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Abstract
Tall oil fatty acids are a second-generation bio-based feedstock finding application in the synthesis of polyurethane materi-
als. The study reported tall oil fatty acids and their methyl esters epoxidation in a rotating packed bed reactor. The chemical 
structure of the synthesized epoxidized tall oil fatty acids and epoxidized tall oil fatty acids methyl ester were studied by 
Fourier-transform infrared spectroscopy. Average molecular weight and dispersity were determined from gel permeation 
chromatography data. The feasibility of multiple uses of the Amberlite® IRC120 H ion exchange resin as a catalyst was 
investigated. Gel permeation chromatography chromatograms of epoxidized tall oil fatty acids clearly demonstrated the 
formation of oligomers during the epoxidation reaction. The results showed that methylation of tall oil fatty acids allows 
obtaining an epoxidized product with higher relative conversion to oxirane and much smaller viscosity than neat tall oil fatty 
acids. Epoxidation in a rotating packed bed reactor simplified the process of separating the catalyst from the reaction mixture. 
The Amberlite® IRC120 H catalyst exhibited good stability in the tall oil fatty acids epoxidation reaction.
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Introduction

The synthesis of polymeric materials with the principles 
of sustainability and cleaner production has been a widely 
researched topic in recent years. These principles are 
intended to reduce the environmental impact of products 
and production by reducing the use of fossil-based raw mate-
rials and replacing them with bio-based or waste/recycled 
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resources; reducing energy consumption through the use of 
more efficient processes and equipment; reducing or elimi-
nating toxic and harmful raw materials; reducing the amount 
and toxicity of waste [1].

A widely available bio-based raw material with high 
potential in chemical synthesis is crude tall oil (CTO). CTO 
is a by-product of the wood pulp industry generated at an 
average rate of 30–50 kg per 1000 kg of processed wood 
[2]. World production of CTO is between 1.6 and 2 million 
tonnes/year, of which approximately 650 000 tonnes/year is 
produced in Europe [3]. CTO contains 30–50 wt.% of free 
fatty acids (mainly oleic and linolic acid), 15–35 wt.% of 
rosin acids and residues composed of sterols, fatty alcohols, 
phenols and hydrocarbons. CTO can be burned as an alterna-
tive to heavy fuel oil. However, CTO also can be used as a 
high-value feedstock for chemical syntheses after separation 
into various fractions, i.e. tall oil fatty acids (TOFA) and tall 
oil rosins (TOR). TOR are used as an ingredient in printing 
inks, adhesives, soaps, detergents, emulsifiers, sealing waxes 
and soldering fluxes [4]. TOFA is mainly used as a feedstock 
to produce tall oil fatty acids methyl ester (TOFAME) used 
as an alternative to diesel fuel [5]. TOFA can also be con-
verted to hydrocarbons by hydrodeoxygenation/decarboxyla-
tion reactions [6, 7].

Moreover, TOFA also has been investigated as a potential 
raw material for the synthesis of bio-based polyols (bio-pol-
yols). Polyols, conventionally petrochemical based, are one 
of the main components for the production of polyurethanes 
[8, 9]. The global market for polyols in 2019 was US$26.2 
billion, and further growth is expected [10]. Commercially 
produced polyols are mainly made from non-renewable pet-
rochemical feedstocks. In recent years, there has been an 
increase in the availability of commercial bio-polyols made 
from vegetable oils such as castor oil, soybean oil and palm 
oil [10, 11].

TOFA has several advantages in comparison to vegetable 
oil-based polyols. A significant advantage of TOFA is the 
high iodine value (about 155 g I2/100 g) compared to vegeta-
ble oils (e.g., the iodine value of palm oil is 44–58 g I2/100 g; 
the iodine value of rapeseed oil is 94–120 g I2/100 g; the 
iodine value of soybean oil is 117–143 g I2/100 g [12]). The 
higher iodine value indicates more unsaturated double bonds 
in the structure of fatty acids that can be chemically modi-
fied [13]. Moreover, TOFA is a second-generation feedstock 
and do not pose a concern about competition with food and 
feed supplies.

The most commonly used method for synthesizing bio-
polyols from TOFA is a two-step process of epoxidation fol-
lowed by oxirane ring-opening with proton donors [14]. The 
classical Prilezhaev epoxidation method uses peroxycarboxylic 
acids formed in-situ to oxidize the double bonds. Formic acid 
or acetic acid and hydrogen peroxide are most commonly used 
in this process [15]. The main disadvantage of the epoxidation 

of fatty acids is that the carboxyl groups of fatty acids react 
with hydrogen peroxide to form peroxy fatty acids which act 
as oxygen carriers, leading to extensive oxirane ring-opening 
and formation of oligomeric products [16, 17]. The use of het-
erogeneous catalysts such as acid ion exchange resins helps to 
reduce the occurrence of oxirane ring-opening side reactions 
compared to the use of heterogeneous catalysts such as H2SO4 
[18, 19]. Heterogeneous catalysts can be easily separated from 
the reaction mixture, washed and reused, thus reducing process 
costs [20, 21].

