Skip to main content
Log in

Role of Starch Based Materials as a Bio-sorbents for the Removal of Dyes and Heavy Metals from Wastewater

  • Review
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Native starch has low adsorption ability due to lack of specific functional groups. To increase the adsorption efficiency of native starch, it needs to be chemically modified. The modification produces specific functional groups on the backbone of starch and increases its adsorption efficacy towards dyes and heavy metals. The modified starch-based adsorbents (succinylated starches, starch phosphate, starch-based composites and nanoparticles, starch-based hydrogels, cross-linked and carboxylated starches and so on) are more useful due to their large surface area, available polar sites and reproducibility in the degree of activation. In this review article we have discussed the application of modified starches as sorbents for the removal of dyes and heavy metals from wastewater. It further highlighted the optimized conditions used for the removal of heavy metals and dyes by the modified starches and the interactions generated between the adsorbent and adsorbate. This article presented the most recent literature and will spark new ideas for researchers working in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Scheme 2
Fig. 11

Similar content being viewed by others

References

  1. Pandey S, Do JY, Kim J, Kang M (2020) Fast and highly efficient removal of dye from aqueous solution using natural locust bean gum based hydrogels as adsorbent. Int J Biol Macromol 143:60–75

    Article  CAS  PubMed  Google Scholar 

  2. Cheng N, Jing D, Zhang C, Chen Z, Li W, Li S, Q, (2021) Wang, Process-based VOCs source profiles and contributions to ozone formation and carcinogenic risk in a typical chemical synthesis pharmaceutical industry in China. Sci Total Environ 752:141899

    Article  CAS  PubMed  Google Scholar 

  3. Singh RP, Singh PK, Singh RL (2017) Present status of biodegradation of textile dyes. Curr Trends Biomed Eng Biosci 3(4):66–68

    Article  Google Scholar 

  4. Sultan M (2017) Polyurethane for removal of organic dyes from textile wastewater. Environ Chem Lett 15(2):347–366

    Article  CAS  Google Scholar 

  5. Gong G, Zhang F, Cheng Z, Zhou L (2015) Facile fabrication of magnetic carboxymethyl starch/poly (vinyl alcohol) composite gel for methylene blue removal. Int J Biol Macromol 81:205–211

    Article  CAS  PubMed  Google Scholar 

  6. Ge F, Ye H, Li M-M, Zhao B-X (2012) Efficient removal of cationic dyes from aqueous solution by polymer-modified magnetic nanoparticles. Chem Eng J 198:11–17

    Article  Google Scholar 

  7. Ngwabebhoh FA, Gazi M, Oladipo AA (2016) Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chem Eng Res Des 112:274–288

    Article  CAS  Google Scholar 

  8. Fosso-Kankeu E, Mittal H, Mishra SB, Mishra AK (2015) Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes. J Ind Eng Chem 22:171–178

    Article  CAS  Google Scholar 

  9. Liu X, Yan L, Yin W, Zhou L, Tian G, Shi J, Yang Z, Xiao D, Gu Z, Zhao Y (2014) A magnetic graphene hybrid functionalized with beta-cyclodextrins for fast and efficient removal of organic dyes. J Mater Chem A 2(31):12296–12303

    Article  CAS  Google Scholar 

  10. Lei C, Pi M, Kuang P, Guo Y, Zhang F (2017) Organic dye removal from aqueous solutions by hierarchical calcined Ni-Fe layered double hydroxide: isotherm, kinetic and mechanism studies. J Colloid Interface Sci 496:158–166

    Article  CAS  PubMed  Google Scholar 

  11. Qi Y, Yang M, Xu W, He S, Men Y (2017) Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. J Colloid Interface Sci 486:84–96

    Article  CAS  PubMed  Google Scholar 

  12. Habiba U, Siddique TA, Joo TC, Salleh A, Ang BC, Afifi AM (2017) Synthesis of chitosan/polyvinyl alcohol/zeolite composite for removal of methyl orange, Congo red and chromium (VI) by flocculation/adsorption. Carbohyd Polym 157:1568–1576

    Article  CAS  Google Scholar 

  13. El Hassani K, Beakou BH, Kalnina D, Oukani E, Anouar A (2017) Effect of morphological properties of layered double hydroxides on adsorption of azo dye methyl orange: a comparative study. Appl Clay Sci 140:124–131

    Article  Google Scholar 

  14. Haq F, Yu H, Wang L, Teng L, Haroon M, Khan RU, Mehmood S, Ullah RS, Khan A, Nazir A (2019) Advances in chemical modifications of starches and their applications. Carbohyd Res 476:12–35

    Article  CAS  Google Scholar 

  15. Pourjavadi A, Abedin-Moghanaki A, Tavakoli A (2016) Efficient removal of cationic dyes using a new magnetic nanocomposite based on starch-g-poly (vinylalcohol) and functionalized with sulfate groups. RSC Adv 6(44):38042–38051

    Article  CAS  Google Scholar 

  16. Pohorille A, Pratt LR (2012) Is water the universal solvent for life? Origins of Life and Evolution of Biospheres 42(5):405–409

