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Abstract
Next-generation networks are expected to combine advanced physical and digital 
technologies in super-high-speed connected system infrastructures, gaining criti-
cal operation competitiveness of improved efficiency, productivity and quality of 
services. Towards a fully digital and connected world, these platforms will enable 
infrastructure virtualization and support of edge processing, making emerging sec-
tors, such as Industry 4.0, ready to exploit its full potentials. Nevertheless, the fast 
growth of data-centric and automated systems may exceed the capabilities of the 
overall infrastructure beyond the radio access networks, becoming unable to fulfil 
the demands of vertical sectors and representing a bottleneck. To minimize the nega-
tive effects that could affect critical services in a heavily loaded network, it is essen-
tial for network providers to deploy highly scalable and prioritisable in-network 
optimisation schemes to meet industry expectations in next-generation networks. 
To this end, this work presents a novel framework that leverages extended Berkeley 
Packet Filter (eBPF) and eXpress Data Path (XDP) to offload network functions to 
reduce unnecessary overhead in the backbone infrastructure. The proposed solution 
is envisioned to be implemented as a Network Application (NetApp) service, which 
will greatly benefit the compatibility with next-generation networking ecosystem 
empowered by Artificial Intelligence (AI), advanced automation, multi-domain net-
work slicing, and other related technologies. The achieved results demonstrate key 
performance improvements in terms of packet processing capacity as high as about 
18 million packets per second (Mpps), system throughput up to 6.1 Mpps with 0% 
of packet loss, and illustrate the flexibility of the framework to adapt to multiple net-
work policy rules dynamically on demand.
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1  Introduction

The next-generation mobile networks (5G and beyond including pre-6G) entail 
novel management solutions to accommodate a wide range of use cases with 
advanced and heterogeneous requirements in terms of latency, resilience, cover-
age and bandwidth. It is envisioned that a radical revolution of societies is taking 
place, with the societies become more and more data-centric, data-dependent and 
automated, taking communications closer to the vision of Internet of Everything 
(IoE) [1]. Industrial manufacturing process (Industry 4.0), autonomous systems, 
and millions of Internet of Things (IoT) devices are increasingly connecting not 
just people, but also vehicles, devices, wearables, and a broad range of sensors 
[2]. The diverse requirements of future smart cities demand that current use 
cases will evolve to more heterogeneous implementations whilst quality assur-
ance mechanisms such as network slicing are required to guarantee the Service-
Level Agreements (SLAs) for diverging use cases over the same physical network 
[3]. Therefore, current 5G networks need to evolve to flexible architectures where 
the diversity and performance needed for these new services are assured. With 
the advent of virtualization and softwarisation technologies, operators expect 
networks to support flexible and rapid deployment of their Network Services 
(NSs) and Network Applications (NetApps). For example, in virtualised Mobile/
Multi-access Edge Computing (MEC) infrastructures, services can be migrated/
deployed at the edge, closer to the final user, to improve the overall service per-
formance on demand. Furthermore, there have been significant advances in radio 
access technologies in 5G and beyond systems recently; however, the backbone 
infrastructure could become a new bottleneck if it is not upgraded accordingly to 
accommodate the rapidly growing traffic aggregated from the distributed radio 
access networks. Moreover, to allow service quality assurance in the backbone 
infrastructure, advanced packet processing capabilities for traffic engineering are 
entailed without compromising the super-high traffic transmission speed of the 
data plane, as expected in the next-generation networks.

Network Function Virtualization (NFV) and Software-Defined Networking 
(SDN) technologies bring numerous advantages in terms of dynamicity and flex-
ibility to provide connectivity among the distributed NetApp deployment com-
ponents. Meanwhile, they also introduce added complexities to the overall man-
agement and control of the architecture. Furthermore, network traffic traversing 
the data-plane of the infrastructure also becomes much more complex just when 
networks need to transfer much greater amounts of data, at much higher speeds. 
Particularly, the forwarding process of network packets is conducted by encapsu-
lating them into different network protocols to allow differentiating multiple ten-
ants, users and services, which makes it more complicated to perform any packet 
processing tasks. Packets can be processed at multiple stages on their way from 
the physical network interface until they reach the application service. However, 
high-performance packet processing in software requires very strict limits on the 
time spent in processing each packet, which has led to the idea of moving this 
tasks to lower levels by leveraging hardware support. The overhead associated 
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to the software and virtualisation layers is imperative to address a synergy where 
software and hardware should work together to face the new challenges intro-
duced by next-generation networks.

