Skip to main content
Log in

Bio-Based Polyurethane Foams with Enriched Surfaces of Petroleum Catalyst Residues as Adsorbents of Organic Pollutants in Aqueous Solutions

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this study the surface of bio-based polyurethane foam was enriched with different contents of catalyst residue from the petroleum industry. The foams were prepared with different residue contents, 20, 50, and 80 wt% relative to the total mass of the polyols and were characterized by several techniques, with X-ray diffraction, X-ray fluorescence spectrometry, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, microtomography, Fourier transform infrared spectroscopy and thermogravimetric. To determine the removing process the effects of various operating parameters, pH of the solution (2–12), initial concentration of pesticides (5–50 mg L−1), contact time (15–1440 min), and amount of adsorbent (30–400 mg) were investigated in a batch adsorption technique. The specific surface area of the residue was determined by the BET method as up to 150 m2/g and mean pore diameter of 4.20 ± 0.42 nm (mesopore), which explains the excellent results of the materials in the adsorption process. The high adsorption capacity is probably due to the presence of highly concentrated catalyst residue on the foam surface. Trifluralin pesticide was removed in water using these polyurethane foams with 20.0 mg L−1 initial concentration of herbicide, 30.0 mg adsorbent mass of, 5.0 pH, and 25.0 °C temperature. The chemically prepared foams with 50 wt% residue (PURC50) have higher adsorption capacities (70%) and can be used to remove trifluralin from natural waters effectively. The efficiency of removing the herbicide increased to 83% with the use of 400.0 mg adsorbent mass. The adsorption efficiency of the pure catalyst residue reaches a maximum (95.3%). The established adsorption method was appropriate for adsorption of trifluralin in contaminated waters.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pandey A, Singh MP, Kumar S, Srivastava S (2019) Appl Microalgae Wastewater Treat 385:207–235

    Google Scholar 

  2. Alharbi O, Basheer A, Khattab R, Ali I (2018) J Mol Liq 263:442–453

    CAS  Google Scholar 

  3. Ali I, Alharbi OML, Alothman ZA, Alwarthan A, Al-Mohaimeed AM (2019) Int J Biol Macromol 132:244–253

    CAS  PubMed  Google Scholar 

  4. Ali I, Alothman ZA, Alwarthan A (2017) J Mol Liq 441:123–129

    Google Scholar 

  5. Ali I, Al-Othman ZA, Al-Warthan A (2015) Desal Water Treat 57:10409–10421

    Google Scholar 

  6. Basheer AA, Ali I (2018) Chirality 30:1088–1095

    CAS  PubMed  Google Scholar 

  7. Jafari M, Hasanzadeh M, Karimian R, Shadjou N (2019) Microchem J 3:1–29

    Google Scholar 

  8. Boudh S, Singh JS (2018) Emerging and eco-friendly approaches for waste management 2019. Springer, Singapore, pp 245–269

    Google Scholar 

  9. Vasiljevíc BN, Obradovíc M, Bogdanovíc DB, Milojevíc-Rakíc M, Jovanovíc Z, Gavrilov N, Holclajtner-Antunovíc I (2019) J Environ Sci 81:136–147

    Google Scholar 

  10. Ma LY, Zhang N, Liu JT, Zhai XY, Lv Y, Lu FF, Yang H (2019) Environ Intern 131:1–13

    CAS  Google Scholar 

  11. Nie J, Sun Y, Zhou Y, Kumar M, Usman M, Li J, Shao J, Wang L, Tsang DCW (2019) Sci Total Environ 707:1–56

    Google Scholar 

  12. Al-Shaalan NH, Ali I, ALOthman ZA, Al-Wahaibi LH, Alabdulmonem H (2019) J Mol Liq 289:111039

    CAS  Google Scholar 

  13. Fernandes TC, Pizano MA, Marin-Morales MA (2013) In Techo 19:489–515

    Google Scholar 

  14. Ferro EC, Cardoso CAL, Arruda GJ (2017) J Environ Sci Health B 52:762–769

    CAS  PubMed  Google Scholar 

  15. Hosseini N, Tossi MR (2019) J Environ Health Sci Eng 17:247–258

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou C, Bai J, He C, Wang H, Sun J, Yang Y, Gao N, Zhang X (2020) Water Air Soil Pollut 231:1–12

