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Abstract
Network intrusion detection systems (NIDS) are critical to defending network sys-
tems from cyber attacks. Recently, machine learning has been applied to enhance 
NIDS capability. To train a supervised machine-learning model, a large number of 
labeled training samples are required to achieve practical performance. However, 
labeling data samples is a costly task. Additionally, obtaining anomaly data sam-
ples is difficult because trends in network traffic that are subject to NIDS change 
daily, and new attacks continue to be generated. To address this issue, we propose 
a semi-supervised machine-learning-based NIDS that reduces the required number 
of labeled training samples by applying an adversarial auto-encoder (AAE) tech-
nique. We evaluated the proposed method through a series of experiments and con-
firmed that the proposed AAE-based NIDS achieves performance comparable to 
that of multi-layer perceptron-based NIDS with only 0.1% of the labeled training 
samples. We also confirmed that the selection of data samples for annotation does 
not affect the performance of the proposed AAE-based NIDS. We also evaluated 
the relationship between the performance of the proposed method and the dimen-
sion of its latent-variable vector. The best performance as measured by recall and F1 
score occurred when the dimensionality of the latent variable vector was 10, which 
suggests that this structure allows for accurate decomposition of attack and normal. 
This study presents promising results obtained by the proposed semi-supervised 
learning method with a reduced number of labeled training samples, which reduces 
the operational costs of a machine-learning-based NIDS.
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1 Introduction

A network intrusion detection system (NIDS) monitors activities in a network 
and classifies them as “benign” or “malicious” [1, 2]. Recently, machine learn-
ing has been applied to enhance the capabilities of anomaly-detecting NIDS [3]. 
A problem that hinders widespread application is the required number of labeled 
training samples to achieve practical performance. The more training data used, 
the better the performance. However, labeling data samples is a costly task that 
requires a human operator to examine each data item, classify it, and label it. 
Additionally, trends in network traffic that are subject to NIDS auditing change 
daily, and new attacks continue to generate. Hence, labeling work must be done 
constantly, creating numerous problems.

To address this issue, we propose a semi-supervised machine-learning-based 
NIDS that reduces the required number of labeled training samples. We use a 
smaller set that would ordinarily result in poor performance for supervised learn-
ing classification. To avoid this, our semi-supervised learning method exploits 
unlabeled training samples, which does not require costly human labor. We use an 
adversarial auto-encoder (AAE) to realize semi-supervised learning in this fash-
ion [5] alongside a generative adversarial network (GAN) [4]. These two compo-
nents comprise the key building blocks of our method [5]. The auto-encoder (AE) 
reduces the dimensionality of input data by extracting and maintaining important 
features as a latent variable vector, whereas the GAN employs a generator and a 
discriminator such that the latent-variable vector of the AE follows an arbitrary 
distribution for regularization. In our proposed method, we divide the latent-var-
iable vector into two subset vectors: one for classification and the other for traffic 
feature representation. Using unlabeled data samples only, the AE is trained to 
extract two latent-variable vectors, and the GAN is trained to allow them to fol-
low categorical and Gaussian distributions, respectively. Then, using labeled data 
samples, the AE is trained to minimize the cross-entropy error. Finally, the latent-
variable vector for classification is used to classify the input data as normal or as 
an attack.

In our earlier work [6], we reported preliminary evaluation results. In this 
study, we investigate the performance of the proposed method through a series of 
detailed experiments to answer the following questions:

• How many unlabeled training samples are required to obtain practical perfor-
mance?

• Does the selection of labeled training samples affect performance?
• How many dimensions does the latent-variable vector require to extract the 

traffic features needed to build the NIDS?