    Article  CAS  Google Scholar 

  17. Filippini M, Baldisserotto A, Menotta S, Fedrizzi G, Rubini S, Gigliotti D, Valpiani G, Buzzi R, Manfredini S, Vertuani S (2021) Heavy metals and potential risks in edible seaweed on the market in Italy. Chemosphere 263:127983

    Article  CAS  PubMed  Google Scholar 

  18. Bonanno G, Veneziano V, Orlando-Bonaca M (2020) Comparative assessment of trace element accumulation and biomonitoring in seaweed Ulva lactuca and seagrass Posidonia oceanica. Sci Total Environ 718:137413

    Article  CAS  PubMed  Google Scholar 

  19. Kumar MS, Sharma SA (2020) Toxicological effects of marine seaweeds: a cautious insight for human consumption. Crit Rev Food Sci Nutr 61:1–22

    Google Scholar 

  20. Rajaram R, Rameshkumar S, Anandkumar A (2020) Health risk assessment and potentiality of green seaweeds on bioaccumulation of trace elements along the Palk Bay coast, Southeastern India. Marine Pollut Bull 154:111069

    Article  CAS  Google Scholar 

  21. Li M, Messele SA, Boluk Y, El-Din MG (2019) Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. Carbohyd Polym 221:231–241

    Article  CAS  Google Scholar 

  22. Zhang Y, Wang Y, Zhang H, Li Y, Zhang Z, Zhang W (2020) Recycling spent lithium-ion battery as adsorbents to remove aqueous heavy metals: Adsorption kinetics, isotherms, and regeneration assessment. Resources Conserv Recycling 156:104688

    Article  Google Scholar 

  23. Altaf M, Yamin N, Muhammad G, Raza MA, Shahid M, Ashraf RS (2021) Electroanalytical techniques for the remediation of heavy metals from wastewater. In: Water pollution and remediation: heavy metals, Springer, New York, pp. 471–511

  24. Patel N, Chauhan D, Shahane S, Rai D, Khan MZA, Mishra U, Chaudhary VK (2021) Contamination and Health Impact of Heavy Metals, Water Pollution and Remediation: Heavy Metals, Springer, pp 259–280

  25. Sonone SS, Jadhav S, Sankhla MS, Kumar R (2020) Water contamination by heavy metals and their toxic effect on aquaculture and human health through food chain. Lett Appl NanoBioSci 10(2):2148–2166

    Article  Google Scholar 

  26. Gay DS, Fernandes TH, Amavisca CV, Cardoso NF, Benvenutti EV, Costa TM, Lima EC (2010) Silica grafted with a silsesquioxane containing the positively charged 1, 4-diazoniabicyclo [222] octane group used as adsorbent for anionic dye removal. Desalination 258(1–3):128–135

    Article  CAS  Google Scholar 

  27. Esrafili L, Firuzabadi FD, Morsali A, Hu M-L (2021) Reuse of predesigned dual-functional metal organic frameworks (DF-MOFs) after heavy metal removal. J Hazardous Mater 403:123696

    Article  CAS  Google Scholar 

  28. Khalfa L, Sdiri A, Bagane M, Cervera ML (2021) A calcined clay fixed bed adsorption studies for the removal of heavy metals from aqueous solutions. J Clean Product 278:123935

    Article  CAS  Google Scholar 

  29. Belhouchat N, Zaghouane-Boudiaf H, Viseras C (2017) Removal of anionic and cationic dyes from aqueous solution with activated organo-bentonite/sodium alginate encapsulated beads. Appl Clay Sci 135:9–15

    Article  CAS  Google Scholar 

  30. Mbacké MK, Kane C, Diallo NO, Diop CM, Chauvet F, Comtat M, Tzedakis T (2016) Electrocoagulation process applied on pollutants treatment-experimental optimization and fundamental investigation of the crystal violet dye removal. J Environ Chem Eng 4(4):4001–4011

    Article  Google Scholar 

  31. Ghanbari M, Bazarganipour M, Salavati-Niasari M (2017) Photodegradation and removal of organic dyes using cui nanostructures, green synthesis and characterization. Sep Purif Technol 173:27–36

    Article  CAS  Google Scholar 

  32. Cano OA, González CR, Paz JH, Madrid PA, Casillas PG, Hernández AM, Pérez CM (2017) Catalytic activity of palladium nanocubes/multiwalled carbon nanotubes structures for methyl orange dye removal. Catal Today 282:168–173

    Article  Google Scholar 

  33. Pourjavadi A, Abedin-Moghanaki A, Nasseri SA (2016) A new functionalized magnetic nanocomposite of poly (methylacrylate) for the efficient removal of anionic dyes from aqueous media. RSC Adv 6(10):7982–7989

    Article  CAS  Google Scholar 

  34. Ahmed Y, Yaakob Z, Akhtar P (2016) Degradation and mineralization of methylene blue using a heterogeneous photo-Fenton catalyst under visible and solar light irradiation. Catal Sci Technol 6(4):1222–1232

    Article  CAS  Google Scholar 

  35. Shahrokhi-Shahraki R, Benally C, El-Din MG, Park J (2021) High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 264:128455

