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Abstract
OpenFlow-compliant commodity switches face challenges in efficiently manag-
ing flow rules due to the limited capacity of expensive high-speed memories used 
to store them. The accumulation of inactive flows can disrupt ongoing communi-
cation, necessitating an optimized approach to flow rule timeouts. This paper pro-
poses Delayed Dynamic Timeout (DDT), a Reinforcement Learning-based approach 
to dynamically adjust flow rule timeouts and enhance the utilization of a switch’s 
flow table(s) for improved efficiency. Despite the dynamic nature of network traf-
fic, our DDT algorithm leverages advancements in Reinforcement Learning algo-
rithms to adapt and achieve flow-specific optimization objectives. The evaluation 
results demonstrate that DDT outperforms static timeout values in terms of both 
flow rule match rate and flow rule activity. By continuously adapting to changing 
network conditions, DDT showcases the potential of Reinforcement Learning algo-
rithms to effectively optimize flow rule management. This research contributes to 
the advancement of flow rule optimization techniques and highlights the feasibility 
of applying Reinforcement Learning in the context of SDN.
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1 Introduction

OpenFlow [1] is a prevalent protocol that emerged in the realm of Software-
Defined Networking (SDN). It was developed through a collaboration between 
Stanford University and the University of California at Berkeley and subse-
quently standardized for SDN by the Open Networking Foundation (ONF) [2]. 
The SDN reference architecture comprises three key components: a controller, 
which ensures the enforcement of policies pertaining to network flows, flow 
tables located on the data plane, also referred to as switch(es), and the OpenFlow 
protocol responsible for facilitating communication between the controller and 
the switch.

Commodity switches that comply with the  OpenFlow protocol typically uti-
lize Ternary Content Addressable Memories (TCAMs) to store flow rules. These 
are high-speed memories capable of performing a complete content lookup in a 
single CPU clock cycle. As a result, they offer significantly faster performance, 
around 400 times faster, compared to ordinary RAM-based storage [3]. However, 
this enhanced speed comes at the cost of consuming approximately 100 times 
more energy and being considerably more expensive than regular RAM-based 
memories. Due to the cost and capacity limitations of TCAMs, flow tables in 
SDN switches often support a restricted number of flow entries. This limitation 
can lead to a problematic scenario known as flow table overflow [4, 5]. When 
inactive flows accumulate in the switch’s flow tables, the tables become bloated 
and eventually reach their capacity. At this point, an active flow may be evicted 
to make space for a new entry, resulting in the disruption of ongoing communi-
cation [6]. Consequently, this can cause a delay in packet processing due to the 
premature eviction of the flow’s rule which can adversely affect the switch’s per-
formance. Flow table overflow not only impacts the switch’s ability to efficiently 
handle network traffic but also burdens the controller with an increased workload, 
leading to a degradation in overall system performance.

To effectively handle flow table content and mitigate potential issues of table 
bloat or overflow in OpenFlow-compatible switches, two approaches can be con-
sidered: proactive and reactive. The proactive approach aims to prevent flow table 
overflow by carefully managing and allocating resources. It involves setting pre-
defined thresholds and monitoring the flow table utilization in real time. When the 
utilization approaches a certain threshold, proactive measures such as flow table 
expansion or flow entry consolidation can be taken to ensure sufficient capac-
ity for incoming flows. By addressing the issue before it occurs, the proactive 
approach helps maintain smooth network operation and minimize disruptions. 
Proactive strategies help prevent flow table overflow and maintain consistent per-
formance but may require additional resources and continuous monitoring [7]. 
On the other hand, the reactive approach responds to flow table overflow after it 
has already happened. When the flow table reaches its capacity and an active flow 
needs to be evicted, the reactive approach focuses on making quick decisions to 
prioritize important flows and mitigate the impact on network performance. This 
can involve intelligent eviction policies, such as removing least-recently-used or 
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low-priority flows, to free up space for new entries. The reactive approach aims 
to handle flow table overflow situations in real  time, minimizing the disruption 
caused by evictions. Achieving such a solution becomes increasingly difficult 
in highly dynamic flow-based environments [8]. Moreover, this approach lacks 
scalability, especially when multiple controllers are involved, as it exponentially 
increases complexity. As the network’s scale grows, obtaining an accurate global 
network view becomes more challenging due to the varying polling periods of 
each controller and the synchronization periods among them [9]. Both solutions 
involve the controller utilizing per-flow timeouts to manage the lifespan of each 
flow rule [10]. With this approach, the controller assigns a timeout value to each 
flow entry in the flow table. When the specified time elapses, the flow entry is 
automatically removed from the flow table. This method has been investigated by 
researchers and has shown promise as a viable solution [11, 12].

The assignment of flow timeouts can be done either statically or dynamically. The 
static approach involves the use of a fixed timeout value for all flows in the network 
or system. This means that regardless of the actual duration or activity of a flow, it 
will be terminated after a predefined period of time. By using a single, fixed time-
out value, configuration and management become simpler. Additionally, all flows 
are treated equally, ensuring consistent handling across the network. However, this 
approach can be inefficient and inflexible. Certain flows may require longer time-
outs than others, leading to premature termination and potential disruptions. Fur-
thermore, static timeouts may not effectively adapt to dynamic network conditions 
or varying flow requirements. On the other hand, the alternative approach to static 
timeout assignment is dynamic flow timeout assignment. This method involves 
assigning different timeout values to flows based on their specific characteristics, 
requirements, or the state of the network. By adopting this approach, more precise 
control over flow duration can be achieved, enabling adaptability to the evolving 
conditions of the network. The dynamic flow timeout assignment approach offers 
flexibility, efficiency, and effectiveness. Each flow is assigned an appropriate time-
out value, allowing longer flows to complete while terminating shorter flows ear-
lier. The dynamic timeouts can respond to changing network conditions by adjusting 
timeout values using close to real-time information. By tailoring timeouts to indi-
vidual flows, network resources can be utilized more effectively.

