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Abstract
The popularity of Internet of Things (IoT) devices in smart homes has raised significant 
concerns regarding data security and privacy. Traditional machine learning (ML) meth-
ods for anomaly detection often require sharing sensitive IoT data with a central server, 
posing security and efficiency challenges. In response, this paper introduces FedGroup, 
a novel Federated Learning (FL) method inspired by FedAvg. FedGroup revolution-
izes the central model’s learning process by updating it based on the learning patterns 
of distinct groups of IoT devices. Our experimental results demonstrate that FedGroup 
consistently achieves comparable or superior accuracy in anomaly detection when com-
pared to both federated and non-federated learning methods. Additionally, Ensemble 
Learning (EL) collects intelligence from numerous contributing models, leading to 
enhanced prediction performance. Furthermore, FedGroup significantly improves the 
detection of attack types and their details, contributing to a more robust security frame-
work for smart homes. Our approach demonstrates exceptional performance, achieving 
an accuracy rate of 99.64% with a minimal false positive rate (FPR) of 0.02% in attack 
type detection, and an impressive 99.89% accuracy in attack type detail detection.

Keywords Smart home environment · Cyber attack · Anomaly detection · Federated 
learning · Internet of things (IoT) · Machine learning

Mathematics Subject Classification 35A01 · 65L10 · 65L12 · 65L20 · 65L70

1 Introduction

IoT has revolutionized the way we bridge the virtual and physical realms, ena-
bling data collection, analysis, and automation of business activities [15]. This 
transformation has simplified lives and improved the quality of life through 
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continuous and automatic data input [28]. By the year 2025, 478.2 million smart 
homes will be present across 150 countries worldwide [19]. As the digital econ-
omy continues to thrive, underpinned by countless online interactions among 
individuals, businesses, devices, and data, the need for robust security and pri-
vacy becomes paramount [15].

Despite the convenience offered by smart home security systems, they also 
introduce the risk of compromising personal data security [4]. Trust plays a piv-
otal role in users’ acceptance and adoption of smart homes [29]. These homes are 
susceptible to various forms of attacks, stemming primarily from network secu-
rity vulnerabilities and insecure IoT devices [4]. Cybercrime expenses are pro-
jected to surge annually by 15%, reaching a staggering USD 10.5 trillion by 2025 
[25]. This alarming trend underscores the imperative for enhanced cybersecurity 
measures and heightened awareness.

As a result, to safeguard the security and privacy of IoT devices in smart 
homes, maintaining the highest standards is essential. Anomaly detection meth-
ods have been extensively studied to identify abnormal behaviours and unex-
pected anomalies, often relying on traditional ML and deep learning (DL) mod-
els, which pose challenges to data privacy [34]. In response, researchers have 
turned to federated learning, an approach that ensures security and lightweight 
communication by aggregating updates from local models [22, 23]. Moreover, 
existing research on anomaly detection has largely overlooked attack-type iden-
tification using federated learning. Identifying unusual patterns is crucial in vari-
ous domains, such as fraud detection in credit card transactions [26]. Effective 
cybersecurity requires not only detecting malicious behaviour but also categoriz-
ing the type of attack. This can be achieved through multi-class categorization 
procedures that describe the attack and pinpoint its source.

In the prior study [39], we introduced FedGroup, a model addressing anomaly 
detection by extending the principles of Federated Learning with a group master 
in the central server. FedGroup proved to be a fast, secure, and fairness-enhanc-
ing algorithm with minimal communication overhead. Our comparative analy-
sis showed that FL-based models, including FedGroup, performed on par with 
or even outperformed standard ML models. Moreover, by integrating Ensemble 
Learning with FedGroup, we achieved an outstanding attack detection accuracy 
of 99.91% on the UNSW IoT dataset.

Building upon this foundation, this extended study focuses on attack type 
detection and attack type detection details, extending the original research scope. 
The primary contributions of this work are: 

1. Addressing Attack Detection: Identifying whether an attack occurred.
2. Introducing Attack Type Detection: Identifying the specific type of attack.
3. Enhancing Attack Type Detection Details: Predicting aspects such as "direct or 

reflection," "type of attack," "rate of attack," and "layer of attack."
4. Evaluating the performance of Traditional ML, Federated Learning (FedAvg), 

and FedGroup algorithms in detecting anomalies within smart homes, using a 
real-world use-case dataset.
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This paper is divided into several sections, which are summarized below. Section 2 
provides a brief review of related research and identifies gaps in the literature. In 
Sect. 3, we describe our use case research data and present new models. Sections 4 
and 5 present the evaluation results and limitations, respectively. Finally, the conclu-
sion summarises the main findings of the study.

2  Literature Review

2.1  Traditional Machine Learning

The realm of cybersecurity has witnessed a significant reliance on traditional ML 
techniques for safeguarding internal networks against potential cyberattacks. These 
methodologies typically involve training algorithms using historical network traf-
fic data to identify patterns and anomalies indicative of ongoing attacks. Notably, 
Tsai et al. [34] conducted an analysis spanning from 2000 to 2007, identifying 55 
research papers dedicated to intrusion detection. The majority of these studies con-
centrated on the use of single classifiers, such as K-Nearest Neighbors (KNN) and 
logistic regression, with limited exploration of ensemble classifiers, which exhibit 
the potential to outperform single classifiers in terms of classification accuracy.