We evaluate the proposed method through a series of experiments and confirm 
that the proposed AAE-based NIDS achieves performance comparable to that of 
multi-layer perceptron (MLP)-based NIDS with only 0.1% of the labeled train-
ing samples. We confirm that when the number of labeled data samples is small, 
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the accuracy does not diminish. Moreover, the selection of data samples for 
annotation does not affect the performance of our proposed AAE-based NIDS. 
We also confirm that the best performance as measured by recall and F1 score 
occurs when the dimensionality of the AE’s latent variable vector is 10, which 
suggests that this structure can decompose the attack and normalize communi-
cations expediently. Hence, we show that the proposed AAE-based NIDS effec-
tively uses a small number of labeled training data samples to reduce the need for 
costly human labor while improving performance with the support of unlabeled 
data. This study demonstrates promising results that will be useful to industry 
and academia.

The rest of this paper is organized as follows. Section 2 describes related work. 
Section 3 discusses the dataset used for training the machine-learning-based NIDS. 
Section 4 presents the proposed method. Section 5 evaluates the proposed method 
via experiments. Section 6 concludes the paper.

2  Related Work

Various machine-learning algorithms have been applied to anomaly-type NIDS [3, 
7, 8]. In the early stages of research on the application of machine learning to NIDS 
approximately 20 years ago, attention was focused on shallow learning methods [9] 
such as K-nearest-neighbor, naive Bayes, the C4.5 decision tree algorithms [10], 
Principal Component Analysis [11], and support vector machines (SVM) [12, 13]. 
Feature engineering is important in shallow machine learning, and methods have 
been proposed to extract the 10 top-ranked features from the Network Security Lab-
oratory Knowledge Discovery in Databases (NSL-KDD) dataset by making use of 
the information gain [14, 15]. Multivariate correlation analyses with the support of a 
dissimilarity measure were conducted to improve accuracy [16].

It is generally believed that there is no single model that will solve different prob-
lems simultaneously. Indeed, even if multiple models were highly effective for a 
given problem, finding the best model for different data distributions or statistical 
mixtures would be difficult. Ensemble learning is the practice of combining multiple 
models to improve predictive performance. Several studies have been conducted on 
the application of ensemble learning to NIDS [17–21].

Recent advances in deep learning have stimulated research on how to realize 
NIDS without having to conduct feature engineering. Spectral clustering and a deep 
neural network have been applied for a NIDS for sensor networks [22]. A recurrent 
neural network (RNN)-based NIDS [23–25] including a long short-term memory 
(LSTM)-based one [26] were proposed. A convolutional neural network (CNN) was 
applied [27]. A CNN and LSTM were used for feature extraction to capture spatio-
temporal features [28].

A GAN was used to extract statistical features [29].
The attention mechanism was used to perform feature learning by highlighting 

the key input of sequential network flow data composed of packet vectors in a bidi-
rectional LSTM model [30].
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Auto-encoders (AEs) are considered suitable for anomaly-type NIDS because 
they can determine whether a deviation from a previously learned normal state is 
detected based on whether the reconstruction error is within a threshold value [31].

A robust AE was proposed [32] to address issues of denoising [33, 34], requiring 
noise-free data. A maximum correntropy AE was proposed [35] to provide represen-
tations influenced by the outliers and noise. AE reconstruction errors were used to 
augment and train the classifier [15]. A stacked AE was proposed to extract features 
from log data of n-gram hypertext transmission protocols [36].

Several authors proposed NIDS comprising AEs and/or deep belief networks to 
extract feature representations followed by classifiers. NIDSes have been proposed 
based on an asymmetric AE [37], a stacked AE [38], and a sparse AE [39–41]. Sto-
chastic denoising AE [42] was applied to different NIDSes [43–45], and a stacked 
contractive AE [46] was applied to yet another NIDS [47]. A deep belief network 
was employed [48], using a classifier during the second stage based on various shal-
low-learning algorithms (e.g., random forest [37], SVMs [39, 47, 48], and soft-max 
classifiers [38, 40, 41, 40–41]). Self-taught [49] learning-based NIDSes were pro-
posed [39–41, 50].

Although there have been several studies in which machine learning algorithms 
were applied, few have investigated the problems caused by having only a small 
number of labeled training samples.

