Skip to main content
Log in

Environmentally-Friendly Synthesis of Ag Nanoparticles by Fusarium sporotrichioides for the Production of PVA/Bentonite/Ag Composite Nanofibers

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Membranes and filters made of nanofibers can have many medicines and water treatment applications. The use of silver nanoparticles (AgNPs) with antibacterial activity in these structures improve their efficiency. However, due to the toxicity of the compounds used in the chemical synthesis of AgNPs, in this study, AgNPs were obtained through a biological process using Fusarium sporotrichioides. AgNPs preparation conditions were optimized, including F. sporotrichioides medium and AgNO3 concentration. Next, a PVA nanofiber membrane with bentonite and AgNPs (Bio-AgNPs or Chem-AgNPs) was prepared using electrospinning. The optimal conditions for the production of Bio-AgNPs were the culture of F. sporotrichioides in the MGYP culture medium and 12 M of AgNO3. The Bio-AgNPs particle size and zeta potential were 58 nm and − 16.8 mV, respectively, with antibacterial activity. The PVA/NB/AgNPs nanofibers operation conditions included 7.5% w/w PVA, 3% w/w bentonite, and AgNPs 5% w/w at a voltage of 11 kV, feed rate of 0.5 mL/h, and 15 cm distance between the needle and the collector. The average diameter of the PVA/NB/Bio-AgNPs nanofibers was 230 nm. Also, the presence of silver in the nanofibers was confirmed through EDX and XRD methods. The antibacterial assay of the nanofibers showed that the inhibition zone of PVA/NB/Bio-AgNPs against E. coli and S. aureus was 0.62 and 0.36 mm, which is better than PVA/NB/Chem-AgNPs and comparable with chloramphenicol. The produced membrane is suitable for water treatment, food packaging, and wound dressing because of its good thermal, mechanical, and antibacterial properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17

    Article  PubMed  PubMed Central  Google Scholar 

  2. Botes M, Eugene Cloete T (2010) The potential of nanofibers and nanobiocides in water purification. Crit Rev Microbiol 36(1):68–81

    Article  CAS  PubMed  Google Scholar 

  3. Shyam A, Chandran SS, George B (2021) Plant mediated synthesis of AgNPs and its applications: an overview. Inorg Nano-Met Chem 51(12):1646–1662

    CAS  Google Scholar 

  4. Kumar SA, Abyaneh MK, Gosavi S, Kulkarni SK, Pasricha R, Ahmad A, Khan M (2007) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3):439–445

    Article  CAS  Google Scholar 

  5. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588

    Article  CAS  Google Scholar 

  6. Honary S, Ghajar K, Khazaeli P, Shalchian P (2011) Preparation, characterization and antibacterial properties of silver-chitosan nanocomposites using different molecular weight grades of chitosan. Trop J Pharm Res. https://doi.org/10.4314/tjpr.v10i1.66543

    Article  Google Scholar 

  7. Shahin Lefteh M, Sourinejad I, Ghasemi Z (2021) Avicennia marina mediated synthesis of TiO2 nanoparticles: its antibacterial potential against some aquatic pathogens. Inorg Nano-Met Chem 51(12):1775–1785

    CAS  Google Scholar 

  8. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4(2):141–144

    Article  CAS  Google Scholar 

  9. Phanjom P, Ahmed G (2017) Effect of different physicochemical conditions on the synthesis of silver nanoparticles using fungal cell filtrate of Aspergillus oryzae (MTCC No. 1846) and their antibacterial effect. Adv Nat Sci Nanosci Nanotechnol 8(4):045016

    Article  Google Scholar 

  10. Yuan Q, Bomma M, Xiao Z (2019) Enhanced silver nanoparticle synthesis by Escherichia coli transformed with Candida albicans metallothionein gene. Materials 12(24):4180

    Article  CAS  PubMed Central  Google Scholar 

  11. Yurtluk T, Akçay FA, Avcı A (2018) Biosynthesis of silver nanoparticles using novel Bacillus sp. SBT8. Prep Biochem Biotechnol 48(2):151–159

    Article  CAS  PubMed  Google Scholar 

  12. Banerjee A, Das D, Andler R, Bandopadhyay R (2021) Green synthesis of silver nanoparticles using exopolysaccharides produced by Bacillus anthracis PFAB2 and its biocidal property. J Polym Environ 29(8):2701–2709

    Article  CAS  Google Scholar 

  13. Rajoriya P, Barcelos MC, Ferreira DC, Misra P, Molina G, Pelissari FM, Shukla PK, Ramteke PW (2021) Green silver nanoparticles: recent trends and technological developments. J Polym Environ 29(9):2711–2737

    Article  CAS  Google Scholar 

  14. Mortazavi-Derazkola S, Hosseinzadeh M, Yousefinia A, Naghizadeh A (2021) Green synthesis and investigation of antibacterial activity of silver nanoparticles using Eryngium bungei Boiss plant extract. J Polym Environ 29(9):2978–2985