A modern type of reactor that can facilitate the process of 
separating the catalyst from the reaction mixture is the rotating 
packed bed reactor (RBR), in which the catalyst is separated 
from the rest of the reaction mixture. The mixing occurs due to 
the centrifugal force generated by a rotating catalyst container. 
The use of the RBR leads to reduced energy consumption and 
the water needed to separate the catalyst from the reaction mix-
ture. The literature describes studies where RBR was used for 
epoxidation of vegetable oils using ion exchange resin under 
conventional heating [22], oleic acid, TOFA and distilled tall 
oil under microwave irradiation [23], as well as epoxidation 
of oleic acid in the presence of ultrasound irradiation [24].

Polymer laboratory at Latvian State Institute of Wood 
Chemistry has studied the epoxidation of TOFA before. Kir-
pluks et al. studied the epoxidation process of TOFA under 
conventional heating [9, 17]. Studies on the epoxidation of 
TOFA using in-situ formed peracetic acid, catalyzed by the 
Amberlite® IRC120 H ion exchange resin, have confirmed 
that the resulting epoxidized TOFA is a mixture of mono-
mers, dimers, trimers and oligomers [14, 17, 19]. Thus, the 
bio-polyols synthesized from ETOFA exhibited high viscos-
ity, which significantly limits their potential application. The 
high viscosity of bio-polyols is undesirable as it complicates 
the large-scale production of rigid polyurethane foams [14].

The objective of this article was to compare the epoxida-
tion of neat TOFA and their methyl ester with the use of an 
RBR reactor. Esterification of TOFA could help to reduce 
the occurrence of undesirable side reactions. The epoxida-
tion reactions were carried out using varying catalyst content 
of 10, 15, 20 and 25 wt.%. The stability and reusability of the 
catalyst were also tested. The following characteristics were 
determined for obtained products: epoxy value, acid value 
and viscosity. The chemical structure of epoxidized TOFA 
and epoxidized TOFAME were studied by Fourier transform 
infrared spectroscopy and gel permeation chromatography.

Materials and Methods

Materials

The following reagents were used for synthesizing epoxi-
dized TOFA and epoxidized TOFAME: TOFA (trade name 
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“FOR2”) with a high content of fatty acids (> 96%), low 
content of rosin acids (1.9%), and unsaponifiables (1.8%) 
was ordered from Forchem Oyj (Rauma, Finland). The initial 
acid and iodine values for TOFA were 198 ± 1 mg KOH/g 
and 155 ± 1 g I2/100 g, respectively. Acetic acid (AcOH), 
puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur.,  ≥ 99.8% 
was ordered from Fluka (Seelze, Germany). Ethyl acetate 
(EtOAc), puriss., meets the analytical specifications of Ph. 
Eur., BP, NF,  ≥ 99.5% (GC) was ordered from Riedel–de 
Haen (Seelze, Germany). Amberlite® IRC120 H, strongly 
acidic, hydrogen form, hydrogen peroxide (H2O2) 35%, 
methanol (MeOH), puriss. p.a., ACS reagent, reag. ISO, 
reag. Ph. Eur.,  ≥ 99.8% from Riedel–de Haen (Seelze, Ger-
many), and sulfuric acid (H2SO4), puriss., meets the analyti-
cal specifications of Ph. Eur., BP, 95–97% were ordered from 
Sigma-Aldrich (Steinheim, Germany).

