Fortunately, stabilizers of purely natural origins have drawn 
attention in the past few years. As a result, several articles 
are already available in the corresponding literature that dis-
cuss the utilization of bio-based materials as stabilizers of 
polymers [29–31].

Although bio-based stabilizers undoubtedly contribute to 
a more sustainable polymer industry, these additives inevita-
bly have a number of drawbacks as well. For example, natu-
ral stabilizers are often available as plant extracts [32, 33], 
which typically comprise a mixture of various compounds. 
In addition, the composition of plant tissues heavily depends 
on many factors that cannot be controlled directly, such as 
the amount of rainfall, sunshine, type of soil, and so on. 
Consequently, the relative quantity of components in plant 
extracts is known to vary from batch to batch. This variation 
and unpredictability could potentially hinder the introduc-
tion of plant extracts as stabilizers of microbial polyesters 
to the market.

To overcome these difficulties, a method is proposed that 
facilitates the estimation and prediction of mechanical prop-
erties of microbial polyesters that contain natural stabilizers. 
Our concept is based on the analysis of the IR spectra of 
the stabilized polymer. The thermo-oxidative degradation 
of polyesters is known to alter the IR spectra of the samples 
considerably [34, 35]. The changes caused by the degrada-
tion are difficult to attribute to individual reactions due to the 
remarkable complexity of the parallel and consecutive sub-
tractions [25]. However, the mathematical tools offered by 
principal component regression (PCR) [36] and partial least 
squares method (PLS) [37] enable us to identify and quan-
titatively characterize the correlation between independent 
and dependent variables, even if the former is represented 
by large datasets, e.g., thousands of absorbance values in 



5187Journal of Polymers and the Environment (2023) 31:5185–5197 

1 3

the IR spectra. PCR and PLS are already extensively used in 
several scientific fields, such as agricultural [38–40], protein 
[41, 42], and pharmaceutic [43] sciences. Although these 
methods have started to become more widely used in the 
polymer industry as well [44], their applications remain lim-
ited. For instance, the goal of our study, i.e., the estimation 
of mechanical properties of processed microbial polyesters 
from IR data, was not achieved before.

Experimental

Preparation of the Samples and Their Degradation

First, poly(3-hydroxybutyrate) PHB (Metabolix Mirel 
M2100) was dried (70 °C, overnight) to avoid hydrolytic 
degradation of the polyester. After drying, solvent-cast films 
and compression-molded plates were created. The manufac-
turing of both types of samples started with the dissolution 
of the polymer in chloroform (Molar Chemicals Ltd.); the 
concentration of the polymer was 3 m/m%. The dissolution 
was carried out in a stirred round-bottom flask (300 RPM) at 
the boiling point of the solution (approximately 65 °C) and 
lasted 2 h. Once the flask cooled down to room temperature, 
the components of the stabilizer system were added to the 
solution.

The primary stabilizer was pomegranate extract; as the 
secondary stabilizer, PepQ (Clariant AG) was selected. The 
source of the primary stabilizer was powdered pomegranate 
peel (Turkey); the material was obtained by Soxhlet extrac-
tion with acetone. The targeted extracts were recovered from 
acetone in a rotary evaporator. Both stabilizers were added to 
the solution of the polymer in a concentration of 0.1 m/m% 
with respect to the polymer. The last component was the 
IR internal standard; for this purpose, polydimethylsiloxane 
(PDMSO) was used. PDMSO was used in a concentration 
of 4 m/m% with respect to the mass of PHB. Subsequently, 
the solution was homogenized (room temperature, 300 RPM, 
1 h), and the insoluble components of the pomegranate 
extract were removed.

From the purified solution, 7 cm x 7 cm films were cre-
ated by solvent-casting; their average thickness was meas-
ured to be ~ 35 µm. These films were used in degradation 
studies ‘as is’ and also served as a starting material for the 
fabrication of compression-molded plates. First, six films 
were cast, stacked on top of each other, and placed into a 
7 cm x 7 cm metal frame of 200 µm thickness. The sample 
was compression molded in a custom-made laboratory press 
pre-heated to 180 °C, with a pressure of 20 kN. Under these 
conditions, approximately 1 min was found to be sufficient 
for the formation of a homogeneous plate.