    Article  CAS  PubMed  Google Scholar 

  36. Aguiar J, Cecilia J, Tavares P, Azevedo D, Castellón ER, Lucena S, Junior IS (2017) Adsorption study of reactive dyes onto porous clay heterostructures. Appl Clay Sci 135:35–44

    Article  CAS  Google Scholar 

  37. Ren Z, Jia B, Zhang G, Fu X, Wang Z, Wang P, Lv L (2021) Study on adsorption of ammonia nitrogen by iron-loaded activated carbon from low temperature wastewater. Chemosphere 262:127895

    Article  CAS  PubMed  Google Scholar 

  38. Isanejad M, Arzani M, Mahdavi HR, Mohammadi T (2017) Novel amine modification of ZIF-8 for improving simultaneous removal of cationic dyes from aqueous solutions using supported liquid membrane. J Mol Liq 225:800–809

    Article  CAS  Google Scholar 

  39. Gupta VK, Tyagi I, Agarwal S, Sadegh H, Shahryari-ghoshekandi R, Yari M, Yousefi-nejat O (2015) Experimental study of surfaces of hydrogel polymers HEMA, HEMA–EEMA–MA, and PVA as adsorbent for removal of azo dyes from liquid phase. J Mol Liq 206:129–136

    Article  CAS  Google Scholar 

  40. Oladipo B, Ibrahim TH, Ajala SO, Akintunde AM, Taiwo AE, Betiku E (2021) Synthesis of activated carbons for heavy metals removal Green Adsorbents to Remove Metals. Dyes Boron Pollut Water 15:1–31

    Google Scholar 

  41. Hermawan AA, Talei A, Salamatinia B (2021) Removal of heavy metals in biofiltration systems. In: Water pollution and remediation: heavy metals, Springer, pp. 243–258.

  42. Shahrashoub M, Bakhtiari S (2021) The efficiency of activated carbon/magnetite nanoparticles composites in copper removal: Industrial waste recovery, green synthesis, characterization, and adsorption-desorption studies. Microporous Mesoporous Mater 311:110692

    Article  CAS  Google Scholar 

  43. El-Mekkawi D, Galal H (2013) Removal of a synthetic dye “Direct Fast Blue B2RL” via adsorption and photocatalytic degradation using low cost rutile and Degussa P25 titanium dioxide. J Hydro-Environ Res 7(3):219–226

    Article  Google Scholar 

  44. Mittal H, Babu R, Dabbawala AA, Stephen S, Alhassan SM (2020) Zeolite-Y incorporated karaya gum hydrogel composites for highly effective removal of cationic dyes. Colloids Surf A 586:124161

    Article  CAS  Google Scholar 

  45. Bagheri AR, Ghaedi M (2020) Green preparation of dual-template chitosan-based magnetic water-compatible molecularly imprinted biopolymer. Carbohydr Polym 236:116102

    Article  CAS  PubMed  Google Scholar 

  46. Llanos JHR, Tadini CC, Gastaldi E (2021) New strategies to fabricate starch/chitosan-based composites by extrusion. J Food Eng 290:110224

    Article  Google Scholar 

  47. Mishra R, Manral A (2021) Graphene functionalized starch biopolymer nanocomposites: fabrication, characterization, and applications. In: Graphene based biopolymer nanocomposites, Springer, pp 173–189

  48. Aziz T, Ullah A, Fan H, Ullah R, Haq F, Khan FU, Iqbal M, Wei J (2021) Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 12:1–10

    Google Scholar 

  49. Aziz T, Fan H, Zhang X, Haq F, Ullah A, Ullah R, Khan FU, Iqbal M (2020) Advance study of cellulose nanocrystals properties and applications. J Polym Environ 28(4):1117–1128

    Article  CAS  Google Scholar 

  50. Aziz T, Fan H, Khan FU, Ullah R, Haq F, Iqbal M, Ullah A (2020) Synthesis of carboxymethyl starch-bio-based epoxy resin and their impact on mechanical properties. Z Phys Chem 234(11–12):1759–1769

    Article  CAS  Google Scholar 

  51. Aziz T, Fan H, Zhang X, Khan FU, Fahad S, Ullah A (2020) Adhesive properties of bio-based epoxy resin reinforced by cellulose nanocrystal additives. J Polym Eng 1:55

    Google Scholar 

  52. Abukhadra MR, Refay NM, Nadeem A, El-Sherbeeny AM, Ibrahim KE (2020) Insight into the role of integrated carbohydrate polymers (starch, chitosan, and β-cyclodextrin) with mesoporous silica as carriers for ibuprofen drug; equilibrium and pharmacokinetic properties. Int J Biol Macromol 156:537–547

    Article  CAS  PubMed  Google Scholar 

  53. Chang R, Lu H, Bian X, Tian Y, Jin Z (2021) Ultrasound assisted annealing production of resistant starches type 3 from fractionated debranched starch: Structural characterization and in-vitro digestibility. Food Hydrocoll 110:106141