The following reagents were used for the analysis of 
TOFA and synthesized products: potassium hydroxide 
(KOH), ACS reagent,  ≥ 85%, pellets, potassium phthalate 
monobasic (KHP), ACS reagent, acidimetric standard, chlo-
roform, puriss. p.a., reag. ISO, reag. Ph. Eur., 99.0–99.4% 
(GC), perchloric acid, puriss. p.a., ACS reagent, reag. ISO, 
reag. Ph. Eur., 70.0–72.0%, tetraethylammonium bromide, 
reagent grade, 98%, acetic anhydride, puriss. p.a., ACS rea-
gent, reag. ISO, reag. Ph. Eur.,  ≥ 99% (GC), N,N-dimethyl-
formamide (DMF), anhydrous, 99.8%, 4-(dimethylamino)
pyridine (DMAP), ReagentPlus,  ≥ 99%, and potassium 
iodide (KI), ACS reagent,  ≥ 99.0% were obtained from 
Sigma-Aldrich (Steinheim, Germany). Methanol (MeOH), 
puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur.,  ≥ 99.8%, 
and dichloromethane, puriss. p.a., ACS reagent, reag. 
ISO,  ≥ 99.9% were ordered from Riedel–de Haen (Seelze, 
Germany). Hanus solution, volumetric 0.1 M IBr, acetic acid 
(AcOH), puriss. p.a., ACS Reagent, Reag. ISO, Reag. Ph. 
Eur.,  ≥ 99.8%, and crystal violet, an indicator for determin-
ing the redox potential, S. No.:785 were ordered from Fluka 
(Seelze, Germany). Cresol red, indicator grade, was obtained 
from Alfa Aesar (Kandel, Germany). Sodium thiosulfate 
0.1 mol/l (0.1 N) was ordered from Chempur (Karlsruhe, 
Germany).

Synthesis of TOFAME

The methylation of TOFA was carried out in a 2 l three-
necked round bottom flask. The flask was immersed in a 
water bath equipped with a stirrer, a thermocouple, and a 
reflux condenser. The reaction conditions were chosen based 
on literature data [25]. The reaction temperature was 55 °C, 
and the reaction time was 30 min. The molar ratio of metha-
nol to TOFA double bonds was 6:1. Catalyst content was 
0.5 wt.% of TOFA. At first, 900 g of TOFA was added to 
the flask. The flask was immersed in the water bath, and 
the catalyst-methanol mixture (4.5 g of H2SO4 and 600 g 

MeOH) was added to the TOFA and stirred (100 rpm) under 
reflux. The reaction start time was assumed when the mix-
ture reached the set temperature of 55 °C. After the reaction 
was completed, the mixture was poured into a separating 
funnel, and about 100 ml EtOAc was added. The bottom 
water-waste phase was poured out. The upper organic phase 
consisting of TOFAME was washed four times with warm 
distilled water at a temperature of 55 °C and then dried using 
a rotatory vacuum evaporator.

Synthesis of Epoxidized TOFA and Epoxidized 
TOFAME

Epoxidation was carried out using TOFA and TOFAME, 
resulting in epoxidized tall oil fatty acids (ETOFA) and 
epoxidized tall oil fatty acids methyl ester (ETOFAME). 
The synthesis scheme is given in Fig. 1.

The epoxidation of TOFA was carried out in a 1200 ml 
RBR, model V3 manufactured by Spinchem® (Sweden), as 
shown in Fig. 1. The reaction vessel is made of borosilicate 
glass. The rotating bed with a diameter of 70 mm and a 
height of 30 mm, the catalyst separation filter with a poros-
ity of 104 µm and the shaft are made of stainless steel. The 
RBR was equipped with a heating/cooling jacket and a bot-
tom drain. A thermocouple, dropping funnel, and a reflux 
condenser were attached to the 5-neck lid. A rotating bed 
filled with ion exchange resin was also used as a stirrer. The 
epoxidation of TOFA was carried out using peroxyacetic 
acid generated in-situ in the reaction of AcOH and H2O2 
and using ion exchange resin as a catalyst. The molar ratio of 
TOFA double bonds to H2O2 to AcOH was 1.0:1.5:0.5. The 
mass of the catalyst was kept constant (40 g), while variable 
catalyst content of 10, 15, 20, and 25 wt.% in relation to the 
TOFA content was used.

At first, the calculated amount of TOFA and AcOH was 
added to the reactor. The initial set temperature of the jacket 
was 40 °C. The speed of the RBR was set to 400 rpm, and 
the mixture was started to stir. The calculated mass of H2O2 
was added to the dropping funnel. After the reaction mixture 
reached a temperature of 40 °C, H2O2 was added during 
60 min. The reaction temperature was increased by 5 °C at 
intervals of 15 min, finally setting the reaction temperature 
to 60 °C and running the reaction for 7 h total. The tem-
perature of the reaction mixture did not exceed the set tem-
perature by more than 2 °C. During the epoxidation, small 
amounts of product were collected every h by the bottom 
drain of RBR for analysis. Products were washed by adding 
EtOAc and warm distilled water at a temperature of 55 °C. 
The organic phase was washed 3 times with the addition of 
distilled water in a separating funnel. Products were dried 
using a rotatory vacuum evaporator to remove water and 
EtOAc residues. Fresh ion exchange resin was used for every 
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reaction. Reagent weights for TOFA or TOFAME epoxida-
tion are given in Table 1.

