
Vol.:(0123456789)

Journal of Network and Systems Management (2022) 30: 75
https://doi.org/10.1007/s10922-022-09687-z

1 3

GENERAL SUBMISSION

XDP‑Based SmartNIC Hardware Performance Acceleration
for Next‑Generation Networks

Pablo Salva‑Garcia1  · Ruben Ricart‑Sanchez1 · Enrique Chirivella‑Perez1 ·
Qi Wang1 · Jose M. Alcaraz‑Calero1

Received: 6 December 2021 / Revised: 4 August 2022 / Accepted: 10 August 2022 /
Published online: 9 September 2022
© The Author(s) 2022

Abstract
Next-generation networks are expected to combine advanced physical and digital
technologies in super-high-speed connected system infrastructures, gaining criti-
cal operation competitiveness of improved efficiency, productivity and quality of
services. Towards a fully digital and connected world, these platforms will enable
infrastructure virtualization and support of edge processing, making emerging sec-
tors, such as Industry 4.0, ready to exploit its full potentials. Nevertheless, the fast
growth of data-centric and automated systems may exceed the capabilities of the
overall infrastructure beyond the radio access networks, becoming unable to fulfil
the demands of vertical sectors and representing a bottleneck. To minimize the nega-
tive effects that could affect critical services in a heavily loaded network, it is essen-
tial for network providers to deploy highly scalable and prioritisable in-network
optimisation schemes to meet industry expectations in next-generation networks.
To this end, this work presents a novel framework that leverages extended Berkeley
Packet Filter (eBPF) and eXpress Data Path (XDP) to offload network functions to
reduce unnecessary overhead in the backbone infrastructure. The proposed solution
is envisioned to be implemented as a Network Application (NetApp) service, which
will greatly benefit the compatibility with next-generation networking ecosystem
empowered by Artificial Intelligence (AI), advanced automation, multi-domain net-
work slicing, and other related technologies. The achieved results demonstrate key
performance improvements in terms of packet processing capacity as high as about
18 million packets per second (Mpps), system throughput up to 6.1 Mpps with 0%
of packet loss, and illustrate the flexibility of the framework to adapt to multiple net-
work policy rules dynamically on demand.

Keywords  5G/6G networks · Traffic engineering · Hardware acceleration · Network
Offloading · XDP · BPF · Programmable networking

Ruben Ricart-Sanchez, Enrique Chirivella-Perez, Qi Wang and Jose M. Alcaraz-Calero have
contributed equally to this work.

Extended author information available on the last page of the article

https://orcid.org/0000-0002-2804-7404
http://crossmark.crossref.org/dialog/?doi=10.1007/s10922-022-09687-z&domain=pdf

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 2 of 26

1  Introduction

The next-generation mobile networks (5G and beyond including pre-6G) entail
novel management solutions to accommodate a wide range of use cases with
advanced and heterogeneous requirements in terms of latency, resilience, cover-
age and bandwidth. It is envisioned that a radical revolution of societies is taking
place, with the societies become more and more data-centric, data-dependent and
automated, taking communications closer to the vision of Internet of Everything
(IoE) [1]. Industrial manufacturing process (Industry 4.0), autonomous systems,
and millions of Internet of Things (IoT) devices are increasingly connecting not
just people, but also vehicles, devices, wearables, and a broad range of sensors
[2]. The diverse requirements of future smart cities demand that current use
cases will evolve to more heterogeneous implementations whilst quality assur-
ance mechanisms such as network slicing are required to guarantee the Service-
Level Agreements (SLAs) for diverging use cases over the same physical network
[3]. Therefore, current 5G networks need to evolve to flexible architectures where
the diversity and performance needed for these new services are assured. With
the advent of virtualization and softwarisation technologies, operators expect
networks to support flexible and rapid deployment of their Network Services
(NSs) and Network Applications (NetApps). For example, in virtualised Mobile/
Multi-access Edge Computing (MEC) infrastructures, services can be migrated/
deployed at the edge, closer to the final user, to improve the overall service per-
formance on demand. Furthermore, there have been significant advances in radio
access technologies in 5G and beyond systems recently; however, the backbone
infrastructure could become a new bottleneck if it is not upgraded accordingly to
accommodate the rapidly growing traffic aggregated from the distributed radio
access networks. Moreover, to allow service quality assurance in the backbone
infrastructure, advanced packet processing capabilities for traffic engineering are
entailed without compromising the super-high traffic transmission speed of the
data plane, as expected in the next-generation networks.

Network Function Virtualization (NFV) and Software-Defined Networking
(SDN) technologies bring numerous advantages in terms of dynamicity and flex-
ibility to provide connectivity among the distributed NetApp deployment com-
ponents. Meanwhile, they also introduce added complexities to the overall man-
agement and control of the architecture. Furthermore, network traffic traversing
the data-plane of the infrastructure also becomes much more complex just when
networks need to transfer much greater amounts of data, at much higher speeds.
Particularly, the forwarding process of network packets is conducted by encapsu-
lating them into different network protocols to allow differentiating multiple ten-
ants, users and services, which makes it more complicated to perform any packet
processing tasks. Packets can be processed at multiple stages on their way from
the physical network interface until they reach the application service. However,
high-performance packet processing in software requires very strict limits on the
time spent in processing each packet, which has led to the idea of moving this
tasks to lower levels by leveraging hardware support. The overhead associated

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 3 of 26  75

to the software and virtualisation layers is imperative to address a synergy where
software and hardware should work together to face the new challenges intro-
duced by next-generation networks.

Contemporary Network Interface Cards (NICs) allow multiple receive and
transmit descriptor queues (multi-queue). On reception, a NIC can forward differ-
ent packets to different queues to distribute processing among CPUs, thus increas-
ing performance uniformly and applying traffic prioritization when necessary. This
mechanism is known as “Receive-side Scaling” (RSS). However, the filter used in
RSS is typically a hash function over the network and/or transport layer headers,
which is by far not enough to tackle the high level of network encapsulation imposed
by virtualised networks. Therefore, network packets reaching any physical host of
the infrastructure will be presented as only one flow, making network device driv-
ers not capable of handling the efficient distribution across multiple CPUs. The lack
of existing implementations capable of addressing the complexity of network traf-
fic flowing through virtualised multi-tenant architectures has an immediate conse-
quence in degrading the performance of the entire mobile network platform, invali-
dating any further optimization attempts in later stages. Furthermore, it is paramount
to any service provider to guarantee their SLAs specially for critical transmissions,
meaning that each service flow requires to be optimally accommodated and prior-
itized when required.

Latest advances in data-plane processing technologies have the potential for a
breakthrough in this direction. This study shows how the extended Berkeley Packet
Filter (eBPF) and the eXpress Data Path (XDP) can be explored to significantly
upgrade conventional implementations and make it possible to realize high-speed
custom packet processing that integrates seamlessly with existing systems, while
selectively tailoring network functions in a flexible way. Specifically, this work lev-
erages these technologies with the aim of accelerating next-generation network pro-
cessing tasks, ensuring that a target system uses all its resources to their maximum
capacity and avoiding packet loss by forwarding network traffic to other systems or
nodes when the local system is overloaded. The proposed solution is expected to be
applicable to 5G and beyond networks especially the emerging pre-6G networks. It
is noted that the various network segments along the end-to-end data plane in those
next-generation networks can benefit from the proposed technologies, including all
the non-radio-access-network segments such as the MEC segment, the transport net-
work and the core network. In addition, the proposed technologies can operate and
are fully compatible with the so-called Fixed 5G and Beyond Networks [4].

This paper contributes to the literature by filling the gap of existing packet-pro-
cessing implementations not being capable to deal with the complexity of network
traffic flowing through virtualised multi-tenant architectures and addresses the fol-
lowing challenges: (A) To create an environment to effectively manage the execu-
tion of tailored eBPF programs directly offloaded in the hardware, before the ker-
nel itself touches the packet data; (B) To enable packet processing to differentiate
among services of various priorities, including high-priority traffic that needs to be
handled as fast as possible, and non-prioritised traffic that can be forwarded when
necessary to other server nodes for further processing; (C) To increase the overall
system performance by distributing tasks among CPUs; (D) To design a framework

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 4 of 26

to act as a glue for all interested stakeholders or higher layers of next-generation
architectures, including vertical NetApp Management Platforms; and (E) To provide
results of the achievable performance, throughput and packet loss of the network
compared to traditional implementations.

