Skip to main content

Advertisement

Log in

Intelligent Multi-connectivity Based Energy-Efficient Framework for Smart City

  • Research
  • Published:
Journal of Network and Systems Management Aims and scope Submit manuscript

Abstract

Smart city enhances the intelligence and sustainability of the city assets through advanced and diversified applications characterised by specific Quality of Service requirements. To realise the stringent requirements of these applications, multi-connectivity (MC) emerged as a potential solution that ensures seamless mobility, high reliability and enhanced data rates. However, the smart city verticals driven by the energy-constrained IoT devices experience an energy optimisation challenge in the MC configured environment. Recently, significant research has been reported in the direction of MC but they are incapacitated in terms of enhancing energy efficiency. To address the aforementioned issue, an intelligent framework based on software-defined wireless networking and edge computing has been proposed. The proposed framework leverages the synergetic integration of Double Deep Reinforcement Learning and Matching Game Theory to attain energy-efficient multi-connectivity association policy. In addition to this, the proposed approach defines the preference functions to guarantee service provisioning while respecting the radio access technologies constraints. The analytical results validated through the rigorous simulation exhibited an improvement of 45% in the overall energy efficiency. Furthermore, the proposed association scheme outperformed the other existing schemes by 12%, 27%, and 82% in terms of fairness, robustness and system satisfaction degree respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

This manuscript has no associated data file.

References

  1. UN.org: 68% of the world population projected to live in urban areas by 2050, says UN. https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html (2018). Accessed 8 June 2021

  2. Shamsuzzoha, A., Nieminen, J., Piya, S., Rutledge, K.: Smart city for sustainable environment: a comparison of participatory strategies from Helsinki, Singapore and London. Cities 114, 103194 (2021). https://doi.org/10.1016/j.cities.2021.103194

    Article  Google Scholar 

  3. Kirimtat, A., Krejca, O., Kertesz, A., Tasgetiren, M.F.: Future trends and current state of smart city concepts: a survey. IEEE Access. 8, 86448–86467 (2020). https://doi.org/10.1109/ACCESS.2020.2992441

    Article  Google Scholar 

  4. Yaqoob, I., Hashem, I.A.T., Mehmood, Y., Gani, A., Mokhtar, S., Gzani, S.: Enabling communication technologies for smart cities. IEEE Commun. Mag. 55(1), 112–120 (2017). https://doi.org/10.1109/MCOM.2017.1600232CM

    Article  Google Scholar 

  5. Ahuja, K., Khosla, A.: Network selection criterion for ubiquitous communication provisioning in smart cities for smart energy system. J. Netw. Comput. Appl. 127, 82–91 (2018). https://doi.org/10.1016/j.jnca.2018.11.011

    Article  Google Scholar 

  6. Sandoval, R.M., Canovas-Carrasco, S., Garcia-Sanchez, A.J., Garcia-Haro, J.: Smart usage of multiple RAT in IoT-oriented 5G networks: a reinforcement learning approach. In: Proceedings of 2018 ITU kaleidoscope: machine learning for a 5G Future (ITU K), pp. 1–8. IEEE, Santa Fe (2018)

  7. Sandoval, R.M., Canovas-Carrasco, S., Garcia-Sanchez, A.J., Garcia-Haro, J.: A reinforcement learning-based framework for the exploitation of multiple rats in the IoT. IEEE Access. 7, 123341–123354 (2019). https://doi.org/10.1109/ACCESS.2019.2938084

    Article  Google Scholar 

  8. Habbal, A., Goudar, S.I., Hassan, S.: A context-aware radio access technology selection mechanism in 5G mobile network for smart city applications. J. Netw. Comput. Appl. 135, 97–107 (2019). https://doi.org/10.1016/j.jnca.2019.02.019

    Article  Google Scholar 

  9. Ahuja, K., Khosla, A.: A novel framework for data acquisition and ubiquitous communication provisioning in smart cities. Future Gener. Comput. Syst. 101, 785–803 (2019). https://doi.org/10.1016/j.future.2019.07.029

    Article  Google Scholar 

  10. Wang, X., Li, J., Wang, L., Yang, C., Han, Z.: Intelligent user-centric network selection: a model-driven reinforcement learning framework. IEEE Access. 7, 21645–21661 (2019). https://doi.org/10.1109/ACCESS.2019.2898205