1.1  A Promising Solution via Reinforcement Learning

Reinforcement learning (RL) is a powerful approach that can be effectively utilized 
in dynamic flow timeout assignment. By leveraging its ability to learn from data 
and experience, reinforcement learning algorithms can adapt to changing network 
conditions and flow requirements. This adaptive nature allows the system to con-
tinually update its timeout assignment policies based on real-time feedback, ensur-
ing that flows receive appropriate timeout values. Moreover, reinforcement learn-
ing enables the optimization of specific objectives, such as minimizing disruptions, 
reducing latency, or maximizing throughput, by formulating these objectives as 
rewards or penalties. With fine-grained control over flow timeout assignment, the 
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algorithm can tailor timeout values to individual flows, optimizing resource utiliza-
tion and meeting flow-specific requirements. By handling the complexity of deci-
sion-making and considering various factors, reinforcement learning provides an 
intelligent and dynamic approach to flow timeout management, leading to improved 
network performance. Accordingly, this paper aims to design and implement an RL 
model to actively modify the idle timeout value of flow entries in an SDN topology. 
The model uses network statistics from previous pollings to identify traffic patterns. 
Based on these patterns and the results of the previous choice, the model adjusts the 
idle timeout value of the incoming flow entries autonomously.

1.2  Contributions

This paper presents the following contributions. First, the paper introduces Delayed 
Dynamic Timeout (DDT), an RL-based framework for dynamic flow timeout 
assignment in Openflow-compatible data planes. DDT utilizes a cache module and a 
Q-learning algorithm to adjust the timeout value of flow rules in response to current 
network characteristics. Second, a custom environment is designed for the applica-
tion of the RL solution to SDN. This environment incorporates relevant network 
characteristics as input parameters and evaluation metrics. It avoids imposing limita-
tions such as flow rule entry caps or thresholds on a switch’s flow tables. Notably, 
the solution is not simulated using general-purpose environments such as OpenAI 
GYM [13], as they are unsuitable for modeling highly dynamic and volatile pro-
grammable network infrastructures. Simulating in such environments can potentially 
lead to inaccurate or unreliable results. Third, the evaluation results demonstrate that 
the proposed solution based on DDT achieves both data plane effectiveness (flow 
rule entries match rate) and efficiency (flow table entries activity rate). This out-
performs the common practice of using static timeout values in SDN topologies. 
These findings provide network providers with a competitive advantage for optimal 
network management in environments where the network traffic pattern changes fre-
quently, even on a sub-hourly basis.

The remainder of this paper is organized as follows. Section 2 provides a liter-
ature review, examining the utilization of machine learning in SDN with a focus 
on resource management and optimal timeout. Section 3 outlines our framework’s 
methodology, including its limitations, data collection process, system design, and 
evaluation methodology. The implementation details of the framework are discussed 
in Sect.  4. The evaluation results are presented in Sect.  5 and comprehensively 
analyzed. Lastly, Sect.  6 offers concluding remarks and proposes potential future 
research directions.

2  Background and Related Work

OpenFlow defines two types of timeouts: idle-timeout and hard-timeout. The idle-
timeout causes a flow entry to be evicted after a specific period of inactivity. On the 
other hand, the hard-timeout causes a flow entry to be removed from a flow table 
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after a designated time, irrespective of its activity or inactivity during that period. 
If a timeout value is too short, then flows may be evicted prematurely, as all the 
packets matching the flow may not have arrived before eviction. This can result in 
excessive flow table misses, leading to redundancy and an increased workload for 
the controller, thereby impacting performance [10]. On the other hand, if a time-
out value is too long, premature eviction will be reduced. However, flow rules may 
occupy the flow table longer than necessary, causing the aforementioned flow table 
bloat and flow table overflow.

Flow table optimization plays a crucial role in enhancing the performance and 
security of SDN by efficiently utilizing the limited storage capacity of switches. 
Researchers have proposed several approaches to tackle this challenge. One such 
approach is the Intelligent Timeout Master, which utilizes a cache module within 
the controller to collect flow expiration times. By leveraging this data, it can pre-
dict the expiration times of new flows based on their specific characteristics [14]. 
Another approach is TimeoutX, which considers various factors such as traffic char-
acteristics, flow types, and the current utilization ratio of the Flow Table. By taking 
these factors into account, TimeoutX dynamically determines the timeout for each 
entry instead of relying on a static value [15]. In the work presented by Guo et al. 
[16], a solution called SofTware-defined Adaptive Routing (STAR) is proposed. 
STAR comprises three modules, including a Flow Management module that evicts 
flows based on their usage. The routing module periodically polls the Flow Manage-
ment module to determine if new flows can be accepted. Kim et al. [17] propose a 
dynamic adjustment of the timeout value for each flow rule based on current traffic 
conditions. Similarly, Lu et al. [18] investigate dynamically adjusting the flow entry 
lifecycle by estimating flow statistics and setting a timeout value according to the 
occurring traffic. In the research presented by Liu et al. [19], the authors estimate the 
number of flows that may appear at the next sampling and set an idle timeout value 
based on the estimation. Wang et  al. [20] implement proactive eviction using an 
adaptive algorithm that predicts idle timeout. Panda et al. [21] propose adjusting the 
hard timeout for a flow as packets arrive, ensuring it does not exceed the static maxi-
mum timeout value. They also utilize the Least Recently Used (LRU) algorithm for 
idle timeout when the TCAM reaches 90% capacity.