However, the effectiveness of traditional anomaly detection approaches has been 
questioned, especially in the context of high-dimensional data [32]. In 2017, Ris-
teska Stojkoska and Trivodaliev [27] highlighted the shortcomings of existing archi-
tectures for IoT-based smart home systems, emphasizing the significant data storage 
and processing demands that prove far from efficient. They underscored the need for 
novel techniques addressing the challenges associated with managing vast volumes 
of data in the cloud. Moreover, the imperative of ensuring security in cloud-based 
solutions, which pose a significant risk of disclosing personal information and data, 
has become a pressing concern.

In 2021, Al-Haija et  al. [2] introduced a pioneering approach, deploying deep 
learning to address the privacy concerns associated with data collection across vari-
ous devices. Their Deep Convolutional Neural Network-based system effectively 
detected IoT device attacks, boasting high classification accuracy and eliminating 
the need for a central data collection process. Building on this progress, in 2022, 
Al-Haija et  al. [3] introduced Boost-Defence, a detection system tailored to the 
TON_IoT_2020 dataset. This solution harnessed machine learning techniques for 
cyberattack detection within 3-layer IoT networks, leveraging the AdaBoost frame-
work, Decision Trees, and various optimizations to achieve remarkable accuracy in 
cyberattack detection.

2.2  Federated Learning (FL or FedAvg)

Previous research has primarily focused on centralized anomaly detection, where a 
central model collects data from local models. However, decentralized models offer 
advantages in terms of computational ease and lightweight communication [22]. 
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The concept of Federated Learning (FL) was introduced by Google in 2016, aiming 
to enhance the efficiency and security of users interacting with mobile devices [37]. 
FL involves a central model receiving parameter updates and performing averaging 
updates at the server which is the reason why name it as FedAvg. This approach has 
shown benefits in collaborative learning, low communication costs, and decoupling 
cloud storage, effectively addressing challenges in FL [22, 23, 37].

The literature reveals various attack types, including data poisoning, model poi-
soning, backdoor attacks, inference attacks, and membership inference attacks [36]. 
Researchers have proposed several methods for attack detection and prevention 
within FL, including differential privacy, encryption techniques, secure aggregation, 
and anomaly detection methods [33, 36]. However, recent work in 2022 highlighted 
the critical impact of non-iid and highly skewed data distributions on FL perfor-
mance, underscoring the need for improved solutions in this context [12].

To tackle non-iid data distribution issues, a study by Li et  al. (2020) outlined 
three pathways: (1) addressing high communication costs by reducing model update 
times and communication rounds; (2) managing statistical heterogeneity through 
local training model modifications and global model focus; (3) handling structural 
heterogeneity, encompassing fault tolerance and resource allocation strategies [20]. 
Another study by Li et  al. (2020) [21] emphasized the importance of equitable 
device distribution and overall accuracy, introducing the q-FFL model to address 
model bias toward devices with extensive data. In a separate 2022 study on intrusion 
detection [12], the Fed+ [38] model was introduced, demonstrating improved accu-
racy compared to FedAvg when dealing with heterogeneous data distributions on the 
ToN_IoT dataset [5].

In 2023, our previous work [39] introduced FedGroup, an algorithm designed 
to address the highly skewed distribution challenge of FedAvg. FedGroup departs 
from computing the average learning of each device and instead adjusts the cen-
tral model’s learning based on the learning patterns observed in distinct groups of 
IoT devices. Our empirical study, conducted using a real-world IoT dataset, demon-
strated that FedGroup achieves anomaly detection accuracy comparable to or better 
than both FL and non-FL methods. Moreover, FedGroup enhances security by keep-
ing all IoT data localized for model training and updates.

2.3  Ensemble Learning

In their analysis, Vanerio and Casas (2017) demonstrated the effectiveness of 
Ensemble Learning in anomaly detection, utilizing a Super Learner that incorpo-
rated diverse first-level learners and opted for logistic regression for binary classi-
fication evaluation in two distinct scenarios [35]. EL, known for its integration of 
multiple learning models, has proven its capability to enhance predictive perfor-
mance, particularly in handling challenging training data [35]. In a recent study by 
Abu Al-Haija et al., EL showcased its reliability in profiling behavioural features of 
IoT network traffic and detecting anomalous network traffic through their ELBA-
IoT model, which achieved an impressive accuracy of 99.6% with minimal inference 
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overhead [1]. These findings serve as inspiration for amalgamating the advantages of 
ensemble learning with those of the federated learning model for anomaly detection.

2.4  Summary

This study seeks to explore the realm of attack-type detection within the framework 
of Federated Learning, taking into consideration not only accuracy but also the false 
positive rate as critical performance metrics. Additionally, the study addresses the 
potential bias introduced by the aggregation of distributed models in creating the 
final global model. FedGroup, the proposed solution, incorporates the function-
ality and structural insights from a variety of models to effectively tackle these 
challenges.

