Skip to main content
Log in

Bio-producing and Characterizing Biochemical and Physicochemical Properties of a Novel Antioxidant Exopolysaccharide by Bacillus coagulans IBRC-M 10807

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

This study aimed to production, optimization, and characterization of an exopolysaccharide (EPS) by Bacillus coagulans IBRC-M10807. The maximum EPS production (234.21 ± 4.83 mg/L) was obtained under optimal incubation temperature 54.95 °C, incubation time 31.36 h, initial pH 5.73, casein peptone concentration 3.93%, and lactose concentration 1.33%. The monosaccharide compositions of EPS were mannose, rhamnose, glucose, and galactose, with an average molecular weight of 4.22 × 105 Da. Differential scanning calorimetry and thermogravimetric analysis showed that the EPS had high thermal stability with a melting point of 262.5 °C and degradation temperature of 276.29 °C. DPPH radical scavenging, hydroxyl radical scavenging, and reducing power of EPS were 85.25% ± 0.55%, 80.08% ± 0.31%, and 0.824 ± 0.008 at 2 mg/mL concentration, respectively. These results indicated that the EPS produced by B. coagulans IBRC-M10807 could be a promising candidate for use as a safe and natural antioxidant as well as a functional ingredient in the pharmacy and food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chakraborty I, Sen IK, Mondal S et al (2019) Bioactive polysaccharides from natural sources: a review on the antitumor and immunomodulating activities. Biocatal Agric Biotechnol 22:101425. https://doi.org/10.1016/j.bcab.2019.101425.

    Article  Google Scholar 

  2. Song Q, Wang Y, Huang L et al (2021) Review of the relationships among polysaccharides, gut microbiota, and human health. Food Res Int 140:109858. https://doi.org/10.1016/j.foodres.2020.109858.

    Article  CAS  PubMed  Google Scholar 

  3. Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G (2020) Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 60(9):1475–1495. https://doi.org/10.1080/10408398.2019.1575791.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Liu L, Chen F (2019) Production and characterization of exopolysaccharides from Chlorella zofingiensis and Chlorella vulgaris with anti-colorectal cancer activity. Int J Biol Macromol 134:976–983. https://doi.org/10.1016/j.ijbiomac.2019.05.117.

    Article  CAS  PubMed  Google Scholar 

  5. Asgher M, Qamar SA, Iqbal HMN (2021) Microbial exopolysaccharide-based nano-carriers with unique multi-functionalities for biomedical sectors. Biologia 76(2):673–685. https://doi.org/10.2478/s11756-020-00588-7.

    Article  CAS  Google Scholar 

  6. Schmid J, Sieber V, Rehm B (2015) Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 6:496. https://doi.org/10.3389/fmicb.2015.00496.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chugh B, Kamal-Eldin A (2020) Bioactive compounds produced by probiotics in food products. Curr Opin Food Sci 32:76–82. https://doi.org/10.1016/j.cofs.2020.02.003.

    Article  Google Scholar 

  8. Soumya MP, Nampoothiri KM (2021) An overview of functional genomics and relevance of glycosyltransferases in exopolysaccharide production by lactic acid bacteria. Int J Biol Macromol 184:1014–1025. https://doi.org/10.1016/j.ijbiomac.2021.06.131.

    Article  CAS  PubMed  Google Scholar 

  9. Trabelsi I, Slima SB, Chaabane H, Riadh BS (2015) Purification and characterization of a novel exopolysaccharides produced by Lactobacillus sp. Ca6. Int J Biol Macromol 74:541–546. https://doi.org/10.1016/j.ijbiomac.2014.12.045.

    Article  CAS  PubMed  Google Scholar 

  10. Sran KS, Sundharam SS, Krishnamurthi S, Choudhury AR (2019) Production, characterization and bio-emulsifying activity of a novel thermostable exopolysaccharide produced by a marine strain of Rhodobacter johrii CDR-SL 7Cii. Int J Biol Macromol 127:240–249. https://doi.org/10.1016/j.ijbiomac.2019.01.045.