The epoxidation synthesis of TOFAME was carried out in 
the same way as the TOFA epoxidation reaction. The overall 
reaction time was extended to 9 h to obtain additional infor-
mation about the synthesis.

Reusability of Amberlite® IRC120 H Ion Exchange 
Resin in the Epoxidation of TOFA

Ten epoxidation reactions were performed to determine the 
reusability of the catalyst. Syntheses of ETOFA were carried 
out as described in Sect. “Synthesis of Epoxidized TOFA 
and Epoxidized TOFAME” with the difference that the cata-
lyst was not removed from the synthesis media. The catalyst 
load for TOFA epoxidation was 20 wt.%. The reaction time 

was reduced to 4 h. The design of the RBR reactor allows the 
catalyst to be separated from the reaction mixture without 
any losses and additional operations such as filtration, wash-
ing and drying, as is the case when a batch reactor is used 
[19]. Separation of the reaction mixture from the catalyst in 

Fig. 1   The synthesis scheme of 
epoxidized TOFA or TOFAME

Table 1   Reagent weights for TOFA or TOFAME epoxidation

*Catalyst content as weight percent from TOFA or TOFAME

Catalyst content*, 
wt.%

TOFA or 
TOFAME, g

H2O2, g AcOH, g

10 400.0 356.1 74.1
15 266.7 237.4 49.4
20 200.0 178.1 37.0
25 160.0 142.4 29.6
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the RBR reactor involves solely pouring it out through the 
bottom drain.

Methods of Analysis

The iodine value (IV) was determined according to ISO 
3961:2018, and it is calculated by using Eq. (1).

where Vb and Vs are volumes of sodium thiosulfate 
required for the blank and the sample, in ml, ct is the con-
centration of sodium thiosulfate, in mol/l, ms is the mass of 
the sample, in g. 12.96 is the conversion factor from mil-
liequivalents sodium thiosulfate to grams of iodine.

Iodine value was used to determine fatty acid unsaturation 
(ndb, moles of double bonds in gram of oil) by using Eq. (2).

where MI2 is the molar mass of I2, in g/mol.
The epoxy value (EV) (the content of oxirane rings) was 

determined according to ASTM D1652-11(2019) standard. 
Epoxy group content in moles per 100 g of oil was calcu-
lated by using Eq. (3).

where Vt is volume, in ml, of titrant used, ct is titrant 
concentration, in mol/l, ms is mass of the sample.

The percentage of relative conversion of unsaturated 
bonds to oxirane (RCO) was calculated by Eq. (4) [26].

where OOex is the experimentally determined content of 
oxirane (%), calculated by Eq. (5). The OOth is the theoreti-
cal maximum oxirane content of oxirane in 100 g of fatty 
acids (%), which was calculated by Eq. (6).

where Ao is the atomic mass of oxygen.

where Ai is the atomic mass of iodine, and IVo is the 
initial iodine value of the fatty acid sample.

The relative ethylenic unsaturation (REU) was calculated 
by Eq. (7):

(1)IV =

(

Vb − Vs

)

⋅ ct ⋅ 12.69

ms

gI
2
∕100g

(2)ndb =
IV

MI2
⋅ 100

mol∕g

(3)EV =
Vt ⋅ ct

ms ⋅ 10
mol∕100g

(4)RCO =
OOex

OOth

⋅ 100%

(5)OOex = AO ⋅ EV%

(6)OOth =

(

IV0

2Ai

)

⋅ Ao

100 +
(

IV0

2Ai

)

⋅ Ao

⋅ 100

where IVo is the initial iodine value, and IVex is the 
remaining iodine value during synthesis.

Hydroxyl value (HV) was determined according to ISO 
4629–2:2016 standard and calculated by Eq. (8).

where Vb, Vs are volumes, in ml, of potassium hydrox-
ide required for the blank and the sample, respectively, ct 
is the concentration of KOH, in mol/l ms is the mass of 
the sample, in g. 56.106 is the molar mass of KOH, g/mol.

Acid value (AV) was determined according to ASTM 
D1980-87(1998) standard and calculated by Eq. (9).

where Vt is the volume of titrant used, in ml, ct is the 
concentration of KOH, in mol/l, ms is the mass of the sam-
ple, in g. 56.106 is the molar mass of KOH, g/mol.

From the determined relative conversion to oxirane 
(Eq. 4) and relative ethylenic unsaturation (Eq. 7), the 
selectivity (S) of TOFA and TOFAME epoxidation reac-
tion was calculated according to Eq. 10.

The viscosity was measured at 25 °C using the Thermo 
Science HAAKE (Medium–High Range Rotational Vis-
cometer, Thermo Fisher Scientific, Waltham, MA, USA).