Two types of degradation studies were conducted. The 
first sequence of measurements was carried out using the 

aforementioned laboratory press, whereas the second 
sequence was performed in a heating oven. While select-
ing the parameters of degradation, our aim was to simulate 
the conditions that are typical for conventional processing 
technologies such as injection molding or extrusion. There-
fore, the atmosphere was oxidative (air), and the temperature 
was set to 180 °C. The time of degradation ranged from 1 
to 12 min with an increment of 1 min. Thus, 12 degrada-
tion times were selected (1, 2, 3, …, 12 min) in addition to 
the undegraded samples. In each case, three samples were 
investigated, i.e., three parallel measurements were carried 
out per degradation time per degradation method.

Analysis of the Degraded Samples

Mechanical properties were characterized by tensile testing. 
Solvent cast films were analyzed with an Instron 34SC-05 
machine (equipped with a 100 N cell), whereas compression 
molded plates were tested with a Zwick/Roell 1445 instru-
ment (equipped with a 1000 N cell). From each 7 cm x 7 cm 
sample, three dumbbell-shaped specimens were cut that 
had a width of 4 mm in the middle. Solvent-cast films and 
compression molded plates had an approximate thickness 
of 35 µm and 200 µm, respectively. Precise values were 
determined with a micrometer prior to the tensile test. Each 
measurement was carried out at 5 mm/min crosshead veloc-
ity and 40 mm gauge length.

Spectral data was collected with a Bruker Tensor 27 IR 
spectrophotometer equipped with an ATR accessory. The 
spectrum of each sample was recorded five times between 
400 and 4000  cm−1 with 1  cm−1 resolution; the measure-
ments consisted of 16 scans. As a first step of spectral 
pretreatment, manual baseline correction was carried out. 
Absorbance values at 4000, 3750, 3500, 3250, 2750, 2500, 
2250, 2000, 1500, and 400  cm−1 were extracted. At these 
values, neither the polymer nor any of the additives have 
an absorbance. The absorbance values at the wavenumbers 
listed above were plotted, and a 3rd-order polynomial was 
fit onto the points with a nonlinear iterative algorithm (Lev-
enberg–Marquardt). Then, the value of the polynomial was 
calculated at each investigated wavenumber between 4000 
and 400  cm−1 and subsequently subtracted from the cor-
responding empirically collected absorbance value. This 
way, the modified absorbance values became equal to or 
approached zero in wavenumber regions where none of the 
components of the sample absorbed photons.

As a next step of the pretreatment, the amplitude of the 
spectra was adjusted. The internal standard (DMSO) is 
completely inert; therefore, its peaks have the same size 
regardless of the extent of degradation. The peak of DMSO 
present in the 790–820  cm−1 region is almost completely 
separated from the others. Accordingly, this peak was 
selected as a basis for the amplitude correction: all spectra 
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were multiplied by a scalar that set the maximum value of 
the reference peak precisely to 0.1. As a last step of the 
preliminary calculations, spectra belonging to the same deg-
radation time were averaged.

Results and Discussion

The results are discussed in multiple sections. First, the prin-
ciples of the model that enables the quantitative characteri-
zation of the correlation between mechanical properties and 
the IR spectra will be introduced. In the next section, data 
that empirically proves the feasibility and relevance of the 
modeling is presented and discussed. Then, the process of 
building the model is described in detail. In the final section, 
the model is optimized and applied in practice.

