
Vol.:(0123456789)

Journal of Network and Systems Management (2023) 31:64
https://doi.org/10.1007/s10922-023-09755-y

1 3

RiskNet: Neural Risk Assessment in Networks of Unreliable 
Resources

Krzysztof Rusek1 · Piotr Boryło1 · Piotr Jaglarz1 · Fabien Geyer2 · 
Albert Cabellos3 · Piotr Chołda1

Received: 13 March 2023 / Revised: 21 June 2023 / Accepted: 22 June 2023 /  
Published online: 15 July 2023 
© The Author(s) 2023

Abstract
We propose a graph neural network (GNN)-based method to predict the distribu-
tion of penalties induced by outages in communication networks, where connections 
are protected by resources shared between working and backup paths. The GNN-
based algorithm is trained only with random graphs generated on the basis of the 
Barabási–Albert model. However, the results obtained show that we can accurately 
model the penalties in a wide range of existing topologies. We show that GNNs 
eliminate the need to simulate complex outage scenarios for the network topologies 
under study—in practice, the entire time of path placement evaluation based on the 
prediction is no longer than 4 ms on modern hardware. In this way, we gain up to 
12 000 times in speed improvement compared to calculations based on simulations.

Keywords Graph neural networks (GNNs) · Message-passing neural networks 
(MPNN) · Resilience management · Risk engineering · Shared protection · Value-at-
risk ( VaR)

1 Introduction

Applications of machine learning (ML) in the area of communication networks1 (IP/
MPLS-based, optical transport, and the like) focus mainly on enabling data-driven 
self-management. The aim is to enable a network infrastructure to react intelli-
gently in the presence of random and adversary events. Here, we elaborate on the 
reliability/resilience aspects. We follow the path of ML-supported management 
and contribute with the concept of resilience-aware network design, where ran-
domness relates to failures and consecutive recovery events. Here, we elaborate on 

Extended author information available on the last page of the article

1 To avoid equivocation, we will denote ‘communication network’ as the ‘topology’. The word ‘network’ 
will be limited to ‘neural network’ only.
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provisioning an efficient method to predict the quality of resilience in presence od 
recovery settings. We deal with the latter only in the most complex cases involving 
sharing of backup resources, that is, the ones for which traditional reliability mod-
eling is extremely problematic.

In communication networks, it is generally assumed that the resilience to outages 
is based on the so-called protection, where each connection uses a precalculated 
pair of working and backup paths. The former is used before the outage and the 
latter serves afterward to bypass faulty components (routers, cross-connects, links, 
etc.). Resilience provisioning can be based on dedicated protection, where backup 
resources are designated to be used in the case of faults on working paths, and there 
is no danger of their shortage. However, this method is extremely costly in terms of 
infrastructure usage. Furthermore, the prediction of its behavior is easy to model (we 
can assume the independence between connections). In contrast, a practical method, 
although complex in modeling, is based on the so-called shared backup path protec-
tion (SBPP) [1]. The notion of ‘sharing’ consists in having the same backup resource 
pool for various connections. The usage of this pool makes the connections depend-
ent and hinders exact modeling. It is worth noting that recently shared protection is 
also used as a design option in the context of computing systems [2].

Sharing of backup resources can incur penalties imposed on a network opera-
tor due to outages. They happen when a backup path cannot be established for a 
connection in the presence of resource shortage. Typically, a penalty is a monetary 
value proportional to the outage time experienced by a user due to a given service 
level agreement (SLA). From a business point of view, this is a random expense that 
should be included in risk management process during the so-called risk assessment 
[3].

In this paper, a RiskNet model is provided, where penalties are treated as the 
main performance metric to assess the quality of resilience and reflect its financial 
aspect. Regarding the taxonomy of approaches aimed at assessing reliability-related 
parameters given in [4], we apply a data-driven intelligent-based prognosis method. 
The classical approach to the evaluation of shared protection resiliency (such as the 
one presented in [5–7]) first assumes the quantification of reliability and, second, 
applies a direct prediction model. Both are not attractive to use since we would like 
to quantify the business aspect of resilience (so we use risk-related metrics). In addi-
tion, a prognosis with the direct analytical model is based on strong assumptions that 
are not always valid. These doubtful assumptions involve in many cases: first, lim-
ited distributions to provide effective model (e.g., memoryless distributions of time 
to failure, etc.), and second—topologies (e.g., ring or some regular ones). Although 
these unrealistic assumptions are taken, the modeling is still very complex. We 
would like to overcome these limitations by providing a general ML-based model. 
Additionally, the modeling used by us takes into account probabilistic estimates 
(similar to the traditionally used availability, mean downtime, etc.), but also consid-
ers the amplitude of the outage impact in order to use an indicator inspired by risk 
engineering. Since SBPP has no known analytical results for those indicators (e.g., 
expected total downtime per year), a solution is to use time-consuming simulations. 
Due to the rare nature of failures, the simulation must be very long, as according to 
the best authors’ knowledge, there is no rare event simulation technique addressing 



