
Vol.:(0123456789)

Journal of Network and Systems Management (2023) 31:5
https://doi.org/10.1007/s10922-022-09698-w

1 3

Network Intrusion Detection System Based
on an Adversarial Auto‑Encoder with Few Labeled Training
Samples

Kohei Shiomoto1

Received: 9 March 2022 / Revised: 22 August 2022 / Accepted: 26 September 2022 /
Published online: 7 October 2022
© The Author(s) 2022

Abstract
Network intrusion detection systems (NIDS) are critical to defending network sys-
tems from cyber attacks. Recently, machine learning has been applied to enhance
NIDS capability. To train a supervised machine-learning model, a large number of
labeled training samples are required to achieve practical performance. However,
labeling data samples is a costly task. Additionally, obtaining anomaly data sam-
ples is difficult because trends in network traffic that are subject to NIDS change
daily, and new attacks continue to be generated. To address this issue, we propose
a semi-supervised machine-learning-based NIDS that reduces the required number
of labeled training samples by applying an adversarial auto-encoder (AAE) tech-
nique. We evaluated the proposed method through a series of experiments and con-
firmed that the proposed AAE-based NIDS achieves performance comparable to
that of multi-layer perceptron-based NIDS with only 0.1% of the labeled training
samples. We also confirmed that the selection of data samples for annotation does
not affect the performance of the proposed AAE-based NIDS. We also evaluated
the relationship between the performance of the proposed method and the dimen-
sion of its latent-variable vector. The best performance as measured by recall and F1
score occurred when the dimensionality of the latent variable vector was 10, which
suggests that this structure allows for accurate decomposition of attack and normal.
This study presents promising results obtained by the proposed semi-supervised
learning method with a reduced number of labeled training samples, which reduces
the operational costs of a machine-learning-based NIDS.

Keywords Adversarial auto-encoder · Network intrusion detection system · Semi-
supervised learning

 * Kohei Shiomoto
 shiomoto@tcu.ac.jp

1 Department of Intelligent Systems, Faculty of Information Technology, Tokyo City University,
1-28-1 Tamazutsumi, Setagaya, Tokyo 158-8557, Japan

http://orcid.org/0000-0003-2968-2060
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-022-09698-w&domain=pdf

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 2 of 22

1 Introduction

A network intrusion detection system (NIDS) monitors activities in a network
and classifies them as “benign” or “malicious” [1, 2]. Recently, machine learn-
ing has been applied to enhance the capabilities of anomaly-detecting NIDS [3].
A problem that hinders widespread application is the required number of labeled
training samples to achieve practical performance. The more training data used,
the better the performance. However, labeling data samples is a costly task that
requires a human operator to examine each data item, classify it, and label it.
Additionally, trends in network traffic that are subject to NIDS auditing change
daily, and new attacks continue to generate. Hence, labeling work must be done
constantly, creating numerous problems.

To address this issue, we propose a semi-supervised machine-learning-based
NIDS that reduces the required number of labeled training samples. We use a
smaller set that would ordinarily result in poor performance for supervised learn-
ing classification. To avoid this, our semi-supervised learning method exploits
unlabeled training samples, which does not require costly human labor. We use an
adversarial auto-encoder (AAE) to realize semi-supervised learning in this fash-
ion [5] alongside a generative adversarial network (GAN) [4]. These two compo-
nents comprise the key building blocks of our method [5]. The auto-encoder (AE)
reduces the dimensionality of input data by extracting and maintaining important
features as a latent variable vector, whereas the GAN employs a generator and a
discriminator such that the latent-variable vector of the AE follows an arbitrary
distribution for regularization. In our proposed method, we divide the latent-var-
iable vector into two subset vectors: one for classification and the other for traffic
feature representation. Using unlabeled data samples only, the AE is trained to
extract two latent-variable vectors, and the GAN is trained to allow them to fol-
low categorical and Gaussian distributions, respectively. Then, using labeled data
samples, the AE is trained to minimize the cross-entropy error. Finally, the latent-
variable vector for classification is used to classify the input data as normal or as
an attack.

In our earlier work [6], we reported preliminary evaluation results. In this
study, we investigate the performance of the proposed method through a series of
detailed experiments to answer the following questions:

• How many unlabeled training samples are required to obtain practical perfor-
mance?

• Does the selection of labeled training samples affect performance?
• How many dimensions does the latent-variable vector require to extract the

traffic features needed to build the NIDS?

We evaluate the proposed method through a series of experiments and confirm
that the proposed AAE-based NIDS achieves performance comparable to that of
multi-layer perceptron (MLP)-based NIDS with only 0.1% of the labeled train-
ing samples. We confirm that when the number of labeled data samples is small,

1 3

Journal of Network and Systems Management (2023) 31:5 Page 3 of 22 5

the accuracy does not diminish. Moreover, the selection of data samples for
annotation does not affect the performance of our proposed AAE-based NIDS.
We also confirm that the best performance as measured by recall and F1 score
occurs when the dimensionality of the AE’s latent variable vector is 10, which
suggests that this structure can decompose the attack and normalize communi-
cations expediently. Hence, we show that the proposed AAE-based NIDS effec-
tively uses a small number of labeled training data samples to reduce the need for
costly human labor while improving performance with the support of unlabeled
data. This study demonstrates promising results that will be useful to industry
and academia.

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 discusses the dataset used for training the machine-learning-based NIDS.
Section 4 presents the proposed method. Section 5 evaluates the proposed method
via experiments. Section 6 concludes the paper.

2 Related Work

Various machine-learning algorithms have been applied to anomaly-type NIDS [3,
7, 8]. In the early stages of research on the application of machine learning to NIDS
approximately 20 years ago, attention was focused on shallow learning methods [9]
such as K-nearest-neighbor, naive Bayes, the C4.5 decision tree algorithms [10],
Principal Component Analysis [11], and support vector machines (SVM) [12, 13].
Feature engineering is important in shallow machine learning, and methods have
been proposed to extract the 10 top-ranked features from the Network Security Lab-
oratory Knowledge Discovery in Databases (NSL-KDD) dataset by making use of
the information gain [14, 15]. Multivariate correlation analyses with the support of a
dissimilarity measure were conducted to improve accuracy [16].