The solution proposed envisions a decentralised management of dispatching
network traffic differentiation policies that can be highly useful for network slic-
ing implementations. Furthermore, an intensive empirical validation has been per-
formed to demonstrate the overhead, performance, viability and scalability of the
proposed framework.

The rest of the paper is organised as follows. Section 2 reviews the state of the
art of existing software and hardware network data paths technologies. Section 3
outlines the eBPF infrastructure. Section 4 attempts to define the fundamentals of
pre-6G networks and presents a proposed MEC architecture. Section 5 presents the
architecture, lifecycle management, other technical aspects and implementation
details of the proposed network accelerator framework. Section 6 depicts a holistic
view of the deployment and testbed implemented. This section also presents perfor-
mance and scalability test results to illustrate the findings. Finally, Sect. 7 summa-
rises the paper and outlines future research work.

2 � Literature Review

Achieving high throughput in packet processing is a key element in networks. Pack-
ets can be processed at different levels on their way from the physical network inter-
face until they reach the application. This section reviews the existing approaches
and techniques and highlights key technologies relevant to this work.

2.1 � Kernel Bypass Solutions

Programmable packet processing plays a key role to provide the capability to enable
the new business models expected in the pre-6G era. To avoid expensive context
switches between kernel and user space, there is increasing popularity of special-
purpose toolkits such as DPDK [5] for software packet processing, where a user-
space application takes the complete control of the networking hardware with the
while operating system (OS) bypassed. Similarly, there are also other frameworks
such as Netmap [6] and PF_RING [7], which offer high packet processing perfor-
mance without bypassing the kernel completely, whilst partially aiming to lower
the overhead of transporting packet data from the network device to a user-space
application. While these approaches can significantly increase performance, they
lack of easy integration with the existing system since applications have to re-imple-
ment functionality, otherwise exposed by the OS network stack. Instead, this paper
focuses on providing a solution that works in conjunction with the kernel network-
ing stack, thereby taking advantage of eBPF-XDP-based technologies, as these are
part of the mainline Linux kernel.

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 5 of 26  75

2.2 � Software‑Based Approaches

If no kernel bypass is performed, the driver builds new socket buffer (sk_buffer)
instances and packets are sent to the network stack. In the first level of this net-
work stack, the Traffic Control (TC) [8] is placed. TC is a packet scheduler
that provides hooking points in the Linux kernel and allows configuring differ-
ent queues disciplines for scheduling and shaping purposes. Apart from built-in
packets processing and classification capabilities, TC can also use u32 modules
for classifying and allows the attachment of eBPF programs. After TC, packets
reach Linux bridges or virtual switches for further processing. One of the most
commonly used tools at the bridging level is Open vSwitch (OVS) [9]. OVS is an
open-source virtual multi-layer distributed switch integrated in the mainstream
in the Linux kernel, which provides a switching stack for virtualised hardware
environments. After this, packets that need to be processed at the network level
will traverse multiple Netfilter hooks. Here, diverse packet filtering and mangling
expressions can be enforced by using the well-known user-space tool iptables
[10]. Iptables provides excellent performance for traditional networks especially
for firewalling purposes. However, it does not scale for high traffic rates and lacks
native support for tackling deeply encapsulated traffic in 5G as well as in the new
generation of mobile networks as expected.

Through the literature review, there are manifold studies that approach soft-
ware-level solutions to address this topic. In [11], an efficient virtual video-
optimization mechanism which maintains QoS in critical services is proposed.
This paper uses iptables to control and optimise video traffic in multi-tenant 5G
networks. Similarly, Matencio-Escolar et al. [12] presents an adaptive network
slicing solution for multi-tenant 5G IoT network. The implementation is based
on OVS and provides good performance for different IoT scenarios. Meanwhile,
the solution is also limited by the Linux kernel stack performance, which does
not scale up for more than 1-2M packets per second. Kurtz et al. [13] propose
and implement an SDN/NFV network slicing tool for 5G networks. They utilise
OVS and SDN controllers to control the network traffic. However, the data path
they propose does not fulfill the 5G requirements in terms of virtualisation; there-
fore, they do not use real 5G traffic for the experimentation. In [14], an algorithm
to provide information regarding the paths traversed by the network traffic in a
multi-tenant architecture is presented. This implementation uses P4 language to
create a flexible and programmable network data path that allows its scaling using
different network topologies. Although it provides a promising network algorithm
with strong impact in the creation of multi-tenant architectures, the data pre-
sented is based on simulations without performance evaluation with real network
traffic. Despite there are manifold software solutions in the related work, in this
particular area, any software approach may come too late because any degrada-
tion in network traffic performance may have already occurred.

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 6 of 26

2.3 � Hardware‑Based Programmability

Programmable hardware presents multiple advantages and disadvantages in com-
parison with software-based solutions. First, the use of Content-Addressable
Memory (CAM) provides constant access to memory and therefore, the number
of rules inserted does not necessarily implies more memory access time. Second,
hardware devices provide superior processing capabilities and thus, compared
with software implementations, higher performance and bandwidths. Nonethe-
less, these devices provide less flexibility in terms of programmability and also
the commercial cost is usually higher.

Intel has been producing in recent years several NICs with novel firewalling and
QoS capabilities [15–18]. The most advanced [18] provides a QoS-aware mecha-
nism based on a sophisticated scheduling algorithm composed of two different levels
of queues. However, this card only allows data paths based on the 5-tuple (Source
IP, Destination IP, Source Port, Destination Port, L4 protocol) filtering and Virtual
LAN (VLAN) classification. Moreover, the network rules granularity provided is too
limited, which is a strong limitation to perform the Deep Packet Inspection (DPI) in
the virtualised 5G/6G networks where transmissions are deeply encapsulated.

Therefore, the market is moving from conventional NICs to NICs based on Field-
Programmable Gate Arrays (FPGAs) and Network Processing Units (NPUs). These
technologies overcome the lack of flexibility and programmability of the network
data path in traditional NICs and they also reduce the overheads induced by the net-
work data processing in software implementations. FPGAs and NPUs are commonly
called as SmartNICs. They reduce CPU cycles, and save CPU cores and power, by
offloading CPU-intensive tasks to dedicated hardware. Furthermore, SmartNICs
provide the possibility of programming complex data planes and highly granular
network rules, both required in the next generation of mobile networks.

The FPGA [19] launched by Intel proposed open-source platform supported
by DPDK and targeted for different use cases, such as cyber security or Network
Functions Virtualisation (NFV). The programmable data path provided by this card
is based on Verilog [20] and VHDL [21]. Bittware [22] presents another FPGA-
based solution with P4 language support, which provides high flexibility and easy
programmability of the network data plane. However, no framework is provided to
control the creation of new rules or hardware-based filters. The Netcope FPGA [23],
although providing good performance, does not provide open source modules and
therefore it is very difficult to extend the native capabilities of the card beyond the
existing programmability of the data path. NetFPGA-SUME [24] is an open source
FPGA, which provides a programmable network data path with P4 support. This
card provides high flexibility and has an extensible framework that allows the con-
trol and definition of the tables content. However, it has been demonstrated [25, 26]
that it does not provide superior performance in high-rate network transmissions.

Ricart-Sanchez et al. [27, 28] propose a NetFPGA-based network slicing solution
implemented in P4 language [29] for 5G MEC architectures. Moreover, an analysis
and evaluation of the performance is presented. However, these empirical valida-
tions do not present any detailed evaluation about the queues or CPUs performance.
In [30], Yan et al. propose a SmartNIC-based implementation to enable network

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 7 of 26  75

slicing for scalable cloud systems, with the objective of meeting 5G/B5G network
requirements. This solution also employs P4 language to program the network data
path for L2/L3/L4 classification and action. Although P4 is very flexible and it is
supported by several network technologies, the range of actions provided is limited
and difficult to extend in comparison with other data plane development technolo-
gies, such as eBPF or XDP. P4 language presents some limitations [31]: it does not
support internal methods, P4 only support external functions or methods which are
implemented outside P4 and they are called from the P4 pipeline; there is no itera-
tions, loops are not supported; there is no dynamic memory allocation; there are no
pointers or references; P4 has no built-in support for scheduling, multiplexing or
queuing; there is no standard communication channel between data plane and con-
trol plane, this is usually provided by external methods; among others. Although
these are promising solutions, they do not expose any accessible API through which
the network policy rules can be dynamically enforced.