While the aforementioned solutions have proven to be effective, they are inher-
ently human-centric, making them susceptible to errors. Additionally, the involve-
ment of humans in the decision-making process introduces a time delay, hindering 
the convergence of these solutions. Therefore, there is a need for improvement by 
introducing a certain degree of autonomy. One promising avenue for enhancement 
is the application of Machine Learning (ML) techniques. By leveraging ML, deci-
sion-making within networks can be optimized and automated, leading to more effi-
cient and reliable flow table optimization. ML algorithms can learn from historical 
data, analyze complex patterns, and make intelligent decisions in real  time, reduc-
ing the reliance on manual intervention. Integrating ML into flow table optimization 
can enable networks to adapt dynamically to changing traffic conditions, optimize 
resource allocation, and improve overall performance. Autonomous decision-mak-
ing algorithms can continuously learn from network behavior, adapt to new scenar-
ios, and make proactive adjustments to flow rules and timeouts. This autonomy can 
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lead to faster convergence, reduce human errors, and ultimately enhance the perfor-
mance and security of SDN.

Initial attempts at applying ML to networking have predominantly relied on 
Supervised Learning techniques [22]. While these methods are efficient and power-
ful, they have certain limitations. Supervised Learning requires structured and accu-
rately labeled data, as well as manual feature engineering. These constraints make 
Supervised Learning algorithms rigid and less effective in the context of dynamic 
flow rule management in networking. To overcome the limitations of Supervised 
Learning, Unsupervised Learning techniques have been explored. These methods 
can identify correlations and patterns within data without the need for labeled exam-
ples. However, the outputs of Unsupervised Learning techniques are not guaranteed 
to be useful and can be less accurate compared to Supervised Learning. Reinforce-
ment Learning (RL), on the other hand, offers a promising approach to network 
optimization. RL allows an agent to interact with an environment, learning from 
rewards or punishments associated with different actions to achieve a desired behav-
ior. DRL-FTO [23] and HQTimer [24] are examples of RL-based solutions that 
utilize Q-learning to optimize the timeout values of flows. These approaches pas-
sively collect network statistics, which correlate to an optimal timeout value. Given 
the advancements in RL techniques, such as the Twin Delayed Deep Deterministic 
Policy Gradient algorithm (TD3) [25], and the continuous improvements in compu-
tational technologies and hardware [26], RL is considered one of the most appropri-
ate approaches for dynamically adjusting the timeout values of flows in the context 
of SDN.

3  Methodology

3.1  Twin Delayed Deep Deterministic Policy Gradient

Twin Delayed Deep Deterministic Policy Gradient (TD3) is a model-free reinforce-
ment learning (RL) algorithm. Unlike RL algorithms that rely on a known "model" 
of the environment, TD3 makes predictions through trial-and-error without explic-
itly representing the environment. As an actor-critic method, TD3 leverages the 
principles of a Markov Decision Process (MDP) to guide its decision-making pro-
cess. The environment encompasses

• a set of states S
• a set of actions A
• transition dynamics T = P(st+1 ∣ st, at)

• an immediate reward function R(st, at)
• a discount factor � ∈ [0,1],

in which an actor (i.e., Deterministic Policy) is a function that maps states to determin-
istic actions. Specifically, �(s;��) ∶ S → A, a = �(s;��),where � is the policy func-
tion, and �� represents the parameters of the actor network. The actor agent selects an 
action that has a quantifiable impact on the environment. Meanwhile, the critic agent 
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evaluates the efficacy of the chosen action, and the actor agent then strives to enhance 
its action selection based on the critiques provided by the critic agent, as illustrated in 
Fig. 1. In other words, the critic estimates the action-value function, denoted as Q(s, a), 
where Q is the action-value function, and �Q represents the parameters of the critic 
network.

As an extension of the Deep Deterministic Policy Gradient algorithm (DDPG) [27], 
TD3 (refer to Algorithm 1) is an off-policy method that combines policy optimization 
and Q-Learning. This means that the agent explores actions based on their potential 
benefits, rather than relying on preestablished behavior. However, DDPG often suf-
fers from overestimation bias, which refers to the tendency to overestimate uncertain 
estimates. To address this issue, TD3 introduces several key improvements. Firstly, 
it implements Clipped Double Q-Learning, which employs two Q-functions, namely 
Q1(s, a;�Q1

) and Q2(s, a;�Q2
) . The smaller of the two values is selected to form the 

targets in the loss functions, reducing the overestimation bias. Secondly, TD3 incor-
porates Delayed Policy Updates. It updates the policy less frequently compared to 
the Q-functions, which helps to stabilize the learning process and prevent the policy 
from overfitting to noisy Q-function estimates. Moreover, TD3 incorporates target 
networks with update rules as Q�

1
← �Q1 + (1 − �)Q�

1
 , Q�

2
← �Q2 + (1 − �)Q�

2
 , and 

��
← �� + (1 − �)�� , where � represents the target network update rate. These tar-

get networks are delayed copies of the actor and critic networks. The critics are then 
trained to minimize the following temporal difference (TD) error:

where the Bellman error for the critics becomes:

y = R(st, at) + � min(Q�
1
(st+1,�

�(st+1)),Q
�
2
(st+1,�

�(st+1))),

L(�Q) = �(s,a,r,s�)

[
(Q1(s, a;�Q1) − y)2 + (Q2(s, a;�Q2) − y)2

]
.