Overfitting occurs when a model is trained on a small sample. One-shot learn-
ing and few-shot learning, which are inspired by the human ability to learn things 
from a few examples, have been proven to train a model with a small number of data 
instances and achieve high performance for image recognition [51, 52]. Recently, 
one-shot learning and few-shot learning have been applied to network security in the 
area of malware detection, where malware is converted to image data [53–55].

More recently, one-shot learning with Siamese networks was applied to a NIDS 
[56] to learn pair similarities rather than features that are unique to each class, 
although open questions remain, including that careful consideration should be 
given to ensure the same number of training pairs for all class combinations when 
creating the training set.

Semi-supervised learning is another approach to solving the problem of overfit-
ting due to a small quantity of labeled training data.

Semi-supervised learning models based on the variational auto-encoder (VAE) 
have been proposed [57], and in our previous work [6], Adversarial Auto-Encoder 
(AAE) for semi-supervised learning NIDS was proposed and preliminary evaluated. 
While the VAE assumes that the underlying distribution of the latent variable is 
Gaussian, our AAE-based method is more general and assumes that any distribution 
can be used as the underlying distribution of the latent variable.

A hybrid method using an LSTM auto-encoder and a one-class SVM that uses 
only normal class examples in the training dataset has also been proposed [58].

A stacked sparse autoencoder (SSAE)-based semi-supervised deep learning mod-
els [59] and their extension to federated learning (FL) [60], which combines unsu-
pervised feature extraction and supervised classification algorithms to make use of 
information from both unlabeled and labeled data, have been proposed in recent 
years.
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Those approaches are in the early stages of research. Even if a model is very 
effective for a given problem, it is very difficult to find the best model for different 
data distributions and statistical mixtures. In order to find the appropriate approach 
for the problem, the characteristics of these approaches should be investigated in 
detail. In this paper, we present the performance of the method proposed in our ear-
lier work [6] through a series of detailed experiments.

3  Training Dataset

3.1  Limited Quantity of Labeled Data

A typical machine learning workflow comprises a pre-training phase in which clus-
tering is performed using unsupervised learning, a data annotation phase in which 
human operators manually examine data samples and attach labels, and a supervised 
learning phase in which the classifier is trained using the set of labeled data. For 
the classification task, existing supervised-learning algorithms require a dataset of 
high quality containing a sufficient quantity of human-annotated data samples for 
training. Because annotation is an extremely costly and time-consuming task, a new 
method is needed to enable more efficient classifier training. Furthermore, obtaining 
anomaly data samples is difficult because trends in network traffic that are subject to 
NIDS oversight change daily, and new attacks continue to be generated. This quickly 
leads to unbalanced datasets that must be updated continuously .

3.2  The NSL‑KDD Dataset

To investigate the effect of the number of labeled data samples, we use the NSL-
KDD dataset [9] as a benchmark. This dataset has been used extensively to evaluate 
machine-learning-based NIDS methods. NSL-KDD is an enhanced version of the 
KDD CUP 99 [61, 62] dataset, used in the Third International Knowledge Discovery 
and Data Mining Tools Competition, which was held in conjunction with the Fifth 
International Conference on Knowledge Discovery and Data Mining (KDD-99). 
The competition task was to build a predictive network intrusion detector capable 
of distinguishing between intrusions and normal connections. The database con-
tains a standard set of data to be audited, which includes a wide variety of intrusions 
simulated in a military network environment. A major criticism of the KDD CUP 
99 dataset [61] pertains to its large degree of redundancy. Therefore, the authors of 
the NSL-KDD paper [9] removed duplicates and created more sophisticated sub-
sets. This dataset is divided into KDDTrain+ (125,973 data records) for training and 
KDDTest+ (22,544 data records) for testing.