1 3

Journal of Network and Systems Management (2023) 31:64 Page 3 of 22 64

SBPP. Therefore, the main contribution of our paper is the method of risk estima-
tion modeled as a regression problem defined on a bipartite metagraph supported 
by a graph neural network (GNN). The GNN maps the reliability parameters of the 
network’s components (e.g. links) to the parameters of a distribution family. This 
distribution is a universal tool for determining various performance characteristics. 
By ‘universal’, we mean that a single instance of the trained GNN can be effectively 
used with various network topologies, no matter what kind of topologies were used 
during the training process. In this way, a high level of generalization is obtained, 
increasing the applicability potential of the proposed approach. We have also limited 
the need for long simulations only to the training phase conducted only once before 
deployment. This way, after the model is trained even with a given type of topology, 
we can use it as an off-the-shelf solution for topologies of different kinds. Moreover, 
the provided inference is extremely fast. The GNN outputs the entire distribution, 
and we are not restricted to any particular risk measure—this is left to the decision 
of the risk analyst. In the paper, we use value-at-risk (VaR), a popular risk measure, 
to illustrate the usefulness of the approach. The background on GNNs that is neces-
sary to understand the presented concepts is presented in [8].

The next section presents the literature review to show the background and 
emphasize the originality of our approach. Section 3 theoretically elaborates on our 
GNN-based approach to the prediction of penalty levels. Next, we devote Sect. 4 for 
illustration of the whole experimental setup and for the presentation and discussion 
of the results. It proves that our approach meets the practical requirements (speed 
of work, very high accuracy of prediction). We conclude the paper and present the 
ideas for the extension of the given concept in Sect. 5.

2  Rationale and Related Work

The rationale for this work comes from the field of communication and computer 
networks, where data transmission must be protected against the potential impact 
of component failures. An operator that cannot provide reliable transmission to its 
customers must pay fines according to particular service level agreements. The fee 
incurred in relation to the impact of a failure is calculated according to the so-called 
compensation policy. Usually, it is based on the total downtime averaged over a 
period such as a year. Other possible compensation policies are based on the total 
number of failures experienced or the sum of squares of downtimes, etc. [9]. This 
relationship between physical time and monetary units connects traditional reliabil-
ity analysis with business-oriented risk analysis.

The research presented lies at the intersection of reliability analysis, risk man-
agement, and machine learning. The provision of network resilience has been well 
studied [10]. However, less emphasis has been placed on approaches aligned with 
the business perspective. Here, we assume risk-based quantification, where not only 
the probability of outages, but also their impact is directly taken into account. In 
this way, we are able to characterize resilience in a more informative way than using 
classical resilience measures (e.g., reliability or availability functions). In the com-
munications sector, risk has been associated with quantification of deviations from 



 Journal of Network and Systems Management (2023) 31:64

1 3

64 Page 4 of 22

the desired operational quality levels [11]. From a mathematical point of view, the 
penalty is expressed on the basis of risk theory dealing with extreme events. Gener-
ally, the most important aspect here is to estimate the whole distribution of the total 
penalty. Then, it is possible to quantify the penalty level with, for instance, the 95th 
percentile, known as value-at-risk ( VaR5% ), a measure with a well-justified tradition 
for communication networks [12]. However, a more robust measure is frequently 
used, called ‘conditional VaR ’ ( CVaR5% ). In this case, the average of all penalties 
beyond the assumed percentile is calculated. An important advantage of CVaR is its 
property of subadditivity. It allows treating the penalties for individual connections 
as independent. Then, it is reasonable to sum the penalties for individual connec-
tions, since this sum is the upper bound for the total penalty in the network. There-
fore, we can use the pessimistic approximation [13]. However, the common require-
ment for risk measures is the penalty distribution from which VaR-related measures 
can be derived. In the networking content, this distribution depends on the reliabil-
ity parameters of network components (i.e. communication network nodes, such as 
routers or links).

Here, we do not follow the path in which reliability-related parameters are mod-
eled directly. For example, in [5–7, 14] this approach is used for the prediction of 
availability or reliability functions in communication networks, while in [15, 16] the 
same paradigm applies to risk-related measures in various engineering systems. We 
appreciate these avenues; however, we seek a more universal model that is easier to 
change with the new data and generalizes well without using problematic assump-
tions taken when direct modeling is applied. In the modeling of up- and down-times, 
the typical approach is to assume that failures arise due to a homogeneous Pois-
son process [17]: the times between failures are exponentially distributed. It is sta-
tistically valid for many cases in communication networks [18], but has appeared 
to be limited since other distributions for times between consecutive failures have 
also been reported (e.g., Weibull distribution [19]). The modeling of outage times 
is even more controversial. Although the simplest approach also uses exponential 
times, these times in real networks appear to be log-normal [20] or Pareto-like [21]. 
In our work, we assume Student’s t-distribution as more general (for more details, 
see Subsec. 3.2). We deal with a realistic case of SBPP, where up- and down-times 
do not follow simplistic assumptions of exponentiality. Due to the limitations of 
direct modeling approaches, we decided to base our analysis on graph neural net-
works (GNNs) [22–24]. The additional advantage of this approach is that it allows 
us to build a solution independent of a network topology and any particular rout-
ing scheme. By ‘routing’ we mean here any function mapping every SLA (connec-
tion) to a pair of working/backup paths, i.e. sets of components (links). Previously, 
machine learning (ML) algorithms have also been used in the context of risk man-
agement. A general framework for risk assessment using ML was proposed in [25] 
and validated in a drive-off scenario involving an Oil & Gas drilling rig. The authors 
provided a comprehensive analysis and indicated several limitations of deep neu-
ral networks (DNNs) in terms of risk assessment. Furthermore, DNNs were also 
used successfully for risk management in the customs [26] or financial market [27]. 
GNNs have already been used for computer networks, for example, by Geyer et al. 
[28]. The fundamental difference when comparing our work with this paper is that 
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we consider routing paths as input to the GNN-based algorithm, while [28] aims 
to find routing paths according to the specified policies. Additionally, Geyer et al. 
do not address the resilience aspect in the sense considered in our work (i.e., limi-
tations in bandwidth of backup resources in SBPP). The other papers of the same 
research group (e.g., [29]) also differ significantly from our work: while they focus 
on congestion analysis related to traditionally assessed delays, we put emphasis on a 
topology-agnostic solution for the resilience of the data plane based on the business-
oriented approach. The additional difference lies in the network representation. The 
other papers consider a network of queues, rather than the bipartite graph of services 
and resources used in this paper. The authors of [30] also focus on network per-
formance by using GNN to extract features. They are used to calculate the routing 
that maximizes bandwidth utilization. Resilience is also indirectly addressed, as the 
proposed solution is capable of dealing with router and link failures. Despite some 
similarities, our approach to resilience is more business-oriented (due to adoption of 
the risk approach) and not bounded by any particular method of generating working 
and backup paths.