2.4 � XDP Approaches

The improvement of the packet processing performance is a key enabling element
for the deployment of virtualised pre-6G architectures, where a high performance
is required. eBPF and XDP enable the implementation of high-performance net-
working applications based on Linux kernel and hardware offloading. In [32], an
eBPF-based prototype using bpf-iptables is proposed. It presents an empirical com-
parison between the eBPF-based solution and the current implementation of ipta-
bles, showing improved performance especially when a high number of rules are
involved. Scholz et al. [33] focus on the study of two different eBPF XDP scenarios,
based on the Linux space and the application layer respectively. Nevertheless, none
of the previous work has been implemented or tested in hardware offloading mode.
Enberg et al. [34] propose a combined application and hardware packet steering
implementation using eBPF and XDP. It provides a practical approach for accelerat-
ing network-intensive applications. Although it presents an extended description of
different XDP scenarios and modes, it does not provide any empirical validation on
packet processing performance. In [35] a hybrid DDoS mitigation pipeline archi-
tecture is proposed, leveraging the flexibility of eBPF and XDP to handle different
types of traffic and attackers. Although achieving a dropping rate of approximately
15 Mpps in the SmartNIC CPU, it does not present packet processing scalability
when network traffic is sent to other network applications. A design, prototyping and
empirical validation of a network slicing approach based on eBPF, XDP and Netro-
nome over a pre-6G infrastructure is proposed in [36]. Although this is a promising
approach to provide hardware-based network slicing, they do not define any conges-
tion control mechanism of the network node and therefore, it becomes a non suit-
able solution for scenarios with high data transmissions. Furthermore, none of the
solution has provided a classification mechanism to identity and take decisions over
virtualised multi-tenant network traffic. Despite the considerable number of related
work that exist in eBPF and XDP technologies, they are mostly to introduce the con-
cept to the research community by demonstrating promising performance results.

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 8 of 26

However, there has not yet been sufficient research from the virtualised infrastruc-
ture data path perspective on how to: (a) Satisfy the performance demands of use
cases with diverging requirements and prioritisation levels; (b) Analyse the system
status to avoid packet losses by proposing a reactive solution.

3 � Background of the Proposed Approach

This section provides brief and essential background information on eBPF together
with XDP to facilitate the understanding of the proposed approach, where the com-
bination of eBPF and XDP serves as the basis. Full details of the related background
can be found in [37–39].

eBPF enables programmed code to be executed in the kernel space in a more secure and
restricted environment, which allows creating tools that otherwise would require modifying
kernel’s source code or implementing new kernel modules. eBPF employs a highly flex-
ible and efficient virtual machine (VM) construct in the Linux kernel to execute bytecode
at multiple hook points safely. Thanks to those hooks including XDP hooks, eBPF pro-
grams can be designed for manifold use cases, most prominently networking, tracing and
security. eBPF programs are written in restricted C code and compiled to eBPF bytecode,
which is injected from the user space into the kernel, where it is verified before attached.
eBPF is able to call a fixed set of in-kernel helper functions (via BPF_CALL) and access
shared data structures such as eBPF maps, which act as efficient key/value stores. It offers
helper functions to communicate with and to take advantage of the kernel functionality
tail calls to interact with other eBPF programs, security capabilities, object pinning (maps,
programs), and infrastructure for allowing eBPF to be offloaded to Smart Network Cards
(SmartNICs). In the following, eBPF VM, XDP hooks and eBPF maps are outlined.

3.1 � eBPF Virtual Machine

eBPF in-kernel VM allows injecting and executing programs from the user space by
attaching them to specific hooks. These programs run in a restricted sandbox environment
with access only to a limited set of functions. The VM consists of 11 64-bit registers, a pro-
gram counter and a 512 byte fixed-size stack. Registers are named r0–r10.

•	 r0 Contains the return value of a helper function call.
•	 r1–r5 Hold arguments from the BPF program to the kernel helper function.
•	 r6–r9 Are called saved registers that will be preserved on helper function call.
•	 r10 Read-only frame pointer to access stack.

Some SmartNICs have already mapped this well constrained VM for offloading to
lightweight Network Processing Unit (NPU) general purpose cores [40], whilst this
paper leverages these capabilities for the kernel to execute eBPF programs on the
network interface instead of on the host CPU.

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 9 of 26  75

3.2 � XDP Hooks

eBPF employs a number of hooks for attaching programs, including those concerned
at the lower end of the datapath. From Linux 4.8 +, new hooks have been added
for XDP, a new programmable high-performance networking datapath that works
in conjunction with the Linux stack, and relies on eBPF to perform very fast packet
processing. The key difference is that XDP hooks allow executing programs to pro-
cess packets at very early stages, before they arrive at the Linux network stack. The
execution can happen in three different places (1) Generic Mode where the XDP
hook is called from netif_ receive_ skb(), after the packet Direct Memory Allocation
(DMA) and Socket Buffer (SKB) allocation are finished, thereby loosing most of the
performance benefits; (2) Native Mode where the execution takes place in the driver
before the kernel allocates an SKB; (3) Offloaded Mode which attaches eBPF pro-
grams into hardware network devices, and thus is the fastest mode of all. This paper
focuses on the Offloaded Mode to offload eBPF program to the network card itself.

A valid eBPF program attached to a XDP hook must return a xdp_action indicat-
ing the decision on what to do with the packet after it has been processed. Available
values, which are defined in bpf.h, are listed below:

•	 XDP_ABORTED Error, Drop packet.
•	 XDP_DROP Drop packet.
•	 XDP_PASS Allow further processing by kernel stack.
•	 XDP_TX Transmit from the interface the packet came from.
•	 XDP_REDIRECT Transmit the packet from another interface.

As further explained in Sect. 5.4, this paper uses a combination of XDP_PASS and
XDP_TX to both send priority traffic up to the kernel network stack for regular pro-
cessing, and to forward non-prioritised network traffic to other available physical
hosts in the infrastructure.

3.3 � eBPF Maps

eBPF utilises maps as generic key/value data structure for data transfer between Kernel/
hardware and user space. The maps are managed by using file descriptor and they are
accessed from user space via BPF syscalls. eBPF provides multiple useful data structures
that we can explore to store persisted data or even to exchange data from/to the user space.
Each map type has a distinct functionality, with some being used globally and others hav-
ing specific applications. Although a full list is defined in the enum bpf_map_type, from /
usr/include/linux/bpf.h, some of the most important are listed below:

•	 BPF_MAP_TYPE_HASH A map with items indexed by a hash function.
•	 BPF_MAP_TYPE_ARRAY​ A map with items indexed by a number.
•	 BPF_MAP_TYPE_PROG_ARRAY​ A map that contains references to other eBPF

programs.
•	 BPF_MAP_TYPE_SOCKMAP A map with socket references.

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 10 of 26

•	 BPF_MAP_TYPE_CPUMAP A map that can redirect raw XDP frames to
another CPU.

•	 BPF_MAP_TYPE_XSKMAP A map that can redirect XDP frames to an AF_
XDP socket.

•	 BPF_MAP_TYPE_QUEUE A map with a queue behaviour.
•	 BPF_MAP_TYPE_STACK A map that uses last-in, first-out (LIFO) to keep ele-

ments in the map.

As further explained in Sect. 5.3, this paper explores two different types of maps for
sharing data between eBPF offloaded programs and user-space applications. Spe-
cifically BPF_MAP_TYPE_HASH and BPF_MAP_TYPE_ARRAY​ are employed
to store packet data structures of priority traffic and a list of alternative server
addresses, respectively.