This dataset consists of records of traffic sent and received between source and 
destination internet protocol (IP) addresses. It was created from transport control 
protocol (TCP) dump data from 7 weeks of network traffic processed into about 
five million connection records. Similarly, two weeks of testing data yielded 
approximately two million connection records. Each traffic sample has 41 features 
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categorized into three types: basic, content-based, and traffic-based. Among these, 
some are categorical protocol types that have three possible values (i.e., tcp, udp, 
and icmp), a flag that has 11 possible values (SF, S1, REJ, etc.), and a service that 
has 70 possible values (http, telnet, ftp, etc.). Instead of coding each categorical 
data into scalar values, we adopt a one-hot vector representation, resulting in 122 
features.

All data are labeled as “normal” or “anomaly”. Attacks in the dataset are classi-
fied into four categories according to their characteristics: denial-of-service (DOS), 
remote-to-local (R2L) (i.e., unauthorized access from a remote machine), user-to-
remote (U2R) (i.e., unauthorized access to local superuser (root) privileges), and 
probes (e.g., surveillance and port scanning).

The details of each category are described in Table 1. The KDDTrain+ dataset 
contains 22 types of data, and the KDDTest+ dataset contains 38 types. Some spe-
cific attack types (boldface) in the testing dataset do not appear in the training data-
set. KDDTest+ contains 17 types of attack data that are not in KDDTrain+, and 
KDDTrain+ contains two types of attack data that are not in KDDTest+. This ren-
ders the detection scenario more realistic. Therefore, the KDDTest+ dataset is a reli-
able indicator of performance with respect to attacks that have not been seen previ-
ously, such as zero-day attacks and variants of existing attack types.

4  Semi‑supervised Learning

4.1  AAE

Supervised learning requires a large number of data instances to achieve practical 
performance. The more training data used, the better the classifier performance. 
Unfortunately, obtaining a large quantity of training data is costly. Unlike super-
vised models, semi-supervised learning requires just a small set of labeled data for 
training.

Table 1  Attack types in the NSL-KDD dataset [9] Attack types written in bold in the testing dataset do 
not appear in the training dataset.

Category Training Dataset Testing Dataset

DoS back, land, neptune, pod, smurf, teardrop back, land, neptune, pod, smurf, teardrop, mail-
bomb, processtable, udpstorm, apache2, 
worm

R2L fpt-write, guess-passwd, imap, multihop, 
phf, spy, warezclient, warezmaster

fpt-write, guess-passwd, imap, multihop, phf, 
spy, warezmaster, xlock, xsnoop, snmpguess, 
snmpgetattack, httptunnel, sendmail, 
named

U2R buffer-overflow, loadmodule, perl, rootkit buffer-overflow, loadmodule, perl, rootkit, 
sqlattack, xterm, ps

Probe ipsweep, nmap, portsweep, satan ipsweep, nmap, portsweep, satan, mscan, saint
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Therefore, to improve the performance of NIDS, we propose to use semi-supervised 
learning to take advantage of unlabeled training data and reduce the need for human 
intervention.

We apply AAE to implement the semi-supervised learning algorithm. Figure 1 pre-
sents the architecture of the AAE, which comprises an AE and a GAN as its key build-
ing blocks. The AE reduces the dimensionality of input data by extracting and main-
taining important features as a latent variable vector, z, whereas the GAN employs the 
generator and discriminator so that z follows an arbitrary distribution for regularization. 
Hence, an AAE can be viewed as an AE that forces hidden variables to follow any 
desired distribution.