Recently, GNNs have also been used to control the process of network recovery, 
for example, in [31]. However, here we focus on prediction of the related parameters.

3  Methods

RiskNet combines probabilistic machine learning modeling with graph neural net-
works. In particular, we model the cost distribution for the k-th SLA as some distri-
bution D, parametrized by the output of GNN. For simplicity, we apply a mean-field 
approximation and assume that penalties are independent. We are allowed to do that 
without losing the quality of the prediction, since we use CVaR to quantify the risk 
and this measure is sub-additive.

We want to be explicit about the two parts of deploying the RiskNet. The first one 
is the training phase when the model is initialized with random parameters, and its 
prediction gets improved during the training by observing results form the simulator.

Once the training is complete, we are in the inference phase, the model is used for 
making predictions for new networks and configurations newe seen in the training. 
This phase is extremely fast as it only involves simple mathematical functions and 
linear algebra functions—the parameters are restored from training checkpoint.

To simplify, we can say that we use a type of supervised learning since we are 
able to provide the real values (ground truth) of the penalties and confront them with 
the predicted values to train the model. Real values are provided with simulations 
for specific configurations. On the other hand, simulations take a lot of time, that is 
why we can afford for them only in the training phase. During the operation of the 
entire system, a very fast GNN model predicts the values to be used for a communi-
cation network topology not provided during the training phase. Note that the input 
to the model is exactly of the same type.

The training phase is visualized in Fig. 1. First, we select random network topolo-
gies (training samples). They fed the GNN and a discrete-event simulator. Second, 
the message-passing is performed in GNN to obtain the convergence (1) and provide 
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a prediction of the total penalties ŷ (2). The latter values are confronted with y, that 
is, the ground truth (real penalty levels) provided by the simulator. On this basis, the 
learning error (loss) is calculated (3) and the classical backpropagation algorithm 
is used to update the internal weights of the neural networks that form GNN (4). 
Then, the next sample (i.e., network topology) is provided. The learning samples are 
nominal mixed with faulty configuration. However, we do not distinguish between 
nominal and faulty configuration. Nominal configuration results in 0 penalty and do 
not contribute to the total penalty over one year of operation.

The output values ŷ can be far from the desired label values y, and the loss is sig-
nificant especially at the beginning of the training process. With the progress of the 
training (including iterations of message-passing), the loss decays.

We must emphasize that the consequences of network failures cannot be modeled 
as a typical supervised learning problem, where we have a label to predict. Due to 
the random nature of failures, the same input may produce different results in the 
simulation, since the output penalties are dependent on random samples (failures 
and recovery times). However, we are interested in the entire distribution of penal-
ties conditioned on the network configuration. Knowing such distributions, we can 
compute any possible risk measure simply by using the analytical formula for these 
particular distributions. This has a clear advantage over alternatives, such as quan-
tile regression, where the model would produce only a few quantiles of the penalty 
distribution. In this way, we can easily switch from optimization based on pure VaR 
to a one based on more meaningful and robust CVaR . From a mathematical point 
of view, the penalty is expressed on the basis of risk theory dealing with extreme 
events. First, we estimate the entire distribution of the total penalty. Then we find the 
 95th percentile. If we were to deal with pure value-at-risk ( VaR5% ), we would only be 
interested in this percentile value. However, we use a more robust measure, that is, 

Fig. 1  Operation of the RiskNet prediction module during the training phase. Each simulation result is 
considered a sample from the unknown penalty distribution
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conditional VaR ( CVaR5% ). Therefore, we calculate the average of all penalties above 
the percentile value.

In the following, we describe the consecutive steps of the entire prediction 
concept.

3.1  Notation for Modeling

Customers carry data on the established connections on the network. We assume 
that the network topology is represented by the following. (a) Set C =

{
ci
}
i=1∶nc

 of 
the basic communication components ci (links or edges) prone to failure. Only the 
bandwidth of the link can limit the shared protection capabilities. We assume realis-
tic distributions of up- and down-times of links and treat them as the resilience 
attributes of these components. For the sake of this study, routers are treated as fully 
reliable. (b) Set S =

{
sk
}
k=1∶ns

 of connections sk between pairs of end-points (rout-
ers) in the network topology. The routing for each SLA is defined as a pair of sets of 
components sk =

(
sk
p
, sk

b

)
 , where sk

p
 is the set of components on the working path 

and sk
b
 contains components on the backup path prepared for the k-th SLA. The con-

nections are characterized by their demand volumes. These demands should be car-
ried out with the help of resilient connections, and this fact is reflected in service 
level agreements (SLAs). In essence, we identify a connection with its business-ori-
ented description given by the SLA.