    Article  Google Scholar 

  11. Ding, H., Zhao, F., Tian, J., Li, D., Zhang, H.: A deep reinforcement learning for user association and power control in heterogeneous networks. Ad Hoc Netw. 102, 102069–102087 (2019)

    Article  Google Scholar 

  12. Arabi, S., Hammouti, H., Sabir, E., Elbiaze, H., Sadik, M.: RAT association for autonomic IoT systems. IEEE Netw. 33(6), 116–123 (2019). https://doi.org/10.1109/MNET.2019.1800513

    Article  Google Scholar 

  13. Arabi, S., Hammouti, Hel., Sabir, E., Elbiaze, H., Sadik, M.: Lightweight energy-cost-efficient RAT association for Internet of Things. In: the proceedings of 4th World Forum on Internet of Things (WF-IoT), pp. 332–337 IEEE, Singapore (2018).https://doi.org/10.1109/WF-IoT.2018.8355135

  14. Hsieh, C.-K., Chan, K.-L., Chien, F.-T.: Energy-efficient power allocation and user association in heterogeneous networks with deep reinforcement learning. Appl. Sci. 11(9), 4135–4154 (2021). https://doi.org/10.3390/app11094135

    Article  Google Scholar 

  15. Ding, H., Zhang, H., Tian, J., Xu, S., Yuan, D.: Energy-efficient user association and power control for dense heterogeneous networks. In: Proceedings of international conference on computing, networking and communications (ICNC), pp. 741–746. IEEE, Maui (2018)

  16. Tayyab, M., Koudouridis, G.P., Gelabert, X., Jantti, R.: Uplink reference signals for energy-efficient handover. IEEE Access. 8, 163060–163076 (2020). https://doi.org/10.1109/access.2020.3020618

    Article  Google Scholar 

  17. Alsaeedy, A.A.R., Chong, E.K.P.: Mobility management for 5G IoT devices: improving power consumption with lightweight signaling overhead. IEEE Internet Things J. 6(5), 8237–8247 (2019). https://doi.org/10.1109/JIOT.2019.2920628

    Article  Google Scholar 

  18. Zhang, H., Huang, S., Jiang, C., Long, K., Leung, V.C.M., Poor, H.V.: Energy-efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE J. Sel. Areas Commun. 35(9), 1936–1947 (2017). https://doi.org/10.1109/JSAC.2017.2720898

    Article  Google Scholar 

  19. Ghatak, G., Sharma, Y., Zaid, K., Rahman, A.U.: Elastic multi-connectivity in 5G networks. Phys. Commun. 43, 101176–101210 (2020). https://doi.org/10.1016/j.phycom.2020.101176

    Article  Google Scholar 

  20. Galinina, O., Andreev, S., Komarov, M., Maltseva, S.: Leveraging heterogeneous device connectivity in a converged 5G-IoT ecosystem. Comput. Netw. 128, 123–132 (2017). https://doi.org/10.1016/j.comnet.2017.04.051

    Article  Google Scholar 

  21. Lee, H., Vahid, S., Moessner, K.: Machine Learning Based RATs Selection Supporting Multi-connectivity for Reliability (Invited Paper). In: Kliks A. et al. (eds) Cognitive Radio-Oriented Wireless Networks. CrownCom 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, pp. 31–41. Springer, Cham (2019)

  22. Giordani, M., Mezzavilla, M., Rangan, S., Zorzi, M.: An efficient uplink multi-connectivity scheme for 5G millimeter-wave control plane applications. IEEE Trans. Wirel. Commun. 17(10), 6806–6821 (2018). https://doi.org/10.1109/twc.2018.2864650

    Article  Google Scholar 

  23. Wang, D., Wang, Y., Dong, S., Huang, G., Liu, J., Gao, W.: Exploiting dual connectivity for handover management in heterogeneous aeronautical network. IEEE Access. 7, 62938–62949 (2019). https://doi.org/10.1109/ACCESS.2019.2916920

    Article  Google Scholar 

  24. Khodapanah, B., Hobler, T., Yuncu, B., Barreto, A.N., Simsek, M., Fettweis, G.: Coexistence management for URLLC in campus networks via deep reinforcement learning. In: Proceedings of the 2020 IEEE wireless communications and networking conference (WCNC), pp. 1–6. IEEE, Seoul (2020)

  25. Kumar, V., Tyagi, N.: An integrated-multi-RAT framework for multipath-computing in heterogeneous-wireless network. J. Inf. Telecommun. 5(3), 350–374 (2021). https://doi.org/10.1080/24751839.2021.1871819