Fig. 1  Basic actor-critic model
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By periodically updating the target networks using the following deterministic pol-
icy gradient,

where J(��) = �s∼D

[
Q1(s,�(s);�Q1)

]
 , TD3 achieves more stable and reliable value 

estimations. Lastly, TD3 employs Target Policy Smoothing. This technique adds 
noise, denoted by � to the target actions during the evaluation step as:

Here, � is a random value sampled from a normal distribution with mean 0 and 
standard deviation � , and the clip function ensures that the resulting value is 
bounded within the range [−c, c] . This is a common technique to control the magni-
tude of exploration noise added to the actions in reinforcement learning algorithms. 
This also helps to address the variance in Q-function errors and leads to better 
exploration during training. These enhancements make TD3 a powerful and effec-
tive algorithm for continuous control tasks in reinforcement learning.

Algorithm 1 TD3

3.2  Network Data Collection via OpenFlow Messages

OpenFlow employs a message system that enables both passive and active methods 
for monitoring network traffic. Passive methods rely on switches within the network 

∇��
J(��) = �s∼D

[
∇aQ1(s, a;�Q1)

|
|a=�(s)∇��

�(s;��)
]

a� = ��(s�) + �, � ∼ clip(N(0, �),−c, c).
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to send messages to the controller when specific events occur. These methods have 
the advantage of not generating additional overhead, minimizing the impact on 
network performance. However, the information that can be collected through pas-
sive methods is limited. Active methods, on the other hand, allow the controller to 
send statistics requests to query individual or multiple switches within the network, 
receiving statistics replies that can include details such as switch descriptions, flow 
information (individual or aggregated), flow table statistics, port and queue statis-
tics, as well as vendor-specific information. While active monitoring provides a 
wider range of information, frequent querying of switches can negatively impact 
network performance by consuming resources and increasing overhead.

In our approach, we adopt a hybrid strategy by leveraging both passive and active 
methods to collect network statistics effectively. By combining these techniques, 
we can gather a comprehensive set of information while minimizing the impact on 
network performance. To implement this approach, we utilize the capabilities of 
the Ryu SDN controller [28], which offers a flexible and extensible framework for 
building SDN applications. The Ryu controller can be customized to handle various 
OpenFlow messages based on the specific requirements of any network application. 
In our proposed solution, we have utilized the following OpenFlow messages for our 
implementation. It should be noted that the SDN data plane, nor its innate functions, 
are altered in any way. Therefore, there is no added memory or resource consump-
tion imposed by the solution. As per the OpenFlow specification [29], the mini-
mum sizes for request and reply messages are 122 bytes and 174 bytes, respectively. 
Therefore, a single measurement, which includes both request and reply messages 
for flow statistics, would involve the exchange of 296 bytes. This, however, can be 
impacted by the polling frequency and the switch’s location in the network [30].

3.2.1  Packet Processing

When a packet arrives at a switch, the switch first checks its flow table to find any 
existing matching flow rule entries. If a matching rule is found, the packet is pro-
cessed accordingly based on that rule. However, if there is no matching flow rule, 
the switch generates a Packet_In message for the packet and forwards it to the SDN 
controller [31]. This Packet_In message provides the SDN controller with the neces-
sary information to make a decision on how to handle the packet. Upon receiving 
the Packet_In message, the controller analyzes its contents using its packet_in_han-
dler. This handler allows for the extraction and collection of relevant information 
from the incoming packet, such as the source IP address, destination IP address, 
communication protocol, source port, destination port, and more [32]. Based on this 
information, the SDN controller can make an informed decision on how to process 
the packet. Subsequently, the controller installs a new flow rule in the switch’s flow 
table to ensure future packets with similar characteristics are handled efficiently.

3.2.2  Flow Rule Instillation

To install or modify flow rules in the switch’s flow table, the controller utilizes 
the Add_Flow message. This message specifies the match criteria, actions to be 
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performed, and the priority for the flow rule [31]. In the implementation, the con-
troller’s flow_mod_handler method is employed, which takes advantage of the 
specification of match fields. This allows for more precise or coarse-grained manip-
ulation of flow rules based on specific attributes. For example, attributes such as 
idle_timeout and the OFPFF_SEND_FLOW_REM flag can be set using this mes-
sage [32]. By leveraging these capabilities, the controller can effectively manage and 
customize the flow rules in the switch’s flow table according to the requirements of 
the network.