3  Methodology

The research plan for this study is structured according to the outline depicted in 
Fig. 1. This investigation comprises three primary objectives: Firstly, the develop-
ment of an anomaly detection model to identify potential attacks (Attack Detection); 
Secondly, the classification of the attack type (Attack Type Detection); and thirdly, 
a detailed exploration of Attack Type Detection Details. While our prior study pri-
marily centred around the first objective, this extended research effort is dedicated 
to addressing the second and third objectives. The initial section of this study, titled 
"Research Data," introduces the network traffic flow data and the attack data. Sub-
sequently, the "Research Method" section details the specifics of the model design. 
Finally, the "Experiment and Analysis" section outlines the strategic planning and 
evaluation methodology.

3.1  Research Data

The UNSW laboratory hosts a diverse set of 28 distinct IoT devices organized into 
various groups, alongside numerous non-IoT devices within the smart environment. 
This dataset encompasses both malicious and benign data, each spanning two dis-
tinct periods captured in 30 PACP files. The initial set of PCAPs covers the time-
frame from 28/05/2018 to 17/06/2018, while the subsequent stage extends from 
24/09/2018 to 26/10/2018. This research leverages the dataset provided by the 
UNSW IoT analytics team [17, 18, 30, 31], focusing on a curated selection of 10 IoT 
devices with wireless internet connectivity. These devices encompass both benign 
and attack traffic datasets, categorizing them into four distinct groups: Energy man-
agement, Camera, Appliances, and Controllers/Hubs, as detailed in Table 1.

3.1.1  Network Traffic Flow Data

Every minute, data pertaining to the network traffic flows of 10 IoT devices is 
collected, annotated with activity indicators, and stored in ten distinct Excel files 
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Fig. 1  Outline of the study

Table 1  Ten IoT devices

Ten IoT devices

Device MAC addresses IoT devices Category

0 00:16:6c:ab:6b:88 Samsung Smart Cam Camera
1 00:17:88:2b:9a:25 Phillip Hue Lightbulb Energy management
2 44:65:0d:56:cc:d3 Amazon Echo Controllers/Hubs
3 50:c7:bf:00:56:39 TP-Link Plug Energy management
4 70:ee:50:18:34:43 Netatmo Camera Camera
5 74:c6:3b:29:d7:1d iHome PowerPlug Energy management
6 d0:73:d5:01:83:08 LiFX Bulb Energy management
7 ec:1a:59:79:f4:89 Belkin Switch Energy management
8 ec:1a:59:83:28:11 Belkin Motion Sensor Energy management
9 F4:F5:D8:8F:0A:3C Chromecast Ultra Appliances
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dedicated to network traffic flow data. The files include "Timestamp" and a sizable 
number of pattern characteristics: "From###Port###Byte", "To###Port###Byte", 
"From###Port###Packet", and "To###Port###Packet". The contents after "From" 
and "To" are "InternetTcp", "InternetUdp", "LocalTcp", "LocalUdp", and so 
forth, whereas the contents after "Port" are port numbers. We choose to antici-
pate assaults by using both since the packet and the byte are not closely related 
because the size of the packets in this dataset varies. According to the statistics on 
network traffic flow, it is unknown which network flow is en route to or emanating 
from which IoT devices. The reasons are different IoT devices using the same port 
number and the same device using different port numbers at the same time. For 
example, both the Amazon Echo and the LIFX lightbulb use DNS (port number 
53) and NTP (port number 123). Amazon Echo uses HTTP (port number 80), 
HTTPS (port number 443), and ICMP (port number 0). Consequently, extracting 
direct insights from network flow data proves to be a formidable challenge. In this 
study, we employ network traffic flow data as the input for forecasting the model’s 
capability to detect attacks and identify their specific attack types.

3.1.2  Attack Data

The UNSW IoT analytics team designed a set of attacks mirroring real-world sce-
narios and are particular to several real-world consumer IoT devices. The tools 
were created in Python to find susceptible and vulnerable devices on the local 
network by running different tests against them. Then, the program performs tar-
geted attacks on IoT devices that are susceptible. The attack condition includes 
the start and end time of the attacks, the impact of the attack, and attack types.

Attack Detection: The determination of normal behavior and the identification 
of attacks are contingent on a rule-based criterion that evaluates whether a given 
flow time falls within the specified attack time window. In this context, the condi-
tion "if (flowtime >= startTime × 1000 and endTime × 1000 >= flowtime, then 
attack = true". It is multiplied by 1000 since the times are recorded in different 
units: flow time in milliseconds while start time and end time are not.

Attack Type Detection: There are 45 different types of attack, each attack 
lasting 10 min each time with 200 attacks in total (see Table 2). In Table 3, the 
proportion of attack and attack types on the ten IoT devices are listed.

Attack Type Detection Details: The detection details continue to work on 
"direct or reflection", "type of attack", "rate of attack", and "layer of attack" 
respectively. Please note that to prevent confusion about 45 attack types and 
type of attacks. The attack types mean 45 different attack types, such as Arp-
Spoof100L2D, and the attack types focus on the varieties such as ArpSpoof. 