Introduction and Description of the Hybrid Model

The hybrid model consists of two parts. The first part 
describes the correlation between the mechanical proper-
ties and the extent of degradation. The second part is dedi-
cated to the quantitative characterization of the correlation 
between the IR spectra of the polymer and the extent of 
degradation. To construct the first half of the model, one 
indicator of mechanical performance, and one indicator of 
the extent of degradation must be selected. The mechani-
cal performance will be characterized by tensile strength, 
whereas the extent of degradation will be quantized by 
the time of degradation, i.e., how long the polymer was 
exposed to thermo-oxidative stress. This value can be very 
precisely and reproducibly measured; therefore, the time of 
degradation appears to be an optimal choice to be used as 
an independent variable of the first half of the model. As 
presented in Fig. 1, the tensile strength plotted against the 
time of degradation shows a clear negative correlation that 
may be approximated with a simple function that takes one 
independent variable (time of degradation) and outputs one 
dependent variable (tensile strength).

Although fitting a simple polynomial to the empirical 
points observed in Fig. 1 is completely feasible, we found 
that at least a third-order polynomial is required for an ade-
quate fit. Third-order polynomials assume the introduction 
of four parameters. Conversely, the fit of the same quality 
can be achieved if a power function of only two parameters 
is used instead. Accordingly, in order to keep our model as 
simple as possible, a power function was used; see Fig. 1 
and Eq. 1.

In Eq. 1, σ denotes the tensile strength in Pascal (Pa), 
and t denotes the time of degradation in minutes (min). 

(1)� = A ⋅ (1 + t)
B

A and B are regression parameters. In the case of our 
samples, prepared according to the method described in 
the experimental section, the best fit was achieved with 
A = 35.48 and B = -0.1909. The  R2 value of the regression 
was calculated to be 0.9717, which validates that Eq. 1 can 
provide an acceptable approximation of the empirically 
obtained values, even though it contains only two regres-
sion parameters.

Figure 1 suggests that the first half of the model, i.e., the 
correlation between the mechanical properties of the poly-
ester and the time of degradation, may be represented by a 
simple function with one dependent and one independent 
variable. Contrarily, the second half of the model (i.e., the 
correlation between the time of degradation and the shape of 
the IR spectra) assumes a significantly more complex math-
ematical apparatus. This complexity is due to the number 
of independent variables: IR spectra consist of thousands 
of individual absorbance values. Therefore, a model is to 
be constructed that takes thousands of values as independ-
ent variables and outputs one single dependent variable: the 
time of degradation.

Such models can be constructed in many ways; the most 
effective, reliable, and robust ones are based on the compu-
tational tools offered by multivariate data analysis. Among 
these tools, principal component regression (PCR) and par-
tial least squares methods (PLS) gained popularity in recent 
years. Since PCR and PLS are both capable of the accurate 
mathematical representation of this correlation, the second 
half of the model will be based on PCR and PLS. In contrast 
with the first half of the model, both PCL and PLS are linear 
methods and take many independent variables. The com-
bination of the first (nonlinear) and second (linear) halves 

Fig. 1  The time of degradation correlates negatively with the tensile 
strength of the polymer
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results in the final (hybrid) model, as presented graphically 
in Fig. 2.

Empirical Proof of the Feasibility of Modeling

Figure 1 demonstrates a strong negative correlation between 
the time of degradation and the tensile strength of PHB. 
Accordingly, a model equation fit to the empirical points can 
represent the correlation very well; see the regression curve 
in Fig. 1. In contrast, the possibility of modeling the rela-
tionship between the time of degradation and the shape of 
IR spectra may not seem obvious at first sight. The effect of 
degradation on the shape of the IR spectra is observable even 
without in-depth numerical analysis, but the mathematical 
description of this covariance might be challenging. There-
fore, proving that there is a correlation between the time of 
degradation and the measured IR spectra is essential. To 
achieve this, the Pearson correlation coefficient was calcu-
lated at each wavenumber. This coefficient was computed 
between the time of degradation and the absorbance of the 
sample degraded for the corresponding amount of time. The 

coefficients calculated in this way were plotted against their 
respective wavenumber; see Fig. 3.