    Article  CAS  PubMed  Google Scholar 

  11. Amiri S, Rezaei Mokarram R, Sowti Khiabani M et al (2019) Exopolysaccharides production by Lactobacillus acidophilus LA5 and Bifidobacterium animalis subsp. lactis BB12: optimization of fermentation variables and characterization of structure and bioactivities. Int J Biol Macromol 123:752–765. https://doi.org/10.1016/j.ijbiomac.2018.11.084.

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Du R, Qiao X et al (2020) Optimization and characterization of exopolysaccharides with a highly branched structure extracted from Leuconostoc citreum B-2. Int J Biol Macromol 142:73–84. https://doi.org/10.1016/j.ijbiomac.2019.09.071.

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Q, Feng F, Yang Y et al (2018) Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. Int J Biol Macromol 107:2234–2241. https://doi.org/10.1016/j.ijbiomac.2017.10.098.

    Article  CAS  PubMed  Google Scholar 

  14. Scariot MC, Venturelli GL, Prudêncio ES, Arisi ACM (2018) Quantification of Lactobacillus paracasei viable cells in probiotic yoghurt by propidium monoazide combined with quantitative PCR. Int J Food Microbiol 264:1–7. https://doi.org/10.1016/j.ijfoodmicro.2017.10.021.

    Article  CAS  PubMed  Google Scholar 

  15. Min M, Bunt CR, Mason SL, Hussain MA (2019) Non-dairy probiotic food products: an emerging group of functional foods. Crit Rev Food Sci Nutr 59(16):2626–2641. https://doi.org/10.1080/10408398.2018.1462760.

    Article  CAS  PubMed  Google Scholar 

  16. Gholam-Zhiyan A, Amiri S, Rezazadeh-Bari M, Pirsa S (2021) Stability of Bacillus coagulans IBRC-M 10807 and Lactobacillus plantarum PTCC 1058 in milk proteins concentrate (MPC)-based edible film. J Package Technol Res 5: 11–22. https://doi.org/10.1007/s41783-021-00106-3

    Article  Google Scholar 

  17. Kapse NG, Engineer AS, Gowdaman V et al (2019) Functional annotation of the genome unravels probiotic potential of Bacillus coagulans HS243. Genomics 111(4):921–929. https://doi.org/10.1016/j.ygeno.2018.05.022.

    Article  CAS  PubMed  Google Scholar 

  18. Khorasani A C, Shojaosadati S A (2017) Starch-and carboxymethylcellulose-coated bacterial nanocellulose-pectin bionanocomposite as novel protective prebiotic matrices. Food Hydrocoll 63: 273–285. https://doi.org/10.1016/j.foodhyd.2016.09.002

    Article  CAS  Google Scholar 

  19. Sekhavatizadeh SS, Aminlari M, Gheisari HR et al (2019) Physicochemical and microbiological properties of probiotic kashk containing Bacillus coagulans. J Consum Prot Food Saf 14(4):377–387. https://doi.org/10.1007/s00003-019-01226-4.

    Article  Google Scholar 

  20. Drewnowska JM, Fiodor A, Barboza-Corona JE, Swiecicka I (2020) Chitinolytic activity of phylogenetically diverse Bacillus cereus sensu lato from natural environments. Syst Appl Microbiol 43(3):126075. https://doi.org/10.1016/j.syapm.2020.126075.

    Article  CAS  PubMed  Google Scholar 

  21. Amiri S, Mokarram R R, Khiabani M S, Bari M R, Alizadeh M (2021) Optimization of food-grade medium for co-production of bioactive substances by Lactobacillus acidophilus LA-5 for explaining pharmabiotic mechanisms of probiotic. J. Food Sci. Technol 58: 1–12. https://doi.org/10.1007/s13197-020-04894-5.

    Article  CAS  PubMed  Google Scholar 

  22. Zhao D, Jiang J, Liu L et al (2021) Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. Int J Biol Macromol 178:306–315. https://doi.org/10.1016/j.ijbiomac.2021.02.182.