    Article  Google Scholar 

  26. Malche, T., Maheshwary, P., Kumar, R.: Environmental monitoring system for smart city based on secure internet of things (IoT) architecture. Wirel. Pers. Commun. 107, 2143–2172 (2019). https://doi.org/10.1007/s11277-019-06376-0

    Article  Google Scholar 

  27. Kalajdjieski, J., Stojkoska, B.R., Trivodaliev, K.: IoT based framework for air pollution monitoring in smart cities. In: Proceedings of 28th telecommunications forum (TELFOR), pp. 1–4. IEEE, Belgrade (2020)

  28. Filho, G.P.R., et al.: Enhancing intelligence in traffic management systems to aid in vehicle traffic congestion problems in smart cities. Ad Hoc Netw. 107, 102265–102295 (2020). https://doi.org/10.1016/j.adhoc.2020.102265

    Article  Google Scholar 

  29. Sarrab, M., Pulparambil, S., Awadalla, M.: Development of an IoT based real-time traffic monitoring system for city governance. Glob. Trans. 2, 230–245 (2020). https://doi.org/10.1016/j.glt.2020.09.004

    Article  Google Scholar 

  30. Singh, S.K., Pan, Y., Park, J.H.: Blockchain-enabled secure framework for energy-efficient smart parking in sustainable city environment. Sustain. Cities Soc. 76, 103364 (2022)

    Article  Google Scholar 

  31. Avancini, D.B., Rodrigues, J.J.P.C., Ricardo, A.L.R., Das, A.K., Kozlov, S., Solic, P.: A new IoT-based smart energy meter for smart grids. Int. J. Energy Res. 45, 189–201 (2020). https://doi.org/10.1002/er.5177

    Article  Google Scholar 

  32. Wang, Y., Chen, Q., Hong, T., Kang, C.: Review of smart meter data analytics: applications, methodologies, and challenges. IEEE Trans. Smart Grid. 10(3), 3125–3148 (2019). https://doi.org/10.1109/TSG.2018.2818167

    Article  Google Scholar 

  33. He, S., Zeng, W., Xie, K., Yang, H., Lai, M., Su, X.: PPNC: privacy preserving scheme for random linear network coding in smart grid. KSII Trans. Internet Inf. Syst. 11, 1510–1532 (2017)

    Google Scholar 

  34. Varga, N., Piri, E., Bokor, L.: Network-assisted smart access point selection for pervasive real-time mHealth applications. Proc. Comput. Sci. 63, 317–324 (2015). https://doi.org/10.1016/j.procs.2015.08.349

    Article  Google Scholar 

  35. Neustadter, D.: Unleash the mobile IoT with secure connectivity powered by integrated SIM. https://www.synopsys.com/designware-ip/technical-bulletin/secure-connectivity-integrated-sim-isim.html (2021). Accessed 26 July 2021

  36. Manjeshwar, A.N., Roy, A., Jha, P., Karandikar.: A control and management of multiple RATs in wireless networks: an SDN approach. In: Proceedings of the 2nd 5G World Forum (5GWF). IEEE, Dresden, pp. 596–601 (2019). https://doi.org/10.1109/5GWF.2019.8911703

  37. Liberg, O., Sundberg, M., Wang, E., Bergman, J., Sachs, J.: Cellular Internet of Things: Technologies, Standards and Performance. Academic Press, Cambridge (2017)

    Google Scholar 

  38. Khan, L.U., Yaqoob, I., Tran, N.H., Kazmi, S.M.A., Dang, T.N., Hong, C.S.: Edge computing enabled smart cities: a comprehensive survey. IEEE Internet Things J. 7(10), 10200–10232 (2020). https://doi.org/10.1109/JIOT.2020.2987070

    Article  Google Scholar 

  39. Xu, F., Ye, H., Yang, F., Zhao, C.: Software defined mission-critical wireless sensor network: architecture and edge offloading strategy. IEEE Access. 7, 10383–10391 (2019). https://doi.org/10.1109/access.2019.2890854

    Article  Google Scholar 

  40. Priya, B., Malhotra, J.: QAAs: QoS provisioned artificial intelligence framework for AP selection in next-generation wireless networks. Telecommun. Syst. 76(2), 233–249 (2021). https://doi.org/10.1007/s11235-020-00710-9