It is generally believed that there is no single model that will solve different prob-
lems simultaneously. Indeed, even if multiple models were highly effective for a
given problem, finding the best model for different data distributions or statistical
mixtures would be difficult. Ensemble learning is the practice of combining multiple
models to improve predictive performance. Several studies have been conducted on
the application of ensemble learning to NIDS [17–21].

Recent advances in deep learning have stimulated research on how to realize
NIDS without having to conduct feature engineering. Spectral clustering and a deep
neural network have been applied for a NIDS for sensor networks [22]. A recurrent
neural network (RNN)-based NIDS [23–25] including a long short-term memory
(LSTM)-based one [26] were proposed. A convolutional neural network (CNN) was
applied [27]. A CNN and LSTM were used for feature extraction to capture spatio-
temporal features [28].

A GAN was used to extract statistical features [29].
The attention mechanism was used to perform feature learning by highlighting

the key input of sequential network flow data composed of packet vectors in a bidi-
rectional LSTM model [30].

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 4 of 22

Auto-encoders (AEs) are considered suitable for anomaly-type NIDS because
they can determine whether a deviation from a previously learned normal state is
detected based on whether the reconstruction error is within a threshold value [31].

A robust AE was proposed [32] to address issues of denoising [33, 34], requiring
noise-free data. A maximum correntropy AE was proposed [35] to provide represen-
tations influenced by the outliers and noise. AE reconstruction errors were used to
augment and train the classifier [15]. A stacked AE was proposed to extract features
from log data of n-gram hypertext transmission protocols [36].

Several authors proposed NIDS comprising AEs and/or deep belief networks to
extract feature representations followed by classifiers. NIDSes have been proposed
based on an asymmetric AE [37], a stacked AE [38], and a sparse AE [39–41]. Sto-
chastic denoising AE [42] was applied to different NIDSes [43–45], and a stacked
contractive AE [46] was applied to yet another NIDS [47]. A deep belief network
was employed [48], using a classifier during the second stage based on various shal-
low-learning algorithms (e.g., random forest [37], SVMs [39, 47, 48], and soft-max
classifiers [38, 40, 41, 40–41]). Self-taught [49] learning-based NIDSes were pro-
posed [39–41, 50].

Although there have been several studies in which machine learning algorithms
were applied, few have investigated the problems caused by having only a small
number of labeled training samples.

Overfitting occurs when a model is trained on a small sample. One-shot learn-
ing and few-shot learning, which are inspired by the human ability to learn things
from a few examples, have been proven to train a model with a small number of data
instances and achieve high performance for image recognition [51, 52]. Recently,
one-shot learning and few-shot learning have been applied to network security in the
area of malware detection, where malware is converted to image data [53–55].

More recently, one-shot learning with Siamese networks was applied to a NIDS
[56] to learn pair similarities rather than features that are unique to each class,
although open questions remain, including that careful consideration should be
given to ensure the same number of training pairs for all class combinations when
creating the training set.

Semi-supervised learning is another approach to solving the problem of overfit-
ting due to a small quantity of labeled training data.

Semi-supervised learning models based on the variational auto-encoder (VAE)
have been proposed [57], and in our previous work [6], Adversarial Auto-Encoder
(AAE) for semi-supervised learning NIDS was proposed and preliminary evaluated.
While the VAE assumes that the underlying distribution of the latent variable is
Gaussian, our AAE-based method is more general and assumes that any distribution
can be used as the underlying distribution of the latent variable.

A hybrid method using an LSTM auto-encoder and a one-class SVM that uses
only normal class examples in the training dataset has also been proposed [58].

A stacked sparse autoencoder (SSAE)-based semi-supervised deep learning mod-
els [59] and their extension to federated learning (FL) [60], which combines unsu-
pervised feature extraction and supervised classification algorithms to make use of
information from both unlabeled and labeled data, have been proposed in recent
years.

1 3

Journal of Network and Systems Management (2023) 31:5 Page 5 of 22 5

Those approaches are in the early stages of research. Even if a model is very
effective for a given problem, it is very difficult to find the best model for different
data distributions and statistical mixtures. In order to find the appropriate approach
for the problem, the characteristics of these approaches should be investigated in
detail. In this paper, we present the performance of the method proposed in our ear-
lier work [6] through a series of detailed experiments.

3 Training Dataset

3.1 Limited Quantity of Labeled Data

A typical machine learning workflow comprises a pre-training phase in which clus-
tering is performed using unsupervised learning, a data annotation phase in which
human operators manually examine data samples and attach labels, and a supervised
learning phase in which the classifier is trained using the set of labeled data. For
the classification task, existing supervised-learning algorithms require a dataset of
high quality containing a sufficient quantity of human-annotated data samples for
training. Because annotation is an extremely costly and time-consuming task, a new
method is needed to enable more efficient classifier training. Furthermore, obtaining
anomaly data samples is difficult because trends in network traffic that are subject to
NIDS oversight change daily, and new attacks continue to be generated. This quickly
leads to unbalanced datasets that must be updated continuously .

3.2 The NSL‑KDD Dataset

To investigate the effect of the number of labeled data samples, we use the NSL-
KDD dataset [9] as a benchmark. This dataset has been used extensively to evaluate
machine-learning-based NIDS methods. NSL-KDD is an enhanced version of the
KDD CUP 99 [61, 62] dataset, used in the Third International Knowledge Discovery
and Data Mining Tools Competition, which was held in conjunction with the Fifth
International Conference on Knowledge Discovery and Data Mining (KDD-99).
The competition task was to build a predictive network intrusion detector capable
of distinguishing between intrusions and normal connections. The database con-
tains a standard set of data to be audited, which includes a wide variety of intrusions
simulated in a military network environment. A major criticism of the KDD CUP
99 dataset [61] pertains to its large degree of redundancy. Therefore, the authors of
the NSL-KDD paper [9] removed duplicates and created more sophisticated sub-
sets. This dataset is divided into KDDTrain+ (125,973 data records) for training and
KDDTest+ (22,544 data records) for testing.