1. Attack categories: Reflection and direct attack are two types of attack.
2. Types of attack: ArpSpoof, TcpSynDevice, UdpDevice, and PingofDeath are 

direct attacks. SNMP, Ssdp, TcpSynReflection, and Smurf are reflective attacks.
3. Rates of attack: 100 PPS, 10 PPS, and 1 PPS (packets per second).
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Table 3  Proportion of attack and attack types

IoT Devices No 0 1 2 3 4 5 6 7 8 9 Total

Proportion of 
attack

Non-Attack (%) 99.42 99.32 99.80 99.62 99.71 99.93 99.66 99.66 99.49 99.42 99.60
Attack (%) 0.578 0.679 0.204 0.381 0.294 0.069 0.343 0.341 0.512 0.576 0.403
Proportion of attack types
Attack Type 0 (%) 0.014 0.023 0.023 0.014 0.010 0.023 0.023 0.014 0.028 0.023 0.017
Attack Type 1 (%) 0.014 0.023 0.023 0.014 0.014 0.023 0.023 0.014 0.028 0.023 0.018
Attack Type 2 (%) 0.014 0.023 0.023 0.014 0.014 0.023 0.023 0.014 0.028 0.023 0.018
Attack Type 3 (%) 0.014 0.023 0.0 0.014 0.014 0.0 0.0 0.014 0.028 0.023 0.012
Attack Type 4 (%) 0.014 0.023 0.0 0.014 0.014 0.0 0.0 0.014 0.028 0.023 0.012
Attack Type 5 (%) 0.014 0.023 0.0 0.014 0.014 0.0 0.0 0.014 0.028 0.023 0.012
Attack Type 6 (%) 0.014 0.023 0.0 0.014 0.0 0.0 0.023 0.014 0.028 0.0 0.011
Attack Type 7 (%) 0.014 0.023 0.0 0.014 0.0 0.0 0.023 0.014 0.028 0.0 0.011
Attack Type 8 (%) 0.014 0.023 0.0 0.014 0.0 0.0 0.023 0.014 0.028 0.0 0.011
Attack Type 9 (%) 0.014 0.0 0.023 0.0 0.0 0.0 0.023 0.0 0.028 0.0 0.007
Attack Type 10 (%) 0.014 0.0 0.023 0.0 0.0 0.0 0.023 0.0 0.028 0.0 0.007
Attack Type 11 (%) 0.014 0.0 0.023 0.0 0.0 0.0 0.023 0.0 0.028 0.0 0.007
Attack Type 12 (%) 0.014 0.023 0.0 0.014 0.014 0.0 0.0 0.014 0.028 0.023 0.012
Attack Type 13 (%) 0.014 0.023 0.0 0.014 0.014 0.0 0.0 0.014 0.028 0.023 0.012
Attack Type 14 (%) 0.014 0.021 0.0 0.013 0.014 0.0 0.0 0.014 0.028 0.023 0.012
Attack Type 15 (%) 0.014 0.023 0.0 0.014 0.0 0.0 0.023 0.0 0.0 0.0 0.007
Attack Type 16 (%) 0.014 0.023 0.0 0.014 0.0 0.0 0.023 0.0 0.0 0.0 0.007
Attack Type 17 (%) 0.014 0.023 0.0 0.014 0.0 0.0 0.023 0.0 0.0 0.0 0.007
Attack Type 18 (%) 0.010 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.001
Attack Type 19 (%) 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002
Attack Type 20 (%) 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002
Attack Type 21 (%) 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002
Attack Type 22 (%) 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002
Attack Type 23 (%) 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002
Attack Type 24 (%) 0.028 0.023 0.0 0.028 0.028 0.0 0.0 0.028 0.028 0.025 0.021
Attack Type 25 (%) 0.028 0.023 0.0 0.028 0.028 0.0 0.0 0.028 0.028 0.046 0.023
Attack Type 26 (%) 0.028 0.023 0.0 0.028 0.028 0.0 0.0 0.028 0.028 0.023 0.021
Attack Type 27 (%) 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002
Attack Type 28 (%) 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002
Attack Type 29 (%) 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.002
Attack Type 30 (%) 0.028 0.023 0.0 0.028 0.028 0.0 0.0 0.028 0.028 0.023 0.021
Attack Type 31 (%) 0.014 0.021 0.0 0.028 0.028 0.0 0.0 0.028 0.028 0.023 0.019
Attack Type 32 (%) 0.028 0.023 0.0 0.027 0.028 0.0 0.0 0.028 0.028 0.023 0.021
Attack Type 33 (%) 0.014 0.0 0.023 0.0 0.0 0.0 0.023 0.0 0.0 0.0 0.005
Attack Type 34 (%) 0.014 0.0 0.021 0.0 0.0 0.0 0.023 0.0 0.0 0.0 0.005
Attack Type 35 (%) 0.014 0.0 0.023 0.0 0.0 0.0 0.023 0.0 0.0 0.0 0.005
Attack Type 36 (%) 0.0 0.021 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.023 0.005
Attack Type 37 (%) 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.023 0.005
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4. The layer of attack: L2D, L2D2L, L2D2W, W2D2W, W2D are the five types of 
layer scenario which L: Local, 2: to, D: Device, and W: Internet. L2D represents 
Local to Device.