    Article  CAS  Google Scholar 

  54. Wei B, Qi H, Zou J, Li H, Wang J, Xu B, Ma H (2021) Degradation mechanism of amylopectin under ultrasonic irradiation. Food Hydrocoll 111:106371

    Article  CAS  Google Scholar 

  55. Ibrahim K, Naz M, Shukrullah S, Sulaiman S, Ghaffar A, AbdEl-Salam N (2020) nitrogen pollution impact and Remediation through Low cost Starch Based Biodegradable polymers. Sci Rep 10(1):1–10

    Article  Google Scholar 

  56. Vaezi K, Asadpour G, Sharifi SH (2020) Bio nanocomposites based on cationic starch reinforced with montmorillonite and cellulose nanocrystals: Fundamental properties and biodegradability study. Int J Biol Macromol 146:374–386

    Article  CAS  PubMed  Google Scholar 

  57. Yap SY, Sreekantan S, Hassan M, Sudesh K, Ong MT (2021) Characterization and Biodegradability of Rice Husk-Filled Polymer Composites. Polymers 13(1):104

    Article  CAS  Google Scholar 

  58. Fan Y, Picchioni F (2020) Modification of starch: a review on the application of “green” solvents and controlled functionalization. Carbohydr Polymers 241:116350

    Article  CAS  Google Scholar 

  59. Amin MR, Anannya FR, Mahmud MA, Raian S (2020) Esterification of starch in search of a biodegradable thermoplastic material. J Polym Res 27(1):3

    Article  Google Scholar 

  60. Wang P-P, Luo Z-G, Tamer TM (2020) Effects of octenyl succinic anhydride groups distribution on the storage and shear stability of Pickering emulsions formulated by modified rice starch. Carbohydr Polym 228:115389

    Article  PubMed  Google Scholar 

  61. Majzoobi M, Farahnaky A (2021) Granular cold-water swelling starch; properties, preparation and applications, a review. Food Hydrocoll 111:106393

    Article  CAS  Google Scholar 

  62. Shogren RL (2009) Flocculation of kaolin by waxy maize starch phosphates. Carbohyd Polym 76(4):639–644

    Article  CAS  Google Scholar 

  63. Vanier NL, Pozzada dos Santos J, Bruni GP, Zavareze EDR (2020) Starches in foods and beverages, handbook of eating and drinking: interdisciplinary perspectives pp 897–913

  64. Goel C, Semwal AD, Khan A, Kumar S, Sharma GK (2020) Physical modification of starch: changes in glycemic index, starch fractions, physicochemical and functional properties of heat-moisture treated buckwheat starch. J Food Sci Technol 57(8):2941–2948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Limpongsa E, Jaipakdee N (2020) Physical modification of Thai rice starch and its application as orodispersible film former. Carbohydr Polym 239:116206

    Article  CAS  PubMed  Google Scholar 

  66. Cabrera Canales ZE, Rodríguez Marín ML, Gómez Aldapa CA, Méndez Montealvo G, Chávez Gutiérrez M, Velazquez G (2020) Effect of dual chemical modification on the properties of biodegradable films from achira starch. J Appl Polymer Sci 137(45):49411

    Article  CAS  Google Scholar 

  67. Haq F, Yu H, Wang L, Liu J, Mehmood S, Haroon M, Amin B-U, Fahad S, Uddin MA (2020) Dual modification of starches by phosphorylation and grafting and their application as adsorbents for the removal of phenol. J Polym Res 27(10):1–11

    Article  Google Scholar 

  68. Zhao K, Zhang B, Su C, Gong B, Zheng J, Jiang H, Zhang G, Li W (2020) Repeated heat-moisture treatment: a more effectiveway for structural and physicochemical modification of mung bean starch compared with continuous way. Food Bioprocess Technol 13(3):452–461

    Article  CAS  Google Scholar 

  69. Liu Z-D, Wang J, Li L, Wu P (2020) Mechanistic insights into the role of starch multi-level structures in functional properties of high-amylose rice cultivars. Food Hydrocoll 113:106441

    Article  Google Scholar 

  70. Wang B, Lin X, Zheng Y, Zeng M, Huang M, Guo Z (2020) Effect of homogenization-pressure-assisted enzymatic hydrolysis on the structural and physicochemical properties of lotus-seed starch nanoparticles. Int J Biol Macromol 167:1579–1586

    Article  PubMed  Google Scholar 

  71. Keeratiburana T, Hansen AR, Soontaranon S, Tongta S, Blennow A (2020) Porous rice starch produced by combined ultrasound-assisted ice recrystallization and enzymatic hydrolysis. Int J Biol Macromol 145:100–107

    Article  CAS  PubMed  Google Scholar 

  72. Mehboob S, Ali TM, Sheikh M, Hasnain A (2020) Effects of cross linking and/or acetylation on sorghum starch and film characteristics. Int J Biol Macromol 155:786–794

    Article  CAS  PubMed  Google Scholar 

  73. Li H, Li J, Guo L (2020) Rheological and pasting characteristics of wheat starch modified with sequential triple enzymes. Carbohydr Polym 230:115667