In an AAE, the latent variable vector of the AE is regularized by the discriminator 
of the GAN in order to match an arbitrary prior, p(z), to the aggregated posterior, q(z), 
of the latent variable vector, z. Let x be the input and z be the latent variable vector of 
the AE. Let q(z ∣ x) be an encoding distribution and p(x ∣ z) be a decoding distribution. 
Further, let pd(x) be the data distribution and p(z) be the prior distribution we want to 
force the latent variable vector to follow. The encoding function of the AE, q(z ∣ x) , 
defines a posterior distribution of q(z) on the latent variable vector of the AE as follows:

The adversarial network and the AE are trained jointly using the stochastic gradient 
descent (SGD) method. As the learning progresses, the AAE can match the arbi-
trary prior, p(z), to the aggregated posterior, q(z). Then, z follows the prior distribu-
tion. Thus, the encoder of the AE is regarded as the GAN generator. As such, z is 
regarded as the generated data. The discriminator discriminates the z generated by 
the AE that follows the distribution of q(z) from the sample generated by the genera-
tor that follows the distribution of p(z). It yields the probability that input data come 
from the sample of the arbitrary prior, p(z).

(1)q(z) = ∫x

q(z ∣ x)pd(x)dx

Fig. 1  AAE Architecture
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4.2  Proposed Method

4.2.1  Architecture

Figure  2 shows the architecture of the proposed method. We assume that there 
should be complex latent expressions behind normal and anomaly communications. 
The AE extracts two latent variable vectors, z1 and z2 , to hold the features of the 
input data. The encoder, q(z1, z2 ∣ x) , generates z1 and z2 , where z1 holds the features 
representing the class information (i.e., “normal” or “attack”)and z2 holds the other 
features. The z1 corresponding to the categorical distribution is designed to record 
the label associated with the input data. We use z2 to impose the Gaussian distribu-
tion in order to preserve detailed features other than class information. The z2 cor-
responding to the Gaussian distribution is designed to separate clusters.

The proposed AAE employs two pairs of generative models and discriminators to 
regularize the latent variables z1 and z2 . One follows a categorical distribution and 
the other a Gaussian distribution. A categorical distribution, cat(z1) , is used to force 
z1 to represent only the class datum, whereas a Gaussian distribution, N(z2 ∣ 0, I) , is 
used to force z2 to represent other information. The categorical distribution takes the 
same number of one-hot values as the number of classes. In our method there are 
two classes, “normal” or “attack”. The latent variable z1 is learned by the discrimi-
nator to hold a one-hot vector. As such, classification can be performed by referring 
to the value of z1 estimated by the encoder.

4.2.2  Workflow of the Proposed Method

We train the AAE using unlabeled data. A latent variable z1 corresponding to the 
categorical distribution is designed to record the label associated with the input data. 
A latent variable z2 corresponding to the Gaussian distribution is designed to sepa-
rate clusters. Therefore, it is assumed that input data are generated by a latent class 
variable z1 that comes from a categorical distribution and a latent variable z2 that 

Fig. 2  Architecture of an AAE using semi-supervised learning
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comes from a Gaussian distribution. When labeled data are available, we train the 
AAE by using the label instead of the categorical generative model. When the AAE 
is trained, it is used to classify new incoming data. The latent variable z1 in the mid-
dle hidden layer indicates the inferred class associated with the input data. As such, 
at the time of detection, classification is performed by a latent variable z1 that repre-
sents the class information, indicating whether the input data are normal or anomaly.

The middle of Fig. 2 is the neural network of the AE that reduces the dimension-
ality of the input data (Input(X)) and generates latent-variable vectors (z1, z2) . The 
top of Fig. 2 is the neural network of the discriminator that imposes a categorical 
distribution on a latent class variable vector z1 , as a prior distribution. Therefore, 
the distribution of z1 is guaranteed to match the categorical distribution. Hence, only 
class information that is required to detect an attack is extracted from the latent-
variable vectors. The bottom of Fig. 2 is the neural network of the discriminator that 
imposes a Gaussian distribution on a latent class variable z2 , as a prior distribution. 
Therefore, the distribution of z2 is guaranteed to match a Gaussian distribution. The 
semi-supervised AAE is trained with the SGD in three phases as follows: 

1. Reconstruction phase: the encoder and decoder are updated. Optimizes the param-
eters of the AE to minimize reconstruction error for input and output data. Only 
unlabeled data are used in this phase. The AE generates the latent-variable vectors 
z1 and z2 from unlabeled data in this phase.