Set one of the attack conditions of the Samsung smart camera as an example: 
"1527838552, 1527839153, Localfeatures|Arpfeatures, ArpSpoof100L2D" rep-
resents a direct attack named Arpspoof launched with the attack from local to 
device with the rate of 100 packets per second started at 1527838552 and ended at 
1527839153 (time in milliseconds) was influence both the local communication and 
ARP protocol.

3.2  Research Method

3.2.1  FL or FedAvg

FedAvg operates by accepting an initial model from the central server, training 
decentralized models on local device servers, and subsequently transmitting the best 
performance parameters back to the central model [37]. The system design, depicted 
in Fig. 2: FedAvg Protocol, aligns with the principles outlined in Fig. 1: Federated 
Learning Protocol from Bonawiz’s work, "Towards Federated Learning At Scale: 
System Design" [7]. FedAvg serves as a collaborative model for training data with-
out central data storage, offering several key advantages: 

1. FedAvg facilitates the utilization of extensive datasets distributed across various 
servers, thereby minimizing data transmission while upholding data privacy and 
security.

2. Distributed servers autonomously train global models on their local data and con-
solidate these changes into updates sent to the cloud, resulting in more efficient 
and secure communication.

Table 3  (continued)

IoT Devices No 0 1 2 3 4 5 6 7 8 9 Total

Attack Type 38 (%) 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.023 0.005
Attack Type 39 (%) 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.023 0.005
Attack Type 40 (%) 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.023 0.005
Attack Type 41 (%) 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.023 0.005
Attack Type 42 (%) 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.025 0.005
Attack Type 43 (%) 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.023 0.005
Attack Type 44 (%) 0.0 0.023 0.0 0.0 0.0 0.0 0.0 0.0 0.028 0.023 0.005
Non-Attack (%) 99.42 99.32 99.80 99.62 99.71 99.93 99.66 99.66 99.49 99.42 99.60
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3. The cloud server updates the global model by computing a weighted average 
of parameters. This approach not only supports fault tolerance but also enables 
scalable computation.

3.2.2  FedGroup

While FedAvg is proficient at aggregating parameters from local servers and deter-
mining the mean for the subsequent round, it falls short in effectively managing fair-
ness concerns. The algorithm overlooks a critical factor: the unequal distribution 
of smart home devices among various groups [24] [21]. Devices within the same 
category exhibit similar functionalities and face comparable risks. The discrepancy 
in the training updates, which can vary significantly among participants, is easily 
treated as an average. While the aggregate accuracy may appear satisfactory, indi-
vidual accuracy remains obscure, potentially leading to skewed performance distri-
bution [21].

In contrast, FedGroup introduces a novel approach [39]. It advocates comput-
ing the average of updates on a group basis rather than opting for a one-size-fits-
all averaging strategy (refer to Fig.  3 and Fig.  4). This model comprises multiple 
local models, a central model, and several group masters within the central model. 
Local models operate on local servers deployed on IoT devices. Each IoT device 
collects network traffic data to train a local model and forwards learning updates 
to the respective group master within the central model. Importantly, this process 
does not involve data sharing or transmission, maintaining data security and privacy. 
Each group master aggregates learning parameters within its designated group using 
a predefined function (e.g., averaging) to fine-tune the learning process. The updated 
learning is subsequently relayed to all client servers within the group for the next 
round of training, optimizing the local model’s focus on group-specific informa-
tion. To ensure data security and privacy, information remains localized and is not 
transmitted over the internet or shared with other devices. Furthermore, to mitigate 

Fig. 2  Federated Learning
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accuracy disparities stemming from bias, IoT device parameters are determined on a 
group-specific basis rather than relying on an overall average.

In our study, the IoT devices in the smart home primarily consist of energy man-
agement applications such as plugs and bulbs, as indicated by the dataset. Given 
the substantial disparity in the number of such devices compared to other groups, 
the cloud server’s parameters may exhibit bias towards energy management devices. 
Specifically, the four IoT devices utilized in this research are categorized as follows: 
one device in the Group Controllers/Hubs, one device in the Group Appliances, 
and two devices in the Group Camera. The remaining six IoT devices fall under the 
Group Energy Management category, encompassing a Belkin Motion Sensor, an 
iHome PowerPlug, a LIFX Bulb, a Philips Hue lightbulb, a TP-Link Plug, and a 
Belkin Switch.