The correlation coefficient approaches either + 1 or -1, 
but rarely takes values in between. This tendency means 
that there is either a strong positive (+ 1) or a strong nega-
tive (-1) correlation between the time of the degradation and 
the absorbance at a given wavenumber. Correlation coeffi-
cients close to zero indicate little to no correlation. However, 
near-zero correlation coefficients were rarely calculated: the 
values plotted in Fig. 3 tend to approach their extrema. In 
practical terms, this tendency means that the ongoing degra-
dation either increases the IR absorbance (correlation coef-
ficient approaches + 1) or decreases it (correlation coefficient 
approaches -1). Regions of the IR spectrum where the degra-
dation does not shift the absorbance in any definite direction 
are rare and narrow.

Thus, the effect of the degradation on the measured 
absorbances appears to be deterministic: degradation either 
increase or decrease the absorbance. Wavenumber regions 
where degradation stochastically alters the absorbance, 
thereby resulting in a near-zero correlation coefficient, are 
sparse and limited in width. In simpler words, the effect of 
degradation on IR absorbances is deterministic because the 
increasing time of degradation either increases individual 
absorbances or decreases them. The former tendency, i.e., 
the ongoing degradation increases the absorbance, is dem-
onstrated in Fig. 4a. The latter tendency, i.e., the longer the 
time of degradation, the smaller the peak becomes, is shown 
in Fig. 4b. As a supplementary file, a video was also pre-
pared to animate the scatter plot changes through the inves-
tigated wavenumber range; see file S1.

Figure 4 shows that measured points do not align perfectly 
to a straight or curved line, i.e., they cannot be perfectly 
described by one single equation, such as Eq. 1. However, 
the positive or negative correlation is clearly observable, 
regardless of the wavenumber. We can conclude, therefore, 
that at the majority of investigated wavenumbers, there is 
either a positive or a negative correlation between the time 

Fig. 2  Graphical representation of the method used to construct the 
hybrid model

Fig. 3  The correlation coef-
ficient is in the proximity of 
either + 1 or -1, suggesting that 
the impact of degradation on 
the absorption peaks is fully 
deterministic
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of degradation and the measured absorbances. Accordingly, 
this correlation can be modeled and used as the second half 
of our hybrid model. Since the input of the model consists 
of thousands of individual absorbance values in this context, 
advanced mathematical methods, such as PCR and PLS, will 
be used.

Construction of the Hybrid Model

As mentioned in Sect. "Introduction and description of the 
hybrid model", the first half of the model is a nonlinear 
equation that enables the calculation of one dependent vari-
able (tensile strength) from one independent variable (time 
of degradation). This part of the model is already introduced 
and explained; see Eq. 1. In contrast, the second half of the 
hybrid model must be capable of taking multiple independ-
ent variables as an input and is expected to be linear due 
to the linearity of both PCR and PLS. The building of the 
second part is significantly more complex and consists of 
several steps. First, a wavelength range containing absorb-
ances that will be used later as independent variables must 
be selected. Technically, even an entire IR spectrum could be 
used. However, the majority of the IR spectrum of PHB does 
not contain significant quantitative data, as there are numer-
ous ranges without any absorption peaks. Instead, regions 
must be found that contain the peaks altered the most by the 
thermo-oxidative degradation.

These regions can be localized by using a wide variety 
of methods. The most evident might be the attribution of 
individual peaks to functional groups. If the mechanism 
of the degradation is well known, one could predict which 

peak will change and in which direction. For example, the 
dominant degradation mechanism of PHB is statistical chain 
fragmentation. Therefore, the height of peaks attributed to 
C–O–C vibrations is expected to decrease due to the break of 
ester bonds during degradation. Unfortunately, this method 
has little relevance in practice. First, the thermo-oxidative 
degradation of microbial polyesters is extremely complex 
[25] and consists of several parallel and consecutive reac-
tions. Therefore, changes in the height of absorbance peaks 
can hardly be attributed to individual reactions. Second, 
the market of microbial polyesters changes constantly: 
new fermentation techniques yield new products of differ-
ent parameters, such as the ratio of comonomers, quality of 
end-groups, quantity and quality of contaminations, and so 
on. Lastly and most importantly, microbial polyesters cannot 
be effectively processed without additives; at least a stabi-
lizer is needed to address the poor thermal stability of the 
macromolecules. The presence of stabilizers is expected to 
change the reaction routes outlined in the article of Michalak 
[25] significantly.