In general, such properties (features) of both components and SLAs are denoted 
by data vectors: xci and xsk , respectively. The vector xci ∈ ℝ

4
+
 contains resilience 

parameters (parameters of the up- and down-time distributions) and design param-
eters (that is, the backup bandwidth reserved in links) of an individual component 
ci . On the other hand, xsk ∈ ℝ

1
+
 contains SLA’s parameters, in our case the demand 

volume for connection sk . Both features xsk , xck and the routing S are jointly denoted 
as x = (xsk , xck ,S).

3.2  Approximate Penalty Distribution

The ultimate goal in risk analysis of communication networks is the evaluation of 
the conditional distribution P = �(Y|x) and, in particular, its quantiles to obtain VaR 
or its derivatives. For simple protection schemes (e.g., dedicated protection) with 
the additional assumption of exponential up- and down-time distributions, P can be 
obtained analytically [9]. According to the best authors’ knowledge, there are no 
analytical results for more realistic scenarios of shared protection procedures and 
non-Poisson downtimes. It is relatively simple to sample from P by simulation. In 
principle, one can estimate the risk measures with a Monte-Carlo method. However, 
simulations take a lot of time to obtain reliable estimates due to the rare nature of 
failures. The method proposed in this paper is to approximate P by a surrogate dis-
tribution Q = nn(x) , where nn is a neural network (GNN, in our case) that maps 
topology properties to the family of parametric distributions. The network consists 
of its own parameters (weights) � learned from simulations.
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The training objective of nn used in this study is to minimize the Kullback–Lei-
bler divergence DKL(P ∥ Q) between the distributions. In particular, for given network 
parameters and simulated penalty y ∈ ℝ

ns we use Monte-Carlo approximation to the 
true KL divergence (a single sample is unbiased estimator of the expectation in KL 
definition):

In fact, the simulated values are sampled from the unknown distribution P, thus—by 
the Monte-Carlo approximation (sampling from the simulator)—the loss is related 
to the distribution Q parametrized by GNN. The Monte-Carlo approximation is a 
well-known method used especially in Bayesian variation inference.

Since log �P(y) does not depend on � , it does not contribute to the parameter update 
and we can ignore this term and use the negative log-likelihood function of the sur-
rogate distribution as the loss function. With the additional assumption of conditional 
independence of the SLAs, the loss function simplifies considerably to the following:

Due to its generalization potential, we applied Student t-distributions as a parametric 
family. As used in many cases in statistical modeling (e.g., robust regression), we 
assume five degrees of freedom. This is a justified approach ensuring a proper heavy 
tail and is convenient for the training of neural networks (i.e., incurres a relatively 
simple likelihood function). In addition, it ensures the existence of the mean value 
and variance. Thus, we still have a bell-shaped distribution with an analytical PDF 
for efficient training of nn . Other candidate distributions involve normal and log-
normal distributions. During the initial calculations, the normal distribution (sug-
gested by the Central Limit Theorem) gave us results similar to t-distribution. In 
inspection of the simulations, we observed that the t-distribution matches the tail 
more accurately. On the other hand, the log-normal distribution has a too heavy tail, 
and in this case, it is sufficiently accurate only for a smaller number of failures. The 
bell-shaped distribution is suitable for the simulation setup, as we always observe a 
few failures a year in a communication topology. In the case of an extremely resil-
ient topology with the possibility of no-failures, a zero-inflated log-normal distribu-
tion is recommended [32], as it can model both the probability of no failure and the 
cost distribution given that the failure has occurred.

The architecture of nn can be as simple as mutli-layer perceptron; however, since 
there is neither particular order of the SLAs nor the components, we additionally 
require model equivariance under permutations. This makes a GNN a perfect candidate 
for nn.

3.3  GNNs: Graph Neural Networks

The association between the set of components and the set of SLAs can be repre-
sented as bipartite metagraph (illustrated in Fig. 2). Both components and SLAs can 

(1)DKL(P ∥ Q) ≈ log �P(y) − log �Q(y).

(2)�(�, x, y) = −
1

ns

∑

k

log �Q
(
yk|x, �

)
,
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be represented as nodes2 of the association graph, with edges connecting an SLA 
and a component if and only if the latter is used in the path for the given SLA. There 
are two kinds of edges in the metagraph: one representing a working path (i.e., that a 
component is used in SLA’s working path) and the other for the backup path.

Our main idea of the RiskNet prediction system is to run a heterogeneous GNN on 
the presented bipartite metagraph to get the surrogate penalty distribution. We base 
our analysis on a version of GNNs known as message-passing neural networks [33].