Definition: Network NDnGi : N represents network, Dn means Device n and Gi rep-
resents Group i. The Xn and Mn are included in NDnGi where Xn represents the net-
work traffic flow data of the IoT device n, and Mn means the local model of the 
IoT device n. During the training, setting the best score S, the best parameter B, the 
average score of the entire model C, and the average parameters of the entire model 
A. For each model M, parameters P = {a, b, ...} means parameters such as weights, 
n_estimator and so on with all possible parameters grid p = {a0, a1, ...}, {b0, ...}, ... 
such as n_estimator have parameters 1, 2 and so on. E represents the selected param-
eter grids in the local models after the update to the central model. yn to represent 
the prediction target, for example, cyber attack types.

Fig. 3  FedGroup
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3.2.3  FedAvg_EL

FedAvg_EL adheres to the FedAvg workflow but introduces a novel approach by 
replacing the local models with ensemble learning techniques. This adaptation 
is applied to the task of attack detection and attack type detection, following the 
procedural steps established by FedGroup, as illustrated in Fig. 5.

Traditionally, local models in federated learning have often employed ML tech-
niques, which can yield inconsistent results due to their specialization in address-
ing specific types of questions or issues. In contrast, EL harnesses the collective 
intelligence of various contributing models, offering the advantage of robust and 
uninterrupted operation even in the presence of individual model failures.

When considering ensemble learning as a local model, there are three types 
of ensemble learning: Bagging, Stacking, and Boosting. Bagging divides the 
training dataset into multiple samples within the same model while Boosting 

Fig. 4  FedGroup
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iteratively corrects predictions. For our specific scenario, Stacking ensemble 
learning is deemed most suitable. In the Stacking approach, a two-tier model 
structure is employed. The base models also referred to as Level-0 models, are 
trained on local devices using the network traffic data. Subsequently, a Level-1 
classification model, such as logistic regression, combines the predictions gener-
ated by the Level-0 models [8, 9].

Regarding the prediction of attack type details, FedAvg_EL possesses the 
capability to locally integrate a variety of models within the ensemble learning 
framework. Figure 6 visually illustrates the model’s proficiency in providing cus-
tomers with what kind of attack rates it is, what type of attack it is, what layers 
are suffering attacks, and whether it is a direct attack or reflection attack. Armed 

Fig. 5  FedAvg_EL
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with this valuable information, customers can make informed decisions and take 
appropriate defensive actions. The sequential steps of FedAvg_EL for attack type 
detection details include: 

1. Every local model uses the network traffic flow data to train models. The models 
predict "direct or reflection", "type of attack", "rate of attack" and "layer of attack" 
in four stacking EL, respectively;

2. The prediction accuracy is the mean of the four aspects. Local models send the 
best parameters of the model to the central model;

3. The central model secure aggregates all the parameters;
4. The central model sends back the new global model with the average parameters 

to participants;
5. Local models update the models with the new parameters.

Fig. 6  FedAvg_EL on attack type detection details
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3.2.4  FedGroup_EL

FedGroup_EL combines FedGroup and EL: using Ensemble Learning as the 
local model and FedGroup as the central model with the group master for group 
updates. The advantages of learning from a mixture of ensemble learning models, 
keeping the security and privacy of the data, and the fairness of the FedGroup 
training procedure are involved in the new model. Most importantly, the fault-tol-
erant can be seen as the biggest advantage of FedGroup_EL. FedGroup is avail-
able to tolerate adversarial attacks and resolve faults since it is deployed on mul-
tiple edge devices [16]. Besides, the structure of ensemble learning allows it to 
take benefits from many models without worrying about causing system failures. 
We implement the FedGroup_EL on attack detection and attack type detection 
following the steps of the FedGroup in Fig. 7. Because the 45 attack types can be 
excavated to the four perspectives, which are meaningful and worth learning to 
predict the attack type detection details. Therefore, the local model is the aggre-
gate of four stacking EL (see Fig. 8). The steps of FedGroup_EL on attack type 
detection details: 

1. Every local model uses the network traffic flow data to train. The models predict 
"direct or reflection", "type of attack", "rate of attack" and "layer of attack" in 
four stacking EL, respectively;

2. The prediction accuracy is the mean of the four aspects. Local models send the 
best parameters of the model to the central model;

3. Group master in the central model secure aggregate the parameters based on 
groups;

4. The central model sends back the new global model with the average parameters 
to participants in the related group;

5. Local models update the models with the new parameters.
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Fig. 7  FedGroup_EL
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3.3  Experiment and Analysis

In preprocessing IoT network traffic flow data, "NoOfFlow" is removed since it 
counts closely related flows. There are 253 attributes related to bytes and packages 
of port numbers, which encompass various devices using the same port number, 
while a single device may employ different port numbers. Missing data with NaN 

Fig. 8  FedGroup_EL on attack type detection details
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values represent instances of no network activity for a matching port number, which 
we replace with a value of 0. This signifies zero packet-level and zero-byte-level net-
work traffic flow data, indicating no network activity at that moment.

The dataset exhibits an imbalance, favoring certain labels. To address this, we 
employed StratifiedShuffleSplit to divide the data into an 80% training set and a 
20% testing set, ensuring a consistent label distribution. We adopted Stratified 5-fold 
Cross-Validation for model training and evaluation, using an F1 score with weighted 
averaging on the 20% testing data.