4 � Pre‑6G Network Architecture

Whilst the research into the next-generation networks towards 6G is emerging, there
is no official architecture proposal yet. Figure 1 envisions a pre-6G MEC architec-
ture, which attempts to present a view of a pre-6G architecture, following an evolu-
tion of the MEC paradigm. MEC moves part of the service processing and data stor-
age from the core of the network (central cloud) to the edge nodes. This physical and
logical movement of the services to the last miles implies several benefits already
seen in current 5G networks, such as performance improvements and traffic opti-
misation. In pre-6G networks, it is expected that intelligent edge processing will be
more pervasive and powerful, being built upon 5G MEC yet significantly enhance
and extend the benefits, empowered by advanced traffic control and Artificial Intel-
ligence (AI) techniques at the edge, beyond the advances in 5G networks. This paper

Fig. 1   Pre-6G architecture overview

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 11 of 26  75

focuses on advanced edge traffic control. Moreover, such improved MEC will play
an increasingly important role to support new functions and services. Beyond the 5G
use case requirements in terms of eMBB (enhanced Mobile Broadband), URLLC
(Ultra Reliable Low Latency Communications) and mMTC (massive Machine Type
Communications), it is expected that pre-6G networks would allow a flexible com-
bination and expansion of the requirements in 5G to provide improved support for
complex use cases such as Industry 4.0+ and Factories and Cities of Future [41].

To this end, the Autonomous and Cognitive layers provide intelligent network
management, comprising aggregation, AI, network slicing and NetApps Orchestra-
tion modules [42]. Intelligent network management intents are then transformed into
actions by the Data Plane Control layer and inserted into the network applications.
These actions are enforced to control the network traffic in the data plane and thus
to guarantee the service-level agreements to fulfil the requirements of the various
demanding use cases, and new business models and vertical services at the Business
Application layer.

The infrastructure presented in Fig. 1 consists of three main network segments, the
Radio Access Network (RAN), the Edge and the Core. These segments are distributed in
different geographical locations, managed by virtual infrastructure managers (VIMs), e.g.,
using OpenStack [43] and Kubernetes [44]. The RAN segment is composed of gNodeBs
(gNBs), which represent the logical radio nodes and allow the wireless communications
between the end devices and the RAN. For a proof-of-concept implementation, these
gNBs can be built upon the OpenAirInterface (OAI) platform [45] as part of the pre-6G
architecture using Ettus B210 [46] software-defined radio. In the edge segment of the net-
work, Commercial Off-The-Shelf (COTS) hardware is used to deployed logical services
using Network Function Virtualisation (NFV) technologies, which allow the massive
deployment of virtualised network applications closer to final users. These COTS com-
puters also provide offloading mechanisms, such as XDP and eBPF programs, employed
to execute network functions of using the hardware directly. Virtualisation technologies
imply a considerable reduction in the Capital Expenditure (CAPEX) for mobile network
operators, while offloading tools also provide the mechanisms to achieve the demanding
performance required by the next-generation services. The different edges of the network
are connected to the core network segment, where the data centre of the architecture with
different network functions are deployed. These functions are responsible for mobility and
session management, user authentication, authorisation and accounting, among others.

4.1 � Network Traffic in Virtualised Architectures

Pre-6G is a major evolution over previous technologies in many senses. Apart from
introducing performance improvements of orders of magnitude over today’s net-
works, 6G infrastructures provide native support for multi-tenancy, mobility and
knowledge discovery, automatic network adjustment, smart resource management
and intelligent service provisioning. In order to provide these features, Pre-6G data
packets follow a nested structure, which is illustrated as it follows: (1) MAC/IP/L4,
(2) VXLAN/MAC/IP/L4 and (3) GTP/IP/L4/SERVICE.

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 12 of 26

The first group of headers (1) MAC/IP/L4 is related to the communication
between physical machines including Medium Access Control (MAC), IP and the
transport protocol (TCP or UDP). The second group (2) VXLAN/MAC/IP/L4
includes a VXLAN encapsulation protocol, MAC, IP and the transport layer (TCP
or UDP). This second first encapsulation layer is used to isolate tenant traffic, espe-
cially for mobile network operators sharing the same physical 5G infrastructure as
tenants. The group three of headers, (3) GTP/IP/L4/SERVICE, includes GTP, IP
and TCP or UDP, and it is introduced to allow the management of the user mobility
across different gNB in a transparent way without losing connectivity. Finally, the
application header contains the data being transmitted by the end users, for example
RTP for video communications or HTTP for web services. The VXLAN encapsula-
tion protocol is used to achieve tenant isolation, however other alternative protocols
like GRE or GENEVE can be employed to fit the same purpose. Normal IP network
packets uses a very limited subset of these headers, for instance, MAC/IP/UDP/
SERVICE, nonetheless, compared to this simple case, several additional headers
have been added to achieve both multi-tenancy and mobility. These encapsulation
protocols are applied by both ends of the data path, i.e. edge and core.

The parsing and classification of this complex network packages is one of the
problems that current NICs face. Commercial-off-the-shelf (COTS) NICs do not
provide classification and control support for the double encapsulated network traf-
fic required for most of the novel 5G/6G network architectures. It can lead to an
issue when the final user information is contained in the nested headers and packet
steering protocol is based on this information. In this context, when COTS NICs
receive 5G/6G network data flows they are not able to inspect inner headers and the
packet steering is made based on the outer headers information. This can end in a
CPU bottleneck, since the destination queue and CPU decision is based on the phys-
ical machine, which is static for our Pre-6G architecture proposed and not based on
the final user information. However, these final user addresses are totally dynamic,
based on the flow, and will vary depending on the final service. The SmartNIC-
based solution proposed in this paper supports this complex data path, as well as
to offload the network functionality using eBPF and XDP. The flexibility and high
performance provided by SmartNICs is implying a needed change from traditional
NICs to SmartNICs in the new generation of mobile networks.

4.2 � Focused Use Case Scenario

Future 6G networks are expected to process 10 to 100 times more data volume
than their predecessors [47]. However, more and more, it is the network end sys-
tem, instead of the network, that is responsible for degraded performance of network
applications. The proposed use case presents a scenario where some services have
been migrated/deployed at the edge, closer to the final user, to improve the overall
services performance on demand. However, a situation with an ultra-high rate of
data traffic passing through a single edge node can lead to performance bottleneck
e.g., causing massive packet loss. This paper addresses this problem by proposing a
dynamic multi-queue discipline mechanism that avoids the congestion of the edge

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 13 of 26  75

node by distributing traffic processing among different CPUs. Although this multi-
queue discipline allows prioritisation of the traffic and offers better performance
in terms of throughput, the Linux Network Stack still presents some limitations in
terms of scalability when high volumes of data need to be processed. To tackle this,
this paper also proposes the forwarding of non-prioritised packets to a different edge
node or even to the core segment of the network for further processing, when the
receiving system exceeds its processing capacity. This allow flexible balancing the
network traffic between different nodes and therefore improve the overall perfor-
mance of the network.

5 � The Proposed Framework

This section provides more details on the proposed pre-6G architecture and an
implementation of a network accelerator framework towards realising the architec-
ture. Figure 2a shows the system diagram to establish the position, connections, and
different roles of the framework components.

(a) (b)

Fig. 2   a Framework diagram to establish the position, connections, and different roles among the dif-
ferent modules; b Lifecycle overview of Data Plane Programmability Network Application containing
the logic to offload eBPF programs into SmartNICs and access eBPF maps to both add new entries, and
collect stats

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 14 of 26

5.1 � Control Layer

On top of Fig. 2a it shows how network policy rules can be enforced through the
Northbound Interface (NBI) of the Data Plane Programmability Network Adapter
Application (DPPnApp). This enables any authorised entity of higher layers of the
described pre-6G architecture to send intent-based messages to perform specific
network actions over the system. An Intent defines what type of traffic should be
controlled and the action that needs to be enforced over packets matching its net-
work specifications. As it is represented in Listing 1 Intent-based messages reach-
ing this NBI are composed of one or more resources describing the flows to take
action to, one action that defines which kind of action has to be applied over such
flows (e.g. send to rx_queue), and a list of parameters for fine-grained specifications
(e.g, network interface, mode, time, duration, etc.). This gives enough information
for the DPPnApp to parse a given intent parameters into a C structure which will
later be added as a new entry on the eBPF-MAP (see Sect. 3.3). Listing 1 gives a
simple example of an intent-based message where a specific flow service (identified
by its resourceId) needs to be prioritised. For classifying tasks, the packet structure
(network protocol stack) is provided in the Resources section. In this example, the
flow service is encapsulated in two different network protocols, VXLAN and GTP ,
which will need to be added as part of the filter in the network policy rule.