    Article  Google Scholar 

  41. Gu, K., Wu, N., Yin, B., Jia, W.: Secure data query framework for cloud and fog computing. IEEE Trans. Netw. Serv. Manag. 17(1), 332–345 (2020). https://doi.org/10.1109/TNSM.2019.2941869

    Article  Google Scholar 

  42. Singh, S.K., Park, J.H.: TaLWaR: blockchain-based trust management scheme for smart enterprises with augmented intelligence. IEEE Trans. Ind. Inf. 19(1), 626–634 (2023)

    Article  Google Scholar 

  43. Poirot, V., Ericson, M., Nordberg, M., Andersson, K.: Energy-efficient multi-connectivity algorithms for ultra-dense 5G networks. Wirel. Netw. 26, 2207–2222 (2019). https://doi.org/10.1007/s11276-019-02056-w

    Article  Google Scholar 

  44. He, L., Jiang, D., Wei, C.: A QoE-based dynamic energy-efficient network selection algorithm. Wirel. Netw. 27, 3585–3595 (2021). https://doi.org/10.1007/s11276-019-02231-z

    Article  Google Scholar 

  45. Zhou, T., Qin, D., Nie, X., et al.: Coalitional game-based user association integrated with open loop power control for green communications in uplink HCNs. Wirel. Pers. Commun. (2021). https://doi.org/10.1007/s11277-021-08602-0

    Article  Google Scholar 

  46. Xu, X., Huang, Q., Yin, X., Abbasi, M., Khosravi, M.R., Qi, L.: Intelligent offloading for collaborative smart city services in edge computing. IEEE Internet Things J. 7(9), 7919–7927 (2020). https://doi.org/10.1109/JIOT.2020.3000871

    Article  Google Scholar 

  47. Zhang, Z., Li, C., Peng, S., et al.: A new task offloading algorithm in edge computing. J Wirel. Commun. Netw. (2021). https://doi.org/10.1186/s13638-021-01895-6

    Article  Google Scholar 

  48. Qin, Z., Cheng, Z., Lin, C., Lu, Z., Wang, Z.: Optimal workload allocation for edge computing network using application prediction. Wirel. Commun. Mob. Comput. 2021, 1–13 (2021). https://doi.org/10.1155/2021/5520455

    Article  Google Scholar 

  49. Alamu, O., Gbenga-Ilori, A., Adelabu, M., Imoize, A., Ladipo, O.: Energy efficiency techniques in ultra-dense wireless heterogeneous networks: an overview and outlook. Eng. Sci. Technol. 23(6), 1308–1326 (2020). https://doi.org/10.1016/j.jestch.2020.05.001

    Article  Google Scholar 

  50. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  51. Francois-Lavet, V., Henderson, P., Islam, R., Bellemare, M.G., Pineau, J.: An introduction to deep reinforcement learning. Found. Trends Mach. Learn. 11(3–4), 219–354 (2018)

    Article  MATH  Google Scholar 

  52. Arulkumaran, K., Deisenroth, M.P., Brundage, M., Bharath, A.A.: Deep reinforcement learning: a brief survey. IEEE Signal Process. Mag. 34(6), 26–38 (2017). https://doi.org/10.1109/MSP.2017.2743240

    Article  Google Scholar 

  53. Hasselt, H.V., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning . In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 2094–2100. Phoneix (2016)

  54. Mollel, M.S., Abubakar, A.I., Ozturk, M., Kaijage, S., Kisangiri, M., Zoha, A., Abbasi, Q.H.: Intelligent handover decision scheme using double deep reinforcement learning. Phys. Commun. 42, 1–12 (2020). https://doi.org/10.1016/j.phycom.2020.101133

    Article  Google Scholar 

  55. Zhao, N., Liang, Y.C., Niyato, D., Pei, Y., Wu, M., Jiang, Y.: Deep reinforcement learning for user association and resource allocation in heterogeneous cellular networks. IEEE Trans. Wirel. Commun. 18(11), 5141–5152 (2019)

    Article  Google Scholar 

  56. Bhattacharya, R., et al.: QFlow: a reinforcement learning approach to high QoE video streaming over wireless networks. In: Proceedings of the twentieth ACM international symposium on mobile ad hoc networking and computing, pp. 251–260. ACM, Catania (2019)

  57. Roth, A.E.: A natural experiment in the organization of entry-level labor markets: regional markets for new physicians and surgeons in the United Kingdom. Am. Econ. Rev. 81(3), 415–440 (1991). https://doi.org/10.2307/2006511

