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Abstract
Photochromic and photoluminescent clothes can be described as smart textiles that alter their color and emission spectra 
upon exposure to a light stimulus. Recycled nonwoven polyester fabrics screen-printed with rare-earth strontium aluminate 
nanoparticles were developed to introduce photochromic and photoluminescent properties. Both spinning and preparation of 
nonwoven fibrous mat was performed industrially starting from recycled polyester waste. Aqueous-based phosphor-binder 
nanocomposites containing different concentrations of inorganic phosphor with excellent thermal and photostability were 
applied directly onto nonwoven polyester fabrics. The screen-printing process produced a uniform photochromic and pho-
toluminescent film onto the nonwoven polyester surface that showed strong green emission color (440 nm) under UV light 
even at lower phosphor concentrations (0.5 wt%) in the printing paste. The excitation wavelength of the printed nonwoven 
polyester samples was monitored at 382 nm. Long-persistent greenish-yellow phosphorescence was detected in the dark 
at higher phosphor concentrations. The morphological microscopic data of phosphor nanoparticles and printed nonwoven 
polyester fabrics were collected using various analytical methods. TEM analysis of phosphor nanoparticles designated diam-
eters of 4–11 nm, whereas XRD analysis indicated a crystal size of 9 nm. The printed cloth exhibited a quick and reversible 
photochromic emission when exposed to ultraviolet light. The ultraviolet protection, antimicrobial and superhydrophobic 
properties were improved with increasing the pigment concentration in the printing paste. The static contact and slide angles 
improved in the ranges of 108.6°–132.6°, and 12°–7°, respectively. The effects of increasing the phosphor concentration in 
the printing paste on the comfort features and colorfastness were examined.

Keywords Nonwoven polyester fabric · Lanthanide-doped aluminate nanoparticles · Photochromism · Fluorescence · Long-
persistent phosphorescence

Introduction

Smart fabrics has been defined as clothes that perceive and 
respond to ambient variables like temperature, pH, chemi-
cals, magnetic field, light, solvent polarity, pressure, and 
electricity [1–3]. Wearable smart textiles can help regulate 
muscle vibrations during physical activity and even release 
chemicals that can regulate body temperature. They can alter 

their colors and show optical patterns such as images and 
even videos [4–7]. As a general rule of thumb, smart clothes 
must have three primary parts, including sensor, actuator, 
and controller. The classic textile manufacturing processes, 
including weaving, knitting, embroidery, finishing, coating 
and laminating, are often used in the production of smart 
clothing [8–10]. Digital components integrated in textiles 
can also provide the potential to transform, communicate 
and conduct energy, providing smart electronic textiles. It is 
possible for smart textiles that have sufficient responsiveness 
to boost their sensing ability [11]. For instance, a photochro-
mic fabric changes its color once exposed to light [12]. A 
photochromic compound, in either solution or solid state, 
can change its color upon exposure to light and returns to its 
origin colorimetric state when the light stimulus is removed. 
Scientific attention has been paid to this unique color-chang-
ing technology, which can be used in various products like 
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sunglasses, optical switches, cosmetics, packaging, ophthal-
mic lenses, optical data storage, memory, displays, and sen-
sors [13–15]. Using photochromic or fluorescent colorants 
enhances the visibility of various products such as traffic 
and road signs, and advertisements [16–20]. Imparting pho-
tochromism to textiles can provide inventive materials to 
achieve smart clothing able to block and sense harmful ultra-
violet rays, and provide security prints for brand protection, 
fire brigades and policeman clothing, electronic displays, 
security barcodes, sport clothing, fashion garments, sensor 
systems, and attractive decorations [21–23]. It has been also 
possible to use the photochromic effect in military apparel 
to create light-induced camouflage [24]. The advantages 
of stimuli-responsive and protective clothing are their ease 
of washing and drying, extraordinarily high surface area, 
light weight, as well as enhanced elasticity, tensibility, and 
strength. In addition to their low cost and wide availability, 
various sensors can be easily integrated into protective cloth-
ing systems without requiring any changes to the manufac-
turing process [25]. Fabrics with photochromic properties 
could be made without having to compromise their comfort 
or ease of care. Thus, researchers have been challenged to 
design innovative smart textiles with fluorescence-driven 
photochromism [26].