    Article  CAS  PubMed  Google Scholar 

  74. Yu B, Ren F, Zhao H, Cui B, Liu P (2020) Effects of native starch and modified starches on the textural, rheological and microstructural characteristics of soybean protein gel. Int J Biol Macromol 142:237–243

    Article  CAS  PubMed  Google Scholar 

  75. Gupta AD, Rawat K, Bhadauria V, Singh H (2021) Recent trends in the application of modified starch in the adsorption of heavy metals from water: a review. Carbohydr Polym 117763

  76. Na Y, Lee J, Lee SH, Kumar P, Kim JH, Patel R (2020) Removal of heavy metals by polysaccharide: a review. Polym-Plast Technol Mater 59(16):1770–1790

    CAS  Google Scholar 

  77. Yadav S, Yadav A, Bagotia N, Sharma AK, Kumar S (2021) Adsorptive potential of modified plant-based adsorbents for sequestration of dyes and heavy metals from wastewater: a review. J Water Process Eng 42:102148

    Article  Google Scholar 

  78. Liu Q, Li Y, Chen H, Lu J, Yu G, Möslang M, Zhou Y (2020) Superior adsorption capacity of functionalised straw adsorbent for dyes and heavy-metal ions. J Hazard Mater 382:121040

    Article  CAS  PubMed  Google Scholar 

  79. Li C-B, Xiao F, Xu W, Chu Y, Wang Q, Jiang H, Li K, Gao X-W (2020) Efficient self-photo-degradation of cationic textile dyes involved triethylamine and degradation pathway. Chemosphere 266:129209

    Article  PubMed  Google Scholar 

  80. Hasanpour M, Hatami M (2020) Photocatalytic performance of aerogels for organic dyes removal from wastewaters: review study. J Mol Liq 266:113094

    Article  Google Scholar 

  81. Li P, Gao B, Li A, Yang H (2020) Evaluation of the selective adsorption of silica-sand/anionized-starch composite for removal of dyes and Cupper (II) from their aqueous mixtures. Int J Biol Macromol 149:1285–1293

    Article  CAS  PubMed  Google Scholar 

  82. Xia K, Liu X, Wang W, Yang X, Zhang X (2020) Synthesis of modified starch/polyvinyl alcohol composite for treating textile wastewater. Polymers 12(2):289

    Article  CAS  PubMed Central  Google Scholar 

  83. Lawchoochaisakul S, Monvisade P, Siriphannon P (2020) Cationic starch intercalated montmorillonite nanocomposites as natural based adsorbent for dye removal. Carbohyd Polym 253:117230

    Article  Google Scholar 

  84. Mokhtar A, Abdelkrim S, Zaoui F, Sassi M, Boukoussa B (2020) Improved stability of starch@ layered-materials composite films for methylene blue dye adsorption in aqueous solution. J Inorg Organomet Polym Mater 30(9):3826–3831

    Article  CAS  Google Scholar 

  85. Karoyo AH, Dehabadi L, Wilson LD (2018) Renewable starch carriers with switchable adsorption properties. ACS Sustain Chem Eng 6(4):4603–4613

    Article  CAS  Google Scholar 

  86. Stan M, Lung I, Soran M-L, Opris O, Leostean C, Popa A, Copaciu F, Lazar MD, Kacso I, Silipas T-D (2019) Starch-coated green synthesized magnetite nanoparticles for removal of textile dye Optilan Blue from aqueous media. J Taiwan Inst Chem Eng 100:65–73

    Article  CAS  Google Scholar 

  87. David L, Moldovan B (2020) Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10(2):202

    Article  CAS  PubMed Central  Google Scholar 

  88. Jain A, Ahmad F, Gola D, Malik A, Chauhan N, Dey P, Tyagi PK (2020) Multi dye degradation and antibacterial potential of Papaya leaf derived silver nanoparticles, Environmental Nanotechnology. Monit Manag 14:100337

    Google Scholar 

  89. Pandey S, Do JY, Kim J, Kang M (2020) Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr Polym 230:115597

    Article  CAS  PubMed  Google Scholar 

  90. Azeez L, Lateef A, Adejumo AL, Adeleke JT, Adetoro RO, Mustapha Z (2020) Adsorption behaviour of Rhodamine B on hen feather and corn starch functionalized with green synthesized silver nanoparticles (AgNPs) mediated with cocoa pods extracts. Chem Africa 3(1):237–250

    Article  CAS  Google Scholar 

  91. Muzaffar S, Tahir H (2018) Enhanced synthesis of silver nanoparticles by combination of plants extract and starch for the removal of cationic dye from simulated waste water using response surface methodology. J Mol Liq 252:368–382

    Article  CAS  Google Scholar 

  92. Gad ES, Owda M, Abdelhai F (2020) A novel starch nanoparticle citrate based adsorbent for removing of crystal violet dye from aqueous solution. Egypt J Chem 63(6):6–7

    Google Scholar 

  93. Chang Z, Chen Y, Tang S, Yang J, Chen Y, Chen S, Li P, Yang Z (2020) Construction of chitosan/polyacrylate/graphene oxide composite physical hydrogel by semi-dissolution/acidification/sol-gel transition method and its simultaneous cationic and anionic dye adsorption properties. Carbohyd Polym 229:115431