2. Regularization phase: each discriminator is trained to discriminate the latent-
variable vector, z1 , or sample the categorical distribution, and to discriminate 
the latent variable vector, z2 , or sample the Gaussian distribution. The AE is 
optimized based on the determination result of the discriminator. This training is 
based on Eq. (1).

3. Semi-supervised classification phase: the AE is updated to minimize the cross-
entropy error on labeled data. In this phase, we conduct semi-supervised learning 
using labeled data.

After the AAE is trained, the latent variable z1 is used to classify whether the input 
data are normal.

5  Evaluation

5.1  Neural Network Parameters

We implemented the proposed AAE method using Pytorch [63]. To compare the 
proposed method to an existing one, we also implemented an MLP-based deep neu-
ral network (DNN). We use an ADAM optimizer [64] for both models. We also 
added dropout and batch normalization to prevent overfitting during the training 
phase. The architecture of the MLP model and that of our AAE model are shown in 
Fig. 3. In this example, regarding the AAE, the encoder has 122 inputs that are com-
pressed into the important features, yielding 52 (= 2 + 50) outputs (two for z1 and 
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50 for z2 ). The decoder receives 52 inputs from the hidden middle layer that has the 
latent variable vectors ( z1 and z2 ) and yields 122 outputs. Both the encoder and the 
decoder have a middle fully-connected layer with a size of 1000 × 1000 . They also 
have a drop-out layer with batch normalization between layers. The discriminator for 
the categorical distribution ( z1 ) receives two inputs and yields one output (“Fake” or 
“Real”). The discriminator for the Gaussian distribution ( z2 ) receives 50 inputs and 
yields one output (“Fake” or “Real”). Both discriminators for the categorical distri-
bution ( z1 ), and the Gaussian distribution ( z2 ) have a middle fully-connected layer 
with a size of 1000 × 1000 . They also have batch normalization between layers.

5.2  Dataset

To investigate the impact of the small number of labeled data samples, we created 
10 training datasets by randomly selecting data samples from KDDTrain+ (125,973 
data items) as labeled data. psample is a fraction of labeled samples randomly selected 
over the total from KDDTrain+. We used KDDTest+ (22,544 data items) for testing.

When psample is small, the way the selected data samples are distributed will 
strongly affect the performance of the machine learning-based NIDS. Here, if we 
were to use supervised learning instead of our proposed semi-supervised learning, 
we would need to select the label data carefully. If by chance we can select “good” 
or “representative” data samples for training, supervised learning may succeed in 
constructing a valid model. Conversely, if a “bad” data sample is selected, a valid 
model cannot be obtained by supervised learning. Therefore, given the constraint 
that only a small number of labeled data samples can be chosen, supervised learning 

Fig. 3  Architecture of the AAE and DNN
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requires careful selection of the samples to be labeled. In contrast, our proposed 
semi-supervised learning is expected to require less careful selection of samples to 
label.

5.3  Effectiveness of the Proposed Method

To reduce the required number of labeled data samples in the training dataset, we 
propose a semi-supervised machine-learning-based NIDS that applies an AAE tech-
nique. The first question is “How many labeled data samples are required in the 
training dataset?” The AAE-based NIDS uses the structure of the unlabeled data-
sample distribution to improve the accuracy of the boundaries between adjacent 
classes calculated from the labeled samples. We examine how the AAE-based NIDS 
improves its performance by taking advantage of the unlabeled samples, avoiding 
the need for costly human labor.

Figure  4 shows the performance of the AAE-based NIDS, including accuracy, 
precision, recall, and F1 score,

when using 0.1% of the training data of the NSL-KDD dataset as labeled (i.e., 
psample = 0.001). In Fig.  4, the horizontal axis represents the number of unlabeled 
training samples. In Fig.  4, the performance of the MLP is shown for comparison 
(see the four rightmost bars). Amongst the performance measures, false-negative 
and false-positive ratios are important because the false detection risk is very high 
with NIDS [65]. Focusing on the recall in Fig. 4, we observe that the AAE-based 
NIDS achieves higher recall than the MLP-based NIDS. We confirm that the pro-
posed AAE-based NIDS achieves performance comparable to the MLP-based NIDS 
with only 0.1% of labeled data samples in the training dataset.