The spectroscopic analysis of the chemical structure 
of the precursors and products was carried out using a 
Fourier-transform infrared spectrometer (FTIR) model 
iS50 (Thermo Fisher Scientific, Waltham, MA, USA) at 
a resolution of 4 cm−1 (32 scans) in the infrared range of 
4000–500 cm−1. The FTIR data were collected using an 
attenuated total reflectance (ATR) accessory with a dia-
mond crystal.

An Agilent Infinity 1260 HPLC system (Agilent Tech-
nologies, Inc., Santa Clara, CA, USA) with degasser, 
autosampler, refractive index (RI) detector, and MALS 
(miniDAWN) detector was used to perform gel permea-
tion chromatography (GPC) analysis. The analysis was 
performed using two GPC analytical columns connected 
in series: PLgel Mixed-E (3 uL, 300 × 7.5 mm). The flow 
rate was 1 ml/min, and the temperature of the RI detector 
was 35 °C. A total of two duplicate trials were carried out.

(7)REU =

(

IVex

IVo

)

⋅ 100%

(8)HV =

(

Vb − Vs

)

⋅ ct ⋅ 56.106

ms

mgKOH∕g

(9)AV =
Vt ⋅ ct ⋅ 56.106

ms

mgKOH∕g

(10)S =
RCO

100% − REU
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Results and Discussion

The epoxidations of TOFA and TOFAME were carried out 
using peracetic acid generated in-situ by the reaction of 
acetic acid and hydrogen peroxide. The kinetic curves of 
RCO increase depending on the applied catalyst content are 
presented in Fig. 2.

In the case of TOFA epoxidation (Fig. 2a), the applica-
tion of 10 wt.% catalyst content resulted in RCO of 42.5% 
over a period of 6 h and a decrease in RCO to 40.1% at the 
seventh hour of the reaction, which corresponds to an EV 
of 0.237 mol/100 g and 0.223 mol/100 g, respectively. The 
reduction in the RCO implies that the oxirane ring-opening 
reactions occurred more intensively than the formation of 
new epoxy groups after the sixth hour. The increase in the 
catalyst content led to an increase in RCO to 47.5% after 
7 h of the reaction (EV of 0.262 mol/100 g), 49.1% (EV of 
0.275 mol/100 g), and 50.4% (EV of 0.281 mol/100 g) for 
15, 20 and 25 wt.% of the catalyst content, respectively. The 
maximum RCO was reached after 5 h of reaction for the 15 
and 20 wt.% of the catalyst content, while for the 25 wt.% 
of the catalyst content after 4 h of reaction. In a compara-
ble experiment conducted in a batch reactor, the maximum 
RCO value achieved after 5 h of reaction at 20 wt.% catalyst 
content was 42.9% [19].

The kinetic curves of TOFAME are shown in Fig. 2b. The 
obtained epoxidized TOFAME exhibited significantly higher 
RCO in relation to TOFA of 65.2% (EV = 0.337 mol/100 g), 
7 8 . 6 %  ( E V  =  0 . 4 0 6   m o l / 1 0 0   g ) ,  8 1 . 0 % 
(EV = 0.419 mol/100 g), 81.2% (EV = 0.420 mol/100 g) 
for catalyst content of 10, 15, 20 and 25 wt.%, respectively. 
Methylation of TOFA contributed to reducing side reac-
tions caused by the opening of oxirane rings with a carboxyl 
group. All kinetic curves except the reaction catalyzed by 

10 wt.% catalyst content showed virtually no increase in 
RCO after 7 h of the epoxidation reaction, which may be 
caused by side reactions occurring due to the presence of 
small amounts of fatty acids or by the reactions with acetic 
acid, peracetic acid, hydrogen peroxide or water [27].

For the TOFAME epoxidation (Fig. 2b), an RCO of 
about 50% is achieved between 2 and 3 h of reaction at cata-
lyst content > 15 wt.%. In comparison, the same RCO was 
achieved between 4 and 6 h for TOFA epoxidation at the 
same catalyst concentrations. The shorter epoxidation time 
leads to lower costs of the epoxidation process.

The intensity of side reactions is affected by the content of 
carboxyl groups in the fatty acid. The synthesized TOFAME 
had an average AV of 39.95 mg KOH/g (the average AV of 
TOFA was 198.03 mg KOH/g), indicating that not all car-
boxyl groups were esterified. Figure 3 shows the change in 
AV during the epoxidation reactions of TOFA (Fig. 3a) and 
TOFAME (Fig. 3b). The decrease in AV during epoxidation 
confirmed that carboxyl groups took part in side reactions 
by opening oxirane rings. The most significant changes in 
AV were observed for the TOFA epoxidation catalyzed with 
25 wt.% catalyst content.