In a similar manner, higher layers of the pre-6G architecture can also monitor the
performance and implications of existing network policy rules in the system (e.g,
throughput, packet loss, cpu-usage, etc.). This offers fine-grained control of the plat-
form and paves the way for network operators or even AI-based models to update,

8 ” encapsu lat ionID 2” : ”8894D0D4” ,
9 ” encapsulat ionType 2” : ”gtp”

10 } , {
11 ” r e sou r c e Id ” : ”5A07C580” ,
12 ” src IP ” : ”192 . 188 . 0 . 140” ,
13 ” dstPort ” : ”5004” ,
14 }] ,
15 ”Action ” : {
16 ”actionType” : ”INSERT” ,
17 ”actionName” : ”PRIO QUEUE” ,
18 ” f low hash ” : ”E918D704” ,
19 ” rx queue ” : ”1”} ,
20 ”Params” : [{
21 ”paramName” : ” inter faceName” ,
22 ”paramValue” : ” eth 0”}] }

1 {
2 ”Resources ” : [{
3 ” r e sou r c e Id ” : ”F8A4C949” ,
4 ” encapsu lat ionID 1” : ”00000445” ,
5 ” encapsulat ionType 1” : ” vxlan ”
6 } , {
7 ” r e sou r c e Id ” : ”B6E6B2B3” ,

Listing 1   Intent-based message

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 15 of 26  75

remove or create new network policy rules based on the current behaviour of the
overall system or a particular service.

5.2 � DPPnApp: Data Plane Programmability Network Adapter Application

The DPPnApp is the core control module. Its NBI exposes functions to both enforce
and monitor network policy rules. DPPnApp provisions the system by offloading
maps and programs in its first execution, parses intent-based messages and inserts
them as new entries of the eBPF maps, reads from those maps to generate statistical
reports, and provides feedback to the higher layers of the architecture by sending
periodical informs. Figure 2b depicts the logical representation of the DPPnAPP’s
lifecycle flow, which provides desegregated policy management and statistics. The
lifecycle starts when a network policy is received by the intent parser, transforms it
into eBPF rules and inserts them into the eBPF program maps. Statistics about the
rules inserted and traffic processed are collected and stored in different eBPF maps.
These statistics are periodically collected from the maps in order to generate statis-
tics reports used for further analysis of the eBPF-XDP framework deployed.

5.3 � eBPF Maps Framework Requirements

As displayed in Fig. 2a, eBPF-maps are used for the communication (by sharing
data) of the user space application with the eBPF program that is offloaded in the
SmartNIC. This paper envisions two different types of maps. The first eBPF-map
(Prio-Map in Fig. 2a) is a BPF_MAP_TYPE_HASH and contains all the required
information of the network traffic that has to be accepted in the system. The second
eBPF-map (Alt-Map in Fig. 2a) is a BPF_MAP_TYPE_ARRAY​ and contains a list of
alternative server addresses to which to forward traffic that has not been accepted by
the system (non-prioritised traffic). When a new network policy rule is enforced, the
DPPnApp will parse and accommodate the intent-based message as a new entry of
a eBPF-map structure. By doing so, the eBPF program can look up for new entries
on such maps and perform actions to every packet matching their network protocol
specifications.

Listing 2 shows the data structure used as value for any (key/value) entry of
the prio-MAP. It is worth highlighting that the key would be the flow hash that is
passed in the Intent message. The attribute is_active lets the eBPF program know
that there is a pending action to be performed, and it lets the user space application

1 s t r u c t p r i o va l u e {
2 u i n t 8 t i s a c t i v e ;

Listing 2   Data structure used as value for the key/value BPF_MAP_TYPE_HASH prio-MAP

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 16 of 26

know that this rule has been performed successfully and is ready to provide statisti-
cal data. target_rx_queue_index indicates to which rx_queue packets matching the
network specifications have to be sent. f_stats is a structure that contains up-to-date
statistics (number of packets, bytes, packet size, etc.) of the network policy rule.
Finally, f_struct is also a structure that represents an abstraction of the Intent mes-
sage (Resources in 1) defining the network protocol fields that traffic reaching the
network interface must accomplish to be part of this flow.

5.4 � Offloaded eBPF Program Details

Algorithm 1 shows the eBPF program implemented, using the constraint C lan-
guage, which allows packet classification, processing and accelerating tunnelled
network traffic in the architecture presented. This algorithm also guarantees a fair
distribution of the tunnelled traffic between the different RSS queues allocated in the
kernel space and controlled by the Netronome Flow Processor (NFP) driver. From
the point of view of the NIC, when a packet arrives, the eBPF-program starts by
parsing packet headers to extract the metadata information it will react on (see lines
3 and 4). It then generates a hash by using an adapted version of the /include/linux/
jhash.h library, which is distributed with the Linux kernel source code; the main
difference here is that the proposed packet parser also covers network tunnelling
protocols required for 5G and pre-6G network traffic, and for this reason the jhash
library needs to be adapted to include more entries in its hash generator function
(see line 5). Next, the eBPF program reads from the prio-MAP to look up for the
key with the same hash value (see line 6). If successful, and the associated statistics
do not indicate an overloaded system, it extracts the target_rx_queue_index attribute
its map entry and rewrites the current packet metadata with that value (see lines 7
and 8). After the packet is changed, the final verdict is given in the form of a eBPF
program return code (see Sect. 3.2). In this case, the return code is XDP_PASS that
will allow packets to be sent to the kernel network stack for regular processing (see
line 13). If the hash value does not match with any prio-MAP entry and conges-
tion is detected in the system, the eBPF program will look up of the Alt-MAP to
select an alternative destination where non-prioritised traffic can be processed (see
line 10). The eBPF program will change the MAC and IP destination addresses of
such a packet, and return a XDP_TX code to send it back to the same interface (see
lines 11 and 12). The MAC address value retrieved from the Alt-MAP represents the
direction of the alternative network node that is used to process the network packet.

This behaviour aims to increase performance uniformly by forwarding different
packets to different queues to distribute processing among CPUs. It also prevents the
system from being overloaded by forwarding non-critical traffic to alternative desti-
nations for further processing.

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 17 of 26  75

6 � Empirical Performance Evaluation

6.1 � Experimental Design and Implementation

Figure 3 shows a holistic view of our experimental deployment. The deployment
used a Dell T5810 machine equipped with an Intel Xeon CPU E5-2630 v4, 32 768
MB of RAM, and 512-GB solid-state drive (SSD) with support of hardware Direct
Memory Access (DMA) system to place packet data directly in the CPU cache. The
test machine is equipped with two Netronome cards Agilio CX 2x25GbE network
adapters, which are supported by the NFP driver. These cards have one single port
each, connected to a 25G SPF28 cable. They are depicts in in Fig. 3 as Netronome 1
with port A associated and Netronome 2 with port B. The test computer runs Linux
kernel version 5.4 supporting XDP for Netronome NICs, with the hyperthreading
disabled and irq_affinity adjusted to match one queue per CPU. Each CPU is in
C-State C0, meaning that they are fully turned on. For traffic generation, Pktgen was
employed. With a total of 10 CPUs, for all the experiments, two CPUs (8–9) were
reserved for the traffic generator while the remaining (0–7) were attached to the net-
work receiving queues. For the CPU usage, the mpstat system utility was utilised;
in addition, the /proc/net/softnet_stat file is periodically inspected to monitor stats
from network devices.

The traffic generated by pktgen is transmitted through Netronome 1 using port
A and it is received in Netronome 2 through port B. Once the network traffic is
received in Netronome 2, the eBPF programm determines the action to apply over

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 18 of 26

this traffic. The solution implemented provides two operational modes depending
on the XDP action invoked in the network data plane. These actions, XDP_PASS
and XDP_TX, define, respectively, if the packet is sent to the kernel of the system or
if it is forwarded to a different physical machine, load balancing the traffic. There-
fore, when XDP_PASS is invoked, Netronome 2 Port B actuates only as a reception

Fig. 3   Implementation of the performance evaluation testbed

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 19 of 26  75

interface (Rx), while, when XDP_TX is invoked this Netronome card actuates as
both, a reception (Rx) and a transmission (Tx) interface.