    Article  CAS  Google Scholar 

  15. Krumov N, Perner-Nochta I, Oder S, Gotcheva V, Angelov A, Posten C (2009) Production of inorganic nanoparticles by microorganisms. Chem Eng Technol 32(7):1026–1035

    Article  CAS  Google Scholar 

  16. Rohaizad A, Shahabuddin S, Shahid MM, Rashid NM, Hir ZAM, Ramly MM, Awang K, Siong CW, Aspanut Z (2020) Green synthesis of silver nanoparticles from Catharanthus roseus dried bark extract deposited on graphene oxide for effective adsorption of methylene blue dye. J Environ Chem Eng 8(4):103955

    Article  CAS  Google Scholar 

  17. Azadi M, Siavash Moghaddam S, Rahimi A, Pourakbar L, Popović-Djordjević J (2021) Biosynthesized silver nanoparticles ameliorate yield, leaf photosynthetic pigments, and essential oil composition of garden thyme (Thymus vulgaris L.) exposed to UV-B stress. J Environ Chem Eng 9(5):105919

    Article  CAS  Google Scholar 

  18. Bazargan A, Keyanpour-Rad M, Hesari F, Ganji ME (2011) A study on the microfiltration behavior of self-supporting electrospun nanofibrous membrane in water using an optical particle counter. Desalination 265(1–3):148–152

    Article  CAS  Google Scholar 

  19. Safaee-Ardakani MR, Hatamian-Zarmi A, Sadat SM, Mokhtari-Hosseini ZB, Ebrahimi-Hosseinzadeh B, Kooshki H, Rashidiani J (2019) In situ preparation of PVA/schizophyllan-AgNPs nanofiber as potential of wound healing: characterization and cytotoxicity. Fibers Polym 20(12):2493–2502

    Article  CAS  Google Scholar 

  20. Haider A, Haider S, Kang I-K (2018) A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab J Chem 11(8):1165–1188

    Article  CAS  Google Scholar 

  21. Lee HW, Karim MR, Ji HM, Choi JH, Ghim HD, Park SM, Oh W, Yeum JH (2009) Electrospinning fabrication and characterization of poly (vinyl alcohol)/montmorillonite nanofiber mats. J Appl Polym Sci 113(3):1860–1867

    Article  CAS  Google Scholar 

  22. Thuc C-NH, Grillet A-C, Reinert L, Ohashi F, Thuc HH, Duclaux L (2010) Separation and purification of montmorillonite and polyethylene oxide modified montmorillonite from Vietnamese bentonites. Appl Clay Sci 49(3):229–238

    Article  CAS  Google Scholar 

  23. Bhattacharya SS, Sen KK, Sen SO, Banerjee S, Kaity S, Ghosh AK, Ghosh A (2011) Synthesis and characterization of poly (acrylic acid)/modified bentonite superabsorbent polymer. Int J Polym Mater 60(13):1015–1025

    Article  CAS  Google Scholar 

  24. Yari M, Derakhshi P, Tahvildari K, Nozari M (2021) Preparation and characterization of magnetic iron nanoparticles on alginate/bentonite substrate for the adsorptive removal of Pb2+ ions to protect the environment. J Polym Environ 29(7):2185–2199

    Article  CAS  Google Scholar 

  25. Estevez-Areco S, Guz L, Candal R, Goyanes S (2022) Development of insoluble PVA electrospun nanofibers incorporating R-limonene or β-cyclodextrin/R-limonene inclusion complexes. J Polym Environ 30:2812–2823

    Article  CAS  Google Scholar 

  26. Mahdizadeh S, Mokhtari-Hosseini Z-B, Hatamian-Zarmi A, Ebrahimi-Hosseinzadeh B (2018) Optimization of PVA/Nano-bentonite nanofiber composite production for improving mechanical and thermal properties. J Appl Res Chem 2(2):17–28

    Google Scholar 

  27. Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, BarathManiKanth S, Kartikeyan B, Gurunathan S (2010) Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids Surf B 77(2):257–262

    Article  CAS  Google Scholar 

  28. Yasrebi N, Hatamian Zarmi AS, Larypoor M (2020) Optimization of chitosan production from Iranian medicinal fungus trametes-versicolor by taguchi method and evaluation of antibacterial properties. Iran J Med Microbiol 14(3):186–200

    Article  Google Scholar 

  29. Alvandi H, Hatamian-Zarmi A, Ebrahimi Hosseinzadeh B, Mokhtari-Hosseini Z-B (2020) Optimization of production conditions for bioactive polysaccharides from Fomes fomentarius and investigation of antibacterial and antitumor activities. Iran J Med Microbiol 14(6):596–611

    Article  Google Scholar 

  30. Alvandi H, Hatamian-Zarmi A, Hosseinzadeh BE, Mokhtari-Hosseini ZB, Langer E, Aghajani H (2021) Improving the biological properties of Fomes fomentarius MG835861 exopolysaccharide by bioincorporating selenium into its structure. Carbohydr Polym Technol Appl 2:100159

    CAS  Google Scholar 

  31. Mohapatra B, Kaintura R, Singh J, Kuriakose S, Mohapatra S (2015) Biosynthesis of high concentration, stable aqueous dispersions of silver nanoparticles using Citrus limon extract. Adv Mater Lett 6(3):228–234