Application of heterogeneous catalysts such as function-
alized acidic ion exchange resin in epoxidation reaction 
provides higher selectivity and reduces side reactions com-
pared to homogeneous catalysts [26]. Small molecules of 
organic acids can easily diffuse into the structure of porous 
acidic ion exchange resin, where the formation of peracetic 
acid occurs. Larger-sized molecules, such as triglycerides, 
can penetrate the catalyst structure much more restrictedly; 
thus, the generated oxirane rings are protected from attack 
by protons confined to the catalyst matrix [28]. The inten-
sive occurrence of side reactions in TOFA epoxidation may 
suggest that due to their small size, TOFA molecules (about 
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3 times smaller than triglyceride) penetrated the catalyst 
structure.

The TOFA and TOFAME epoxidation reaction may be 
also influenced by unsaturated fatty acids' composition and 
chemical structure. Lawer-Yolar et al. reported TOFA com-
position of 57.7% oleic acid, 35.4% linoleic acid and other 
mainly saturated fatty acids [25]. Keskin et al. [5] reported 
TOFA composition of 52.7% oleic acid, 38.3% linolenic 
acid, 6.9% linolenic acid and 2.1% stearic acid.

A study on the kinetics of the epoxidation of a high-lino-
lenic triglyceride catalyzed by an ion exchange resin showed 
that the chemical groups (unsaturated and oxirane) at the 9th 
and 12th positions possess lower reactivity compared to the 
reactivity of the same groups at the 15th position. Chemical 
groups at the 15th position are not affected by steric and 
electronic effects of the glycerol center that highly affected 
the closer groups (at the 9th and 12th positions). The open-
ing of the epoxy group at the 15th position can cause steric 
hindrance affecting the epoxidation of the rest of the double 
bonds but also preventing any interaction between organic 
acid and the epoxy groups, thus preventing their cleavage 
[29]. TOFA and TOFAME do not contain glycerol center, 
which could interact sterically and electrically with chemical 
groups at the 9th, 12th and 15th positions. However, in the 
case of TOFA epoxidation reactions, intensive oligomeriza-
tion reactions leading to an increase in the molecular weight 
of the molecule can cause a steric hindrance preventing 
epoxidation of the remaining unsaturated bonds. Such phe-
nomenon, together with the occurrence of side reactions of 
oxirane ring opening, can be responsible for the low RCO of 
TOFA epoxidation. The lower AV in the case of TOFAME 
reduces the formation of dimers and trimer responsible for 
steric hindrance thus a significantly higher RCO is achieved.

According to La Scala and Wool, rate constants of epoxi-
dation of fatty acids methyl ester increased as the level of 

unsaturation increased, therefore oleic acid should undergo 
relatively slower epoxidation compared to linoleic and lino-
lenic acids. An explanation for this phenomenon is that as 
the number of unsaturated bonds increases, the electron den-
sity increases, resulting in an increase in the reaction rate 
constant [30].

The change in REU over time at different catalyst content 
is presented in Fig. 4. The REU of TOFA (Fig. 4a) ranged 
from 10 to 27% and decreased with increasing catalyst con-
tent after 7 h of reaction. The lower the REU value, the 
more double bonds have reacted. At the same time, low RCO 
of TOFA (Fig. 2a) (from 40 to 48% depending on catalyst 
content) combined with low REU confirmed the effect of 
a high content of carboxyl groups (high AV) on the inten-
sity of the oxirane ring-opening side reaction. The REU of 
TOFAME (Fig. 4b) ranged from 20 to 33.5% after 7 h of 
reaction. It was observed that increasing the catalyst content 
for TOFAME above 15 wt.% has no significant effect on the 
REU value.

The chemical structures of TOFA during the epoxida-
tion reaction were investigated using FTIR spectroscopy. 
The overall FTIR of TOFA spectra are shown in Fig. 5a. 
The = C–H double bond stretching peak with the maximum 
at 3009  cm−1 (Fig. 5a) disappeared during the reaction, 
while the stretching peak at 823 cm−1 originating from the 
–C–O–C– epoxy groups appeared (Fig. 5a). The close-up of 
the C–O–C oxirane ring stretching vibration peak (Fig. 5c) 
shows the gradual increase of epoxy group content in the 
TOFA structure. The intensity of the epoxidation reaction 
decreased with time, which correlates with the RCO data 
(Fig. 2a). The gradual decrease of the = C–H stretching bond 
at 3009 cm−1 is shown in Fig. 5b. The peak practically disap-
peared, confirming previous REU results (Fig. 4a). Figure 5d 
shows the decreasing intensity of the stretching peak of the 
carboxyl groups –C = O at 1707 cm−1 while increasing the 
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Fig. 3   The change in AV of the TOFA (a) and TOFAME (b) during the epoxidation process at different catalyst content (wt.%)
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Fig. 4   REU of TOFA (a) and TOFAME (b) at different catalyst content (wt.%)
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intensity of the stretching peak vibrations of the ester groups 
–C = O at 1737 cm−1. This indicates that the carboxyl group 
of TOFA opens the epoxy group with the formation of an 
ester group in dimers and molecules with multiples of TOFA 
molecular weight.