The way the system is trained is shown in general in Fig. 1. The GNN core algo-
rithm is presented with the help of a pseudocode given in Fig. 3. A GNN uses an 
architecture of the neural networks for regression independent of the topology of 
the communication network they deal with. In this way, GNN can provide a uni-
versal representation of the properties of any topology represented as a graph. As 
a result, we can select the neural network architecture in advance, despite the fact 
that we do not know which size will be most suitable to a particular case. It makes 
the particular neural architecture topology-invariant, in contrast to the widely used 
topology-aware approaches in ML. In fact, a notion of GNN in singular is a little bit 
misleading, since the whole method uses as many as seven different neural networks 
( Mp

s→c,t , Mb
s→c,t

 , Mp

c→s,t , Mb
c→s,t

 , Uc
t
 , Us

t
 and F; their meaning is defined below) to find 

the final output.
We use a message-passing GNN built of differentiable layers; therefore, they can 

be trained with backpropagation algorithms. The ‘layer’ notion used here should not 
be limited to a layer inside a neural network. The idea of GNN enables us to train 
neural networks to be able to maintain internal relationships for any topology. These 
internal relationships represent a sort of knowledge about the topology and related 
relationships kept in the nodes of our bipartite metagraph. This knowledge is repre-
sented with vectors associated with the components and nodes related to SLA and 

Fig. 2  Transformation of the given topology onto the associated bipartite metagraph for GNN

2 To avoid misunderstanding, the vertices of the bipartite metagraph are denoted as ‘nodes’, while the 
vertices of the studied communication network topology are called ‘routers’.
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Fig. 3  Internal architecture of 
the RiskNet prediction module
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is indicated as ht
c
 (for the component c) and ht

s
 (for the SLA s), respectively. These 

vectors, known as internal (or hidden) states, are found to be one of the results of 
our algorithm’s operation. Due to the inherent problems with interpretability of neu-
ral networks, we are not necessarily able to tell what the exact values mean. Hid-
den states change iteratively during the message-passing process. Therefore, we also 
denote a given iteration with superscripts t. The internal state of one node influences 
the internal states of other nodes if they are adjacent in our bipartite metagraph. 
Modifications are made in the form of an iterative exchange of messages dependent 
on internal states. These messages have nothing in common with routing messages 
(or anything of this kind that is exchanged in communication structures) and are 
only a part of a specific GNN operation. In Fig. 3, the messages are represented as 
m̃

t
r,u→z

 , where t represents the iteration; r ∈ {p, b} represents the message related to 
the working (p) or backup (b) path, and u, z ∈ {c, s} represents in which direction 
the message is passed ( s → c denotes the SLA to the component message, while 
c → s denotes the message in the opposite way). At the end of each iteration, the 
total message obtained by a node of the bipartite metagraph (that is, component or 
SLA) is calculated as the sum of all the above-mentioned messages directed to this 
node (we represent it as mt+1

u
 with u ∈ {c, s} in Fig.  3). The messages exchanged 

between two nodes are calculated as functions of the internal states of these nodes. 
The function is obtained as an output of a neural network represented as Mt

r,u→v
 (the 

above-mentioned notation related to m̃t
r,u→z

 is again valid). These neural networks 
are called message functions. They encode the information exchanged between the 
related components and the SLAs. We can see that the working and backup paths 
have different message functions and that they can deal with two directions. There-
fore, we have four message functions used ( Mt

p,s→c
 , Mt

b,s→c
 , Mt

p,c→s
 , Mt

b,c→s
 ). These 

functions can also be different in various iterations (that is, why we also use the 
superscript t for them). Additionally, the new internal state of a node is based on its 
previous internal state and the messages obtained in the current iteration. To calcu-
late it, we use neural networks denoted as Ut

c
 and Ut

s
 . These update functions encode 

the combined incoming information into the hidden state. The forward pass begins 
with zero-padded components and SLA feature vectors, followed by an iterative 
exchange of messages and state updates. In particular, the result of embedding every 
edge in the metagraph gives vectors m̃t

r,u→z
.

The entire process typically converges after a few (T) iterations (i.e., the internal 
states cease to exchange). The parameter T controls the range of interactions between 
SLAs; for example, for T = 1 each SLA receives messages only from its compo-
nents, and the model is basically a DeepSet [34]. The higher T allows information 
to be exchanged between SLAs through components. In our case, the steady state is 
obtained even for as few as six iterations ( T = 6 in our case; while the original paper 
introducing the notion of message-passing [35] shows examples with T = 4 ). We 
would like to note this attractive aspect of the method, although fast convergence is 
the phenomenon observed experimentally and we do not have a theoretical justifica-
tion for its repetition. We can only speculate about the interpretation of message 
passing as some sort of refining process. In this picture, a GNN is an iterative algo-
rithm, although, we advise using the same T during both training and inference.
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The predicted penalty related to an SLA is found using a small read-out neu-
ral network (represented as F) applied to the final hidden state of the SLA. Its out-
put represents the parameters of the penalty distribution for this particular SLA. In 
terms of particular neural architectures, we use affine functions for message propa-
gation (M) and GRU units for update (U). These are the proven units that are used in 
many GNN architectures. They are selected as a trade-off between simplicity, per-
formance, and flexibility of the model. Similarly to previously proposed models, the 
weights of the message and update functions are reused for subsequent message-
passing iterations. The read-out function proposed in this paper is a multilayer per-
ceptron with the SeLU activation function. The mapping from the raw read-out out-
put to the Student t-distribution location parameter is the identity; however, the scale 
must be constrained to positive numbers, so we use the softplus function.