The primary component of the stabilizer system we used 
here is pomegranate extract, which is a mixture of several 
components. According to the report of Ambigaipalan et al. 
[45], the extract contains 79 phenolic compounds, 35 tan-
nins, 8 proanthocyanidins, and 8 anthocyanins. In contrast, 
Fisher et al. [46] identified only 48 compounds in pome-
granate extract, which highlights that the qualitative analy-
sis of the components is challenging. The extract that was 
used for the preparation of our samples was investigated 
in a previous study; the main component was found to be 
punicalagin [47]. The quantitative analysis of pomegranate 

Fig. 4  Absorbances plotted against the time of degradation. At some wavenumbers, the correlation is positive (1122  cm−1, to the left), while at 
others, the correlation is negative (1175 cm.−1, to the right)
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extract is similarly difficult, and yields results that vary in a 
broad interval. The main component, i.e., punicalagin, was 
reported to be present in the extract in concentrations that 
range from 2 to 500 mg/g [45–49]. As a part of a previ-
ous project, the pomegranate extract we used was also ana-
lyzed; the concentration of punicalagin was measured to be 
79 ± 5.2 mg/g [47].

The disparity of the data submitted by independent 
research groups is probably due to the differences in the 
origin and quality of the fruit, the extraction technique, the 
method of qualitative and quantitative analysis, and so on. 
The advantage of our method is that the correlation between 
the IR data and the extent of degradation can be character-
ized even if we do not have an in-depth understanding of 
the qualitative and quantitative characteristics of the plant 

extract. Therefore, the critical parameter is the efficiency 
of the extract as a stabilizer, and not its chemical composi-
tion. As presented in Fig. 5, the combination of pomegranate 
extract and PepQ effectively slows the degradation of PHB 
and the resulting deterioration of mechanical performance. 
The difference between stabilized and neat samples proves 
that using natural antioxidant-based stabilizer systems is 
highly beneficial, even if it makes the complete qualitative 
analysis of the degradation nearly impossible.

Due to the vast number and complexity of the paral-
lel and consecutive reactions, the wavenumber region the 
model is preferably built upon cannot be localized by search-
ing for individual peaks altered by individual reactions. 
Instead, we have to look for the wavenumber regions that 
are altered the most by the degradation. Our preliminary 
studies have shown that the amplitude of peaks located in 
the 1300–1000  cm−1 region changed considerably during 
the degradation. Therefore, absorbance values belonging 
to wavenumbers in this region will serve as the independ-
ent variables. After the selection of the investigated range, 
the measured IR spectra were plotted between 1300 and 
1000  cm−1, as demonstrated in Fig. 6.

Although the thermo-oxidative degradation alters the 
absorbances in the entire investigated region, the changes 
are mostly subtle. Therefore, the spectra plotted above show 
strong linear dependence. This collinearity makes models 
based on direct absorbance—time of degradation regression 
unreliable: such models are known to be prone even to minor 
perturbations. The most effective way to address multicollin-
earity is the transformation of the data into a new Euclidean 
space, where most of the variance can be described with the 
fewest possible dimensions. The method is called principal 
component analysis (PCA [50]) and was performed using 
a software developed by our research group in MATLAB 
environment. Figure 7 shows that PCA is a very effective 
method for the reduction of dimensionality of the data plot-
ted in Fig. 6. Most of the variance is described by the linear 

Fig. 5  A mixture of pomegranate extract and PepQ was found to 
effectively impede the deterioration of mechanical performance 
caused by thermo-oxidative degradation. Open circle: stabilized sam-
ples, open square: neat polymer

Fig. 6  Consecution of IR spec-
tra of samples degraded for 0, 1, 
2, 3, …, 12 min
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combination of only two principal components; see Fig. 7a. 
The diagram also visualizes the principal components, i.e., 
the basis vectors of the new Euclidean space the absorbance 
data was transformed into (Fig. 7b).