The next question is “How many unlabeled data samples are required in the 
training dataset?”. Figure 4 shows that adding unlabeled data samples causes the 

Fig. 4  Performance of the AAE-based NIDS (accuracy, precision, recall, and F1 score) as a function of 
the fraction of labeled data samples over the total data samples in KDDTrain+ ( psample=0.001)
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performance of the AAE-based NIDS to improve. Thus, we confirm that the AAE-
based NIDS takes advantage of the structure of the unlabeled data sample distribu-
tion to improve the accuracy of the boundaries between adjacent classes calculated 
from the labeled data samples. We note that the addition of a small number of unla-
beled data samples effectively improves performance.

We investigated the effect of psamples on the AAE-based NIDS, to determine the 
number of labeled data samples required to improve performance. Figures 5 and 6 
show the results with psamples = 0.01 and 0.0001 (i.e., using 1% and 0.01% of the 

Fig. 5  Performance of the AAE-based NIDS (i.e., accuracy, precision, recall, and F1 score) as a function 
of the fraction of labeled data samples over the total data samples in KDDTrain+ ( psample=0.01)

Fig. 6  Performance of the AAE-based NIDS (i.e., accuracy, precision, recall, and F1 score) as a function 
of the fraction of labeled data samples over the total data samples in KDDTrain+ ( psample=0.0001)
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training data of NSL-KDD dataset as labeled samples). The horizontal axis repre-
sents the number of unlabeled data samples in Figs. 5 and 6. As observed, we con-
firm that the AAE-based NIDS improves its performance by increasing the num-
ber of unlabeled data samples. By comparing Figs. 5 and 6, we observe that both 
the AAE- and MLP-based NIDS yield better variable results with wider confidence 
intervals with psamples = 0.01 than with psamples=0.0001. We believe that the reason 
for this is as follows. When psamples=0.0001, the number of labeled data sample is so 
small that the way the selected data samples are distributed has a strong influence on 
the performance of machine learning-based NIDS. That is, the number of labeled 
data samples per class is only 12. If we coincidentally select and label representative 
training samples, we might succeed in building a good model, whereas if we fail to 
select and label representative data samples, we might not. However, when psamples
=0.01, the number of labeled data sample is sufficient to select and label representa-
tive data samples to avoid such variance. That is, the number of labeled data sam-
ples per class is 1,259. Thus, AAE- and MLP-based NIDS both yield higher variable 
results with wider confidence intervals at psamples=0.0001 than those with psamples = 
0.01.

5.4  Dimensionality of the Latent Variable

We are interested in how the proposed AAE successfully extracts feature rep-
resentations of normal and anomaly traffic. Hence, we evaluated the effect of the 
dimensionality of the latent variable. Figure 7 shows the performance of the pro-
posed AAE-based NIDS as a function of dimension sizes of z2 = 2, 10, and 50. As 
observed in Fig. 7, z2 = 10 achieves the best performance (i.e., recall and F1 score).

To investigate the mechanism behind the AAE successfully classifying data, 
we visualize how well the latent variable represents a distinctive set of features 