At the end of this subsection, we give a few pieces of information on the com-
plexity of the whole algorithm. As the basic parameter used to express the com-
plexity, we consider the number of components N. Since it is equal to the number 
of links that in typical topologies (namely: not dense) is of the same order as the 
number of topology vertices O(N) , we can assume that the order of SLAs, related to 
a maximum number of different pairs in topologies, is O

(
N2

)
 . It is known [36] that 

the complexity of the message-passing neural network is at the level of O
(
V2G2

)
 , 

where V represents the number of nodes in the graph on which the GNN is run (in 
our case: the bipartite metagraph of components and SLA), and G represents the 
number of dimensions of property vectors representing the internal states in the 
GNN. In our case, V = O

(
N2

)
 (stems of the number of SLAs), and G is constant 

and equal to 32. The latter is related to the fact that we decided to use the vectors 
that contain the number of all SLAs. In this way, the overall computational complex-
ity of our methods is quadruple O

(
N4

)
 . On the other hand, the space complexity is 

simply O
(
V2

)
 [36] (the vectors used dominate the complexity); therefore, it is also 

quadruple O
(
N4

)
.

3.4  Simulation

All experiments reported in this paper are supported by the previously used dis-
crete event risk simulator and verified by comparison with the theoretical results 
in [9] in a series of unit tests. The software is written in C++. The simulator 
is treated as the source of ground truth and is used for the creation of training 
datasets for GNNs. A network topology is the starting point for building the 
configuration. In the experiments, the topologies under study are either those 
based on the random Barabási–Albert model (with the output power distribution 
of node degrees) or the existing topologies retrieved from the SNDLib library 
(http:// sndlib. zib. de). It is necessary to emphasize that the fact that we are able 
to effectively use artificially induced topologies is a great advantage over our 
method: this way, we gain virtually unlimited number of training data, while we 
can test the quality of the operation of the model with existing topologies (and 
we have a very small number of them). We need to emphasize that this is a very 

http://sndlib.zib.de
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interesting result: altough the structure of Barabási–Albert networks is of high 
homogeneity and cannot cover most of the features in the realistic topologies, 
the obtained deviations of prediction for existing topologies are not considerable. 
During training, the direct knowledge of the existing topologies does not influ-
ence our model, which is extremely important to provide generalization and to 
apply our method practically. According to the random model related to the Bara-
bási–Albert concept, every new router is attached to at least two existing ones. 
This method always makes it possible to construct the working and backup paths 
for any connection between a pair of routers. Although there are other methods to 
construct random graphs (e.g., with the most classical one, proposed by Erdös-
Rényi), the Barabási–Albert one is perceived as the most adequate for existing 
communication network topologies, since it generates scale-free topologies (with 
nodal degree power distribution) [37].

Afterwards, for a selected topology, we first generate the working and backup 
path for every connection (SLA) between all routers. For the creation of training 
datasets, we do not use a typical approach of looking for the two-shortest candi-
date paths. Instead, we chose router-disjoint path randomization from the set of all 
disjoint paths found for all connections. Namely, we set the probability of drawing 
a given path as decreasing as a function of a path’s length (e.g., a number of com-
ponents on the path). We select a parameter � and then draw paths with probability 
pk ∼ e−�|sk| . This value is normalized. Then, for small values of � , the distribution 
is flat and long paths have a high probability of being selected, while for large � , 
we have mainly the shortest paths, as pk drops quickly with length. For the train-
ing phase, we use � = 0.1 . This approach allows us to explore the configuration 
space and gives the GNN a highly divergent set of training samples. The volume 
of demand for a connection is proportional to the product of the size of the source 
and sink routers for the connection. The size of a router depends on its degree 
d and is uniformly distributed in the interval 10 × (d ± 1) . In the end, the resil-
ience parameters of different components are generated. Here, we assume Poisso-
nian failures (i.e. exponential up-times) and Pareto-distributed down-times. Both 
are parametrized according to the estimates reported in [21]. The link lengths are 
obtained from the scaled spring layout of the network topology. The simulation 
output is the total penalty for each SLA in each simulated year of operation. This 
value is used as a target (label value y) in the GNN training process.

4  Numerical Results

To simplify, we can say that we use a type of supervised learning (heteroscedastic 
regression), since we are able to provide the real values (ground truth) of the penal-
ties and confront them with the predicted values to train the model. Real values are 
provided by simulations for specific configurations. On the other hand, simulations 
take a lot of time; that is why we can afford them only in the training phase. During 
the operation of the whole system, a very fast GNN model predicts the values for 
given working/protection path settings.
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4.1  Training and Hyperparameters

During the training phase, we first select different network topologies with randomly 
generated parameters (training samples). They fed the GNN and a discrete-event 
simulator, and the result is stored for offline training. Second, the message-passing 
is run in GNN to obtain the convergence and provide prediction of the total penal-
ties ŷ . The predicted penalties are confronted with y, that is, the ground truth (real 
penalty levels) provided by the simulator. On this basis, the learning error (loss) is 
calculated and the classical backpropagation algorithm is used to update the internal 
weights of the neural networks forming GNN. Concerning inference, the output of 
the prediction model follows the same path as in the case of the training. The only 
exception to this is when one wants to use dropout to estimate the uncertainty of the 
prediction. Then, the output is equal to the average of multiple stochastic forward 
passes.