The IR spectra do not show collinearity in the new vector 
space; therefore, they can be used as the independent varia-
bles of the multidimensional linear regression that will yield 
the model. The combination of PCA and multidimensional 
linear regression is often called principal component regres-
sion (PCR [50]). We have found that PCR describes the 
correlation between the absorbance values and the targeted 
dependent variable, i.e., time of degradation accurately, even 
if only a few principal components are used. However, our 
preliminary calculations also revealed one of the weaknesses 
of PCR. Since PCA and multidimensional linear regression 
are performed independently, the calculation does not take 
into account the dependent variable during the computation 
of the principal components. This shortcoming is eliminated 
by the implementation of the method called ‘partial least 
squares’ (PLS [50, 51]). PLS was performed by a software 
our research team developed in MATLAB environment. 
The software is based on the algorithm first proposed and 
described here [51]. Subsequent to the completion of the 

software and initial tests with both PCR and PLS, the meth-
ods were optimized and applied in practice.

Optimization and Application of the Model

The first and most important parameter of both PCR and 
PLS is the number of principal components they are based 
on. The optimal value was found as follows. Models were 
built by using a different number of principal components, 
e.g., two (Fig. 8a) or ten (Fig. 8b). Next, individual spec-
tra belonging to different degradation times (0 min, 1 min, 
2 min, …, 12 min) were input into our software, which esti-
mated the degradation time. The results obtained using the 
software that implemented the PCR method are displayed 
below.

Figure 8a demonstrates that the calculation predicts inac-
curate results if only two principal components are used. In 
contrast, the model becomes overfitted if the number of prin-
cipal components is increased to ten (Fig. 8b). Therefore, the 
optimum is to be found somewhere in between. In order to 
be able to determine the optimal number of principal compo-
nents precisely, the accuracy of the prediction was quantized 
and plotted against the number of principal components that 

Fig. 7  a Linear coefficients of 
the spectrum recorded first (i.e., 
t = 0). b: First few basis vectors 
of the new Euclidean space
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were used while building the model (Fig. 9). The accuracy 
of the prediction was quantitatively described by the residual 
sum of squares, i.e., the difference between actual and pre-
dicted values, squared, summed. Figure 9 simultaneously 
presents the number of principal components—accuracy of 
prediction correlation of both PCR and PLS models.

Figure 9 reveals that PLS outperforms PCR: the error 
of prediction calculated with PLS converges to zero faster 
than that calculated with PCR. Accordingly, our final 
model will be based on PLS. The figure shown above also 
helps the determination of the optimal number of principal 

components. The accuracy of the prediction is increased 
drastically if the number of principal components is 
increased from 1 to 2 and from 2 to 3. However, increasing 
this parameter from 3 to 4 does not reduce the error func-
tion considerably. Therefore, the PLS model is based on 3 
principal components.

The last and most important step of constructing any 
kind of computational method is its application in practice 
and the analysis of its reliability. The workflow of using the 
hybrid model is visualized in Fig. 10a. First, the IR spectrum 
of the sample is to be recorded. Then, the spectrum should 
be pre-processed with the same technique that was used 
during the construction of the model. This pre-processed 
spectrum serves as the input of the PLS method that yields 
one single scalar: the time of degradation. This value is to be 
substituted into Eq. 1; the substitution enables the calcula-
tion of the targeted yield strength.

These computational steps were also used to validate the 
reliability and accuracy of the hybrid model. As a first step 
of independent validation, an additional set of PHB samples 
was created and subsequently subjected to degradation that 
lasted 0, 1, 2, …, 12 min. Afterward, the IR spectra and the 
tensile strength of the samples were measured. Lastly, the IR 
spectra were used as a basis for the estimation of the tensile 
strength, as described above and graphically represented in 
Fig. 10a. The estimated tensile strength values were plotted 
against their measured counterparts; see Fig. 10b.