    Google Scholar 

  17. Almeida MLB, Ayres E, Moura FCC, Oréfice RL (2018) J Hazard Mater 346:285–295

    CAS  PubMed  Google Scholar 

  18. Jiang N, Shang R, Heijman SGJ, Rietveld LC (2018) Water Res 144:145–161

    CAS  PubMed  Google Scholar 

  19. Rojas R, Vanderlinden E, Morillo J, Usero J, El Bakouri H (2014) Sci Total Environ 488:124–135

    PubMed  Google Scholar 

  20. Ali I, Alharbi OML, Alothman ZA, Alwarthan A (2018) Colloids Surf B 171:606–613

    CAS  Google Scholar 

  21. Ali I, Alharbi OML, Alothman ZA, Badjah AY, Alwarthan A, Basheer AA (2018) J Mol Liq 250:1–8

    CAS  Google Scholar 

  22. Ali I, Basheer AA, Mbianda XY, Burakov A, Galunin E, Burakova I, Mkrtchyan E, Tkachev A, Grachev V (2019) Envrion Int 127:160–180

    CAS  Google Scholar 

  23. Ali A, Alharbi OML, Tkachev A, Galunin E, Burakov A, Grachev VA (2018) Environ Sci Pollut Res 25:7315–7329

    CAS  Google Scholar 

  24. Ali I, Alharbi OML, Alothman ZA, Badjah AY (2018) Photochem Photobiol 94:935–941

    CAS  PubMed  Google Scholar 

  25. Atasoy AD, Bilgic B (2018) Mine Water Environ 37:205–210

    CAS  Google Scholar 

  26. Zbair M, Anfar Z, Ait Ahsaine H, El Alem N, Ezahri M (2018) J Environ Manag 206:383–397

    CAS  Google Scholar 

  27. Li S, Lu J, Zhang T, Cao Y, Li J (2017) Water Sci Technol 75:482–489

    CAS  PubMed  Google Scholar 

  28. Al-Shaalan N, Ali I, Al-Othman ZA, Al-Wahaibi L, Alabdulmonem H (2019) J Mol Liq 289:111039

    CAS  Google Scholar 

  29. Ali I, Alharbi OML, ALOthman ZA, Al-Mohaimeed AM, Alwarthan A (2019) Environ Res 170:389–397

    CAS  PubMed  Google Scholar 

  30. Burakova EA, Dyachkova TP, Rukhov AV, Tugolukov EN, Galunin EV, Tkachev AG, Basheer AA, Ali I (2018) J Mol Liq 253:340–346

    CAS  Google Scholar 

  31. Gama N, Ferreira A, Barros-Timmons A (2018) Materials 11:1–35

    Google Scholar 

  32. Wu F, Pickett K, Panchal A, Liu M, Lvov Y (2019) Appl Mater Interfaces 11:25445–25456

    CAS  Google Scholar 

  33. Wang S, Zhao H, Rao W, Huang S, Wang T, Liao W, Wang Y (2018) Polymer 153:616–625

    CAS  Google Scholar 

  34. Hong TT, Okabe H, Hidaka Y, Hara K (2017) Carbohydr Polym 157:335–343

    Google Scholar 

  35. Ferella F, D’Adamo I, Leone S, Innocenzi V, De Michelis I, Vegliò F (2018) Sustainabity 11:1–19

    Google Scholar 

  36. Da Y, He T, Wang M, Shi C, Xu R, Yang R (2020) Constr Build Mater 231:1–11

    Google Scholar 

  37. Font A, Borrachero MV, Soriano L, Monzó J, Payá J (2017) J Clean Prod 168:1120–1131

    CAS  Google Scholar 

  38. Castellanos NT, Agredo JT, Gutiérrez RM (2016) ACI Mater J 113:653–654

    Google Scholar 

  39. Arizzi A, Cultrone G (2018) Constr Build Mater 184:382–390

    CAS  Google Scholar 

  40. Almeida MLB (2017) Espumas Poliméricas Contendo Resíduo de Catalisador da Indústria de Petróleo como Adsorventes para Contaminantes Orgânicos Aquosos. Doctorate degree (Materials Engineering Doctor), UFMG (Federal University of Minas Gerais), Belo Horizonte