    Article  CAS  Google Scholar 

  94. Pauletto P, Gonçalves J, Pinto L, Dotto G, Salau N (2020) Single and competitive dye adsorption onto chitosan–based hybrid hydrogels using artificial neural network modeling. J Colloid Interface Sci 560:722–729

    Article  CAS  PubMed  Google Scholar 

  95. Qi X, Zeng Q, Tong X, Su T, Xie L, Yuan K, Xu J, Shen J (2020) Polydopamine/montmorillonite-embedded pullulan hydrogels as efficient adsorbents for removing crystal violet. J Hazard Mater 402:123359

    Article  PubMed  Google Scholar 

  96. Farag AM, Sokker HH, Zayed EM, Eldien FAN, Abd-Alrahman NM (2018) Removal of hazardous pollutants using bifunctional hydrogel obtained from modified starch by grafting copolymerization. Int J Biol Macromol 120:2188–2199

    Article  CAS  PubMed  Google Scholar 

  97. Sarmah D, Karak N (2020) Double network hydrophobic starch based amphoteric hydrogel as an effective adsorbent for both cationic and anionic dyes. Carbohyd Polym 242:116320

    Article  CAS  Google Scholar 

  98. Ilgin P, Ozay H, Ozay O (2020) The efficient removal of anionic and cationic dyes from aqueous media using hydroxyethyl starch-based hydrogels. Cellulose 27:1–16

    Article  Google Scholar 

  99. Barakat MAE, Kumar R, Seliem MK, Selim AQ, Mobarak M, Anastopoulos I, Giannakoudakis D, Barczak M, Bonilla-Petriciolet A, Mohamed EA (2020) Exfoliated clay decorated with magnetic iron nanoparticles for crystal violet adsorption: modeling and physicochemical interpretation. Nanomaterials 10(8):1454

    Article  CAS  PubMed Central  Google Scholar 

  100. Li B, Zhang Q, Pan Y, Li Y, Huang Z, Li M, Xiao H (2020) Functionalized porous magnetic cellulose/Fe3O4 beads prepared from ionic liquid for removal of dyes from aqueous solution. Int J Biol Macromol 163:309–316

    Article  CAS  PubMed  Google Scholar 

  101. Afshin S, Rashtbari Y, Vosoughi M, Rehman R, Ramavandi B, Behzad A, Mitu L (2020) Removal of basic blue-41 dye from water by stabilized magnetic iron nanoparticles on clinoptilolite zeolite. Rev Chim 71(2):218–229

    Article  CAS  Google Scholar 

  102. Saberi A, Alipour E, Sadeghi M (2019) Superabsorbent magnetic Fe 3 O 4-based starch-poly (acrylic acid) nanocomposite hydrogel for efficient removal of dyes and heavy metal ions from water. J Polym Res 26(12):271

    Article  CAS  Google Scholar 

  103. Verma A, Thakur S, Mamba G, Gupta RK, Thakur P, Thakur VK (2020) Graphite modified sodium alginate hydrogel composite for efficient removal of malachite green dye. Int J Biol Macromol 148:1130–1139

    Article  CAS  PubMed  Google Scholar 

  104. Luo T, Liang H, Chen D, Ma Y, Yang W (2020) Highly enhanced adsorption of methyl blue on weakly cross-linked ammonium-functionalized hollow polymer particles. Appl Surf Sci 505:144607

    Article  CAS  Google Scholar 

  105. Raval NP, Mukherjee S, Shah NK, Gikas P, Kumar M (2020) Hexametaphosphate cross-linked chitosan beads for the eco-efficient removal of organic dyes: Tackling water quality. J Environ Manag 280:111680

    Article  Google Scholar 

  106. Zhang L, Yao L, Ye L, Long B, Dai Y, Ding Y (2020) Benzimidazole-based hyper-cross-linked polymers for effective adsorption of chlortetracycline from aqueous solution. J Environ Chem Eng 8(6):104562

    Article  CAS  Google Scholar 

  107. Guo J, Wang J, Zheng G, Jiang X (2019) Optimization of the removal of reactive golden yellow SNE dye by cross-linked cationic starch and its adsorption properties. J Eng Fibers Fabr 14:1558925019865260

    CAS  Google Scholar 

  108. Bhatti HN, Safa Y, Yakout SM, Shair OH, Iqbal M, Nazir A (2020) Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: adsorption/desorption, kinetics and recycling studies. Int J Biol Macromol 150:861–870

    Article  CAS  PubMed  Google Scholar 

  109. Omer AM, Elgarhy GS, El-Subruiti GM, Khalifa RE, Eltaweil AS (2020) Fabrication of novel iminodiacetic acid-functionalized carboxymethyl cellulose microbeads for efficient removal of cationic crystal violet dye from aqueous solutions. Int J Biol Macromol 148:1072–1083

    Article  CAS  PubMed  Google Scholar 

  110. Soto D, León O, Muñoz-Bonilla A, Fernandez-García M (2020) Succinylated starches for dye removal. Starch-Stärke 73:2000043