    Article  CAS  PubMed  Google Scholar 

  23. Dilna SV, Surya H, Aswathy RG et al (2015) Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT - Food Sci Technol 64(2):1179–1186. https://doi.org/10.1016/j.lwt.2015.07.040.

    Article  CAS  Google Scholar 

  24. Niknezhad S V, Morowvat M H, Najafpour Darzi G, Iraji A, Ghasemi Y (2018) Exopolysaccharide from Pantoea sp. BCCS 001 GH isolated from nectarine fruit: production in submerged culture and preliminary physicochemical characterizations. Food Sci Biotechnol, 27: 1735–1746. https://doi.org/10.1007/s13205-018-1515-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vinothkanna A, Sathiyanarayanan G, Balaji P et al (2021) Structural characterization, functional and biological activities of an exopolysaccharide produced by probiotic Bacillus licheniformis AG-06 from indian polyherbal fermented traditional medicine. Int J Biol Macromol 174:144–152. https://doi.org/10.1016/j.ijbiomac.2021.01.117.

    Article  CAS  PubMed  Google Scholar 

  26. Wang J, Salem DR, Sani RK (2021) Two new exopolysaccharides from a thermophilic bacterium Geobacillus sp. WSUCF1: characterization and bioactivities. N Biotechnol 61:29–39. https://doi.org/10.1016/j.nbt.2020.11.004.

    Article  CAS  PubMed  Google Scholar 

  27. Gangalla R, Sampath G, Beduru S et al (2021) Optimization and characterization of exopolysaccharide produced by Bacillus aerophilus rk1 and its in vitro antioxidant activities. J King Saud Univ Sci 33(5):101470. https://doi.org/10.1016/j.jksus.2021.101470.

    Article  Google Scholar 

  28. Tian J, Wang X, Zhang X et al (2021) Isolation, structural characterization and neuroprotective activity of exopolysaccharide from Paecilomyces cicada TJJ1213 Int J Biol Macromol 183:1034–1046. https://doi.org/10.1016/j.ijbiomac.2021.05.047.

    Article  CAS  PubMed  Google Scholar 

  29. Saravanan C, Shetty PKH (2016) Isolation and characterization of exopolysaccharide from Leuconostoc lactis KC117496 isolated from idli batter. Int J Biol Macromol 90:100–106. https://doi.org/10.1016/j.ijbiomac.2015.02.007.

    Article  CAS  PubMed  Google Scholar 

  30. Hu X, Pang X, Wang PG, Chen M (2019) Isolation and characterization of an antioxidant exopolysaccharide produced by Bacillus sp. S-1 from Sichuan Pickles. Carbohydr Polym 204:9–16. https://doi.org/10.1016/j.carbpol.2018.09.069.

    Article  CAS  PubMed  Google Scholar 

  31. Cao C, Li Y, Wang C et al (2020) Purification, characterization and antitumor activity of an exopolysaccharide produced by Bacillus velezensis SN-1. Int J Biol Macromol 156:354–361. https://doi.org/10.1016/j.ijbiomac.2020.04.024.

    Article  CAS  PubMed  Google Scholar 

  32. Adebayo-Tayo B, Ishola R, Oyewunmi T (2018) Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnol Rep 19:e00271. https://doi.org/10.1016/j.btre.2018.e00271.

    Article  Google Scholar 

  33. Karadayi YI, Aykutoglu G, Arslan NP et al (2021) Production of water-soluble sulfated exopolysaccharide with anticancer activity from Anoxybacillus gonensis YK25. J Chem Technol Biotechnol 96(5):1258–66. https://doi.org/10.1002/jctb.6638.