Photochromic fabrics can be classified into two catego-
ries: fabrics that emit different colors once induced with vis-
ible light source, and photochromic fibers that emit different 
color upon exposed by UV rays [27]. Many fibers and/or 
textiles have been dyed using photochromic and photolumi-
nescent organic dyes, such as spirooxazines, in order to make 
photochromic fibers and/or fabrics from various substrates 
such as cotton and polyester [28]. However, photochromic 
and photoluminescent organic dyes pose a number of dis-
advantages during the dyeing process, including degrada-
tion of dye molecules, weak interaction of the organic dye 
with fibers, and inhibition of photochromic activity due to 
matrix hardness [29]. The performance of photochromic 
and photoluminescent organic compounds can be improved 
by microencapsulation. Despite the increased stability of 
photochromic compounds achieved by microencapsulation, 
this procedure could have a detrimental effect on the fabric 
comfort properties [30–33]. Otherwise, photochromic fab-
rics could be made by screen-printing technology utilizing 
an aqueous binding agent enclosing photochromic and pho-
toluminescent dyestuff, which avoids many dyeing disad-
vantages. It has been straightforward and inexpensive to use 
screen-printing to create prints [34]. Pigment printing tops 
the list of textile printing industry as it has been the oldest 
and most straightforward coating method. Pigment printing 
technology has been used for about 80% of printed textiles 
because of its apparent benefits, such as versatility [35]. In 
contrast to inorganic pigments, organic photochromic and 
photoluminescent colorants have a lower photostabilty and 

are more expensive. Due to the fact that the organic colorants 
based photochromic textiles are quickly fade due to extended 
exposure to repetitive washing, heat, perspiration, light, and 
rubbing, photochromic fabrics often have poor qualities that 
need to be enhanced to suit customer expectations [28–30]. 
Using a screen-printing approach, inorganic pigment phos-
phor may be immobilized onto a binder-thickener printing 
matrix before being incorporated into the fabric surface to 
create photochromic textiles with improved photochromic 
and photoluminescent capabilities, dye stability, and com-
fort properties [36]. Textile substrates could benefit greatly 
from photochromic and fluorescent qualities provided by 
strontium aluminate phosphors that preserve the original 
fabric/fiber features like appearance, handling, comfort-
ability and stiffness. As of today there are a variety of long-
lasting luminous materials that could be used as primary 
color emitters like  Eu2+/Dy3+ doped  CaMgSi2O6 [37] and 
 Eu2+/Nd3+ doped  CaAl2O4 [38] for bluish emission,  Eu2+/
Dy3+ doped  SrAl2O4 [39] and  Mn2+ doped  MgAl2O4 [40] 
for greenish emission, and  Eu2+/Tm3+/Ce3+ doped CaS [41] 
and  Eu3+/Mg2+/Ti4+ doped  Y2O2S [42] for reddish emission. 
Using  SrAl2O4:  Eu2+,  Dy3+ as a long-lasting phosphor, it 
was shown to have outstanding chemical and photostabil-
ity, better brightness, and longer persistence period. It is 
also harmless, radioactive-free, and recyclable [43–47]. A 
new approach to developing more effective and stable smart 
garments is to use inorganic pigment phosphor in aqueous 
binder to print high-tech textiles that can be tuned for spe-
cific photochromic and photoluminescent properties. This 
approach is cost-effective, and opens up new avenues for 
the production of more efficient and stable functional cloth-
ing. The screen-printing application of an aqueous binder 
containing strontium aluminate phosphor onto recycled non-
woven polyester fabrics to produce light-responsive color 
changeable textiles has not yet been described.

Experimental

Materials

Thickener alcoprint PTP and Binder additive were purchased 
from Dystar (Egypt). All raw materials utilized in the syn-
thesis of rare-earth strontium aluminate were obtained from 
different commercial sources, including europium (III) oxide 
 (Eu2O3; Merck), strontium (II) carbonate  (SrCO3; Aldrich), 
boric acid  (H3BO3; Merck), aluminium (III) oxide  (Al2O3; 
Merck), and dysprosium (III) oxide  (Dy2O3; Aldrich).

Spinning Process of Recycled Polyester Waste

Recycled polyester chips were firstly dried at 140 °C before 
extrusion. The dry mix was placed in hoppers tanks. The 
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extrusion process was carried out on the spinning line 
located in MakaremTex Company, Abu-Rawash, Six-Octo-
ber City, Giza, Egypt. The melt was subjected to an extru-
sion process using an automatic pressure control booster 
pump. The extrusion process was carried out under constant 
rate, and then adjusted with geared pump. Screw extruder 
with length-to-diameter of 24 was employed to conduct the 
extrusion process at 300 psi using three static mixers. The 
extruder initial zone was adjusted at 200 °C, the second zone 
was adjusted at 220 °C, and the third one was set at 250 °C. 
A spin pack was applied for the multi-filament spinning 
yarns, and was coupled to mesh filtration screen. The spin-
neret round orifice had a diameter of 0.7 mm, and a length 
of 1.5 mm. The multi-filament yarn was cooled to ambient 
conditions, and treated with lubricant before drawing at a 
ratio up to 2. The final denier was monitored at 6–15.