3.2.3  Traffic Monitoring

The SDN controller has the capability to request statistics from an SDN switch 
using the Stats Request message. In response to this request, the switch provides the 
requested statistics by sending a Stats Reply message. These statistics can include 
various information such as individual or aggregate packet counts, byte counts, the 
total number of flow rule entries in the switch’s flow table, duration for specific 
flows, and more [31]. Ryu, being a flexible SDN controller framework, offers sev-
eral methods to handle the Stats Reply response from the switch. These methods 
include (i) flow_stats_reply_handler, which provides statistics for individual speci-
fied flow(s); (ii) flow_stats_reply_handler, which provides aggregate flow statistics; 
and (iii) table_stats_reply_handler, which offers specified table(s) statistics [32]. By 
utilizing these methods, the controller can effectively process and extract the desired 
statistics received in the Stats Reply message from the switch. This allows for com-
prehensive monitoring and analysis of network performance and traffic patterns 
within the SDN environment.

3.2.4  Flow Rule Removal

Whenever a flow rule is removed from the switch’s flow table, whether it is ini-
tiated by the controller or due to expiration or an error, the switch sends a Flow 
Removed message to the controller [31]. This message serves to inform the con-
troller about the details of the removed flow, including associated statistics and the 
reason for its removal. To handle these Flow Removed messages effectively, Ryu 
provides the flow_removed_handler method. This method enables the controller to 
track and monitor the flow rule entries based on the specified match criteria [32]. By 
utilizing this handler, the controller can receive and process the Flow Removed mes-
sages, allowing for efficient management and analysis of flow rule lifecycles within 
the network.

3.3  Feature Extraction

The absence of an SDN environment in the OpenAI Gym toolkit [33] leads to a lack 
of standardization and reproducibility in code. To address this limitation, we lever-
age the statistics collected from the switch. These statistics serve as the basis for 
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defining the features used to construct the state space and reward function for the RL 
model, as depicted in Table 1.

3.3.1  State Space

In our model, the  State is a 5-dimensional vector constructed of features derived 
from statistics collection. As seen in Table 1, our model uses the flow_stats_reply_
handler, packet_in_handler, and flow_removed_handler messages to formulate the 
following input parameters:

Table-Miss Packet_In Inter-arrival Time An averaged measurement, per unit of 
time-seconds, between the sending of the packet_in message by the SDN switch for 
previously installed flow rule entries.

Flow duration An averaged measurement of duration, the period between the 
arrival of the first and last packet, associated with a unique flow rule entry in the 
switch’s flow table that has been removed due to expiring via idle timeout.

Flow table miss rate The percentage of Packet_In messages that correspond to 
previously installed flow rule entries matching the entries present in the cache mod-
ule but not installed in the switch’s flow table at the time of polling provides a met-
ric for evaluating the effectiveness of the timeout value assigned to the flow rule 
entries currently occupying the flow table. This metric helps assess how well the 
timeout value is managing the removal of expired or unused flow rule entries from 
the switch’s flow table.

Flow table inactive rate The inverse of the measurement of the activeness of flow 
rule entries present in the switch’s flow table, calculates the percentage of flow rule 
entries actively receiving packets, at the time of polling. This metric indicates the 
usage of flow rule entries currently occupying the flow table.

Previous value the previous timeout value selected by the RL agent in our model.

3.3.2  Action Space

The Action Space in our RL Agent refers to the set of actions available for deci-
sion-making. In our implementation, the action set ranges from 1 to 10, where each 
action corresponds to a specific timeout value in seconds. This is based on the rec-
ognition of the ON-OFF pattern in traffic. According to the model cited in [34], 

Table 1  Features used to define 
state and reward in our RL 
model

Parameter Message

Table-Miss packet_In Inter-arrival Time packet_in_handler
Flow duration flow_removed_handler
Previous value –
Miss rate packet_in_handler
Inactive rate flow_stats_reply_handler
Hit rate packet_in_handler
Use rate flow_stats_reply_handler
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internet traffic can be classified into two states: ON, when data is actively transmit-
ted, and OFF, when data transmission is idle. The static timeout value approach is 
acknowledged in [35] as potentially inefficient for capturing the dynamic patterns of 
network traffic.

3.3.3  Reward Function

The Reward Function is computed using information obtained from the cache 
module, packet_in_handler, and flow_stats_reply_handler messages. The Reward 
Function consists of two key metrics. (i) Match Rate: This metric represents the 
inverse of the percentage of incoming Packet_In messages that belong to previously 
installed flow rule entries matching the existing entries in the cache module but not 
present in the switch’s flow table at the time of polling. (ii) Active Rate: This metric 
measures the activeness of flow rule entries in the switch’s flow table and calculates 
the percentage of flow rule entries that are actively receiving packets at the time of 
polling. These metrics serve as essential components of the Reward Function and 
play a crucial role in guiding the RL Agent’s learning process to optimize its deci-
sion-making and overall performance.