    Article  Google Scholar 

  58. Hoessler, T., Schulz, P., Jorswieck, E.A., Simsek, M., Fettweis, G.P.: Stable matching for wireless URLLC in multi-cellular, multi-user systems. IEEE Trans. Commun. 68(8), 5228–5241 (2020). https://doi.org/10.1109/tcomm.2020.2995150

    Article  Google Scholar 

  59. Roth, A.E.: Deferred acceptance algorithms: history, theory, practice, and open questions. Int. J. Game Theory 36, 537–569 (2008). https://doi.org/10.1007/s00182-008-0117-6

    Article  MathSciNet  MATH  Google Scholar 

  60. Martinez, R., Masso, J., Neme, A., Oviedo, J.: An algorithm to compute the full set of many-to-many stable matchings. Math. Soc. Sci. 47(2), 187–210 (2004). https://doi.org/10.1016/j.mathsocsci.2003.07.002

    Article  MathSciNet  MATH  Google Scholar 

  61. Chowdhury, S.: Matching theory for cognitive radio networks: an overview. ICT Express. 5(1), 12–15 (2018). https://doi.org/10.1016/j.icte.2018.01.008

    Article  Google Scholar 

  62. Zhang, Q., Liang, Y.-C., Poor, H.V.: Intelligent user association for symbiotic radio networks using deep reinforcement learning. IEEE Trans. Wirel. Commun. 19(7), 4535–4548 (2020). https://doi.org/10.1109/TWC.2020.2984758

    Article  Google Scholar 

  63. Zhang, Q., Lin, M., Yang, L.T., Chen, Z., Khan, S.U., Li, P.: A double deep Q-learning model for energy-efficient edge scheduling. IEEE Trans. Serv. Comput. 12(5), 739–749 (2018)

    Article  Google Scholar 

  64. Zhou, Y., Fadlullah, Z.M., Mao, B., Kato, N.: A deep-learning-based radio resource assignment technique for 5G ultra dense networks. IEEE Netw. 32(6), 28–34 (2018). https://doi.org/10.1109/MNET.2018.1800085

    Article  Google Scholar 

  65. Shang, F., Zhou, D., He, D.: An admission control algorithm based on matching game and differentiated service in wireless mesh networks. Neural Comput. Appl. 32, 2945–2962 (2018). https://doi.org/10.1007/s00521-018-3751-3

    Article  Google Scholar 

  66. Priya, B., Malhotra, J.: An Intelligent User-RAT association for 5G enabled Smart Grid. In: Proceedings of the IEEE international conference on computing, power and communication technologies (GUCON). IEEE, Noida, pp. 300–304 (2020). https://doi.org/10.1109/GUCON48875.2020.9231264

  67. Nguyen, D.D., Nguyen, H.X., White, L.B.: Evaluating performance of RAT selection algorithms for 5G HetNets. IEEE Access. 6, 61212–61222 (2018). https://doi.org/10.1109/ACCESS.2018.2875469

    Article  Google Scholar 

  68. Du, Z., Jiang, B., Wu, Q., Xu, Y., Xu, K.: Exploiting User Demand Diversity: QoE Game and MARL Based Network Selection. In: Du, Z. (ed.) Towards User-Centric Intelligent Network Selection in 5G Heterogeneous Wireless Networks, pp. 101–130. Springer, Singapore (2020)

    Chapter  Google Scholar 

  69. Matlab: Deep Learning Toolbox Design, train, and analyze deep learning networks. https://www.mathworks.com/products/deep-learning.html (2021). Accessed 8 March 2021

  70. Valiveti, H.B., Polipalli, T.R.: Hierarchy-based knapsack approach for network selection in HetNets. Int. J. Comput. Aided Eng. Technol. 10(5), 599–608 (2018). https://doi.org/10.1504/ijcaet.2018.094340

    Article  Google Scholar 

Download references

Acknowledgements

Author would like to thank University Grant Commission, New Delhi for Junior Research Fellowship.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, simulation and analysis were performed by BP. The first draft of the manuscript was written by BP and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Bhanu Priya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest, financial or otherwise.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priya, B., Malhotra, J. Intelligent Multi-connectivity Based Energy-Efficient Framework for Smart City. J Netw Syst Manage 31, 48 (2023). https://doi.org/10.1007/s10922-023-09740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10922-023-09740-5

Keywords

Navigation