This dataset consists of records of traffic sent and received between source and
destination internet protocol (IP) addresses. It was created from transport control
protocol (TCP) dump data from 7 weeks of network traffic processed into about
five million connection records. Similarly, two weeks of testing data yielded
approximately two million connection records. Each traffic sample has 41 features

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 6 of 22

categorized into three types: basic, content-based, and traffic-based. Among these,
some are categorical protocol types that have three possible values (i.e., tcp, udp,
and icmp), a flag that has 11 possible values (SF, S1, REJ, etc.), and a service that
has 70 possible values (http, telnet, ftp, etc.). Instead of coding each categorical
data into scalar values, we adopt a one-hot vector representation, resulting in 122
features.

All data are labeled as “normal” or “anomaly”. Attacks in the dataset are classi-
fied into four categories according to their characteristics: denial-of-service (DOS),
remote-to-local (R2L) (i.e., unauthorized access from a remote machine), user-to-
remote (U2R) (i.e., unauthorized access to local superuser (root) privileges), and
probes (e.g., surveillance and port scanning).

The details of each category are described in Table 1. The KDDTrain+ dataset
contains 22 types of data, and the KDDTest+ dataset contains 38 types. Some spe-
cific attack types (boldface) in the testing dataset do not appear in the training data-
set. KDDTest+ contains 17 types of attack data that are not in KDDTrain+, and
KDDTrain+ contains two types of attack data that are not in KDDTest+. This ren-
ders the detection scenario more realistic. Therefore, the KDDTest+ dataset is a reli-
able indicator of performance with respect to attacks that have not been seen previ-
ously, such as zero-day attacks and variants of existing attack types.

4 Semi‑supervised Learning

4.1 AAE

Supervised learning requires a large number of data instances to achieve practical
performance. The more training data used, the better the classifier performance.
Unfortunately, obtaining a large quantity of training data is costly. Unlike super-
vised models, semi-supervised learning requires just a small set of labeled data for
training.

Table 1 Attack types in the NSL-KDD dataset [9] Attack types written in bold in the testing dataset do
not appear in the training dataset.

Category Training Dataset Testing Dataset

DoS back, land, neptune, pod, smurf, teardrop back, land, neptune, pod, smurf, teardrop, mail-
bomb, processtable, udpstorm, apache2,
worm

R2L fpt-write, guess-passwd, imap, multihop,
phf, spy, warezclient, warezmaster

fpt-write, guess-passwd, imap, multihop, phf,
spy, warezmaster, xlock, xsnoop, snmpguess,
snmpgetattack, httptunnel, sendmail,
named

U2R buffer-overflow, loadmodule, perl, rootkit buffer-overflow, loadmodule, perl, rootkit,
sqlattack, xterm, ps

Probe ipsweep, nmap, portsweep, satan ipsweep, nmap, portsweep, satan, mscan, saint

1 3

Journal of Network and Systems Management (2023) 31:5 Page 7 of 22 5

Therefore, to improve the performance of NIDS, we propose to use semi-supervised
learning to take advantage of unlabeled training data and reduce the need for human
intervention.

We apply AAE to implement the semi-supervised learning algorithm. Figure 1 pre-
sents the architecture of the AAE, which comprises an AE and a GAN as its key build-
ing blocks. The AE reduces the dimensionality of input data by extracting and main-
taining important features as a latent variable vector, z, whereas the GAN employs the
generator and discriminator so that z follows an arbitrary distribution for regularization.
Hence, an AAE can be viewed as an AE that forces hidden variables to follow any
desired distribution.

In an AAE, the latent variable vector of the AE is regularized by the discriminator
of the GAN in order to match an arbitrary prior, p(z), to the aggregated posterior, q(z),
of the latent variable vector, z. Let x be the input and z be the latent variable vector of
the AE. Let q(z ∣ x) be an encoding distribution and p(x ∣ z) be a decoding distribution.
Further, let pd(x) be the data distribution and p(z) be the prior distribution we want to
force the latent variable vector to follow. The encoding function of the AE, q(z ∣ x) ,
defines a posterior distribution of q(z) on the latent variable vector of the AE as follows:

The adversarial network and the AE are trained jointly using the stochastic gradient
descent (SGD) method. As the learning progresses, the AAE can match the arbi-
trary prior, p(z), to the aggregated posterior, q(z). Then, z follows the prior distribu-
tion. Thus, the encoder of the AE is regarded as the GAN generator. As such, z is
regarded as the generated data. The discriminator discriminates the z generated by
the AE that follows the distribution of q(z) from the sample generated by the genera-
tor that follows the distribution of p(z). It yields the probability that input data come
from the sample of the arbitrary prior, p(z).

(1)q(z) = ∫x

q(z ∣ x)pd(x)dx

Fig. 1 AAE Architecture

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 8 of 22

4.2 Proposed Method

4.2.1 Architecture

Figure 2 shows the architecture of the proposed method. We assume that there
should be complex latent expressions behind normal and anomaly communications.
The AE extracts two latent variable vectors, z1 and z2 , to hold the features of the
input data. The encoder, q(z1, z2 ∣ x) , generates z1 and z2 , where z1 holds the features
representing the class information (i.e., “normal” or “attack”)and z2 holds the other
features. The z1 corresponding to the categorical distribution is designed to record
the label associated with the input data. We use z2 to impose the Gaussian distribu-
tion in order to preserve detailed features other than class information. The z2 cor-
responding to the Gaussian distribution is designed to separate clusters.

The proposed AAE employs two pairs of generative models and discriminators to
regularize the latent variables z1 and z2 . One follows a categorical distribution and
the other a Gaussian distribution. A categorical distribution, cat(z1) , is used to force
z1 to represent only the class datum, whereas a Gaussian distribution, N(z2 ∣ 0, I) , is
used to force z2 to represent other information. The categorical distribution takes the
same number of one-hot values as the number of classes. In our method there are
two classes, “normal” or “attack”. The latent variable z1 is learned by the discrimi-
nator to hold a one-hot vector. As such, classification can be performed by referring
to the value of z1 estimated by the encoder.

4.2.2 Workflow of the Proposed Method

We train the AAE using unlabeled data. A latent variable z1 corresponding to the
categorical distribution is designed to record the label associated with the input data.
A latent variable z2 corresponding to the Gaussian distribution is designed to sepa-
rate clusters. Therefore, it is assumed that input data are generated by a latent class
variable z1 that comes from a categorical distribution and a latent variable z2 that

Fig. 2 Architecture of an AAE using semi-supervised learning

1 3

Journal of Network and Systems Management (2023) 31:5 Page 9 of 22 5

comes from a Gaussian distribution. When labeled data are available, we train the
AAE by using the label instead of the categorical generative model. When the AAE
is trained, it is used to classify new incoming data. The latent variable z1 in the mid-
dle hidden layer indicates the inferred class associated with the input data. As such,
at the time of detection, classification is performed by a latent variable z1 that repre-
sents the class information, indicating whether the input data are normal or anomaly.