Fig. 7  Performance of the AAE-based NIDS (i.e., accuracy, precision, recall, and F1 score) as a function 
of the dimensionality of the AE, z2
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of input traffic. To visualize the multidimensional latent variable, we employed 
T-distributed stochastic neighbor embedding (t-SNE) [66] to reduce the dimen-
sionality of the data. t-SNE is well suited for embedding high-dimensional data 
for visualization in a low-dimensional space. Specifically, it models each high-
dimensional object by a 2- or 3-dimensional point in such a way that similar 
objects are modeled by nearby points, and dissimilar objects are modeled by 
distant points having high probability. We used a t-SNE with a perplexity of 
50 and random state of zero. We used dimension sizes z2 = 2, 10, and 50, with 
psample=0.001. Figures  8, 9, and 10 show how the latent variable z2 represents 
a distinctive set of features from the input traffic when the dimensionality of z2 
is 2, 10, and 50. As observed in Fig. 9, z2 = 10 produces the clearest separation 
between normal and attack designations. Figures 8 and 10 show that z2 = 2 and 
50 produce separations that are less clear.

Fig. 8  Visualization of latent variable by t-SNE ( z2=2)
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5.5  Computation Time

We next discuss the computation time required to train the AAE and MLP. Figure 11 
shows the time required to train the AAE and MLP for various ratios of labeled data. 
The computing environment used in the experiment is shown in Table  2.

The learning rate and number of epochs were as shown in Table 3.
If the AAE is used for supervised learning, only the AE parameters need to be 

trained. Hence, as the ratio of labeled data increases, fewer training epochs are 
required and less computation time is needed to train the AAE. However, when the 
AAE uses unlabeled data, the two discriminators must be trained in addition to the 
AE training. As such, as the ratio of unlabeled data increases, more training epochs 
are required and more computation time is needed to train the AAE. As shown in 
Fig. 11, the ratio of labeled data is less than 5.0%, and the AAE requires more train-
ing time than the MLP. This is because the MLP trains one neural network, whereas 
the AAE trains one neural network for the AE and two for the discriminators.

Fig. 9  Visualization of latent variable by t-SNE ( z2=10)
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6  Conclusions

To reduce the required number of labeled training samples, we proposed a semi-
supervised machine-learning-based NIDS that applies an AAE technique. We 

Fig. 10  Visualization of latent variable by t-SNE ( z2=50)

Table 2  Computing 
Environment Hardware

OS Ubuntu 16.04
CPU Intel Pentium@3.50 GHz
GPU NVIDIA GeForce GTX1060 (6 GB)
RAM 8 GB
Software
Programming language Python (v.3.6)
Deep learning framework Pytorch (v.0.4.1)
CUDA version: 9.0
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evaluated the proposed method with a series of experiments and obtained the fol-
lowing results:

• The proposed AAE-based NIDS achieved performance comparable to that of 
an MLP-based NIDS with only 0.1% of the labeled data samples and the addi-
tion of a small number of unlabeled data samples.

• When the number of labeled data samples was small, the accuracy did not 
change, irrespective of the samples selected to be labeled; hence, the selection 
of data samples for annotation does not affect the performance of the proposed 
AAE-based NIDS.

• We demonstrated that the data structure dimensionality of z2=10 successfully 
extracted the essential features from the data samples and produced the clear-
est separation between normal and attack classifications, resulting in the best 
performance in terms of recall and F1 score.

Table 3  Hyperparameter values 
used for AAE and MLP training

Hyperparameter Value

AAE –
learning rate 1.0e-7
batch size 128
epochs (90%,10%) 30
epochs (1%) 300
epoch (0.1%,0.01%) 3000
dimensionality of the latent variable z1:2, z2:50
MLP
learning rate 1.0e-5
batch size 128
epochs (90%,10%,1%,0.1%,0.01%) 300

Fig. 11  Computing time 
required to train the AAE and 
MLP
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This study demonstrates promising results obtained by our novel semi-supervised 
learning method, which reduces the number of labeled training samples and greatly 
offsets the operational costs of a machine-learning-based NIDS.

Regarding future research directions, we should point out the applicability to 
real-world environments. In recent years, several publicly available datasets have 
been published [67–69]. These datasets may help us assess applicability to real-
world environments even though efforts to assess the applicability of public datasets 
for NIDS evaluation is still ongoing [70]. More importantly, a prototype system will 
be deployed in a real-world environment.
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