In the context of Stacking Ensemble Learning for attack detection and attack type 
detection, we employed KNN and Decision Tree at Level-0 and Logistic Regression 
at Level-1. For attack type detection details, we adjusted four pattern models using 
the Samsung Device Smart Cam to enhance the initial ensemble learning. Based 
on the results in Table  4, we selected KNN, Decision Tree, and Naive Bayes for 
Level-0.

The accuracy classification score is a crucial metric for evaluating the multi-label 
classification performance, which requires an exact match to the actual data [10]. 
Another important metric is the False Positive Rate (FPR), which measures the ratio 
of negative events incorrectly classified as positive (False Positives) to the total 
number of ground truth negatives (N = TN + FP) [11, 13]. In our case study, we 
utilise both accuracy and FPR to evaluate the models. Accuracy measures the cor-
rect predictions of abnormal and normal behaviours, and FPR, which quantifies the 
likelihood of misclassifying a cyber attack as normal behavior.

4  Results

This study has analysed anomaly detection on three questions: (1) Attack Detection: 
Can we detect if there is an attack happening or not? (2) Attack Type Detection: If 
yes, can we identify its attack type? (3) Attack Type Detection Details: Can we fur-
ther correctly predict the details of the attack?

Table 5 compares the performance of our schema. The first section displays the 
outcomes of a central model using Traditional ML, FedAvg, and FedGroup, and a 
local model using Decision Tree, Logistic Regression, and Ensemble Learning for 
attack detection and attack type identification. The second section demonstrates the 
outcomes of using EL as the local model on both FedAvg and FedGroup to attack 

Table 4  Ensemble Learning-adjust level 0 models

Ensemble Learning - adjust level 0 models

Level-0 KNN, DT, NB KNN, DT, SVM KNN, DT, NB, SVM KNN, DT, NB, SVM, RF
Level-1 Logistic Regression
Samsung Smart 

Cam Accuracy
0.998810 0.998756 0.998774 0.998721
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type detection details on "direct or reflection", "type of attack", "rate of attack", and 
"layer of attack".

To begin with, the analysis of anomaly detection focused on three aspects: (1) 
Detecting whether an attack is happening, (2) Identifying the type of attack if 
detected, and (3) Providing details of the attack type. The top-performing model 
achieved an accuracy of 99.91% in detecting attacks using a Federated Learn-
ing Based central model and Ensemble learning as the local model for training. 
In terms of attack type detection, the FedGroup model utilising EL as the local 
model achieved the highest accuracy of 99.64%. For attack type detection details, 
both FedAvg_EL and FedGroup_EL models achieved an overall accuracy of 
99.89%, providing specific features of attack types to customers.

Secondly, FL-based learning models outperform conventional ML models, 
sometimes even better. The FL-based model runs faster than the traditional ML 
model, which requires an O(n) for the client slide model and an O(n2) for the cen-
tral server. Furthermore, if we focus on differences in FPR that are larger than 

Table 5  The accuracy of FedGroup, FedAvg and Traditional ML using different models

Algorithms Attack detection Attack Type detection

Local model Central model Accuracy Running 
times 
(sec)

FPR Accuracy Running 
times 
(sec)

FPR

Decision tree Traditional 
ML

99.84% 8524 10.04% 88.41% 35 0.27%

Decision tree FedAvg 99.85% 154 9.57% 93.90% 11 0.35%
Decision rree FedGroup 99.87% 154 7.70% 94.86% 10 0.27%
Logistic 

regression
Traditional 

ML
99.76% 21376 24.48% 39.73% 5443 1.37%

Logistic 
regression

FedAvg 99.77% 2912 20.28% 49.55% 183 2.76%

Logistic 
regression

FedGroup 99.77% 2999 20.18% 52.01% 199 2.63%

Ensemble 
learning

Traditional 
ML

99.85% 33940 9.60% 97.98% 1590 0.04%

Ensemble 
learning

FedAvg 99.91% 2390 9.03% 99.50% 371 0.03%

Ensemble 
learning

FedGroup 99.91% 2143 9.43% 99.64% 341 0.02%

Algorithms Attack Type detection

Local 
model

Central 
model

Accuracy Running 
times (sec)

FPR

Ensemble 
learning

FedAvg 99.89% 4448 4.79%

Ensemble 
learning

FedGroup 99.89% 4431 5.23%
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1%, then the FPRs of the FL-based model are less than the FPRs of the traditional 
ML model. FL takes advantage of local training data to reduce running time as 
a result of lightweight communication and a decentralised learning model. Fur-
thermore, data security is ensured when raw data is not sent, communicated, or 
shared with other IoT devices or the Internet.

Besides, FedGroup performs equal to or better performance than FedAvg. If 
we focus on the differences in FPRs that are greater than 1%, then the FPRs of 
FedGroup are less than the FPRs of FedAvg. It is beneficial for FedGroup to offer 
parameters of IoT devices within the same group when the central model learns 
attack kinds from the same category of IoT devices.