The middle of Fig. 2 is the neural network of the AE that reduces the dimension-
ality of the input data (Input(X)) and generates latent-variable vectors (z1, z2) . The
top of Fig. 2 is the neural network of the discriminator that imposes a categorical
distribution on a latent class variable vector z1 , as a prior distribution. Therefore,
the distribution of z1 is guaranteed to match the categorical distribution. Hence, only
class information that is required to detect an attack is extracted from the latent-
variable vectors. The bottom of Fig. 2 is the neural network of the discriminator that
imposes a Gaussian distribution on a latent class variable z2 , as a prior distribution.
Therefore, the distribution of z2 is guaranteed to match a Gaussian distribution. The
semi-supervised AAE is trained with the SGD in three phases as follows:

1. Reconstruction phase: the encoder and decoder are updated. Optimizes the param-
eters of the AE to minimize reconstruction error for input and output data. Only
unlabeled data are used in this phase. The AE generates the latent-variable vectors
z1 and z2 from unlabeled data in this phase.

2. Regularization phase: each discriminator is trained to discriminate the latent-
variable vector, z1 , or sample the categorical distribution, and to discriminate
the latent variable vector, z2 , or sample the Gaussian distribution. The AE is
optimized based on the determination result of the discriminator. This training is
based on Eq. (1).

3. Semi-supervised classification phase: the AE is updated to minimize the cross-
entropy error on labeled data. In this phase, we conduct semi-supervised learning
using labeled data.

After the AAE is trained, the latent variable z1 is used to classify whether the input
data are normal.

5 Evaluation

5.1 Neural Network Parameters

We implemented the proposed AAE method using Pytorch [63]. To compare the
proposed method to an existing one, we also implemented an MLP-based deep neu-
ral network (DNN). We use an ADAM optimizer [64] for both models. We also
added dropout and batch normalization to prevent overfitting during the training
phase. The architecture of the MLP model and that of our AAE model are shown in
Fig. 3. In this example, regarding the AAE, the encoder has 122 inputs that are com-
pressed into the important features, yielding 52 (= 2 + 50) outputs (two for z1 and

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 10 of 22

50 for z2). The decoder receives 52 inputs from the hidden middle layer that has the
latent variable vectors (z1 and z2) and yields 122 outputs. Both the encoder and the
decoder have a middle fully-connected layer with a size of 1000 × 1000 . They also
have a drop-out layer with batch normalization between layers. The discriminator for
the categorical distribution (z1) receives two inputs and yields one output (“Fake” or
“Real”). The discriminator for the Gaussian distribution (z2) receives 50 inputs and
yields one output (“Fake” or “Real”). Both discriminators for the categorical distri-
bution (z1), and the Gaussian distribution (z2) have a middle fully-connected layer
with a size of 1000 × 1000 . They also have batch normalization between layers.

5.2 Dataset

To investigate the impact of the small number of labeled data samples, we created
10 training datasets by randomly selecting data samples from KDDTrain+ (125,973
data items) as labeled data. psample is a fraction of labeled samples randomly selected
over the total from KDDTrain+. We used KDDTest+ (22,544 data items) for testing.

When psample is small, the way the selected data samples are distributed will
strongly affect the performance of the machine learning-based NIDS. Here, if we
were to use supervised learning instead of our proposed semi-supervised learning,
we would need to select the label data carefully. If by chance we can select “good”
or “representative” data samples for training, supervised learning may succeed in
constructing a valid model. Conversely, if a “bad” data sample is selected, a valid
model cannot be obtained by supervised learning. Therefore, given the constraint
that only a small number of labeled data samples can be chosen, supervised learning

Fig. 3 Architecture of the AAE and DNN

1 3

Journal of Network and Systems Management (2023) 31:5 Page 11 of 22 5

requires careful selection of the samples to be labeled. In contrast, our proposed
semi-supervised learning is expected to require less careful selection of samples to
label.

5.3 Effectiveness of the Proposed Method

To reduce the required number of labeled data samples in the training dataset, we
propose a semi-supervised machine-learning-based NIDS that applies an AAE tech-
nique. The first question is “How many labeled data samples are required in the
training dataset?” The AAE-based NIDS uses the structure of the unlabeled data-
sample distribution to improve the accuracy of the boundaries between adjacent
classes calculated from the labeled samples. We examine how the AAE-based NIDS
improves its performance by taking advantage of the unlabeled samples, avoiding
the need for costly human labor.

Figure 4 shows the performance of the AAE-based NIDS, including accuracy,
precision, recall, and F1 score,

when using 0.1% of the training data of the NSL-KDD dataset as labeled (i.e.,
psample = 0.001). In Fig. 4, the horizontal axis represents the number of unlabeled
training samples. In Fig. 4, the performance of the MLP is shown for comparison
(see the four rightmost bars). Amongst the performance measures, false-negative
and false-positive ratios are important because the false detection risk is very high
with NIDS [65]. Focusing on the recall in Fig. 4, we observe that the AAE-based
NIDS achieves higher recall than the MLP-based NIDS. We confirm that the pro-
posed AAE-based NIDS achieves performance comparable to the MLP-based NIDS
with only 0.1% of labeled data samples in the training dataset.

The next question is “How many unlabeled data samples are required in the
training dataset?”. Figure 4 shows that adding unlabeled data samples causes the

Fig. 4 Performance of the AAE-based NIDS (accuracy, precision, recall, and F1 score) as a function of
the fraction of labeled data samples over the total data samples in KDDTrain+ (psample=0.001)

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 12 of 22

performance of the AAE-based NIDS to improve. Thus, we confirm that the AAE-
based NIDS takes advantage of the structure of the unlabeled data sample distribu-
tion to improve the accuracy of the boundaries between adjacent classes calculated
from the labeled data samples. We note that the addition of a small number of unla-
beled data samples effectively improves performance.