Manufacturing of Polyester Nonwoven Fabrics

The provided polyester fibers from the previous pilot scale 
production have been used for the manufacturing of the cor-
responding nonwoven fabrics. This was carried out using 
mechanical needle punched process on the production Line 
of Egyptex Company in Six-October City, Giza, Egypt. The 
needle punch industry has been one of the most successful 
achievements in textile-related industrial processes for both 
synthetic and natural fibers. The needle punching process 
for nonwovens was developed by mechanical orientation and 
interlock of polyester fibers by carded web or spun bonded 
procedures. The nonwoven fabric depends on fibrous webs. 
The web properties determine the physical behavior of the 
product [48–50]. The web properties rely mainly on the web 
geometrical properties, which can be reported by the web 
formation mode. The web geometrical properties includes 
the degree of interfiber entanglements or engagements, fiber 
shape (curled, hooked or straight), the predominant fiber 
direction (random or oriented), and compaction (crimp or 
z-direction). The web properties were also affected by web 
weight, fiber length, fiber diameter, as well as the mechani-
cal and chemical properties of the polymer. The forming web 
method was identified by the length of fiber. The web forma-
tion from Staple-Length Fibers depends on the carding pro-
cess. On the other hand, the web forming method from short 
fibers depends on the papermaking technology. Although 
those technologies are still in use, new techniques have been 
presented in textile industry. For instance, the web is pre-
pared from long virtually endless filaments directly from the 
polymer bulk, whereas fibers are prepared simultaneously.

Preparation of Phosphor Nanoparticles

The high-temperature solid-state synthetic procedure 
[51] was used to synthesize the strontium aluminate 

phosphor  (SrAl2O4:  Eu2+,  Dy3+). The powder com-
pounds,  Eu2O3,  Al2O3,  SrCO3, and  Dy2O3, were admixed 
with 5% of  H3BO3 according to a mole ratio of 
Dy:Eu:Al:Sr = 0.01:0.02:1:2. The admixture was dispersed 
in ethanol (100 mL), and exposed to ultrasonic at 35 kHz 
for 20 min. It was dried at 90 °C over 22 h, pulverized 
in a ball milling system for two hours, and sintered at 
1300 °C (3 h). The provided powder was then milled and 
sieved using Triple Roll Mill ES80 to afford  Eu2+,  Dy3+ 
activated strontium aluminate phosphor microparticles 
(11–23 µm). To obtain the pigment nanoscale particles, 
the provided microscale fine particles (10 g) was placed in 
a ball milling vial mounted on a vibrating disc according 
to the top–down method [52]. Another ball milling made 
of silicon carbide (SiC) was exposed to repetitive colli-
sions for 24 h with the pigment micropowder in the vial 
and the vibration disc to provide the phosphor nanoscale 
particles. The morphology of the phosphor nanoparticles 
was verified by transmission electron microscopy (TEM) 
and X-ray diffraction (XRD).

Preparation of Photoluminescent Nonwoven 
Polyester Fabrics

A high-speed mixer was used for 10 min to enable the syn-
thetic thickening alcoprint PTP (2%; w/v) in distilled water 
to reach full viscosity. A mixture of  NH4OH (0.2%; w/w), 
diammonium phosphate (0.2%; w/w), and a binding agent 
(15%; w/w) was combined with alcoprint PTP thickener 
(84.6%; w/w) to create the printing stock paste. A high-shear 
mixer was used to stir the phosphor pigment at different 
ratios, including zero, 0.1, 0.5, 1, 3, 5, 7, 9, 11, 13, and 
15% (w/w) for 15 min. The phosphor nanoparticles must be 
effectively dispersed in the printing paste without aggrega-
tion in order to form transparent pigment-binder composite 
layer onto polyester surface. Printing pastes are thickened 
with a little quantity of thickener when the viscosity of the 
printing paste drops below 21,000 cps at a shear rate of 2.18. 
The flat print screen was used to apply all printing pastes 
onto nonwoven polyester textiles. After drying for 30 min at 
room temperature, an automated thermo-static oven (Werner 
Mathis; Switzerland) thermally fixed the finished textiles 
for 4 min. The provided printed fabrics were subjected to 
washing with water (50 °C), washing with tap water, and 
then air-dried. Depending on the phosphor concentration, 
the screen-printed nonwoven polyester fabrics (NPF) were 
represented by symbols from  NPF0 to  NPF10, respectively. 
The morphological microscopic data of the printed nonwo-
ven polyester fabrics were collected by energy-dispersive 
X-ray analyzer (EDXA), scanning electron microscopy 
(SEM), Fourier-transform infrared spectroscopy (FT-IR), 
and X-ray fluorescence (XRF).
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Characterization and Methods

Morphological Features

The morphological analysis and chemical composition were 
handled by Quanta FEG250 (SEM; Czech Republic) paired 
to EDXA (TEAM Model). In addition to EDXA, sequential 
AXIOS XRF was employed to report the elemental con-
tents of the printed polyester substrates. XRD analysis of 
the phosphor nanoparticles was examined by X-ray diffrac-
tometer (Bruker Advance D-8; copper radiation (Kα); Ger-
many). The crystallite size was determined by Scherrer’s 
equations [5, 44]. TEM (JEOL1230; Japan) was utilized to 
study the morphology of the phosphor particles that were 
previously suspended in distilled water, and homogenized 
(35 kHz) for 30 min. FT-IR spectral analysis was used in 
the ATR mode using Nexus 670 (Thermo Nicolet, Madison, 
WI, USA).