Figure 10b proves that our hybrid model is capable of a 
rather accurate estimation of the tensile strength of PHB if 
the time of degradation is shorter than 6–8 min. However, 
at degradation times longer than 8 min, the accuracy of the 
model seems to deteriorate. This undesired effect could 

Fig. 8  Testing the accuracy of the PCR model based on two (a) and ten (b) principal components

Fig. 9  Accuracy of PCR (open circle) and PLS (open square) meth-
ods as a function of the number of principal components
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be caused by several factors. First, the results presented 
in Fig. 1 indicate a positive correlation between the time 
of degradation and the standard deviation of the measured 
tensile strength values. Therefore, the prediction of tensile 
strength in the region where the degradation time exceeds 
8 min also becomes less reliable. The second factor is related 
to the degradation mechanism of PHB. The results presented 
above have proven that the degradation of PHB is determin-
istic: regardless of the wavenumber, the absorbance changes 
in one definite direction, i.e., is either increased or decreased 
by the ongoing degradation; see Figs. 3 and 4. At increased 
degradation times, however, stochastic factors might also 
alter the chemical characteristics of the polyester. An impor-
tant example is the formation of crosslinks; caused by the 
recombination of radicals. Some researchers call the process 
‘gelation’. This phenomenon, observed at degradation times 
exceeding 8–10 min, was found to make the accurate analy-
sis of the rheological properties of the melt very difficult. 
Similarly, it could also bias the analysis of IR absorbances 
by a stochastic error.

An additional limitation of the model is related to the 
mechanical shear of the melt. During processing with con-
ventional techniques (e.g., injection molding or extrusion), 
mechanical shear is inevitable, and it will contribute to the 
degradation. In contrast, the samples used as the source of 
IR data were thermo-oxidatively degraded under mechani-
cally static conditions. Therefore, the IR data does not show 
the effect of shear, such as the absorbance of new functional 
groups created by mechanical stress-induced chain frag-
mentation. Since this technical difficulty was encountered 

by many researchers in the past, the phenomenon of shear-
induced degradation has been studied extensively in the case 
of both neat polymers [52] and composites [53]. Due to its 
importance, advanced technologies, such as the finite ele-
ment method (FEM), have also been applied to quantitatively 
describe the influence of the stress field on degradation rate 
[54]. An additional limitation that must be taken into consid-
eration is related to the thermal inhomogeneity of the sam-
ple. In the case of products manufactured by any technology 
bearing industrial relevance, there are temperature gradients 
in the sample because some regions cool faster than others. 
Macromolecules located in regions that cool slower will be 
subjected to prolonged degradation. Therefore, the deterio-
ration of mechanical performance is expected to be more 
significant in these areas. In order to obtain representative 
data, it is recommended to analyze regions where the tem-
perature remained high for longer periods.

Despite the deviance shown in Fig. 10b and the limita-
tions discussed above, the measurements targeting the anal-
ysis of the accuracy of the model proved that it provides 
reliable results in the region bearing industrial relevance. 
For example, the cycle time of injection molding or the resi-
dence time of extrusion are generally shorter than 8 min, i.e., 
the model will be used in the region where it was proven 
to operate with acceptable accuracy. Therefore, we would 
like to propose its application in practice and envision its 
implementation as follows. First, the polymer-stabilizer pair 
is to be selected. Although our measurements were carried 
out with PHB and pomegranate extract, the technique is not 
material-dependent: as long as there is a direct correlation 

Fig. 10  Block diagram that demonstrates the workflow of using model (a) and the results of the measurements that targeted the analysis of its 
reliability (b)
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between the IR spectra of the material and the time of deg-
radation, the model will prove to be functional. Therefore, 
different microbial polyesters and/or different stabilizers 
may be used.