    Article  CAS  Google Scholar 

  34. Chug R, Mathur S, Kothari SL et al (2021) Maximizing EPS production from Pseudomonas aeruginosa and its application in cr and ni sequestration. Biochem Biophys Rep 26:100972. https://doi.org/10.1016/j.bbrep.2021.100972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Habibi N, Soleimania-zad S, Zeinoddin MS (2011) Exopolysaccharides produced by pure culture of Lactobacillus, streptococcus and yeast isolated from Kefir Grain by Microtiter plate assay: optimization and comparison. World Appl Sci J 12:742–50.

    CAS  Google Scholar 

  36. Zehir Şentürk D, Dertli E, Erten H, Şimşek Ö (2020) Structural and technological characterization of ropy exopolysaccharides produced by Lactobacillus plantarum strains isolated from Tarhana. Food Sci Biotechnol 29:121–9. https://doi.org/10.1007/s10068-019-00641-5.

    Article  CAS  PubMed  Google Scholar 

  37. Insulkar P, Kerkar S, Lele SS (2018) Purification and structural-functional characterization of an exopolysaccharide from Bacillus licheniformis PASS26 with in-vitro antitumor and wound healing activities. Int J Biol Macromol 120:1441–1450. https://doi.org/10.1016/j.ijbiomac.2018.09.147.

    Article  CAS  PubMed  Google Scholar 

  38. Kodali VP, Das S, Sen R (2009) An exopolysaccharide from a probiotic: biosynthesis dynamics, composition and emulsifying activity. Food Res Int 42(5): 695–699. https://doi.org/10.1016/j.foodres.2009.02.007.

    Article  CAS  Google Scholar 

  39. Yang Y, Feng F, Zhou Q et al (2018) Isolation, purification and characterization of exopolysaccharide produced by Leuconostoc pseudomesenteroides YF32 from soybean paste. Int J Biol Macromol 114:529–535. https://doi.org/10.1016/j.ijbiomac.2018.03.162.

    Article  CAS  PubMed  Google Scholar 

  40. Sandhya V, Ali SZ (2015) The production of exopolysaccharide by Pseudomonas putida GAP-P45 under various abiotic stress conditions and its role in soil aggregation. Microbiology 84(4):512–519. https://doi.org/10.1134/S0026261715040153.

    Article  CAS  Google Scholar 

  41. Arun J, Selvakumar S, Sathishkumar R et al (2017) In vitro antioxidant activities of an exopolysaccharide from a salt pan bacterium Halolactibacillus miurensis. Carbohydr Polym 155:400–406. https://doi.org/10.1016/j.carbpol.2016.08.085.

    Article  CAS  PubMed  Google Scholar 

  42. Liu T, Zhou K, Yin S et al (2019) Purification and characterization of an exopolysaccharide produced by Lactobacillus plantarum HY isolated from home-made Sichuan Pickle. Int J Biol Macromol 134:516–526. https://doi.org/10.1016/j.ijbiomac.2019.05.010.

    Article  CAS  PubMed  Google Scholar 

  43. Farag MMS, Moghannem SAM, Shehabeldine AM, Azab MS (2020) Antitumor effect of exopolysaccharide produced by Bacillus mycoides. Microb Pathog 140:103947. https://doi.org/10.1016/j.micpath.2019.103947.

    Article  CAS  PubMed  Google Scholar 

  44. Kodali VP, Perali RS, Sen R (2011) Purification and partial elucidation of the structure of an antioxidant carbohydrate Biopolymer from the probiotic bacterium Bacillus coagulans RK-02. J Nat Prod 74(8):1692–1697. https://doi.org/10.1021/np1008448.

    Article  CAS  PubMed  Google Scholar 

  45. Fan Y, Wang J, Gao C et al (2020) A novel exopolysaccharide-producing and long-chain n-alkane degrading bacterium Bacillus licheniformis strain DM-1 with potential application for in-situ enhanced oil recovery. Sci Rep 10(1):8519. https://doi.org/10.1038/s41598-020-65432-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu L, Xu S, Deng C et al (2016) Preparation and partial structural characterization of the exopolysaccharide from Bacillus mucilaginosus SM-01. Carbohydr Polym 146: 217–223. https://doi.org/10.1016/j.carbpol.2016.03.038.