    Article  Google Scholar 

  111. Chen QJ, Zheng XM, Zhou LL, Zhang YF (2019) Adsorption of Cu (II) and methylene blue by succinylated starch nanocrystals. Starch-Stärke 71(7–8):1800266

    Article  Google Scholar 

  112. Alvarado N, Abarca RL, Urdaneta J, Romero J, Galotto MJ, Guarda A (2020) Cassava starch: structural modification for development of a bio-adsorber for aqueous pollutants. Characterization and adsorption studies on methylene blue. Polym Bull 78:1–21

    Google Scholar 

  113. Haroon M, Wang L, Yu H, Ullah RS, Khan RU, Chen Q, Liu J (2018) Synthesis of carboxymethyl starch-g-polyvinylpyrolidones and their properties for the adsorption of Rhodamine 6G and ammonia. Carbohyd Polym 186:150–158

    Article  CAS  Google Scholar 

  114. Jia Y, Ding L, Ren P, Zhong M, Ma J, Fan X (2020) Performances and mechanism of methyl orange and congo red adsorbed on the magnetic ion-exchange resin. J Chem Eng Data 65(2):725–736

    Article  CAS  Google Scholar 

  115. Bayramoglu G, Kunduzcu G, Arica MY (2020) Preparation and characterization of strong cation exchange terpolymer resin as effective adsorbent for removal of disperse dyes. Polym Eng Sci 60(1):192–201

    Article  CAS  Google Scholar 

  116. Hao Z, Yaxing L, Bowen C, Changkun D, Yi Z (2020) Synthesis of a starch-based sulfonic ion exchange resin and adsorption of dyestuffs to the resin. Int J Biol Macromol 161:561–572

    Article  Google Scholar 

  117. Bahrami M, Amiri M, Bagheri F (2020) Optimization of crystal violet adsorption by chemically modified potato starch using response surface methodology. Pollution 6(1):159–170

    CAS  Google Scholar 

  118. Zhang H, Li Y, Wang P, Zhang Y, Cheng B, Sun Q, Li F (2019) Synthesis of β-cyclodextrin immobilized starch and its application for the removal of dyestuff from waste-water. J Polym Environ 27(5):929–941

    Article  CAS  Google Scholar 

  119. Ramalho MLA, Madeira VS, Brasileiro ILO, Fernandes PC, Barbosa CB, Arias S, Pacheco JGA (2021) Synthesis of mixed oxide Ti/Fe2O3 as solar light-induced photocatalyst for heterogeneous photo-Fenton like process. J Photochem Photobiol A 404:112873

    Article  CAS  Google Scholar 

  120. Mahmoodi NM, Roudaki MSMA, Didehban K, Saeb MR (2019) Ethylenediamine/glutaraldehyde-modified starch: A bioplatform for removal of anionic dyes from wastewater. Korean J Chem Eng 36(9):1421–1431

    Article  CAS  Google Scholar 

  121. Rahman Z, Singh VP (2020) Bioremediation of toxic heavy metals (THMs) contaminated sites: concepts, applications and challenges. Environ Sci Pollut Res Int 27:27563–27581

    Article  CAS  PubMed  Google Scholar 

  122. Dragan ES, Loghin DFA (2018) Fabrication and characterization of composite cryobeads based on chitosan and starches-g-PAN as efficient and reusable biosorbents for removal of Cu2+, Ni2+, and Co2+ ions. Int J Biol Macromol 120:1872–1883

    Article  CAS  PubMed  Google Scholar 

  123. Anghel N, Marius N, Spiridon I (2019) Heavy metal adsorption ability of a new composite material based on starch strengthened with chemically modified cellulose. Polym Adv Technol 30(6):1453–1460

    Article  CAS  Google Scholar 

  124. Li Z, Gong Y, Zhao D, Dang Z, Lin Z (2021) Enhanced removal of zinc and cadmium from water using carboxymethyl cellulose-bridged chlorapatite nanoparticles. Chemosphere 263:128038

    Article  CAS  PubMed  Google Scholar 

  125. Matsukevich I, Lipai Y, Romanovski V (2021) Cu/MgO and Ni/MgO composite nanoparticles for fast, high-efficiency adsorption of aqueous lead (II) and chromium (III) ions. J Mater Sci 56(8):5031–5040

    Article  CAS  Google Scholar 

  126. Mahmoud ME, Nabil GM, Zaki MM, Saleh MM (2019) Starch functionalization of iron oxide by-product from steel industry as a sustainable low cost nanocomposite for removal of divalent toxic metal ions from water. Int J Biol Macromol 137:455–468

    Article  CAS  PubMed  Google Scholar 

  127. Liu Q, Li F, Lu H, Li M, Liu J, Zhang S, Sun Q, Xiong L (2018) Enhanced dispersion stability and heavy metal ion adsorption capability of oxidized starch nanoparticles. Food Chem 242:256–263

    Article  CAS  PubMed  Google Scholar 

  128. Xie X, Zhao X, Luo X, Su T, Zhang Y, Qin Z, Ji H (2020) Mechanically activated starch magnetic microspheres for Cd (II) adsorption from aqueous solution. ChinJ Chem Eng 33:40–49