After the selection of the materials, the two halves of 
the model are to be constructed. The first half mathemati-
cally represents the correlation between the tensile strength 
and the time of the degradation; the second half does the 
same for the correlation between the IR spectrum and the 
time of the degradation (see Sect.  "Construction of the 
hybrid model"). Then, products may be manufactured by 
any arbitrary processing technique, e.g., injection molding 
or extrusion. After production, no quality assays that target 
the analysis of tensile strength are needed. Tensile tests are 
destructive: at least one product is lost and cannot be sold, 
i.e., the manufacturer loses money. Moreover, tensile tests 
assume specific geometry determined by standards, e.g., 
dumbbell shape. The preparation of such shapes ranges 
from difficult to impossible in the case of products that have 
geometries not resembling the shape determined by tensile 
testing standards.

All these drawbacks can be eliminated by using the 
method our research group has developed. After the manu-
facturing of the product, its IR spectrum is to be measured 
by an ATR accessory. ATR-IR measurements are fast and 
take only a few minutes, even if the analysis is repeated 
multiple times. Moreover, the technique is non-destructive, 
which also means the analyzed product can still be sold. 
Lastly, ATR-IR measurements do not assume any kind of 
specific geometry, i.e., no sample preparation is required. 
Our method only and exclusively needs the measurement of 
the IR spectrum of the product, preferably multiple times, 
in order to increase the reliability of the analysis. After pre-
processing the averaged spectra, the steps graphically rep-
resented in Fig. 10a should be followed. The computation 
yields an estimated value of the targeted tensile strength. 
The application of this method is especially beneficial if the 
parameters of processing are changed during production. 
Even if the material is degraded to a different extent (e.g., 
because the residence time has also changed), the model 
will be able to estimate the tensile strength altered by the 
modification of the parameters of processing.

Conclusions

Pomegranate extract was found to be an effective stabilizer 
of PHB. The mechanism of degradation is highly complex, 
even when there are no additives present in the polymer. 
The presence of plant extracts in the polymer matrix makes 
the thorough and complete analysis of all consecutive and 
parallel reactions that occur during degradation practically 
impossible. However, the mechanical properties, altered by 

the heat shock of processing, can still be predicted. A quick 
and cost-effective method can be based on simple ATR-IR 
measurements. Our studies have shown that degradation 
affects the IR spectrum of PHB considerably. The changes 
observed on the IR spectra provide a basis for the estimation 
of the mechanical properties, for example, tensile strength. 
Such estimation may be based on mathematical models; our 
results indicated that the most reliable models should consist 
of at least two parts. The first part describes the nonlinear 
correlation between the targeted tensile strength and the 
extent of degradation. In contrast, the second half of the 
model is linear and is meant to quantitatively characterize 
the correlation between the extent of degradation and the 
multidimensional set of IR absorbance values. The combina-
tion of the linear and nonlinear parts yields a hybrid model. 
The concept of this hybrid model was not proposed before: 
our research group was the first to notice and utilize that lin-
ear and nonlinear characteristics can be described simulta-
neously by combining the partial least squares method with 
nonlinear regression. This hybrid model was found to be 
capable of reliably estimating tensile strength despite its lim-
itations, mainly originating from the following factors. First, 
the model does not take into account that during processing 
with technologies bearing industrial relevance, mechanical 
shear inevitably influences the thermo-oxidative degrada-
tion of the polymer. Second, the formation of temperature 
gradients in products is unavoidable, i.e., some regions will 
cool faster than others. Therefore, the extent of degrada-
tion will depend on spatial coordinates. Consequently, the 
mechanical properties will also vary from location to loca-
tion, even though the model will provide a prediction only 
in the region analyzed with ATR-IR. In order to obtain data 
that can be used safely for prediction, it is recommended to 
investigate the regions where the process of cooling was the 
slowest, as the deterioration of mechanical performance is 
expected to be the most significant there. In spite of all these 
limitations, the model provides reliable results in the region 
of degradation times shorter than 8 min. In conclusion, this 
computational method provides predictions with consider-
able accuracy in the region bearing practical significance.
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