    Article  CAS  PubMed  Google Scholar 

  47. Mao YH, Song AX, Li LQ et al (2020) A high-molecular weight exopolysaccharide from the Cs-HK1 fungus: Ultrasonic degradation, characterization and in vitro fecal fermentation. Carbohydr Polym 246:116636. https://doi.org/10.1016/j.carbpol.2020.116636.

    Article  CAS  PubMed  Google Scholar 

  48. Alvandi H, Hatamian-Zarmi A, Hosseinzadeh BE et al (2021) Improving the biological properties of Fomes fomentarius MG835861 exopolysaccharide by bioincorporating selenium into its structure. Carbohydr Polym Technol Appl 2:100159. https://doi.org/10.1016/j.carpta.2021.100159.

    Article  CAS  Google Scholar 

  49. Nambiar RB, Sellamuthu PS, Perumal AB et al (2018) Characterization of an exopolysaccharide produced by Lactobacillus plantarum HM47 isolated from human breast milk. Process Biochem 73:15–22. https://doi.org/10.1016/j.procbio.2018.07.018.

    Article  CAS  Google Scholar 

  50. Miletić D, Turło J, Podsadni P et al (2021) Production of bioactive selenium enriched crude exopolysaccharides via selenourea and sodium selenite bioconversion using Trametes versicolor. Food Biosci 42:101046. https://doi.org/10.1016/j.fbio.2021.101046.

    Article  CAS  Google Scholar 

  51. Ayyash M, Abu-Jdayil B, Itsaranuwat P et al (2020) Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk. Int J Biol Macromol 144:938–946. https://doi.org/10.1016/j.ijbiomac.2019.09.171.

    Article  CAS  PubMed  Google Scholar 

  52. Saleem M, Malik S, Mehwish HM et al (2021) Isolation and functional characterization of exopolysaccharide produced by Lactobacillus plantarum S123 isolated from traditional chinese cheese. Arch Microbiol 203(6):3061–3070. https://doi.org/10.1007/s00203-021-02291-w.

    Article  CAS  PubMed  Google Scholar 

  53. You X, Yang L, Zhao X et al (2020) Isolation, purification, characterization and immunostimulatory activity of an exopolysaccharide produced by Lactobacillus pentosus LZ-R-17 isolated from tibetan kefir. Int J Biol Macromol 158:408–419. https://doi.org/10.1016/j.ijbiomac.2020.05.027.

    Article  CAS  PubMed  Google Scholar 

  54. Sathishkumar R, Kannan R, Jinendiran S et al (2021) Production and characterization of exopolysaccharide from the sponge-associated Bacillus subtilis MKU SERB2 and its in-vitro biological properties. Int J Biol Macromol 166:1471–1479. https://doi.org/10.1016/j.ijbiomac.2020.11.026.

    Article  CAS  PubMed  Google Scholar 

  55. Omar-Aziz M, Yarmand MS, Khodaiyan F et al (2020) Chemical modification of pullulan exopolysaccharide by octenyl succinic anhydride: optimization, physicochemical, structural and functional properties. Int J Biol Macromol 164:3485–3495. https://doi.org/10.1016/j.ijbiomac.2020.08.158.

    Article  CAS  PubMed  Google Scholar 

  56. Taylan O, Yilmaz MT, Dertli E (2019) Partial characterization of a levan type exopolysaccharide (EPS) produced by Leuconostoc mesenteroides showing immunostimulatory and antioxidant activities. Int J Biol Macromol 136:436–444. https://doi.org/10.1016/j.ijbiomac.2019.06.078.

    Article  CAS  PubMed  Google Scholar 

  57. Feng X, Zhang H, Lai PFH et al (2021) Structure characterization of a pyruvated exopolysaccharide from Lactobacillus plantarum AR307. Int J Biol Macromol 178:113–120. https://doi.org/10.1016/j.ijbiomac.2021.02.119.