Luminescence Spectra

JASCO FP-8300 spectrofluorometer (JASCO; Japan) was 
utilized to analyze the emission and excitation spectra of 
the printed polyester substrates at room temperature. Phos-
phorescence accessories were applied to measure lifetime 
spectra. The ultraviolet supply is Xenon Arc (150 W) with 
slit bandwidth of 5 nm. All emission spectra were collected 
under the same geometrical circumstances. The instrument 
introduces corrected excitation spectral analysis, and the 
emission spectral analysis was corrected for the emission 
monochromator and photomultiplier responsiveness. The 
ultraviolet- irradiation was provided by an ultraviolet light 
supply (365 nm; 6 W).

Resistance to Fatigue

According to previously reported procedures [53], the tech-
nical performance and colorimetric changes of the printed 
polyester samples were examined.  NPF8 was exposed to 
ultraviolet irradiation for 4 min, and placed in a darkened 
box for 60 min. The irradiation/darkening cycle was per-
formed several times, while recording the emission spectra.

Colorimetric Properties

Using the three-dimensional CIE Lab coordinate system (L*, 
a*, and b*) was used to report the colorimetric values [46, 
47]. An ultraviolet lamp (λmax = 365 nm; 6 W) was employed 
to irradiate the fabric for 4 min. The colorimetric measure-
ments were reported before and directly after irradiation. 
The high reflectance approach was employed to gauge the 

colorimetric strength (K/S) of the printed samples. Photo-
graphic images of the phosphor-containing polyester fabric 
 (NPF8) were captured by A710IS Canon digital camera.

Colorfastness Assessment

The colorfastness properties of the printed nonwoven polyes-
ter fabrics were determined according to previously reported 
standard procedures, including ISO:105:X12 (1987) for 
crocking, ISO:105:B02 (1988) for light, ISO:105:E04 (1989) 
for perspiration, and ISO:105:C02 (1989) for washing [54, 
55].

Comfort Properties

Textest FX 3300 (ASTM D737 standard method) was used 
to measure the air permeability of the screen-printed non-
woven polyester fabrics at 100 Pa [56]. Shirley Stiffness 
tool was employed to record stiffness under British standard 
3356(1961) standardized method [57].

Hydrophobic Properties

Both contact and slide angles were examined by Data phys-
ics OCA15EC (Germany) under ASTM D7334 standard 
method [58].

Assessment of UV Protection

According to previously reported procedures [59], the 
printed polyesters were inspected by recording the Ultravio-
let Protection Factor (UPF) to explore their UV protection. 
The ultraviolet/visible spectrophotometer system (AATCC 
183:2010 UVA Transmittance) was used to calculate the 
UPF of the sun-protective samples described by AS:NZS 
4399(1996).

Antimicrobial Features

The antimicrobial properties of printed samples were studied 
against C. albican, S. aureus and E. coli. The antimicrobial 
tests were conducted quantitatively under AATCC 100:1999 
procedure [60].

Results and Discussion

Characterization of Printed Polyesters

Organic photochromic dyes undergo a structural change as 
a result of their photophysical transition, which has a detri-
mental influence on their photochromic properties.
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Thus, steric hindrance has been a common problem 
for organic photochromic dyes when they are enclosed in 
printed films, which results in hampered performance of 
their photochromic activity [28, 29]. With poor photosta-
bility and limited use in outdoor conditions or under intense 
UV light, continuous UV exposure to organic photochromic 
molecules could cause deterioration and progressive reduc-
tion in their photochromic reaction [28–30]. Strontium alu-
minate pigments doped with divalent europium have previ-
ously been shown to be highly photostable under UV light, 
with increased fatigue resistance as well as rapid coloration/
decoloration transitions. Thus, strontium aluminate phos-
phors have been used recently in countless products like 
switches, lights, smart inks, glow in the dark items, smart 
windows, luminous decorations, smart packaging, guiding 
signs, and safety markers [43–45]. The morphology and size 
of the rare-earth activated strontium aluminate nanoscale 
particles were examined by TEM images to indicate spheri-
cal structure with diameters of 4–11 nm as shown in Fig. 1.