We investigated the effect of psamples on the AAE-based NIDS, to determine the
number of labeled data samples required to improve performance. Figures 5 and 6
show the results with psamples = 0.01 and 0.0001 (i.e., using 1% and 0.01% of the

Fig. 5 Performance of the AAE-based NIDS (i.e., accuracy, precision, recall, and F1 score) as a function
of the fraction of labeled data samples over the total data samples in KDDTrain+ (psample=0.01)

Fig. 6 Performance of the AAE-based NIDS (i.e., accuracy, precision, recall, and F1 score) as a function
of the fraction of labeled data samples over the total data samples in KDDTrain+ (psample=0.0001)

1 3

Journal of Network and Systems Management (2023) 31:5 Page 13 of 22 5

training data of NSL-KDD dataset as labeled samples). The horizontal axis repre-
sents the number of unlabeled data samples in Figs. 5 and 6. As observed, we con-
firm that the AAE-based NIDS improves its performance by increasing the num-
ber of unlabeled data samples. By comparing Figs. 5 and 6, we observe that both
the AAE- and MLP-based NIDS yield better variable results with wider confidence
intervals with psamples = 0.01 than with psamples=0.0001. We believe that the reason
for this is as follows. When psamples=0.0001, the number of labeled data sample is so
small that the way the selected data samples are distributed has a strong influence on
the performance of machine learning-based NIDS. That is, the number of labeled
data samples per class is only 12. If we coincidentally select and label representative
training samples, we might succeed in building a good model, whereas if we fail to
select and label representative data samples, we might not. However, when psamples
=0.01, the number of labeled data sample is sufficient to select and label representa-
tive data samples to avoid such variance. That is, the number of labeled data sam-
ples per class is 1,259. Thus, AAE- and MLP-based NIDS both yield higher variable
results with wider confidence intervals at psamples=0.0001 than those with psamples =
0.01.

5.4 Dimensionality of the Latent Variable

We are interested in how the proposed AAE successfully extracts feature rep-
resentations of normal and anomaly traffic. Hence, we evaluated the effect of the
dimensionality of the latent variable. Figure 7 shows the performance of the pro-
posed AAE-based NIDS as a function of dimension sizes of z2 = 2, 10, and 50. As
observed in Fig. 7, z2 = 10 achieves the best performance (i.e., recall and F1 score).

To investigate the mechanism behind the AAE successfully classifying data,
we visualize how well the latent variable represents a distinctive set of features

Fig. 7 Performance of the AAE-based NIDS (i.e., accuracy, precision, recall, and F1 score) as a function
of the dimensionality of the AE, z2

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 14 of 22

of input traffic. To visualize the multidimensional latent variable, we employed
T-distributed stochastic neighbor embedding (t-SNE) [66] to reduce the dimen-
sionality of the data. t-SNE is well suited for embedding high-dimensional data
for visualization in a low-dimensional space. Specifically, it models each high-
dimensional object by a 2- or 3-dimensional point in such a way that similar
objects are modeled by nearby points, and dissimilar objects are modeled by
distant points having high probability. We used a t-SNE with a perplexity of
50 and random state of zero. We used dimension sizes z2 = 2, 10, and 50, with
psample=0.001. Figures 8, 9, and 10 show how the latent variable z2 represents
a distinctive set of features from the input traffic when the dimensionality of z2
is 2, 10, and 50. As observed in Fig. 9, z2 = 10 produces the clearest separation
between normal and attack designations. Figures 8 and 10 show that z2 = 2 and
50 produce separations that are less clear.

Fig. 8 Visualization of latent variable by t-SNE (z2=2)

1 3

Journal of Network and Systems Management (2023) 31:5 Page 15 of 22 5

5.5 Computation Time

We next discuss the computation time required to train the AAE and MLP. Figure 11
shows the time required to train the AAE and MLP for various ratios of labeled data.
The computing environment used in the experiment is shown in Table 2.

The learning rate and number of epochs were as shown in Table 3.
If the AAE is used for supervised learning, only the AE parameters need to be

trained. Hence, as the ratio of labeled data increases, fewer training epochs are
required and less computation time is needed to train the AAE. However, when the
AAE uses unlabeled data, the two discriminators must be trained in addition to the
AE training. As such, as the ratio of unlabeled data increases, more training epochs
are required and more computation time is needed to train the AAE. As shown in
Fig. 11, the ratio of labeled data is less than 5.0%, and the AAE requires more train-
ing time than the MLP. This is because the MLP trains one neural network, whereas
the AAE trains one neural network for the AE and two for the discriminators.

Fig. 9 Visualization of latent variable by t-SNE (z2=10)

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 16 of 22

6 Conclusions

To reduce the required number of labeled training samples, we proposed a semi-
supervised machine-learning-based NIDS that applies an AAE technique. We

Fig. 10 Visualization of latent variable by t-SNE (z2=50)

Table 2 Computing
Environment Hardware

OS Ubuntu 16.04
CPU Intel Pentium@3.50 GHz
GPU NVIDIA GeForce GTX1060 (6 GB)
RAM 8 GB
Software
Programming language Python (v.3.6)
Deep learning framework Pytorch (v.0.4.1)
CUDA version: 9.0

1 3

Journal of Network and Systems Management (2023) 31:5 Page 17 of 22 5

evaluated the proposed method with a series of experiments and obtained the fol-
lowing results:

• The proposed AAE-based NIDS achieved performance comparable to that of
an MLP-based NIDS with only 0.1% of the labeled data samples and the addi-
tion of a small number of unlabeled data samples.

• When the number of labeled data samples was small, the accuracy did not
change, irrespective of the samples selected to be labeled; hence, the selection
of data samples for annotation does not affect the performance of the proposed
AAE-based NIDS.

• We demonstrated that the data structure dimensionality of z2=10 successfully
extracted the essential features from the data samples and produced the clear-
est separation between normal and attack classifications, resulting in the best
performance in terms of recall and F1 score.