    Article  CAS  PubMed  Google Scholar 

  58. İspirli H, Sagdic O, Yılmaz MT, Dertli E (2019) Physicochemical characterisation of an α-glucan from Lactobacillus reuteri E81 as a potential exopolysaccharide suitable for food applications. Process Biochem 79:91–96. https://doi.org/10.1016/j.procbio.2018.12.015.

    Article  CAS  Google Scholar 

  59. Lakra AK, Domdi L, Tilwani YM, Arul V (2020) Physicochemical and functional characterization of mannan exopolysaccharide from Weissella confusa MD1 with bioactivities. Int J Biol Macromol 143:797–805. https://doi.org/10.1016/j.ijbiomac.2019.09.139.

    Article  CAS  PubMed  Google Scholar 

  60. Abid Y, Azabou S, Joulak I et al (2019) Potential biotechnological properties of an exopolysaccharide produced by newly isolated Bacillus tequilensis-GM from spontaneously fermented goat milk. LWT - Food Sci Technol 105:135–141. https://doi.org/10.1016/j.lwt.2019.02.005.

    Article  CAS  Google Scholar 

  61. Hu X, Li D, Qiao Y et al (2020) Purification, characterization and anticancer activities of exopolysaccharide produced by Rhodococcus erythropolis HX-2. Int J Biol Macromol 145:646–654. https://doi.org/10.1016/j.ijbiomac.2019.12.228.

    Article  CAS  PubMed  Google Scholar 

  62. Kavitake D, Delattre C, Devi PB et al (2019) Physical and functional characterization of succinoglycan exopolysaccharide produced by Rhizobium radiobacter CAS from curd sample. Int J Biol Macromol 134:1013–1021. https://doi.org/10.1016/j.ijbiomac.2019.05.050.

    Article  CAS  PubMed  Google Scholar 

  63. Vu TH, Quach NT, Nguyen NA et al (2021) Genome mining associated with analysis of structure, antioxidant activity reveals the potential production of Levan-Rich exopolysaccharides by food-derived Bacillus velezensis VTX20. Appl Sci. https://doi.org/10.3390/app11157055

    Article  Google Scholar 

  64. Bouallegue A, Casillo A, Chaari F et al (2020) Levan from a new isolated Bacillus subtilis AF17: purification, structural analysis and antioxidant activities. Int J Biol Macromol 144:316–324. https://doi.org/10.1016/j.ijbiomac.2019.12.108.

    Article  CAS  PubMed  Google Scholar 

  65. Rani RP, Anandharaj M, Sabhapathy P, Ravindran AD (2017) Physiochemical and biological characterization of novel exopolysaccharide produced by Bacillus tequilensis FR9 isolated from chicken. Int J Biol Macromol 96:1–10. https://doi.org/10.1016/j.ijbiomac.2016.11.122.

    Article  CAS  PubMed  Google Scholar 

  66. Li Y, Liu Y, Cao C et al (2020) Extraction and biological activity of exopolysaccharide produced by Leuconostoc mesenteroides SN-8. Int J Biol Macromol 157:36–44. https://doi.org/10.1016/j.ijbiomac.2020.04.150.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Urmia University for its financial support.

Funding

This work is financed by Urmia University, Iran (No: 3308; May/31/2020).

Author information

Authors and Affiliations

Authors

Contributions

AA: methodology, investigation, data curation, writing—original draft preparation. MRB:  supervision. SA: supervision, conceptualization, methodology, software, validation, writing—reviewing and editing.    

Corresponding author

Correspondence to Saber Amiri.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asianezhad, A., Bari, M.R. & Amiri, S. Bio-producing and Characterizing Biochemical and Physicochemical Properties of a Novel Antioxidant Exopolysaccharide by Bacillus coagulans IBRC-M 10807. J Polym Environ 31, 4338–4352 (2023). https://doi.org/10.1007/s10924-023-02892-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-023-02892-0

Keywords

Navigation