3.4  Traffic

It is widely recognized that most internet traffic exhibits an ON-OFF pattern [34]. 
According to this model, traffic can be classified into two states: ON, when data is 
actively transmitted, and OFF, when data transmission is idle. The authors of [36] 
further explain that data is transmitted in fixed intervals, and this is illustrated in 
Fig. 2. In the figure, individual squares of different colors represent Flow 1, Flow 2, 
and Flow 3, denoted as F1, F2, and F3, respectively. These squares signify the pack-
ets being transmitted during periods of activity (ON), while the absence of squares 
represents the periods of inactivity (OFF) when no data is being sent. Moreover, 
the varying increments between squares associated with each flow indicate the 

Fig. 2  ON-OFF traffic model
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differences in intervals between the transmission of successive packets, with each 
flow following its unique pattern characterized by various durations and periods of 
activity and inactivity. However, it is essential to consider that using a static timeout 
value might not be suitable for capturing the dynamic patterns and characteristics 
of network traffic, as discussed in [35]. The flow of data on the global internet (aka 
internet traffic) encompasses a variety of information exchanged between devices 
and servers. Datacenter traffic represents a subset of the broader category of internet 
traffic. In the realm of data centers, this specific type of traffic involves the exchange 
of data among servers, storage devices, and networking equipment to facilitate the 
seamless functioning of applications and services. The on-off traffic model is char-
acterized by bursts of high activity followed by periods of inactivity. This bursty 
nature is reflective of the way certain applications or services operate in data cent-
ers. For example, a database query might result in a burst of traffic while retrieving 
or updating records, followed by idle periods when no data transmission is needed. 
Therefore, this is a characteristic that can be observed in various contexts, including 
data centers [37]. Relying on a static timeout can lead to inefficient resource utiliza-
tion and delays in flow completion, such as flow table bloat and flow table overflow. 
Therefore, it is crucial to explore adaptive approaches that can better accommodate 
the dynamic nature of internet traffic.

To generate traffic for model training, testing, and evaluation purposes, we made 
a significant observation based on [38]: nearly 80% of flows in a dynamic network 
environment last less than 10  s. In light of this finding, our training environment 
is designed to generate 10 flows per second. This rate is carefully scaled to mimic 
close to real-world conditions, where the median flow arrival rate is reported to be 
105 flows per second (equivalent to 100 flows every millisecond) based on the results 
presented in [37, 38].

3.5  Framework

DDT is implemented as an application in the controller and works in real-time. It 
is comprised of two main components: a cache, and the RL algorithm. DDT uses 
the information collected from the cache and OpenFlow messages as input param-
eters, as well as to calculate the reward. As the RL agent receives input, it calculates 
Q-Values for all the possible actions for a given state. The RL agent chooses the 
action that has the largest Q-Value as the optimal action.

3.5.1  Cache

Our solution incorporates the cachetools Python library [39] to create a cache mod-
ule with a specific purpose. This module is designed to monitor the time intervals 
between successive Packet_In messages from flows that previously had flow rule 
entries installed in the switch’s flow table. To achieve this, we utilize the TTL class 
of the cache implementation provided by the library, which extends the stand-
ard least recently used (LRU) approach by introducing a per-element time-to-live 
(TTL) feature. Each element stored in the cache is associated with a predefined 
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TTL, indicating the duration it will remain in the cache. Once an element reaches 
its TTL, it automatically expires and is removed from the cache. Here, the process 
begins when the packet_in_handler of the controller receives a packet_in message. 
It extracts essential information, such as the Ethernet destination address, Ethernet 
source address, source IP address, destination IP address, and IP protocol, to create 
a unique identifier for the corresponding flow. The cache is then searched for this 
unique identifier. If it is not present in the cache, it is added along with a timestamp 
denoting the time of insertion. Conversely, if the unique identifier is already in the 
cache, it indicates that a flow rule entry was previously installed within the speci-
fied TTL time-frame but was evicted prematurely due to reaching the TTL’s limit. 
In such cases, the relevant statistics are recalculated, and the timestamp is updated. 
The TTL’s duration is a crucial factor in the cache module’s effectiveness. If the 
TTL is set too short, the agent may not accurately penalize instances where larger 
intervals between data transmissions lead to premature eviction of flow rule entries. 
On the other hand, if the TTL is excessively long, the agent might incorrectly punish 
multiple transmissions between end hosts whose initial or previous transmission had 
ended. This could affect the accuracy of statistic collection, as the timestamps asso-
ciated with unique identifiers are used to calculate the time elapsed since their initial 
or last installation up to the current update. Striking the right balance in setting the 
TTL is essential for ensuring accurate and reliable statistic collection.

3.5.2  Deep RL

Before the initial polling period begins, incoming flows will be assigned an idle time-
out of 10 s as the default value. This choice ensures that the majority of incoming flows 
will timeout upon completion rather than being prematurely evicted. This approach 
allows the network to establish an average flow duration, aiding in better flow manage-
ment. As packets start arriving, the cache module generates unique keys, as described 
earlier, to create corresponding flow rule entries, which are then added to the switch’s 
flow table. Once the first polling period starts, the application initiates queries to the 
network’s switch(es) using the controller’s OpenFlow message handlers to collect 
various network statistics associated with the unique keys stored in the cache module. 
These statistics include Table-Miss Packet_In Inter-arrival Time, Average Flow Dura-
tion, Flow Table Miss Rate, and Flow Table Inactive Rate. Our solution explores the 
ON-OFF traffic model and emphasizes the importance of adaptive approaches. In 
our evaluation, a flow can last a minimum of 1 s, a maximum of 10 s, or anywhere in 
between. Therefore, the approximation for the optimal idle timeout value for a flow is 
between 1 and 10, inclusive, as a flow’s idle interval cannot be less than 1 s and is not 
likely to exceed 10 s. The dynamic nature of the traffic and momentary accuracy of 
collected statistics are considered and require a sufficient polling window. If the polling 
window is too short, it will lead to incomplete data capture, potentially missing crucial 
changes in traffic patterns; if the polling window is too large, it may result in oversam-
pling and excessive computational overhead, diminishing the real-time adaptability of 
the agent. The agent polls the switch every 5  s, gathering information and calculat-
ing average values over a 20-s period. By regularly polling the switch and analyzing 
data over a 20-s timeframe, the agent gains a more comprehensive understanding of the 