6.2 � Empirical Evaluation

This section presents the empirical performance evaluation of the proposed solution.
A set of experiments has been conducted in order to validate its functionality and
assess its performance. Table 1 shows the different experiments conducted. Packets
of multiple sizes have been generated to provide different data plane traffic loads;
for each of these scenarios, an increasing number of receiving queues were imple-
mented to evaluate the system behaviour. For all experiments, the traffic injected
in the network had a total of 16 services of which 8 were identified as prioritised
services. The prioritised services are selected depending on their Tunnel endpoint
identifier (TEID) of the GTP Network protocol, that allowed to emulate different
mobile users that require to be prioritised. In the experiments, all services sent pack-
ets at the same packet rate. Thus, the optimal performance point was reached when
half of the injected network traffic (the prioritised traffic) reaches the network stack.
This value is indicated as Desired Throughput in Table 1 and it is also shown as a
horizontal line, located at 50% value, in Fig. 4.

The performance evaluation focuses on three metrics:

•	 Packet loss. In contrast to many other studies on the efficiency of XDP, this
paper also offers packet loss results to show the maximum throughout perfor-
mance of the overall system. Although packet processing in hardware can be
really fast, subsequent levels of kernel network processing tasks can present a
bottleneck, causing packets to be discarded before they reach the application in
the user space. This effectively measures the overhead of the system as a whole,
and serves as a key indicator to assess the proposed solution under different traf-
fic load conditions.

•	 CPU usage. On reception, a NIC can forward different packets to different
queues to distribute processing among CPUs, thereby increasing performance
uniformly. This is quantified by measuring how CPU usage scales with the dif-
ferent queue implementations.

•	 Packet forwarding performance. As mentioned in the introduction section, the
objective is to prioritise traffic belonging to specific services. However, it is
equally important that no traffic is lost under normal conditions. This is achieved
by redirecting non-prioritised traffic to other distributed network nodes for fur-
ther processing.

The following results attempt to find the optimal performance point in terms of
the highest number of network packets per second that manage to be processed by
the Linux network stack. To this end, hardware packet pre-processing was executed
to distribute the prioritised traffic over different queues/CPUs while non-prioritised

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 20 of 26

traffic or packets exceeding the system capacities (overloaded CPUs) are forwarded
to other systems to prevent them from being lost.

(a) (b)

(c) (d) (e)

Fig. 4   Performance results in terms of accepted throughput, packet loss, and packet forwarding showing
the comparison between the baseline implementation and the proposed eBPF-XDP-based approach. The
optimal performance point is shown as Desired Throughput

Table 1   Performance evaluation
experiments

Packet size
(Bytes)

Offered
load
(Mpps)

Services Prio services Desired
throughput
(Mpps)

1500 ≈ 2.2 16 8 ≈ 1.1
1280 ≈ 2.6 16 8 ≈ 1.3
1024 ≈ 3.2 16 8 ≈ 1.6
512 ≈ 6.5 16 8 ≈ 3.2
256 ≈ 12 16 8 ≈ 6.0
132 ≈ 18 16 8 ≈ 9.0

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 21 of 26  75

Figure 4 compares the performance between a baseline configuration and the pro-
posed eBPF-XDP-based implementations. For all the experiments, the prioritised
throughput is exactly the half of the total traffic injected, consequently the "Desired
Throughput" is depicted as an horizontal (green) line at the 50%, meaning that once
the "Prio Throughput" has reached this threshold, critical network traffic is guar-
anteed to be processed locally. The remaining throughput (non priority), can then
either be accepted to be processed locally (depicted as Non-prio throughput in
Fig. 4) or forwarded to other destinations depending on the current system capac-
ity. It should be noted that in those scenarios in which the system cannot process all
inbound prioritized traffic, this will also be forwarded. Figure 4a shows the normal
behaviour of a traditional NIC attempting to process traffic from a muti-tenant vir-
tualised mobile network. The complexity that nested encapsulation adds to packet
processing tasks makes baseline NICs unable to dissect network traffic and therefore
limiting the number of receive queues/CPUs to just one. This situation results in a
high level of packets loss for transmissions greater than 1 Mpps (which is roughly
the limit of the Linux kernel). A similar behaviour is seen in Fig. 4b. Meanwhile,
although with one receiving queue configuration it is not possible to increase the
accepted throughput values, XDP allows traffic that exceeds the system’s capacity to
be forwarded so as not to cause packet loss. The rest of the graphs show an improve-
ment in throughput as the number of queues increases. As shown in Fig. 4e, the

(a) (b)

(c) (d) (e)

Fig. 5   Relation between packet loss/forwarded and CPU load with different number of CPU implementa-
tions. The irq_affinity was set so that one CPU is in charge of processing a particular system interrupt so
the number of CPUs is directly proportional to the number of network receiving queues reserved in the
system

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 22 of 26

maximum performance point was achieved at 12 Mpps (approx. 24.5 Gbps) offered
rate, where it reached the desired throughput (approx. 12.25 Gbps), meaning that all
prioritised services will be handled by the host, and just the non-prioritised traffic
will be forwarded.

Figure 5 provides details of the CPU usage and how it varied in relation to the
different traffic load and the number of queues. Figure 5a shows a baseline configu-
ration with just one CPU being used. Given that this implementation barely accepts
a traffic load greater than 1Mpps, it can be observed that in all experiments, the
CPU capacities were exceeded, which led to an increasing number of packet loss.
The remaining graphs show the results based on the proposed eBPF-XDP-based
approach and depict how allowing traffic steering between multiple queues allevi-
ated CPU consumption levels. Even so, there were some cases where the number
of queues was not enough to handle all the network traffic and the CPUs reached
their maximum capacity. When this occurred, the percentage of forwarding traffic
increases above 50% to also forward prioritised traffic before it was discarded. From
these experiments it can be concluded that in the best case scenario (as shown in
Fig. 5e) packet processing operations at 12Mpps with 8 CPUs working at their 80%
of capacity were needed to handle all the prioritised traffic.

7 � Conclusion

Next-generation networking systems such as the beyond 5G or pre-6G networks
entail ultra-high packet processing capabilities for traffic engineering to meet the
ever-growing performance requirements of various use cases. This paper proposes
a next-generation networking platform framework for an envisioned pre-6G archi-
tecture featuring SmartNICs for advanced data plane control and hardware accel-
eration for significantly enhanced mobile edge computing. The proposed program-
mable data plane explores a hardware-offloading-based approach that combines
cutting-edge technologies especially eBPF and XDP, and a new eBPF-XDP packet
processing algorithm is devised accordingly. Furthermore, in the core of the control,
a novel Data Plane Programmability Network Adapter Application is proposed to
allow intent-based actions for monitoring and control purposes, with the full lifecy-
cle defined. Experimental results have validated the design and implementation of
the proposed solution, showing a superior packet processing capacity at 18 Mpps,
system throughput up to 6.1 Mpps with no packet loss, and high flexibility of the
framework to adapt to multiple network policy rules dynamically on demand.

Acknowledgements  This work was funded in part by the European Commission Horizon 2020 5G-PPP
Program under Grant Agreement Number H2020-ICT-2020-2/101017226 “6G BRAINS: Bringing Rein-
forcement learning Into Radio Light Network for Massive Connections” and under Grant Agreement
Number H2020-SU-DS-2020/101020259 ” ARCADIAN-IoT: Autonomous Trust, Security and Privacy
Management Framework for IoT.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 23 of 26  75

are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Saad, W., Bennis, M., Chen, M.: A vision of 6g wireless systems: applications, trends, technologies,
and open research problems. IEEE Netw. 34(3), 134–142 (2019)

	 2.	 Zhang, Z., Xiao, Y., Ma, Z., Xiao, M., Ding, Z., Lei, X., Karagiannidis, G.K., Fan, P.: 6G wireless
networks: vision, requirements, architecture, and key technologies. IEEE Veh. Technol. Mag. 14(3),
28–41 (2019). https://​doi.​org/​10.​1109/​MVT.​2019.​29212​08

	 3.	 5G-PPP: Empowering vertical industries through 5g networks—current status and future trends.
https://​5g-​ppp.​eu/​wp-​conte​nt/​uploa​ds/​2020/​09/​5GPPP-​Verti​calsW​hiteP​aper-​2020-​Final.​pdf (2020)