    Article  CAS  Google Scholar 

  32. Izak-Nau E, Huk A, Reidy B, Uggerud H, Vadset M, Eiden S, Voetz M, Himly M, Duschl A, Dusinska M (2015) Impact of storage conditions and storage time on silver nanoparticles’ physicochemical properties and implications for their biological effects. Rsc Adv 5(102):84172–84185

    Article  CAS  Google Scholar 

  33. Himmelblau DM, Riggs JB (2012) Basic principles and calculations in chemical engineering. FT press, Upper Saddle River

    Google Scholar 

  34. Basavaraja S, Balaji S, Lagashetty A, Rajasab A, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  CAS  Google Scholar 

  35. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079–2085

    Article  CAS  Google Scholar 

  36. Yazdi MET, Khara J, Housaindokht MR, Sadeghnia HR, Bahabadi SE, Amiri MS, Mosawee H, Taherzadeh D, Darroudi M (2019) Role of Ribes khorassanicum in the biosynthesis of AgNPs and their antibacterial properties. IET Nanobiotechnol 13(2):189–192

    Article  Google Scholar 

  37. Umoren S, Obot I, Gasem Z (2014) Green synthesis and characterization of silver nanoparticles using red apple (Malus domestica) fruit extract at room temperature. J Mater Environ Sci 5(3):907–914

    Google Scholar 

  38. Kumar H, Rani R (2013) Structural characterization of silver nanoparticles synthesized by micro emulsion route. Int J Eng Innov Technol 3(3):344–348

    Google Scholar 

  39. Chen X, Yan J-K, Wu J-Y (2016) Characterization and antibacterial activity of silver nanoparticles prepared with a fungal exopolysaccharide in water. Food Hydrocoll 53:69–74

    Article  CAS  Google Scholar 

  40. Moldovan B, Sincari V, Perde-Schrepler M, David L (2018) Biosynthesis of silver nanoparticles using Ligustrum ovalifolium fruits and their cytotoxic effects. Nanomaterials 8(8):627

    Article  PubMed Central  Google Scholar 

  41. David L, Moldovan B (2020) Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10(2):202

    Article  CAS  PubMed Central  Google Scholar 

  42. Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu C-P (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloids Surf A 444:226–231

    Article  CAS  Google Scholar 

  43. Owaid MN, Ibraheem IJ (2017) Mycosynthesis of nanoparticles using edible and medicinal mushrooms. Eur J Nanomed 9(1):5–23

    Article  CAS  Google Scholar 

  44. Shahabadi N, Zendehcheshm S, Khademi F, Rashidi K, Chehri K (2021) Green synthesis of Chloroxine-conjugated silver nanoflowers: promising antimicrobial activity and in vivo cutaneous wound healing effects. J Environ Chem Eng 9(3):105215

    Article  CAS  Google Scholar 

  45. Latif U, Al-Rubeaan K, Saeb AT (2015) A review on antimicrobial chitosan-silver nanocomposites: a roadmap toward pathogen targeted synthesis. Int J Polym Mater 64(9):448–458

    Article  CAS  Google Scholar 

  46. Irshad A, Sarwar N, Sadia H, Malik K, Javed I, Irshad A, Afzal M, Abbas M, Rizvi H (2020) Comprehensive facts on dynamic antimicrobial properties of polysaccharides and biomolecules-silver nanoparticle conjugate. Int J Biol Macromol 145:189–196

    Article  CAS  PubMed  Google Scholar 

  47. Reis EFd, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, Lobato ZIP, Mansur HS (2006) Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res 9(2):185–191

    Article  Google Scholar 

  48. Oliveira GZS, Lopes CAP, Sousa MH, Silva LP (2019) Synthesis of silver nanoparticles using aqueous extracts of Pterodon emarginatus leaves collected in the summer and winter seasons. Int Nano Lett 9(2):109–117

    Article  Google Scholar 

  49. Ounkaew A, Janaum N, Kasemsiri P, Okhawilai M, Hiziroglu S, Chindaprasirt P (2021) Synergistic effect of starch/polyvinyl alcohol/citric acid films decorated with in-situ green-synthesized nano silver on bioactive packaging films. J Environ Chem Eng 9(6):106793

    Article  CAS  Google Scholar 

  50. Iravani S (2021) Nanomaterials and nanotechnology for water treatment: recent advances. Inorg Nano-Met Chem 51(12):1615–1645

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all people, who helped us during the experimental work.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zahra-Beagom Mokhtari-Hosseini or Ashrafalsadat Hatamian-Zarmi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhtari-Hosseini, ZB., Hatamian-Zarmi, A., Mahdizadeh, S. et al. Environmentally-Friendly Synthesis of Ag Nanoparticles by Fusarium sporotrichioides for the Production of PVA/Bentonite/Ag Composite Nanofibers. J Polym Environ 30, 4146–4156 (2022). https://doi.org/10.1007/s10924-022-02509-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02509-y

Keywords

Navigation