1 3

Journal of Network and Systems Management (2024) 32:35 Page 15 of 26 35

network’s behavior. It should be noted that the polling interval does not directly impact 
reaction time as the timeout value is based on the average of the values collected over 
a 20 s period. This approach allows the agent to adapt to the dynamic nature of traf-
fic, contributing to better resource utilization and flow completion efficiency. Addition-
ally, the Previous Idle Timeout Value, which is chosen by the RL agent, is also consid-
ered as an input state. Furthermore, the application gathers data on the percentage of 
flows that are actively receiving packets and the percentage of packets matched to flow 
rule entries during the 20-s polling window. These metrics are utilized to calculate the 
reward for the RL agent. By analyzing these statistics and metrics, the RL agent gains 
valuable insights into the network’s characteristics and behavior, enabling it to decide 
whether a different timeout value should be assigned to incoming flows. In summary, 
the combination of default idle timeouts, flow rule entries based on unique keys, and 
extensive network statistics empowers the RL agent to make informed decisions about 
optimizing timeout values for incoming flows.

3.6  Training

The environment simulates an SDN topology comprising a single SDN controller con-
nected to an OpenFlow-compatible switch, which, in turn, is connected to 200 end-
hosts. Each host can send and receive data with any other host, generating network 
traffic with a flow ratio of 9:1, where approximately 90% of flows last less than 10 s 
and the remaining 10% last 10 s or more. Network traffic is simulated using the Multi-
Generator (MGEN) traffic generation tool [40] at a rate of 10 flows per second. The 
toolset generates real-time traffic patterns so that the network can be loaded in a variety 
of ways.

During the training phase, the agent polls the switch every 5 s to gather information 
and calculates average values over a 20-s period. It then stores the previous state, cur-
rent state, reward, and action in the replay buffer, treating them as transitions to be used 
for training. The agent employs an epsilon-greedy exploration strategy during train-
ing, starting with an exploration rate of 1.0 and decaying it until it reaches a minimum 
value of 0.01. The agent can learn from transitions stored in the replay buffer, which 
helps optimize its policy, irrespective of the current policy. The entire training process 
consists of 1000 episodes, each lasting 300 s (5 min), and the agent utilizes the replay 
buffer to optimize its policy throughout the training phase. The total training time spans 
a minimum of 300,000 s. Overall, the agent undergoes 13,208 training iterations over 
15,000 steps, employing a batch of 30,000 transitions, corresponding to 3,000,000 
flows in the network.

4  Implementation

The testbed environment utilized for both training and testing was based on a 
Lambda Cloud instance, featuring 30 virtual Intel Xeon Platinum 8358 CPUs @ 
2.60GHz (vCPUs) with 24 GB of virtual RAM (vRAM) per vCPU.
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In the software environment, the following components were used: Mininet [41], 
a lightweight network emulator; Ryu SDN Controller; Open vSwitch [42], Mininet’s 
default virtual switch; OpenFlow v1.3; and the MGEN traffic generation tool [40]. 
The operating system employed for the software environment was Ubuntu 20.04.5 
LTS (64-bit).

While OpenFlow may not be considered state-of-the-art, it remains widely used, 
supported by various open-source and proprietary SDN controllers such as RYU 
[28], OpenDaylight [43], and Nox [44]. It is integral in Open vSwitch and Open-
Stack, as well as SEBA for broadband access and COMAC for converging mobile 
and broadband networks. Google utilizes OpenFlow extensively in projects like B4, 
Maglev, Jupiter, Andromeda, and Espresso. Furthermore, flow tables are a funda-
mental component of the data plane in SDN, and they are not specific to any particu-
lar protocol. Therefore, this problem exists as a broader challenge within SDN, and 
consequently, any SDN protocol or switch that employs matching and tables [1, 45] 
can benefit from this solution. Therefore, OpenFlow was chosen because of its avail-
able documentation and use in publicly available literature that propose solutions to 
this problem. Version 1.3 was selected due to its capabilities necessary to implement 
our proposed solution and its adaptability to newer versions. While there may not 
exist a one-to-one equivalency, any logic used to develop a solution in OpenFlow 
should be portable to a P4 environment with sufficient modification [46].

5  Evaluation

The model’s performance was evaluated by comparing it against static timeout val-
ues ranging from 1 to 10 on a dataset comprising 1000 flows. These flows were 
generated with the same size and transmission rate parameters as those used during 
the training phase.