XRD spectra of phosphor nanoparticles were analyzed. 
The phosphor diffraction signals were identical to the pure 
monoclinic phase of  SrAl2O4. The absence of other signals 
indicates full integration of dopants  (Eu2+ and  Dy3+) into 
low temperature monoclinic phase of  SrAl2O4 crystal lattice 
[44]. Using Scherrer’s equation [5], the phosphor crystal size 
was detected at 9 nm, which is well-matched with the parti-
cle size detected by TEM. The morphologies of the screen-
printed nonwoven polyester fabrics were examined by SEM, 
EDXA, XRF and FTIR. The physical properties of the fabric 
fibrous structure were not affected after printing. However, 
the SEM images of the screen-printed nonwoven polyester 
surface displayed clusters of lanthanide-doped strontium alu-
minate nanoparticles as presented in Fig. 2. The elemental 
compositions of both blank and screen-printed nonwoven 
polyester fabrics were studied by EDXA (Fig. 3). The ele-
mental contents at three points on the nonwoven polyester 
surface are shown in Table 1. The chemical compositions of 
the colored nonwoven polyester fabrics were quite similar 

at the three inspected points, confirming homogeneous 
phosphor distribution on the nonwoven polyester surface. 
The mapping of elements on fabrics was also examined to 
confirm a homogeneous distribution of  SrAl2O4:  Eu2+  Dy3+ 
(Fig. 4).

In the polyethylene terephthalate polymer that makes 
up the nonwoven polyester fabric, carbon (C) and oxygen 
(O) are the main constituents detected by EDX. The use of 
lanthanide-doped strontium aluminium oxide at low con-
centrations was the cause for the recognition of Al, Eu, Dy, 
and Sr. The elemental compositions of the screen-printed 
polyesters were reported by XRF as shown in Table 2. EDX 
is a precise method for the determination of elemental con-
tents at low concentrations. XRF has a detection limit of 
10 ppm [61]. XRF affords incomplete elemental detection, 

Fig. 1  TEM micrographs of lanthanide-doped aluminate nanoparticles

Fig. 2  SEM images of  NPF8 at various magnifications



5244 Journal of Polymers and the Environment (2022) 30:5239–5251

1 3

identifying only strontium and aluminium because Dy and 
Eu are present in very low concentrations less than 10 mg/
kg on the treated cloth surface. Thus, XRF was incapable 
to recognize Dy and Eu in  NPF1,  NPF2,  NPF3, and  NPF4. 
The molar ratios applied to synthesize both pigment and 
screen-printing paste were compatible with those identified 
by EDXA and XRF on the screen-printed polyesters.

The functional substituents on the surface of the non-
woven polyester fabrics were inspected by FTIR spectra 

as depicted in Fig. 5. The aliphatic C–H stretch displayed 
an absorption band at 2961  cm−1. The carbonyl stretch 
was attributed to the absorption band at 1707  cm−1 [62]. 
The symmetric tetrahedron lattice structures of Al–O and 
O–Al–O were proved by two bands at 431 and 719  cm−1, 
respectively. The peak monitored at 506  cm−1 could be 
due to the crystal lattice of Sr–O [63]. The intensity of 
the carbonyl absorbance band at 1707  cm−1 was slightly 

Fig. 3  EDX diagram of  NPF8.

Fig. 4  Elemental mapping of  NPF8.
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increased with raising the phosphor ratio to verify that the 
phosphor aluminium coordinates as a crosslinking agent 
among the polyester carbonyl groups [63]. The screen-
printed nonwoven polyester fabrics did not show any addi-
tional bands in comparison to unprinted fabric to indicate 
that the phosphor incorporation onto fabric surface did not 
include chemical reactions.

Colorimetric Measurements

The K/S and CIE systems were used to assess the sensor’s 
capabilities. A CIE Lab is used to analyze the fabrics pho-
tochromic capabilities as well as their technical performance 
(photostability and fatigue resistance). L* represents the 
fabric lightness from the most black (0) to the most white 
(100), a* signifies green(–) to red(+) coloration ratios, and 
b* denotes the blue(–) to yellow(+) color ratio. Table 3 dis-
plays the colorimetric screening, and photochromic impacts 
before and after UV irradiation. All of the screen-printed 
polyester samples have a gray color close to the color of the 
original blank cloth before printing. The color data was ana-
lyzed using a high reflectance approach to get the K/S value. 
When increasing the pigment ratio, a slight increment in K/S 
was observed under daylight to designate a colorless printed 
layer owing to the low phosphor concentration. However, the 
 NPF9 and  NPF10 polyester samples showed a white layer due 
to the very high phosphor concentration. Upon increasing 
the phosphor ratio, a significant increment in the K/S value 
was monitored under exposure to ultraviolet rays to indicate 
a phosphor concentration-dependent greener color. However, 
the polyester samples showed almost no change in K/S with 
increasing the pigment ratio from  NPF8 to  NPF10. Thus, the 
above results prove that the optimum printed samples were 
the photochromic  NPF2 with the green fluorescence, and the 
phosphorescent  NPF8 with the highest effective glow in the 
dark phosphor concentration. When the phosphor ratio was 
raised, L*, a* and b* of printed polyester samples did not 
vary remarkably under daylight. However, the L*, a*, and 
b* values showed considerable differences under ultraviolet 
rays with increasing the phosphor concentration. The L* 
values slightly decrease with increasing the phosphor con-
centration under daytime light, and considerably decreased 
under ulraviolet light. The L* values were found to consid-
erably decrease under ultraviolet light as compared to the 