    Article  Google Scholar 

  129. Alwattar AA, Haddad A, Moore J, Alshareef M, Bartlam C, Woodward AW, Natrajan LS, Yeates SG, Quayle P (2021) Heavy metal sensors and sequestrating agents based on polyaromatic copolymers and hydrogels. Polym Int 70(1):59–72

    Article  CAS  Google Scholar 

  130. Zeng Q, Qi X, Zhang M, Tong X, Jiang N, Pan W, Xiong W, Li Y, Xu J, Shen J (2020) Efficient decontamination of heavy metals from aqueous solution using pullulan/polydopamine hydrogels. Int J Biol Macromol 145:1049–1058

    Article  CAS  PubMed  Google Scholar 

  131. Wahlström N, Steinhagen S, Toth G, Pavia H, Edlund U (2020) Ulvan dialdehyde-gelatin hydrogels for removal of heavy metals and methylene blue from aqueous solution. Carbohyd Polym 249:116841

    Article  Google Scholar 

  132. Wu Z, Chen X, Yuan B, Fu M-L (2020) A facile foaming-polymerization strategy to prepare 3D MnO2 modified biochar-based porous hydrogels for efficient removal of Cd (II) and Pb (II). Chemosphere 239:124745

    Article  CAS  PubMed  Google Scholar 

  133. Yu C, Tang X, Liu S, Yang Y, Shen X, Gao C (2018) Laponite crosslinked starch/polyvinyl alcohol hydrogels by freezing/thawing process and studying their cadmium ion absorption. Int J Biol Macromol 117:1–6

    Article  PubMed  Google Scholar 

  134. Duquette D, Dumont MJ (2018) Influence of chain structures of starch on water absorption and copper binding of starch-graft-itaconic acid hydrogels. Starch-Stärke 70(7–8):1700271

    Article  Google Scholar 

  135. Chen Q, Zheng X, Zhou L, Kang M (2019) Chemical modification of starch microcrystals and their application as an adsorbent for metals in aqueous solutions. BioResources 14(1):302–312

    Article  CAS  Google Scholar 

  136. Ekebafe LO, Ogbeifun DE, Okieimen FE (2018) Equilibrium, kinetic and thermodynamic studies of lead (II) sorption on hydrolyzed starch graft copolymers. J Polym Environ 26(2):807–818

    Article  CAS  Google Scholar 

  137. Ibrahim B, Fakhre N (2019) Crown ether modification of starch for adsorption of heavy metals from synthetic wastewater. Int J Biol Macromol 123:70–80

    Article  CAS  PubMed  Google Scholar 

  138. Ma Y, Li H, Zhang S, Wang Z, Wang Y, Chen J, Yu L (2020) 129Xe NMR: A powerful tool for studying the adsorption mechanism between mesoporous corn starch and palladium. Int J Biol Macromol 161:674–680

    Article  CAS  PubMed  Google Scholar 

  139. Bashir A, Manzoor T, Malik LA, Qureashi A, Pandith AH (2020) Enhanced and selective adsorption of Zn (II), Pb (II), Cd (II), and Hg (II) ions by a dumbbell-and flower-shaped potato starch phosphate polymer: a combined experimental and DFT calculation study. ACS Omega 5(10):4853–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Chen Y, Zhao W, Wang H, Meng X, Zhang L (2018) A novel polyamine-type starch/glycidyl methacrylate copolymer for adsorption of Pb (II), Cu (II), Cd (II) and Cr (III) ions from aqueous solutions. R Soc Open Sci 5(6):180281

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chen H, Xu F, Chen Z, Jiang O, Gustave W, Tang X (2020) Arsenic and cadmium removal from water by a calcium-modified and starch-stabilized ferromanganese binary oxide. J Environ Sci 96:186–193

    Article  Google Scholar 

  142. Xu F, Chen H, Dai Y, Wu S, Tang X (2019) Arsenic adsorption and removal by a new starch stabilized ferromanganese binary oxide in water. J Environ Manage 245:160–167

    Article  CAS  PubMed  Google Scholar 

  143. Wang Z, Zhang X, Wu X, Yu J-G, Jiang X-Y, Wu Z-L, Hao X (2017) Soluble starch functionalized graphene oxide as an efficient adsorbent for aqueous removal of Cd (II): The adsorption thermodynamic, kinetics and isotherms. J Sol-Gel Sci Technol 82(2):440–449

    Article  CAS  Google Scholar 

  144. Schmidt B, Rokicka J, Janik J, Wilpiszewska K (2020) Preparation and characterization of potato starch copolymers with a high natural polymer content for the removal of Cu (II) and Fe (III) from solutions. Polymers 12(11):2562

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazal Haq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haq, F., Mehmood, S., Haroon, M. et al. Role of Starch Based Materials as a Bio-sorbents for the Removal of Dyes and Heavy Metals from Wastewater. J Polym Environ 30, 1730–1748 (2022). https://doi.org/10.1007/s10924-021-02337-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02337-6

Keywords

Navigation