In the spirit of the modern deep learning approach, we used the raw simulator 
parameters as input to RiskNet and let the model learn a meaningful internal repre-
sentation. The SLA feature contains only the demand volume. The vector of compo-
nents has four dimensions (failure intensity, � and � parameters of the Pareto down-
time distribution, and the capacity reserved for protection). The only transformation 
applied to the data is the z-score normalization, as it improves the training process. 
We do not consider routing as a feature but rather as metadata.

Training a deep neural network typically requires hundreds of thousands of sam-
ples. Learning from simulations makes it easier to obtain samples; however, we are 
still limited by training and simulation time. Our training set is constructed from 
a simulation of 1000 random network topologies (generated according to Bara-
bási–Albert model) with a number of routers uniformly distributed in the range 
[10, 40]. Each topology was simulated for up to 1000 years of operation. Since for 
some of the largest networks, not all simulations finished under the assumed time 
constraint, we ended up with around 829  000 training examples. Using the same 
procedure, we generated additional 20 000 test samples to spot signs of overfitting. 
With this training set, we tested multiple RiskNet configurations, mostly differenti-
ated by hyperparameter values. On this basis and according to our prior knowledge 
of GNNs, we chose the final configuration. Both hidden vectors have 32 dimensions. 
The message has 64 dimensions. The kernel of the affine message function is regu-
larized with the coefficient 0.01, and the bias is not regularized. The message-pass-
ing loop is iterated six times. Finally, the read-out function has three hidden layers of 
sizes (64, 64, 32) interleaved with two dropout layers with dropout rates 0.2 and 0.1, 
respectively. The model characterized above was trained for 54 epochs of 12  900 
iterations of the Adam optimizer on a batch of 64 topologies. The learning rate was 
set at 0.0001 for the first 20 epochs. Then it decayed by 0.99 per epoch. The entire 
training took 11 hours 40 min with the number of iterations in GNN equal to T = 6.

The model was implemented entirely in TensorFlow. The hardware supporting 
calculations embraces 36 cores Intel(R) Xeon(R) Gold 5220 CPU @ 2.20GHz, 
while the graphics processor unit used is GPU Tesla V100 SXM2. As concerns the 
effective speed of the calculations, we emphasize that they are extremely fast. For 
example, the average calculation time for the janos-us network equals 4±0.2 ms for 



1 3

Journal of Network and Systems Management (2023) 31:64 Page 15 of 22 64

a single evaluation of the penalty by GNN (11 000 evaluations per minute). On the 
other hand, a single simulation of 600 years of network operation takes 49±2 sec. 
with 36 cores of CPU. In this way, we obtain 12 000 times in the speed improvement 
of the calculation. Furthermore, the full distribution from GNN allows for an easy 
switch to different metrics being optimized.

4.2  Evaluation

The final model was evaluated with the third synthetic dataset, as well as with the 
majority of topologies retrieved from SNDLib. To show the benefits of RiskNet, we 
compare the results with the baseline model. Here, the baseline is a marginal distri-
bution of all penalties, that is, the distribution of penalties in all experiments without 
any distinction based on x . Since the training data was normalized, the baseline dis-
tribution is a standard Student t-distribution with five degrees of freedom. GNN can 
improve prediction using information from the features x as summarized in Table 1.

Due to the fact that GNN estimates the entire distribution, common metrics, such 
as mean squared error or mean percentage error, are no longer meaningful. The loss 
must be expressed with negative log-likelihood. Therefore, the negative or positive 
value is not easy to interpret. However, the smaller the value, the better, and one can 
observe a significant improvement over the baseline provided by our approach. Fur-
thermore, we can see that the results of the test evaluations are close. This proves the 
generalizability of the model. The effect is further confirmed by the results obtained 
with the real topologies, where GNN provides average scores at the level of −0.88 
versus the baseline result of 1.62. Note that the negative log-likelihood values are 
not surprising since we are using a continuous distribution, and the values of loga-
rithms of the probability density functions are not limited from above.

The loss obtained for RiskNet is much lower compared to baseline. This indicates 
that the model actually learns the information from a network topology. We can 
make this statement more precise in the context of information theory. The differ-
ence between log-likelihoods is a measure of information the model has learned. By 

Table 1  GNN evaluation loss Topology GNN T = 6 Baseline GNN T = 1

Train − 1.37 – − 1.34
Test − 1.43 – − 1.38
Validation − 1.42 1.10 − 1.39
Average SNDLib − 0.88 1.62 − 0.74
dfn-bwin 0.73 4.09 1.19
Abilene − 1.67 0.87 − 1.62
Nobel-germany − 1.37 0.88 − 1.32
cost266 − 1.32 1.00 − 1.25
Geant − 1.38 1.01 − 1.33
nobel-eu − 1.32 0.97 − 1.20
janos-us − 1.14 1.11 − 1.04
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changing the base of the logarithm to 2, we can express this information in bits. In 
particular, for the validation set, the RiskNet system reduces the description length 
on average by 3.6 bits per path (compared to the baseline). For reference, the entropy 
of the baseline distribution is 1.6 bits.

In the experiments, we considered simpler models with weaker interactions 
between SLAs (as measured by T). In particular, setting T = 1 produces a sur-
prisingly accurate model3 without interactions, whose test loss quickly begins 
to grow during training. Similar behavior was observed in other weekly inter-
acting models—all of them suffered from overfitting. We conclude that a high 
value of T acts as a regularizer for the model. We explain this by the fact that 
networks in the simulation were highly reliable and most of the contributions 
to the penalty were due to a single failure only. Having said that, we emphasize 
that, in general, SLAs must exchange information, since—by definition — they 
do interact in the case of shared protection.