Table 1  EDXA (wt%) of 
unprinted and screen-printed 
nonwoven polyester fabrics at 
three points  (A1,  A2 and  A3) on 
polyester surface

Sample C O Al Sr Eu Dy

NPF0 65.32 34.68 0 0 0 0
NPF1 A1 64.73 33.21 1.22 0.57 0.18 0.09

A2 64.60 33.75 1.01 0.44 0.11 0.09
A3 64.80 33.34 1.10 0.52 0.14 0.10

NPF2 A1 64.72 32.71 1.42 0.69 0.29 0.17
A2 65.13 32.82 1.15 0.50 0.22 0.18
A3 64.81 32.90 1.34 0.62 0.20 0.13

NPF8 A1 60.81 30.27 4.96 2.87 0.61 0.48
A2 60.73 30.95 4.67 2.53 0.66 0.45
A3 60.60 30.70 4.87 2.79 0.63 0.41

NPF10 A1 59.01 30.53 5.52 3.40 0.89 0.59
A2 59.64 29.96 5.34 3.65 0.85 0.57
A3 59.59 30.37 5.47 3.25 0.81 0.51

Table 2  XRF analysis (wt%) of screen-printed fabrics

Elements NPF1 NPF2 NPF8 NPF10

Al 64.64 65.03 64.38 63.14
Sr 35.36 34.97 35.62 36.86
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Fig. 5  FTIR spectra of nonwoven polyester fabrics;  NPF1 (a), and 
 NPF10 (b)
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daytime light for the same sample. Only slight changes were 
observed in both − a* and + b* when raising the phosphor 
concentration. Under UV light, − a* and + b* noticeably 
increase with raising the phosphor ratio. The above results 
signify a color change from gray to green under UV rays.

Photochromic Properties

Screen-printing was used to apply the phosphorescent stron-
tium aluminate pigment onto nonwoven polyester fabric 
(Fig. 6). On dark surfaces, the resulting bright green emis-
sion under UV-irradiation is readily visible to the human 
eye, making the photochromic effect more readily apparent.

Under UV light, the photochromic and fluorescent 
features of all of printed textiles were detected instantly 
and reversibly. But only garments printed with phosphor 
concentration up to 0.5% displayed a rapid reversibility 
to indicate fluorescence. Prints with phosphor content 
higher than 0.5% acquire afterglow effects, which results 
in delayed decoloration and/or reversibility to indicate 
long-persistent phosphorescence emission. Using excita-
tion and emission spectral analyses, the photochromism 
effects were verified by strong and broad absorbance peak 
appeared in the visible range as depicted in Figs. 7 and 8. 
The excitation band increased with increasing the pigment 
ratio (Fig. 7). The fading emission changes were studied 
over time under UV irradiation (365 nm) for 50–500 s at 

room temperature. The emission intensity rapidly faded 
with time after removing the ultraviolet source (Fig. 8). 
Three emission peaks were detected at 418, 440 and 
468  nm, and three excitation peaks were observed at 
364, 382 and 404 nm. The maximum emission peak was 
observed at 440 nm, and the maximum excitation peak 
was observed at 382 nm. When exposed to UV irradia-
tion, the printed fibers exhibit a green emission. Ultravio-
let irradiation duration (50–500 s) is used to examine the 
emission spectra of the printed cloth  (NPF8). When the 
UV-irradiation period was increases, the absorbance rises.

Photostability and fatigue resistance of  NPF8 were deter-
mined by exposure to ultraviolet rays for 4 min, and placing 
the sample in a dark box for sixty minutes to fade back to its 
origin color. The irradiation/darkening practice was made 
several cycles, while recording the emission intensity. No 
differences were monitored in the emission band to indicate 

Table 3  Coloration properties 
of printed polyesters under 
daylight (DL) and UV rays 
(UVR)

Sample L* a* b* K/S

DL UVR DL UVR DL UVR DL UVR

NPF0 87.85 87.51 − 5.91 − 5.92 5.11 5.23 2.33 2.28
NPF1 87.61 87.33 − 5.75 − 6.04 5.41 5.12 2.52 2.73
NPF2 87.34 87.06 − 5.48 − 6.15 5.83 5.09 2.72 2.95
NPF3 86.30 86.65 − 5.21 − 6.80 6.02 4.88 2.97 3.38
NPF4 85.06 83.12 − 4.89 − 8.78 6.19 4.30 3.10 3.90
NPF5 84.86 80.32 − 4.63 − 11.54 6.30 3.72 3.21 4.03
NPF6 83.40 77.54 − 4.44 − 13.46 6.53 3.21 3.44 4.54
NPF7 82.65 74.87 − 4.27 − 16.38 6.61 2.67 3.53 5.24
NPF8 81.90 72.64 − 4.02 − 17.63 6.74 2.16 3.75 6.37
NPF9 81.55 71.53 − 3.88 − 18.50 6.97 1.80 3.94 6.91
NPF10 81.20 71.20 − 3.76 − 18.73 7.18 1.20 4.12 7.07

Fig. 6  Photographs of photochromic nonwoven polyester fabric 
 (NPF8) under daytime and ultraviolet (365 nm) lights
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that  NPF8 able to withstand repetitive irradiation/darkening 
cycles without fatigue (Fig. 9).