Table 3 Hyperparameter values
used for AAE and MLP training

Hyperparameter Value

AAE –
learning rate 1.0e-7
batch size 128
epochs (90%,10%) 30
epochs (1%) 300
epoch (0.1%,0.01%) 3000
dimensionality of the latent variable z1:2, z2:50
MLP
learning rate 1.0e-5
batch size 128
epochs (90%,10%,1%,0.1%,0.01%) 300

Fig. 11 Computing time
required to train the AAE and
MLP

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 18 of 22

This study demonstrates promising results obtained by our novel semi-supervised
learning method, which reduces the number of labeled training samples and greatly
offsets the operational costs of a machine-learning-based NIDS.

Regarding future research directions, we should point out the applicability to
real-world environments. In recent years, several publicly available datasets have
been published [67–69]. These datasets may help us assess applicability to real-
world environments even though efforts to assess the applicability of public datasets
for NIDS evaluation is still ongoing [70]. More importantly, a prototype system will
be deployed in a real-world environment.

Acknowledgements The author is grateful to Kazuki Hara for their contribution to the architectural
design of the AAE-based NIDS during the early stage of this work. The author is grateful to Yuta Ichino
for their assistance with the numerical simulations. This work was partially supported by the Grant-in-
Aid for Scientific Research (Grant No. J19K11950) from the Japan Society for the Promotion of Science.

Funding This work is partially supported by the Grant-in-Aid for Scientific Research (Grant No.
J19K11950) from the Japan Society for the Promotion of Science.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Landes, D., Otto, F., Schumann, S., Schlottke, F.: Identifying Suspicious Activities in Company
Networks Through Data Mining and Visualization, pp. 75–90. Springer, London (2013)

 2. Ring, M.., Wunderlich, S.., Grüdl, D., Landes, D., Hotho, A.: A Toolset for Intrusion and Insider
Threat Detection, pp. 3–31. Springer International Publishing, Cham (2017)

 3. Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed investigation and analysis of using
machine learning techniques for intrusion detection. IEEE Commun. Surv. Tutor. 21(1), 686–728
(2019)

 4. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A.,
Bengio, Y.: Generative Adversarial Networks. ArXiv e-prints (2014)

 5. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial Autoencoders. ArXiv
e-prints (2015)

 6. Hara, K., Shiomoto, K.: Intrusion detection system using semi-supervised learning with adversarial
auto-encoder. In: NOMS 2020–2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1–8 (2020)

 7. Bhuyan, M.H., Bhattacharyya, D.K., Kalita, J.K.: Network anomaly detection: methods, systems
and tools. IEEE Commun. Surv. Tutor. 16(1), 303–336 (2014)

 8. Buczak, A.L., Guven, E.: A survey of data mining and machine learning methods for cyber security
intrusion detection. IEEE Commun. Surv. Tutor. 18(2), 1153–1176 (2016)

 9. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the kdd cup 99 data set.
In: 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications,
pp. 1–6 (2009)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1 3

Journal of Network and Systems Management (2023) 31:5 Page 19 of 22 5

 10. Najafabadi, M. M., Khoshgoftaar, T. M., Kemp, C., Seliya, N., Zuech, R.: Machine learning for
detecting brute force attacks at the network level. In 2014 IEEE International Conference on Bioin-
formatics and Bioengineering, pp. 379–385 (2014)

 11. Shyu, M.L., Chen, S.C., Sarinnapakorn, K., Chang, L.: A novel anomaly detection scheme based
on principal component classifier. In: Proceedings of the IEEE Foundations and New Directions of
Data Mining Workshop, in conjunction with the Third IEEE International Conference on Data Min-
ing (ICDM’03), pp. 172–179 (2003)

 12. Pervez, M. S., Farid, D. M.: Feature selection and intrusion classification in nsl-kdd cup 99 dataset
employing svms. In: The 8th International Conference on Software, Knowledge, Information Man-
agement and Applications (SKIMA 2014), pp. 1–6 (2014)

 13. Kenaza, T., Bennaceur, K., Labed, A.: An efficient hybrid svdd/clustering approach for anomaly-
based intrusion detection. In: Proceedings of the 33rd Annual ACM Symposium on Applied Com-
puting, SAC ’18, pp. 435–443. Association for Computing Machinery, New York, NY (2018)

 14. Shahadat, N., Hossain, I., Rohman, A., Matin, N.: Experimental analysis of data mining application
for intrusion detection with feature reduction. In: 2017 International Conference on Electrical, Com-
puter and Communication Engineering (ECCE), pp. 209–216 (2017)

 15. Andresini, G., Appice, A., Di Mauro, N., Loglisci, C., Malerba, D.: Exploiting the auto-encoder
residual error for intrusion detection. In: 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS PW), pp. 281–290 (2019)

 16. Tan, Z., Jamdagni, A., He, X., Nanda, P., Liu, R.P., Hu, J.: Detection of denial-of-service attacks
based on computer vision techniques. IEEE Trans. Comput. 64(9), 2519–2533 (2015)

 17. Hemmer, A., Abderrahim, M., Badonnel, R., Chrisment, I.: An ensemble learning-based architec-
ture for security detection in iot infrastructures. In: 2021 17th International Conference on Network
and Service Management (CNSM), pp. 180–186 (2021)

 18. Vanerio, J., Casas, P.: Ensemble-learning approaches for network security and anomaly detection.
In: Proceedings of the Workshop on Big Data Analytics and Machine Learning for Data Communi-
cation Networks, Big-DAMA ’17, pp. 1–6. Association for Computing Machinery, New York, NY
(2017)

 19. Zoppi, T., Gharib, M., Atif, M., Bondavalli, A.: Meta-learning to improve unsupervised intrusion
detection in cyber-physical systems. ACM Trans. Cyber-Phys. Syst., 5(4) (2021)

 20. Sundqvist, T., Bhuyan, M.H., Forsman, J., Elmroth, E.: Boosted ensemble learning for anomaly
detection in 5g ran. In :Ilias. M., Lazaros, I., Elias P. (eds.) Artificial Intelligence Applications and
Innovations, pp. 15–30. Springer International Publishing, Cham (2020)

 21. Khare, S., Totaro, M.: Ensemble learning for detecting attacks and anomalies in iot smart home. In:
2020 3rd International Conference on Data Intelligence and Security (ICDIS), pp. 56–63 (2020)

 22. Ma, T., Wang, F., Cheng, J., Yu, Y., Chen, X.: A hybrid spectral clustering and deep neural network
ensemble algorithm for intrusion detection in sensor networks. Sensors (Basel, Switzerland) 15(10),
1701 (2016)