Despite the fact that the negative log-likelihood applied as a loss function is 
a theoretically justified measure used for parameter estimation, it is difficult to 
state how accurate the fit is by reasoning on the basis of a single value. There-
fore, to provide a more intuitive measure, we propose using probability plots 
(pp-plots, see Fig. 4) produced according to the following procedure. For every 
network configuration x , RiskNet predicts the whole distribution of penalties 
Q. The ground truth y is obtained from the simulation. Given some probability 
value q, we construct a Bernoulli random variable �y<yq , where yq is a q-quantile 
of Q. If y were sampled from Q, the probability of this Bernoulli-distributed 
random variable would be equal to q. Since the predicted distribution is not the 
exact sampling distribution P, the estimated probability q̂ will be different. The 
closer it is to q, the better approximation of the distribution we obtain. For the 
Bernoulli distribution, the unbiased estimator of the probability is just the aver-
age value, so we use q̂ = �y<yq

 . The pp-plot is constructed as a line plot of q̂ vs. 
q. The diagonal line is added as a reference. Any deviation from this line indi-
cates a mismatch in the distribution. We can observe that the distribution pro-
duced by RiskNet is much closer to the diagonal line than the baseline. The 
even more important aspect is the fact that the deviation from the diagonal is 
small for all probabilities. This tells us that RiskNet correctly predicts multiple 
quantiles of the distribution. This is a highly necessary feature, as it allows us 
to use the same model for the estimation of risk at different levels (that is, vari-
ous percentiles p of CVaR(1−p)% ). This property is practically useful when we 
would like to estimate various risk levels (e.g., due to some business 
applications).

The only case where the RiskNet distribution significantly deviates from the empiri-
cal samples is for the dfn-bwin network. However, this network is different from dis-
tribution samples. The network topology is almost the full graph in contrast to small-
world topologies produced by the Barabási–Albert model. The fact that the baseline is 

3 The information difference between models is 0.04 bit per SLA.
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also much less accurate for this network supports our claims even further. One must 
remember that RiskNet is a statistical model and, despite its generalization capabilities, 
there are some edge cases where the model cannot be considered as a good approxima-
tion. However, in some cases, a simpler model may be acceptable. From the viewpoint 
of applicability of our model, we can then state that the direct usefulness in relation-
ship to IP long haul networks, our approach provides very good quality. We could be 
more skeptical about the data center or internal cloud networks, since the character of 
connections is more tending towards full graphs. On the other hand, here we just show 
some limitations when the training uses the Barabási–Albert model. If one plans to use 
our model in relation to more dense topologies, the model should just be trained with 
this type of random graphs.

Fig. 4  Probability plots for topologies simulated for 1000 years of operation
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5  Conclusions

In this paper, we propose a risk prediction system based on a graph neural net-
work (GNN) and a bipartite metagraph, where penalties are treated as the main 
performance metric to assess the quality of resilience and reflect its financial 
aspect. The main idea of the proposed model is to run a heterogeneous GNN 
on the presented metagraph to get the surrogate penalty cost distribution due to 
component failures in a network. In this way, the weights of the message and 
update functions are reused for subsequent message-passing iterations. In this 
way, GNN parameterizes the Student’s t-distribution to approximate the penalty 
cost distribution due to component failures in a network. Training is performed 
only on Barabási–Albert topologies that do not contain information on existing 
telecommunication topologies. However, since this is a very useful result, we are 
able to obtain a very good level of model generalization: the final model is evalu-
ated with the majority of topologies retrieved from SNDLib. It proves that our 
approach meets practical requirements (speed of work and very high accuracy of 
prediction). It replaces time-consuming simulations, being an intuitive alternative 
to our proposal, by a very fast prediction method used—it can be applied by the 
network designer during connection optimization.

Although this work is derived and motivated by our experience in the field 
of communication and computer networks, it generalizes well beyond this area. 
Similar concepts of network or unreliable components arise in logistics and other 
areas of business importance. Since the penalty under consideration is based on 
downtimes, we expect this work to be extendable to the downtime-related quan-
tities. A great advantage of the presented approach is related to the fact that we 
solve the problem without taking into account an analytical solution. Even if in 
some extreme cases such a solution can be found, we do not have to use it. Addi-
tionally, we can train our model once on random topologies and then reuse it in 
numerous different practical deployments. We also provide the whole distribution 
so that business people can freely apply various risk measures.

Our approach allows us to: (a) omit very complex, time-consuming, and inef-
fective modeling of resilience parameters for shared protection; (b) improve prac-
tically useful prediction quality of business-oriented risk parameters by using 
an ML-based module, providing very good results in comparison to the baseline 
case; (c) replace time-consuming simulations, being an intuitive alternative to our 
proposal, by a very fast prediction method used—it can be applied by a network 
designer during connection optimization.

Obviously, the proposed approach can be further extended. So far, we do not 
take into account the restoration (rerouting) methods. We plan to broaden the pro-
posed model to include it. Additionally, we now assume that penalties for differ-
ent connections are independent of each other. It is challenging, but tempting, to 
model a more realistic situation when they are dependent. This can be especially 
interesting when quality metrics are also taken into account. For example, switch-
ing traffic from one path may influence other paths, since it produces additional 
delays.
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