The calculated lifetimes of the screen-printed polyester 
fabrics ranged from 0.3347 to 488.52 ms with increasing the 
phosphor ratio from  NPF1 to  NPF10, respectively, suggesting 
a proportional correlation between lifetime and phosphor 
ratio on fabric surface (Fig. 10). The lifetime curve was non-
linear against time demonstrating a rapid decrease first stage 
followed by slow decrease second stage. In long-persistent 
phosphorescent materials,  Dy3+ and  Eu2+ function as traps 
to lengthen the emission time. The polyester emission could 
be attributed to the Eu(II)  4f65D1 ↔  4f7 transition [44]. Both 
 Dy3+ and  Eu2+ did not display any emission band, indicating 
that the lightening energy stored by  Dy3+ was transferred to 

 Eu2+. This also verifies that  Eu3+ was completely converted 
to  Eu2+. The excitation spectra displayed a wide spectrum 
(300–430 nm), allowing for absorption of a wide range of 
electromagnetic field.

Hydrophobicity and Comfort Features

The hydrophobicity screening of the screen-printed poly-
ester fabrics were investigated as illustrated in Table 4. 
Thin film was printed onto the fibrous nonwoven polyes-
ter surface to create a rough surface by filling in the voids 
and gaps between fibers. Due to the hydrophobic nature 
and low wettability of polyester, the contact angle of  NPF0 
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Table 4  Hydrophobic screening and comfort features of blank and 
screen-printed polyester fabrics; contact angle is represented by C.A.; 
slide angle is represented by S.A.; bending length is represented by 
B.L.; and air-permeability is represented by A.P.

Fabric C.A. (°) S.A. (°) B.L. (cm) A.P.
(cm3  cm− 2  s−1)

warp weft

NPF0 107.5 12 4.23 4.46 45.83
NPF1 108.0 12 4.37 4.50 45.67
NPF2 109.2 12 4.54 4.72 45.24
NPF3 112.4 12 4.65 4.81 44.85
NPF4 115.5 11 4.77 5.91 44.53
NPF5 120.8 11 4.90 6.05 43.60
NPF6 126.1 10 5.10 6.13 43.82
NPF7 130.3 9 5.21 6.22 43.61
NPF8 131.6 8 5.32 6.37 43.33
NPF9 131.1 8 5.53 6.53 42.90
NPF10 130.7 7 5.71 6.46 42.46
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was monitored at 108.6°. The  NPF1 exhibited an improved 
contact angle of 108.0°. With increasing the phosphor con-
tent, the contact angle was found to further improve from 
108.0°  (NPF1) to 131.6°  (NPF8). The contact angle was then 
decreased from 131.6°  (NPF8) to 130.7°  (NPF10). The sur-
face roughness increases with raising the phosphor content 
on the fabric surface [64, 65]. However, the surface rough-
ness might be decreased at the very high phosphor concen-
trations due to decreasing the spaces between the phosphor 
particles to result in reduced contact angle [66]. Addition-
ally, the screen-printed polyester fabrics were examined to 
indicate a decreased contact angle with raising the phosphor 
concentration. The current study can be reported as a simple, 
efficient and inexpensive industrial strategy to manufacture 
hydrophobic textiles with photochromic, long-persistent 
photoluminescent, ultraviolet protection and antimicrobial 
properties, like tents, packaging and other protecting textile 
fibers. The screening results of both bend length and air-
permeability are shown in Table 4. Only slight differences 
were observed in bending length and air-permeability when 
increasing the phosphor concentration from  NPF0 to  NPF10.

Colorfastness Evaluation

The phosphor-printed nonwoven polyester fabrics displayed 
a good resistance to perspiration, washing, light and rubbing 
tests. The colorfastness properties ranged between good and 
excellent (Table 5). This could be attributed to the chemical 
binding of the phosphor nanoparticles to polyester polymer 
strands proving product robustness. The strong bonding of 
the aluminium element in the phosphor structure to the poly-
ester oxygen atom (Al–O) can efficiently fasten the phosphor 
particles to polyester surface. Thus, the current strategy can 
be presented as an effective method to accomplish good 

coloration procedure with efficient colorfastness without 
the utilization of any further chemicals.