 23. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for
network intrusion detection in software defined networking. In: 2016 International Conference on
Wireless Networks and Mobile Communications (WINCOM), pp. 258–263 (2016)

 24. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep recurrent neural network
for intrusion detection in sdn-based networks. In: 2018 4th IEEE Conference on Network Softwari-
zation and Workshops (NetSoft), pp. 202–206 (2018)

 25. Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent
neural networks. IEEE Access 5, 21954–21961 (2017)

 26. Loukas, G., Vuong, T., Heartfield, R., Sakellari, G., Yoon, Y., Gan, D.: Cloud-based cyber-physical
intrusion detection for vehicles using deep learning. IEEE Access 6, 3491–3508 (2018)

 27. Li, Z., Qin, Z., Huang, K., Yang, X., Ye, S.: Intrusion detection using convolutional neural networks
for representation learning. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.-S.M. (eds.) Neural
Information Processing, pp. 858–866. Springer International Publishing, Cham (2017)

 28. Wang, W., Sheng, Y., Wang, J., Zeng, X., Ye, X., Huang, Y., Zhu, M.: Hast-ids: learning hierar-
chical spatial-temporal features using deep neural networks to improve intrusion detection. IEEE
Access 6, 1792–1806 (2018)

 29. Truong-Huu, T., Dheenadhayalan, N., Pratim Kundu, P., Ramnath, V., Liao, J., Teo, S.G.,
Praveen Kadiyala, S.: An empirical study on unsupervised network anomaly detection using genera-
tive adversarial networks. In: Proceedings of the 1st ACM Workshop on Security and Privacy on

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 20 of 22

Artificial Intelligence, SPAI ’20, page 20–29. Association for Computing Machinery, New York,
NY (2020)

 30. Su, T., Sun, H., Zhu, J., Wang, S., Li, Y.: Bat: deep learning methods on network intrusion detection
using nsl-kdd dataset. IEEE Access 8, 29575–29585 (2020)

 31. Madani, P., Vlajic, N.: Robustness of deep autoencoder in intrusion detection under adversarial con-
tamination. In: Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Sci-
ence of Security, HoTSoS ’18. Association for Computing Machinery, New York, NY (2018)

 32. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. In: Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’17, pp. 665–674. Association for Computing Machinery, New York, NY (2017)

 33. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.-A.: Extracting and composing robust fea-
tures with denoising autoencoders. In: Proceedings of the 25th International Conference on
Machine Learning, ICML ’08, pp. 1096–1103. Association for Computing Machinery, New
York, NY (2008)

 34. Gehring, J., Miao, Y., Metze, F., Waibel, A.: Extracting deep bottleneck features using stacked
auto-encoders. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 3377–3381 (2013)

 35. Qi, Y., Wang, Y., Zheng, X., Wu, Z.: Robust feature learning by stacked autoencoder with maxi-
mum correntropy criterion. In: 2014 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6716–6720 (2014)

 36. Vartouni, A.M., Kashi, S.S., Teshnehlab, M.: An anomaly detection method to detect web attacks
using stacked auto-encoder. In: 2018 6th Iranian Joint Congress on Fuzzy and Intelligent Sys-
tems (CFIS), pp. 131–134 (2018)

 37. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network intrusion detec-
tion. IEEE Trans. Emerg. Topics Comput. Intell. 2(1), 41–50 (2018)

 38. Khan, F.A., Gumaei, A., Derhab, A., Hussain, A.: A novel two-stage deep learning model for
efficient network intrusion detection. IEEE Access 7, 30373–30385 (2019)

 39. Al-Qatf, M., Lasheng, Y., Al-Habib, M., Al-Sabahi, K.: Deep learning approach combining
sparse autoencoder with svm for network intrusion detection. IEEE Access 6, 52843–52856
(2018)

 40. Ahmad, J., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detec-
tion system. In: Proceedings of the 9th EAI International Conference on Bio-Inspired Informa-
tion and Communications Technologies (Formerly BIONETICS), BICT’15, pp. 21-26. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering),
Brussels, BEL (2016)

 41. Niyaz, Q., Sun, W., Javaid, A.Y.: A deep learning based ddos detection system in software-
defined networking (SDN). CoRR, abs/1611.07400 (2016)

 42. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoen-
coders: learning useful representations in a deep network with a local denoising criterion. J.
Mach. Learn. Res. 11, 3371–3408 (2010)

 43. Aygun, R.C., Yavuz, A.G.: Network anomaly detection with stochastically improved autoencoder
based models. In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Com-
puting (CSCloud), pp. 193–198 (2017)

 44. Yu, Y., Long, J., Cai, Z.: Session-based network intrusion detection using a deep learning archi-
tecture. In: Vicenç, T., Yasuo, N., Aoi, H., Sozo, I., (eds.), Modeling Decisions for Artificial
Intelligence, pp. 144–155. Springer International Publishing, Cham (2017)

 45. Yu, Y., Long, J., Cai, Z.: Network intrusion detection through stacking dilated convolutional
autoencoders. Secur. Commun. Netw. (2017)

 46. Rifai, S., Vincent, P., Muller, X., Glorot, X., Bengio, Y.: Contractive auto-encoders: Explicit
invariance during feature extraction. In: Proceedings of the 28th International Conference on
International Conference on Machine Learning, ICML’11, pp. 833–840. Omnipress, Madison,
WI (2011)

 47. Wang, W., Du, X., Shan, D., Qin, R., Wang, N.: Cloud intrusion detection method based on
stacked contractive auto-encoder and support vector machine. IEEE Trans. Cloud Comput., p. 1
(2020)

 48. Salama, M.A., Eid, H.F., Ramadan, R.A., Darwish, A., Hassanien, A.E.: Hybrid intelligent intru-
sion detection scheme. In: António, G.-C., Ricardo, T., Gerald, S., Lino, C., (eds.) Soft Comput-
ing in Industrial Applications, pp. 293–303. Springer, Berlin, Heidelberg (2011)

1 3

Journal of Network and Systems Management (2023) 31:5 Page 21 of 22 5

 49. Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y..: Self-taught learning: transfer learning from
unlabeled data. In: Proceedings of the 24th International Conference on Machine Learning,
ICML ’07, pp. 759–766. Association for Computing Machinery, New York, NY (2007)