Lastly, we developed the FedAvg_EL and FedGroup_EL and proved that employ-
ing EL as a local training model outperforms the traditional machine learning model. 
EL can merge several models even if the individuals are weak and show great tol-
erance for various models. Based on the results, FedAvg_EL and FedGroup_EL 
achieved the highest performance among the three questions.

The complete details about the experimental results can be found in the project 
repository.1 This includes the results of attack detection with traditional ML and 
proposed federated learning models, parameter selection and hyper-parameter tun-
ing, and the accuracy of each IoT device with FedAvg, FedGroup, FedAvg_EL, and 
FedGroup_EL models. Furthermore, the datasets, implementation of the models and 
detailed experimental results of the work presented in this paper are available in the 
project repository. This should be useful for experiment reproducibility and model 
extension and comparison.

5  Discussion

This study expanded on our previous work on attack detection by investigating 
attack types and their details, providing valuable information. Specifically, our focus 
was on examining the impact of bias in FedAvg and FedGroup models, and our find-
ings are in line with those of Mohri et al. [24] and Li et al. [21], who argue that uni-
form distribution may not always be the most suitable objective distribution. Given 
the significance of addressing bias in training data disclosure, it is essential to bridge 
this research gap by incorporating group-based update aggregation. Compared with 
the recent work of Campos et al. [12], we noticed the same problem and our state-
of-the-art model provides another way to solve the problem of the various data dis-
tribution for the detection of different attacks in an IoT environment.

The study has several constraints. In order to defend the practicality of the pro-
posed strategy, it is first necessary to consider the computational requirements for 
developing and executing models on the local servers since they are implemented 
on IoT devices. Incorporating embedded systems, which will be connected to IoT 
devices with constrained computing capabilities, is one potential solution. There 
are several papers that have examined how machine learning is implemented on 

1 https:// github. com/ Basem Sulei man/ 2023_ Anoma ly_ Detec tion_ IoT

https://github.com/BasemSuleiman/2023_Anomaly_Detection_IoT
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embedded devices [6, 14]. Second, our model did not include real-time detection, 
and the analysis was performed utilizing all available data in just two communica-
tion cycles. Future developments could consider spreading out this procedure over 
several iterations to increase accuracy. Thirdly, due to computational constraints, 
only a subset of hyperparameters was considered, which may limit the ability to 
fine-tune the models.

Moreover, our study is confined to a single smart home environment. As the IoT 
landscape continues to evolve, encompassing numerous smart homes, smart cities, 
and transportation systems, we anticipate the emergence of a multitude of diverse 
attacks occurring concurrently and across various locations. For instance, voice rec-
ognition sensors within smart homes serve various functions, from playing music to 
answering questions and controlling various devices. By studying the parameters of 
voice recognition devices, the central model can identify vulnerabilities and enhance 
security for all voice recognition devices within the city.

Future research endeavours should extend their scope to encompass multi-
ple smart home environments and adapt to the evolving landscape of IoT devices. 
Rather than merely categorizing IoT devices by functionality, such as cameras and 
appliances, a more nuanced approach could involve dividing them into numerous 
groups based on various attributes. Consider a smart door product, which offers 
multiple methods of access, including app control, fingerprint recognition, password 
entry, card scanning, and key unlocking. By segmenting these attributes, the cen-
tral model can pinpoint the precise element under attack in the event of a security 
breach, thereby improving overall security.

6  Conclusion

Addressing the issue of anomaly detection in IoT Anomaly detection in the smart 
home environment, we introduce a new method called FedGroup and two new 
frameworks using EL as a locally trained model called FedAvg_EL and FedGroup_
EL, for which we present the detailed algorithms. The study finds that: 

1. FL-based algorithms perform equal or better performance than traditional 
machine learning: FedAvg reaches 99.91% in attack detection and 99.50% in 
attack type detection. FedGroup gets 99.91% in attack detection and 99.64% in 
attack type detection.

2. The analysis of FedGroup presents the fact that it slightly improves the perfor-
mance of FedAvg and deals with the concern of fairness of the training procedure.

3. FedAvg_EL and FedGroup_EL model helps draw insight to help combine the four 
perspectives such as "direct or reflection", "type of attack", "rate of attack", and 
"layer of attack" of attack types detection with the accuracy of 99.89%. Ensemble 
Learning brings the benefits of fault tolerance which outperforms the traditional 
machine learning model.
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In summary, this study demonstrates that FL-based models can effectively address 
the security and privacy challenges of decentralized local servers while achieving 
high accuracy. Additionally, FedGroup is proposed as a solution to address fair-
ness issues in FL by aggregating updates based on categories of IoT devices. More-
over, the study investigates the use of ensemble learning to improve the accuracy 
of attack type detection, specifically for direct or reflection attacks, type of attack, 
rate of attack, and the affected layers. As a result, two new models, FedAvg_EL and 
FedGroup_EL, are proposed.

While our study sheds light on model comparisons, further empirical investigations 
are necessary to delve into continuous real-time learning and other fairness strategies 
in the realm of federated learning. Other options for future study include extending the 
model to other frameworks on anomaly detection, determining the system cost, and 
examining how wireless network link instability impacts model updating.
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