FTIR analysis of TOFAME and its epoxidation prod-
ucts was also performed. The overall FTIR spectra are 
shown in Fig. 6a. Similar to the TOFA, the = C–H double 
bond stretching peak at 3009  cm−1 (Fig. 6b) disappears 
almost completely during the reaction while the stretch-
ing –C–O–C– epoxy groups peak at 823 cm−1 increased 
(Fig. 6c). Figure 6d shows a close-up of the region of the 
carboxyl and ester group peak bands. The disappearance of 
the –C = O carboxyl group peak bands at 1707 cm−1 results 
in the gradual uncovering of the ester group peak band and 
the shift towards lower wavenumbers.

The initial presence of carboxyl group peak bands con-
firms their incomplete conversion during the esterification 
process. Nevertheless, the occurrence of side reactions 
affecting the increase of molecular weight and viscosity of 
the products was significantly reduced.

Figure 7a shows the change in TOFA viscosity during the 
epoxidation with different catalyst content. The initial vis-
cosity of TOFA was 27.26 mPa∙s. The resulting epoxidized 
TOFA synthesized with a catalyst content of 10 wt.% had 
a viscosity of 956.93 mPa∙s. Higher catalyst content led to 
products with higher viscosities of 2168.00, 1736.10 and 
1836.50 mPa∙s for synthesis with catalyst content of 15, 20 
and 25 wt.%, respectively.

The change in viscosity during TOFAME epoxidation is 
shown in Fig. 7b. The initial viscosity of TOFAME was 
7.36 mPa∙s. After 9 h of reaction (2 h longer than TOFA), 
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the final viscosity ranged from 36.94 mPa∙s to 54.55 mPa∙s 
for the reaction catalyzed by 10 wt.% and 25 wt.% catalyst 
content, respectively. The resulting ETOFAME, despite its 
high EV, exhibited very low viscosities, being only slightly 
higher than the initial TOFA viscosity (27.26 mPa∙s).

TOFA and TOFAME samples synthesized at 25 wt.% of 
the catalyst content were analyzed using GPC chromatog-
raphy. It was necessary to follow the changes in molecular 
weight to analyze the course of the synthesis and determine 
the optimal duration of the synthesis. The GPC chroma-
tograms are shown in Fig. 8. During TOFA epoxidation 
(Fig. 8a), a significant reduction in peak intensity with a 
retention time of ~ 15.30 min corresponding to the mono-
mer content is observed. At the same time, the intensity of 
the peaks characterizing the content of dimers (retention 

time ~ 14.15 min) and trimers (retention time ~ 13.10 min) 
increased significantly. This indicates side reactions that 
occur during epoxidation involving oxirane ring-open-
ing with the carboxyl group of fatty acid. The chroma-
togram also showed an increase in the peak at retention 
time ~ 14.90 min during the process, corresponding to by-
products formed during the epoxidation process by oxirane 
ring-opening with AcOH.

Figure 8b characterizes content during TOFAME epoxi-
dation. The changes in peak intensity are relatively small 
compared to the TOFA epoxidation process. Although the 
peak corresponding to the dimers is clearly observed, it is 
significantly lower in intensity than in the case of TOFA 
epoxidation, which means that they are formed in much 
lower content. Significantly fewer by-products, such as 
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Fig. 7   The viscosity of TOFA (a) and TOFAME (b) at different catalyst content (wt.%)
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dimers and trimers, are formed. The formation of dimers 
and trimers increases the viscosity of the product and thus 
makes it difficult to use it in further processing. Therefore, 
preventing the formation of these undesirable by-products 
during the synthesis is a significant benefit.

Polydispersity characterizes the molecular weight distri-
bution. The change of polydispersity is shown in Fig. 9. In 
the case of TOFA epoxidation, the polydispersity increased 
significantly during the first h of epoxidation, reaching 1.8 
in the 4th h. In contrast, the change in dispersity during the 
oxidation of TOFAME was less pronounced. It indicated 
greater homogeneity of TOFAME epoxidation products and 
smaller width of the molecular weight distribution.