 50. Papamartzivanos, D., Mármol, F.G., Kambourakis, G.: Introducing deep learning self-adaptive
misuse network intrusion detection systems. IEEE Access 7, 13546–13560 (2019)

 51. Lake, B.M., Salakhutdinov, R., Gross, J., Tenenbaum, J.B.: One shot learning of simple visual
concepts. Cognit. Sci., 33 (2011)

 52. Koch, G.., Zemel, R., Salakhutdinov, R. et al.: Siamese neural networks for one-shot image rec-
ognition. In: ICML Deep Learning Workshop, vol. 2. Lille (2015)

 53. Hsiao, S.-C.., Kao, D.-Y., Liu, Z.-Y., Tso, R.: Malware image classification using one-shot learn-
ing with siamese networks. In: Procedia Comput. Sci., 159, 1863–1871 (2019). (Knowledge-
Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International
Conference KES2019)

 54. Tran, T.K., Sato, H., Kubo, M.: Image-based unknown malware classification with few-shot
learning models. In 2019 Seventh International Symposium on Computing and Networking
Workshops (CANDARW), pp. 401–407 (2019)

 55. Tang, Z., Wang, P., Wang, J.: Convprotonet: deep prototype induction towards better class repre-
sentation for few-shot malware classification. Appl. Sci., 10(8) (2020)

 56. Hindy, H., Tachtatzis, C., Atkinson, R., Bayne, E., Bellekens, X.: Developing a siamese network
for intrusion detection systems. In: Proceedings of the 1st Workshop on Machine Learning and
Systems, EuroMLSys ’21, pp. 120–126. Association for Computing Machinery, New York, NY
(2021)

 57. Osada, G., Omote, K., Nishide, T.: Network intrusion detection based on semi-supervised vari-
ational auto-encoder. In: Simon, N.F., Dieter, G., Einar, S. (eds.) Computer Security—ESORICS
2017, pp. 344–361. Springer International Publishing, Cham (2017)

 58. Said Elsayed, M., Le-Khac, N.-A., Dev, S., Jurcut, A.D.: Network anomaly detection using lstm
based autoencoder. In: Proceedings of the 16th ACM Symposium on QoS and Security for Wire-
less and Mobile Networks, Q2SWinet ’20, pp. 37–45. Association for Computing Machinery,
New York, NY (2020)

 59. Aouedi, O., Piamrat, K., Bagadthey, D.: A semi-supervised stacked autoencoder approach for
network traffic classification. In: 2020 IEEE 28th International Conference on Network Protocols
(ICNP), pp. 1–6 (2020)

 60. Aouedi, O., Piamrat, K., Muller, G., Singh, K.: Fluids: federated learning with semi-supervised
approach for intrusion detection system. In: 2022 IEEE 19th Annual Consumer Communications
Networking Conference (CCNC), pp. 523–524 (2022)

 61. Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection:
a feature relevance analysis on kdd 99. In: PST (2005). Accessed 13 April 2020

 62. Kayacik, H.G., Zincir-Heywood, A.N., Heywood, M.I.: Selecting features for intrusion detection:
a feature relevance analysis on kdd 99. In: PST (2005)

 63. Pytorch.: https:// github. com/ pytor ch/ pytor ch (2022)
 64. Kingma, D.P., Ba, J.A.: A method for stochastic optimization. arXiv: 1412. 6980 (2014)
 65. Sommer, R., Paxson, V.: Outside the closed world: On using machine learning for network intru-

sion detection. In: 2010 IEEE Symposium on Security and Privacy, pp. 305–316 (2010)
 66. van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605

(2008)
 67. Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.: Statistical analysis of honeypot

data and building of kyoto 2006+ dataset for nids evaluation. In: Proceedings of the First Work-
shop on Building Analysis Datasets and Gathering Experience Returns for Security, BADG-
ERS’11, pp. 29–36. Association for Computing Machinery, New York, NY (2011)

 68. Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: Toward generating a new intrusion detection
dataset and intrusion traffic characterization. In Proceedings of the 4th International Confer-
ence on Information Systems Security and Privacy—Volume 1: ICISSP, pp. 108–116. INSTICC,
SciTePress (2018)

 69. Gharib, A., Sharafaldin, I., Lashkari, A.H., Ghorbani, A.A.: An evaluation framework for intru-
sion detection dataset. In: 2016 International Conference on Information Science and Security
(ICISS), pp. 1–6 (2016)

 70. Ring, M., Wunderlich, S., Scheuring, D., Landes, D., Hotho, A.: A survey of network-based
intrusion detection data sets. CoRR, abs/1903.02460 (2019)

https://github.com/pytorch/pytorch
http://arxiv.org/abs/1412.6980

 Journal of Network and Systems Management (2023) 31:5

1 3

5 Page 22 of 22

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Kohei Shiomoto Kohei Shiomoto is a Professor, Tokyo City University, Tokyo Japan. Since joining
NTT Laboratories in 1989, he has been engaged in research and development in the data communications
industry on high-speed computer network architecture, traffic management, and network analysis. From
1996 to 1997, he was a visiting scholar at Washington University in St. Louis, MO, USA. In 2017, he
joined Tokyo City University to engage in research and education on data science and computer network-
ing. Current research interests include data mining for network management, human flow analysis, cloud
computing and blockchain. He is a Fellow of the Institute of Electronics, Information and Communica-
tion Engineers (IEICE), a Senior Member of the IEEE, and a member of the ACM and the Information
Processing Society of Japan (IPSJ).

	Network Intrusion Detection System Based on an Adversarial Auto-Encoder with Few Labeled Training Samples
	Abstract
	1 Introduction
	2 Related Work
	3 Training Dataset
	3.1 Limited Quantity of Labeled Data
	3.2 The NSL-KDD Dataset

	4 Semi-supervised Learning
	4.1 AAE
	4.2 Proposed Method
	4.2.1 Architecture
	4.2.2 Workflow of the Proposed Method

	5 Evaluation
	5.1 Neural Network Parameters
	5.2 Dataset
	5.3 Effectiveness of the Proposed Method
	5.4 Dimensionality of the Latent Variable
	5.5 Computation Time

	6 Conclusions
	Acknowledgements
	References