	 4.	 Fifth Generation Fixed Network (F5G). https://​www.​etsi.​org/​techn​ologi​es/​fifth-​gener​ation-​fixed-​
netwo​rk-​f5g. Accessed 26 Jan 2021

	 5.	 DPDK Data Plane Development Kit. http://​dpdk.​org/ (2021)
	 6.	 netmap - the fast packet I/O framework. http://​info.​iet.​unipi.​it/​~luigi/​netmap/. Accessed 3 Feb 2021
	 7.	 PF_RING: High-speed packet capture, filtering and analysis. https://​www.​ntop.​org/​produ​cts/​packet-​

captu​re/​pf_​ring/. Accessed 2 July 2021
	 8.	 Almesberger, W., et al.: Linux network traffic control–implementation overview (1999)
	 9.	 Pfaff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A., Stringer,

J., Shelar, P., et al.: The design and implementation of open vswitch. In: 12th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ( {NSDI} 15), pp. 117–130 (2015)

	10.	 Purdy, G.N.: Linux iptables Pocket Reference: Firewalls, NAT & Accounting. O’Reilly Media Inc,
Sebastopol (2004)

	11.	 Salva-Garcia, P., Calero, J.M.A., Wang, Q., Arevalillo-Herraez, M., Bernabe, J.B.: Scalable virtual
network video-optimizer for adaptive real-time video transmission in 5G networks. IEEE Trans.
Netw. Serv. Manage. (2020). https://​doi.​org/​10.​1109/​TNSM.​2020.​29789​75

	12.	 Escolar, A.M., Alcaraz-Calero, J.M., Salva-Garcia, P., Bernabe, J.B., Wang, Q.: Adaptive network
slicing in multi-tenant 5G IoT networks. IEEE Access 9, 14048–14069 (2021). https://​doi.​org/​10.​
1109/​ACCESS.​2021.​30519​40

	13.	 Kurtz, F., Bektas, C., Dorsch, N., Wietfeld, C.: Network slicing for critical communications in
shared 5G infrastructures-an empirical evaluation. In: 2018 4th IEEE Conference on Network Soft-
warization and Workshops (NetSoft), pp. 393–399 (2018). IEEE

	14.	 Martins, R.F.T., da Silva Villaça, R., Verdi, F.L.: Bitmatrix: a multipurpose sketch for monitoring of
multi-tenant networks. J. Netw. Syst. Manag. 28(4), 1745–1774 (2020)

	15.	 Intel Ethernet Converged Network Adapter X520. https://​www.​intel.​la/​conte​nt/​dam/​www/​public/​us/​
en/​docum​ents/​produ​ct-​briefs/​ether​net-​x520-​server-​adapt​ers-​brief.​pdf. Accessed 19 Feb 2020

	16.	 Intel Ethernet Converged Network Adapter X540. https://​www.​intel.​com/​conte​nt/​dam/​www/​public/​
us/​en/​docum​ents/​produ​ct-​briefs/​ether​net-​x540-​t2-​brief.​pdf. Accessed 19 Feb 2020

	17.	 Intel Ethernet Converged Network Adapter XL710. https://​www.​intel.​la/​conte​nt/​dam/​www/​public/​
us/​en/​docum​ents/​produ​ct-​briefs/​ether​net-​xl710-​brief.​pdf. Accessed 19 Feb 2020

	18.	 Intel: Intel 82599 10 Gigabit Ethernet Controller: Datasheet. https://​www.​intel.​la/​conte​nt/​www/​xl/​
es/​embed​ded/​produ​cts/​netwo​rking/​82599-​10-​gbe-​contr​oller-​datas​heet.​html (2016). Accessed 14
June 2018

	19.	 Intel FPGA Programmable Acceleration Card N3000 for Networking. https://​www.​intel.​com/​conte​
nt/​dam/​www/​progr​ammab​le/​us/​en/​pdfs/​liter​ature/​po/​intel-​fpga-​progr​ammab​le-​accel​erati​on-​card-​
n3000-​for-​netwo​rking.​pdf. Accessed 20 Feb 2020

	20.	 Thomas, D., Moorby, P.: The Verilog® Hardware Description Language. Springer, New York
(2008)

	21.	 Navabi, Z.: VHDL: Analysis and Modeling of Digital Systems. McGraw-Hill Inc, New York (1997)
	22.	 Bittware: 100G NIC application. https://​www.​bittw​are.​com/​fpga/​smart​nic/ (2017). Accessed 10 Mar

2018

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MVT.2019.2921208
https://5g-ppp.eu/wp-content/uploads/2020/09/5GPPP-VerticalsWhitePaper-2020-Final.pdf
https://www.etsi.org/technologies/fifth-generation-fixed-network-f5g
https://www.etsi.org/technologies/fifth-generation-fixed-network-f5g
http://dpdk.org/
http://info.iet.unipi.it/%7eluigi/netmap/
https://www.ntop.org/products/packet-capture/pf_ring/
https://www.ntop.org/products/packet-capture/pf_ring/
https://doi.org/10.1109/TNSM.2020.2978975
https://doi.org/10.1109/ACCESS.2021.3051940
https://doi.org/10.1109/ACCESS.2021.3051940
https://www.intel.la/content/dam/www/public/us/en/documents/product-briefs/ethernet-x520-server-adapters-brief.pdf
https://www.intel.la/content/dam/www/public/us/en/documents/product-briefs/ethernet-x520-server-adapters-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-x540-t2-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-x540-t2-brief.pdf
https://www.intel.la/content/dam/www/public/us/en/documents/product-briefs/ethernet-xl710-brief.pdf
https://www.intel.la/content/dam/www/public/us/en/documents/product-briefs/ethernet-xl710-brief.pdf
https://www.intel.la/content/www/xl/es/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.la/content/www/xl/es/embedded/products/networking/82599-10-gbe-controller-datasheet.html
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card-n3000-for-networking.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card-n3000-for-networking.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/po/intel-fpga-programmable-acceleration-card-n3000-for-networking.pdf
https://www.bittware.com/fpga/smartnic/

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 24 of 26

	23.	 Martinek, T., Kosek, M.: Netcope: Platform for rapid development of network applications. In:
Design and Diagnostics of Electronic Circuits and Systems, 2008. DDECS 2008. 11th IEEE Work-
shop On, pp. 1–6 (2008). IEEE

	24.	 Zilberman, N., Audzevich, Y., Covington, G.A., Moore, A.W.: Netfpga sume: toward 100 gbps as
research commodity. IEEE Micro 34(5), 32–41 (2014)

	25.	 Ricart-Sanchez, R., Malagon, P., Salva-Garcia, P., Perez, E.C., Wang, Q., Calero, J.M.A.: Towards
an FPGA-accelerated programmable data path for edge-to-core communications in 5G networks. J.
Netw. Comput. Appl. 124, 80–93 (2018)

	26.	 Ricart-Sanchez, R., Malagon, P., Alcaraz Calero, J.M., Wang, Q.: Netfpga-based firewall solution
for 5g multi-tenant architectures. In: 2019 IEEE International Conference on Edge Computing
(EDGE), pp. 132–136 (2019). IEEE

	27.	 Ricart-Sanchez, R., Malagon, P., Matencio-Escolar, A., Alcaraz Calero, J.M., Wang, Q.: Toward
hardware-accelerated GOS-aware 5G network slicing based on data plane programmability. Trans.
Emerg. Telecommun. Technol. 31(1), 3726 (2020)

	28.	 Ricart-Sanchez, R., Malagon, P., Alcaraz-Calero, J.M., Wang, Q.: P4-netfpga-based network slicing
solution for 5G mec architectures. In: 2019 ACM/IEEE Symposium on Architectures for Network-
ing and Communications Systems (ANCS), pp. 1–2 (2019). IEEE

	29.	 Bosshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C., Talayco, D.,
Vahdat, A., Varghese, G., et al.: P4: programming protocol-independent packet processors. ACM
SIGCOMM Comput. Commun. Rev. 44(3), 87–95 (2014)

	30.	 Yan, Y., Beldachi, A.F., Nejabati, R., Simeonidou, D.: P4-enabled smart NIC: enabling sliceable
and service-driven optical data centres. J. Lightwave Technol. 38(9), 2688–2694 (2020)

	31.	 Budiu, M.: Programming networks with p4. https://​blogs.​vmware.​com/​resea​rch/​2017/​04/​07/​progr​
amming-​netwo​rks-​p4/ (2017)