  41. Pinto ML, Dias S, Pires J (2013) ACS Appl Mater Interfaces 5:2360–2363

    CAS  PubMed  Google Scholar 

  42. Payá J, Monzo J, Borrachero MV (2001) Cem Concr Res 31:57–61

    Google Scholar 

  43. Mohammadi A, Salehi E, Aghazadeh H, Ramezani A, Eidi B (2020) Appl Clay Sci 187:1–8

    Google Scholar 

  44. Su N, Chen ZH, Fang HY (2001) Cem Concr Compos 23:111–118

    CAS  Google Scholar 

  45. Bennett JM, Smith JV (1968) Mater Res Bull 3:865–875

    CAS  Google Scholar 

  46. Jiménez E, Lalangui S, Guacho E, Paucar AE, Herrera P, Vaca D, González H, Ochoa P, Stahl U, López G (2019) Mater Sci 6:911–943

    Google Scholar 

  47. Chen HL, Tseng YS, Hsu KC (2004) Cem Concr Compos 26:657–664

    CAS  Google Scholar 

  48. Lei W, Zhou X, Fang C, Song Y, Li Y (2019) Carbohydr Polym 209:299–309

    CAS  PubMed  Google Scholar 

  49. Rao W, Xu H, Xu Y, Qi M, Liao W, Xu S, Wang Y (2018) Chem Eng J 343:198–206

    CAS  Google Scholar 

  50. Ranaweera CK, Ionescu M, Bilic N, Wan X, Kahol PK, Gupta RK (2017) J Renew Mater 5:1–12

    Google Scholar 

  51. Wen TC, Wang YJ, Cheng TT, Yan CH (1999) Polymer 40:3979–3988

    CAS  Google Scholar 

  52. Orgilés-Calpena E, Arán-Aís F, Torró-Palau AM, Orgilés-Barceló C, Martín-Martínez JM (2009) Intern J Adhes 29:309–318

    Google Scholar 

  53. Gama N, Ferreira A, Barros-Timmons A (2019) Inter J Adhes Adhes 95:1–7

    Google Scholar 

  54. Huang Y, Chen X, Deng Y, Zhou D, Wang L (2015) Chem Eng J 269:434–443

    CAS  Google Scholar 

  55. Pardo-Alonso S, Solórzano E, Brabant L, Vanderniepen P, Dierick M, Hoorebeke LV, Rodríguez-Pérez MA (2013) Eur Polym J 49:999–1006

    CAS  Google Scholar 

  56. Cangemi JM, Neto SC, Chierice GO, Santos AM (2006) Polímeros 16:129–135

    CAS  Google Scholar 

  57. Trovati G, Suman MVN, Sanches EA, Campelo PH, Neto RB, Neto SC, Trovati LR (2019) Polym Test 73:87–93

    CAS  Google Scholar 

  58. Li QF, Feng JW, Wang NY, Zhao YH, Kang MQ, Wang XW (2016) J Plast Rubb Compos Macrom Eng 45:15–21

    Google Scholar 

  59. Lule GM, Atalay MU (2014) Part Sci Technol 32:418–425

    CAS  Google Scholar 

  60. Singh V, Sharma AK, Tripathi DN, Sanghi R (2009) J Hazard Mater 161:955–966

    CAS  PubMed  Google Scholar 

  61. Kyriakopoulos G, Doulia D, Anagnostopoulos E (2005) Chem Eng Sci 60:1177–1186

    CAS  Google Scholar 

  62. Cardoso NF, Lima EC, Pinto IS, Amavisca CV, Royer B, Pinto RB, Alencar WS, Pereira SFP (2011) J Environ Manag 92:1237–1247

    CAS  Google Scholar 

  63. Royer B, Cardoso NF, Lima EC, Macedo TR, Airoldi C (2010) J Hazard Mater 181:366–374

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Brazilian research funding agencies (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marys Lene Braga Almeida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, M.L.B., Ayres, E., Libânio, M. et al. Bio-Based Polyurethane Foams with Enriched Surfaces of Petroleum Catalyst Residues as Adsorbents of Organic Pollutants in Aqueous Solutions. J Polym Environ 28, 2511–2522 (2020). https://doi.org/10.1007/s10924-020-01794-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01794-9

Keywords

Navigation