Antimicrobial and UV‑Protection Properties

The agar counting approach [60] was employed to assess 
the antimicrobial activity of the printed nonwoven polyes-
ter fabrics. The antimicrobial reduction (%) generated by 
the screen-printed nonwoven polyester fabrics is shown in 
Table 5. The phosphor-free polyester sample  (NPF0) dis-
played a low antimicrobial activity. However, the microbial 
resistance of the phosphor-containing polyester textiles 
ranged between weak, good and very good, depending on the 
pigment concentration. The polyester textiles were directly 
evaluated for their ability to block UV rays as shown in 
Table 6. The blank polyester fabric exhibited low UPF value. 
The pigment-coated polyester textiles displayed higher UPF 
values than the blank fabric. The improved UV shielding 

Table 5  Colorfastness of 
phosphor-printed nonwoven 
polyester fabrics

*St. is cotton staining; **Alt. is color alteration

Fabric Rubbing Washing Perspiration Light

Dry Wet Alt** St* Acidic Basic

Alt** St* Alt** St*

NPF1 4 4 4–5 4–5 4–5 4–5 4–5 4–5 6
NPF2 4 4 4–5 4–5 4–5 4–5 4–5 4–5 6
NPF3 4 4 4–5 4–5 4–5 4–5 4–5 4–5 6
NPF4 4 4 4–5 4–5 4–5 4–5 4–5 4–5 6
NPF5 4 4 4 4–5 4–5 4–5 4–5 4–5 6
NPF6 4 4 4 4–5 4–5 4–5 4–5 4–5 6–7
NPF7 4 4 4 4–5 4–5 4–5 4 4–5 6–7
NPF8 4 3–4 4 4 4–5 4–5 4 4–5 6–7
NPF9 4 3–4 4 4 4–5 4–5 4 4 6–7
NPF10 4 3–4 4 4 4–5 4–5 4 4 6–7

Table 6  Antimicrobial activity (antibacterial reduction %) and UPF 
values of blank and screen-printed polyester fabrics

Sample E. coli S. aureus C. albican UPF

NPF0 18 ± 1.6 20 ± 1.0 0.00 183
NPF1 21 ± 1.4 22 ± 1.1 0.00 202
NPF2 23 ± 1.1 25 ± 1.5 0.00 235
NPF3 24 ± 1.1 27 ± 1.2 0.00 270
NPF4 27 ± 1.5 30 ± 1.4 0.00 298
NPF5 32 ± 1.4 35 ± 1.1 0.00 352
NPF6 36 ± 1.3 39 ± 1.6 10 ± 1.1 389
NPF7 39 ± 1.1 44 ± 1.0 10 ± 1.0 446
NPF8 41 ± 1.0 48 ± 1.4 10 ± 1.2 481
NPF9 43 ± 1.2 51 ± 1.0 10 ± 1.3 506
NPF10 46 ± 1.0 52 ± 1.3 10 ± 1.0 527
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of the screen-printed polyesters can be assigned to the high 
ultraviolet absorbance, which could be attributed to the 
phosphor electronic structure making it suitable candidate 
for UV shielding.

Conclusion

Photochromic and long-persistent phosphorescent nonwoven 
polyester textile fabrics with UV protection, superhydropho-
bic and antimicrobial properties were industrially developed. 
Nonwoven polyester fibrous mat was industrially developed 
starting from recycled polyester waste. Nonwoven polyes-
ter fabric was screen-printed with various concentrations 
of phosphor nanoparticles. The printing paste is made by 
directly embedding the pigment doped nanoparticles into 
an aqueous binding agent in combination with thickening 
agent. After being exposed to UV, the printed polyesters dis-
played a color change from gray to green. This green color 
emission was detected at 440 nm once excited at 382 nm. In 
order to determine the morphology of the phosphor nano-
particles, TEM images were utilized to designate diameters 
of 4–11 nm. The phosphor structure was confirmed by XRD 
analysis to indicate a crystal size of 9 nm. The phosphor 
nanoscale particles must be efficiently dispersed in the print-
ing paste by physical immobilization without aggregation 
to afford a transparent pigment-binder nanocomposite film 
onto polyester surface. Strong green fluorescence emission 
was monitored under UV light at lower phosphor concentra-
tions (0.1% and 0.5%) in the printing paste. Long-persistent 
greenish-yellow phosphorescence was detected in the dark at 
higher phosphor concentrations (> 1%). Ultraviolet protec-
tion, antimicrobial and superhydrophobic properties were 
observed to get better with increasing the pigment concen-
tration in the printing paste. The static contact angle was 
found to improve from 107.5° to 131.6°, and the slide angle 
decreased from 12° to 7° with increasing the pigment con-
centration. No compromises were detected on the garment 
aesthetic and comfort features after printing. Both bending 
length and air-permeability of the screen-printed polyesters 
were observed to be a little influenced by increasing the 
phosphor ratio. The colorfastness properties of the printed 
polyester fabrics ranged between good and excellent. To 
examine the glow in the dark property of the screen printed 
fabrics, we placed the ultraviolet-irradiated fabric in the 
dark to display an apparent greenish-yellow emission. With 
their excellent thermal and photostability, low-cost produc-
tion, high reversibility, and fatigue resistance, the current 
photochromic and long-persistent photoluminescent printed 
samples showed potential materials for future smart clothing 
applications, including brand protection, smart packaging, 
and other security-related sectors.
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