	32.	 Bertrone, M., Miano, S., Risso, F., Tumolo, M.: Accelerating linux security with ebpf iptables. In:
Proceedings of the ACM SIGCOMM 2018 Conference on Posters and Demos, pp. 108–110 (2018)

	33.	 Scholz, D., Raumer, D., Emmerich, P., Kurtz, A., Lesiak, K., Carle, G.: Performance implications of
packet filtering with linux ebpf. In: 2018 30th International Teletraffic Congress (ITC 30), vol. 1, pp.
209–217 (2018). IEEE

	34.	 Enberg, P., Rao, A., Tarkoma, S.: Partition-aware packet steering using xdp and ebpf for improving
application-level parallelism. In: Proceedings of the 1st ACM CoNEXT Workshop on Emerging in-
Network Computing Paradigms, pp. 27–33 (2019)

	35.	 Miano, S., Doriguzzi-Corin, R., Risso, F., Siracusa, D., Sommese, R.: Introducing smartnics in
server-based data plane processing: the DDOS mitigation use case. IEEE Access 7, 107161–107170
(2019)

	36.	 Ricart-Sanchez, R., Salva-Garcia, P., Chirivella-Perez, E., Alcaraz Calero, J.M., Wang, Q.: Empiri-
cal design, prototyping and evaluation of a new Hardware-Based network slicing approach for 6G
backbone networks. In: 2021 Joint European Conference on Networks and Communications & 6G
Summit (EuCNC/6G Summit): Network Softwarisation (NET) (2021 EuCNC & 6G Summit - NET)
(2021)

	37.	 eBPF - Introduction, tutorial & community resources . https://​ebpf.​io Accessed 16 Apr 2021
	38.	 Cilium, BPF and XDP Reference Guide. https://​docs.​cilium.​io/​en/​stable/​bpf/. Accessed 4 May 2021
	39.	 Vieira, M.A.M., Castanho, M.S., Pacífico, R.D.G., Santos, E.R.S., Câmara, E.P.M., Vieira, L.F.M.:

Fast packet processing with EBPF and XDP: concepts, code, challenges, and applications. ACM
Comput. Surv. (2020). https://​doi.​org/​10.​1145/​33710​38

	40.	 Kicinski, J., Viljoen, N.: ebpf hardware offload to smartnics: cls bpf and XDP. Proceedings of net-
dev 1 (2016)

	41.	 Docomo, N.: 5G Evolution and 6G, Whitepaper. (2020)
	42.	 Chirivella-Perez, E., Calero, J.M.A., Wang, Q., Gutiérrez-Aguado, J.: Orchestration architecture

for automatic deployment of 5G services from bare metal in mobile edge computing infrastructure.
Wirel. Commun. Mobile Comput. 2018 (2018)

	43.	 Chirivella-Perez, E., Gutiérrez-Aguado, J., Claver, J.M., Calero, J.M.A.: Hybrid and extensible
architecture for cloud infrastructure deployment. In: 2015 IEEE International Conference on Com-
puter and Information Technology; Ubiquitous Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive Intelligence and Computing, pp. 611–617 (2015).
IEEE

	44.	 Brewer, E.A.: Kubernetes and the path to cloud native. In: Proceedings of the Sixth ACM Sympo-
sium on Cloud Computing, pp. 167–167 (2015)

https://blogs.vmware.com/research/2017/04/07/programming-networks-p4/
https://blogs.vmware.com/research/2017/04/07/programming-networks-p4/
https://ebpf.io
https://docs.cilium.io/en/stable/bpf/
https://doi.org/10.1145/3371038

1 3

Journal of Network and Systems Management (2022) 30: 75	 Page 25 of 26  75

	45.	 Nikaein, N., Marina, M.K., Manickam, S., Dawson, A., Knopp, R., Bonnet, C.: Openairinterface: a
flexible platform for 5G research. ACM SIGCOMM Comput. Commun. Rev. 44(5), 33–38 (2014)

	46.	 ETTUS: USRP B210 SDR Kit - Dual Channel Transceiver (70 MHz–6GHz). https://​www.​ettus.​
com/​all-​produ​cts/​ub210-​kit/ Accessed 18 Feb 2021

	47.	 Giordani, M., Polese, M., Mezzavilla, M., Rangan, S., Zorzi, M.: Toward 6G networks: use cases
and technologies. IEEE Commun. Mag. 58(3), 55–61 (2020)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Pablo Salva‑Garcia  is a postdoctoral researcher at the University of the West of Scotland. Pablo is Co-
investigator in several Horizon 2020 EU projects, such as 6G-BRAINS, 5G-INDUCE and ARCADIAN-
IoT and member of the B5G-Hub. His main interests are Network management, data plane programma-
bility, SDN, and Beyond 5G Networks.

Ruben Ricart‑Sanchez  is a researcher at the University of the West of Scotland, where he obtained his
PhD. Ruben is Co-investigator in several Horizon 2020 EU projects, such as 6G-BRAINS, 5G-INDUCE
and ARCADIAN-IoT. His main interests include 5G/6G Networks, Network management, programmable
hardware, and network security.

Enrique Chirivella‑Perez  is a researcher at the University of the West of Scotland, where he obtained his
PhD. Enrique is Co-investigator in several Horizon 2020 EU projects, such as 6G-BRAINS, 5G-INDUCE
and ARCADIAN-IoT. His main interests include E2E Network Slicing, Monitoring, network control and
management, and Infrastructure zero-touch deployment.

Qi Wang  is a Professor at the University of the West of Scotland. He is the technical co-coordinator of
EU H2020 5G-PPP SELFNET and SliceNet projects, and co-principal investigator of EU H2020 5G
INDUCE, ARCADIAN-IoT and 6G BRAINS projects. He is a Board Member of the Technology Board
of EU 5G-PPP. His research primarily focuses on 5G mobile networks, video networking and artificial
intelligence.

Jose M. Alcaraz‑Calero  is a Professor in next-generation networks and security at the University of the
West of Scotland. He is the technical co-coordinator of the EU H2020 5G-PPP SELFNET and SliceNet
projects, and co-principal investigator of EU H2020 5G INDUCE, ARCADIAN-IoT and 6G BRAINS
projects. His professional interests include network cognition, management, security and control, service
deployment, automation and orchestration, and 5G mobile networks.

Authors and Affiliations

Pablo Salva‑Garcia1  · Ruben Ricart‑Sanchez1 · Enrique Chirivella‑Perez1 ·
Qi Wang1 · Jose M. Alcaraz‑Calero1

 *	 Pablo Salva‑Garcia
	 pablo.salva-garcia@uws.ac.uk

	 Ruben Ricart‑Sanchez
	 ruben.ricart-sanchez@uws.ac.uk

	 Enrique Chirivella‑Perez
	 Enrique.Chirivella-Perez@uws.ac.uk

	 Qi Wang
	 Qi.Wang@uws.ac.uk

https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/
https://orcid.org/0000-0002-2804-7404

	 Journal of Network and Systems Management (2022) 30: 75

1 3

75  Page 26 of 26

	 Jose M. Alcaraz‑Calero
	 jose.alcaraz-calero@uws.ac.uk

1	 School of Computing, Engineering and Physical Sciences, University of the West of Scotland,
High Street, Paisley, Glasgow PA12BE, Scotland, UK

	XDP-Based SmartNIC Hardware Performance Acceleration for Next-Generation Networks
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Kernel Bypass Solutions
	2.2 Software-Based Approaches
	2.3 Hardware-Based Programmability
	2.4 XDP Approaches

	3 Background of the Proposed Approach
	3.1 eBPF Virtual Machine
	3.2 XDP Hooks
	3.3 eBPF Maps

	4 Pre-6G Network Architecture
	4.1 Network Traffic in Virtualised Architectures
	4.2 Focused Use Case Scenario

	5 The Proposed Framework
	5.1 Control Layer
	5.2 DPPnApp: Data Plane Programmability Network Adapter Application
	5.3 eBPF Maps Framework Requirements
	5.4 Offloaded eBPF Program Details

	6 Empirical Performance Evaluation
	6.1 Experimental Design and Implementation
	6.2 Empirical Evaluation

	7 Conclusion
	Acknowledgements
	References