Table 2 summarizes the physico-chemical properties of 
epoxidized TOFA and TOFAME at optimal synthesis time, 
which is considered to be the time when the reaction reached 
the highest RCO.

The selectivity of the TOFAME epoxidation reaction was 
about 0.98–1.00, while the TOFA epoxidation selectivity 
was 0.61–0.67. It was lower due to the occurance of side 

reactions involving oxirane ring-opening with a carboxyl 
group of fatty acid. It was found that the catalyst content 
of 20 wt.% of is sufficient to obtain products with high EV. 
Increasing the catalyst content to 25 wt.% did not lead to a 
significant increase in EV for both TOFA and TOFAME 
epoxidations. A lower catalyst content can reduce the cost of 
the epoxidation process and is consistent with cleaner pro-
duction principles. The reusability and easy separation of the 
catalyst from the reaction products is especially important 
for the cost-effectiveness of the industrial scale process [21]. 
The further investigation consisted of conducting ten epoxi-
dation reactions and determining the feasibility of using ion 
exchange resin as a catalyst multiple times.

Figure 10 summarises the RCO and REU of 10 successive 
TOFA epoxidation reactions at 20 wt.% catalyst content. 
The results indicated good catalyst stability: the RCO was 
48.2–41.9%, and the REU % was 32.2–36.3%. In a compa-
rable experiment conducted in a batch reactor at 20 wt.% 
catalyst content, the RCO value after 10th reuse of the cata-
lyst was reduced from 41.5 to 35.3% [19]. In the study by 
Aguilera et al. [23], the RCO of tall oil epoxidation in an 
isothermal batch reactor in four consecutive reactions was 
42–45%.

By performing a linear approximation of the RCO 
and assuming a minimum value of 30% (EV approx. 
0.18 mol/100 g), it can be concluded that the reusability 
of the catalyst in the TOFA epoxidation reaction is about 
25 reactions. The use of TOFAME for the preparation of 
epoxidized derivatives with similar EVs to TOFA can lead 
to a significant extension of the catalyst lifetime.

Conclusions

A series of TOFA and TOFAME epoxidation reac-
tions were carried out in the RBR reactor using Amber-
lite® IRC120 H catalyst. Results showed that methyla-
tion of TOFA allows obtaining a product with a higher 
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Table 2   Summary of the 
physico-chemical properties 
of epoxidized TOFA and 
TOFAME at optimal synthesis 
time

Catalyst 
content(wt.%)

Optimal syn-
thesis time (h)

RCO (%) REU (%) EV (mol/100 g) S Viscosity (mPa∙s)

TOFA epoxidation
10 6 42.51 34.81 0.24 0.65 445.13
15 6 47.46 22.33 0.26 0.61 1442.7
20 5 49.75 27.41 0.27 0.68 723.06
25 4 51.52 24.18 0.28 0.67 472.36
TOFAME epoxidation
10 8 65.22 33.53 0.33 0.98 36.94
15 7 78.61 23.18 0.40  ~ 1.00 35.12
20 7 81.21 20.13 0.42  ~ 1.00 41.26
25 7 82.34 25.15 0.42  ~ 1.00 43.43
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epoxy value (TOFA: 0.223–0.281 mol/100 g; TOFAME 
0.337–0.420  g/mol and smaller viscosity (TOFA: 
956.93–2168.00 mPa∙s; TOFAME: 36.94–54.55 mPa∙s). 
The selectivity of TOFAME epoxidation reaction was 
higher than the selectivity of TOFA epoxidation. It was 
found that 20 wt.% of the Amberlite® IRC120 H is suf-
ficient to obtain products with high epoxy value. Increas-
ing the catalyst content to 25 wt.% did not significantly 
increase epoxy value for both TOFA and TOFAME epoxi-
dations. Conducting the epoxidation reaction in the RBR 
reactor facilitated the separation process and provided 
the opportunity of reusing the catalyst. The Amberlite® 
IRC120 H catalyst was found to exhibit good stability in 
the TOFA epoxidation reaction. The relative conversion to 
oxirane decreased from 48.2 to 41.9% over 10 subsequent 
reactions. It was found that the conversion of double bonds 
to oxiranes in the TOFA epoxidation reaction carried out 
in the RBR reactor was higher than when a batch reactor 
was used. The produced TOFAME epoxy derivatives char-
acterized by very low viscosity and high epoxy value are 
more suitable to be used as raw material for the synthesis 
of bio-polyols than TOFA epoxy derivatives.
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