Table 2 highlights the trends in flow rule entries concerning different timeout val-
ues. It is observed that longer timeouts lead to a decrease in active entries, while 

Table 2  Timeout values and 
metrics

Timeout value Avg. active Avg. match Packet in 
messages

DDT 0.79 0.80 7826
1 1.00 0.72 8616
2 0.94 0.73 8546
3 0.93 0.74 8380
4 0.92 0.77 7905
5 0.90 0.79 7889
6 0.76 0.80 7798
7 0.71 0.83 7707
8 0.65 0.86 7610
9 0.61 0.90 7470
10 0.53 1.00 7441
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match rates remain relatively stable. Moreover, longer timeouts result in higher 
match values and reduced Packet_In Messages. Figure 3 demonstrates the superi-
ority of Delayed Dynamic Timeout (DDT) over static timeouts ranging from 1 to 
10. DDT consistently outperforms the static alternatives in terms of various metrics. 
Overall, the choice of timeout significantly impacts network activity, match rates, 
and processing efficiency. The model’s contributions in this context include general-
izability, flexibility, scalability, reduced training time, and improved efficiency.

5.1  Analysis of the Obtained Results

After analyzing Table 2, it becomes evident that there exists a correlation between 
the timeout value and its impact on the match rate and activity rate. To begin with, 
Fig.  4 illustrates a notable decreasing trend in the average number of flow rule 
entries actively receiving packets as the timeout value increases. This suggests that 
larger timeout values lead to a reduction in the average number of active transmis-
sions or processes. Consequently, it implies that longer timeout values result in a 
lower overall activity level of flow rule entries within the switch’s flow table. Fur-
thermore, when examining the average match rate of flow rule entries in Fig. 3, there 
is no clear trend across the different timeout values. The average match rate remains 
relatively stable, indicating a consistent level of success or efficiency in the opera-
tions or queries being performed, regardless of the timeout value. Here, the analysis 
reveals that increasing the timeout value has a discernible impact on the activity rate 
of flow rule entries, while the average match rate remains consistent across different 
timeout values.

There also exists a relationship between the average amount of flow rule 
entries actively receiving packets and the average match rate, as seen in Fig. 5. As 

Fig. 3  Percentage of rule entries matching incoming packets
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the average active value decreases with increasing timeout values, there is a slight 
increase in the average hit values. Figure  6 illustrates the comparison between 
the solution, Delayed Dynamic Timeout (DDT), and static timeout values rang-
ing from 1 to 10. The graph shows that the average amount of flow rule entries 
actively receiving packets or the average match rate value of DDT are relatively 

Fig. 5  Comparison of activity & match among static values

Fig. 6  Delayed Dynamic Timeout (DDT) compared to static values
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higher than those of the static timeout values, indicating that DDT achieves better 
performance in terms of active transmissions and match ratio.

5.2  Comparative Analysis with State‑of‑the‑Art Solutions

DDT focuses on autonomous decision-making within the network brain, represent-
ing a step toward the realization of self-operating networks. Aligned with research 
findings discussed in the relevant state-of-the-art literature, as detailed in Table 3, 
DDT also introduces distinctive features, making its unique contribution to the exist-
ing body of related literature.

5.3  Limitations

Our solution relies on multiple computationally complex and resource-intensive 
neural networks. However, actively polling the network’s switch(es) introduces com-
munication cost and overhead, consuming additional computational resources. Fur-
thermore, using Mininet as a testbed environment imposes limitations on the scal-
ability of the network due to the sharing of computational resources among devices 
and applications within the emulation.

The lack of available code and standardized benchmarks for RL-based SDN time-
out solutions presents challenges in evaluating and comparing different approaches. 
The absence of a common framework or reference implementation makes it diffi-
cult to assess the performance, reliability, and effectiveness of various timeout solu-
tions consistently and objectively. Additionally, there is no standardized method for 
simulating network traffic with real-world characteristics, such as bursty traffic and 
temporal variations. The absence of realistic traffic scenarios in evaluations hinders 
accurate assessments of the proposed solutions’ performance and robustness in prac-
tical deployments.

Another concern is that the reference model and OpenFlow protocol specification 
do not define a clear method for forming a global network view. As a result, obtain-
ing a comprehensive and accurate representation of the network state can be chal-
lenging. Moreover, data collected by polling the network is only accurate at the time 
of collection, which can lead to skewed calculations and inaccurate decisions during 
traffic bursts or data reset periods. The assumptions about data collection time may 
not always hold true, affecting data accuracy in critical moments.

6  Conclusion and Future Work

In this paper, we presented Delayed Dynamic Timeout (DDT), an innovative 
approach that utilizes Reinforcement Learning (RL) to optimize resource manage-
ment in Software-Defined Networking (SDN) through dynamic flow timeout assign-
ment. By leveraging the inherent capabilities of the OpenFlow protocol, advance-
ments in RL techniques, and the incorporation of a cache module, DDT dynamically 
adapts the idle timeout values of flow rule entries based on real-time changes in 
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network traffic. Our evaluation of DDT against static timeouts showed quantifiable 
improvement, particularly in terms of match or activity rate, while maintaining a 
commendable level of efficiency in other categories. This highlights the potential 
of RL-based solutions for achieving better resource allocation and performance in 
SDN environments.

Looking ahead, we plan to expand the applicability of DDT by implementing it 
on a more complex SDN topology, closely resembling real-world networks. Cur-
rently limited to a single switch, our future work involves scaling DDT to accom-
modate multiple switches, thereby increasing its practicality and relevance in larger 
network architectures. Additionally, we aim to explore the use of programmable data 
planes and distributed RL training techniques. By reducing the training and runtime 
overhead on the SDN controller, we can enhance DDT’s efficiency and decision-
making capabilities, making it even more suitable for larger and more dynamic net-
work scenarios.
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