Contemporary Network Interface Cards (NICs) allow multiple receive and 
transmit descriptor queues (multi-queue). On reception, a NIC can forward differ-
ent packets to different queues to distribute processing among CPUs, thus increas-
ing performance uniformly and applying traffic prioritization when necessary. This 
mechanism is known as “Receive-side Scaling” (RSS). However, the filter used in 
RSS is typically a hash function over the network and/or transport layer headers, 
which is by far not enough to tackle the high level of network encapsulation imposed 
by virtualised networks. Therefore, network packets reaching any physical host of 
the infrastructure will be presented as only one flow, making network device driv-
ers not capable of handling the efficient distribution across multiple CPUs. The lack 
of existing implementations capable of addressing the complexity of network traf-
fic flowing through virtualised multi-tenant architectures has an immediate conse-
quence in degrading the performance of the entire mobile network platform, invali-
dating any further optimization attempts in later stages. Furthermore, it is paramount 
to any service provider to guarantee their SLAs specially for critical transmissions, 
meaning that each service flow requires to be optimally accommodated and prior-
itized when required.

Latest advances in data-plane processing technologies have the potential for a 
breakthrough in this direction. This study shows how the extended Berkeley Packet 
Filter (eBPF) and the eXpress Data Path (XDP) can be explored to significantly 
upgrade conventional implementations and make it possible to realize high-speed 
custom packet processing that integrates seamlessly with existing systems, while 
selectively tailoring network functions in a flexible way. Specifically, this work lev-
erages these technologies with the aim of accelerating next-generation network pro-
cessing tasks, ensuring that a target system uses all its resources to their maximum 
capacity and avoiding packet loss by forwarding network traffic to other systems or 
nodes when the local system is overloaded. The proposed solution is expected to be 
applicable to 5G and beyond networks especially the emerging pre-6G networks. It 
is noted that the various network segments along the end-to-end data plane in those 
next-generation networks can benefit from the proposed technologies, including all 
the non-radio-access-network segments such as the MEC segment, the transport net-
work and the core network. In addition, the proposed technologies can operate and 
are fully compatible with the so-called Fixed 5G and Beyond Networks [4].

This paper contributes to the literature by filling the gap of existing packet-pro-
cessing implementations not being capable to deal with the complexity of network 
traffic flowing through virtualised multi-tenant architectures and addresses the fol-
lowing challenges: (A) To create an environment to effectively manage the execu-
tion of tailored eBPF programs directly offloaded in the hardware, before the ker-
nel itself touches the packet data; (B) To enable packet processing to differentiate 
among services of various priorities, including high-priority traffic that needs to be 
handled as fast as possible, and non-prioritised traffic that can be forwarded when 
necessary to other server nodes for further processing; (C) To increase the overall 
system performance by distributing tasks among CPUs; (D) To design a framework 
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to act as a glue for all interested stakeholders or higher layers of next-generation 
architectures, including vertical NetApp Management Platforms; and (E) To provide 
results of the achievable performance, throughput and packet loss of the network 
compared to traditional implementations.

The solution proposed envisions a decentralised management of dispatching 
network traffic differentiation policies that can be highly useful for network slic-
ing implementations. Furthermore, an intensive empirical validation has been per-
formed to demonstrate the overhead, performance, viability and scalability of the 
proposed framework.

The rest of the paper is organised as follows. Section 2 reviews the state of the 
art of existing software and hardware network data paths technologies. Section  3 
outlines the eBPF infrastructure. Section 4 attempts to define the fundamentals of 
pre-6G networks and presents a proposed MEC architecture. Section 5 presents the 
architecture, lifecycle management, other technical aspects and implementation 
details of the proposed network accelerator framework. Section 6 depicts a holistic 
view of the deployment and testbed implemented. This section also presents perfor-
mance and scalability test results to illustrate the findings. Finally, Sect. 7 summa-
rises the paper and outlines future research work.

2 � Literature Review

Achieving high throughput in packet processing is a key element in networks. Pack-
ets can be processed at different levels on their way from the physical network inter-
face until they reach the application. This section reviews the existing approaches 
and techniques and highlights key technologies relevant to this work.

2.1 � Kernel Bypass Solutions

Programmable packet processing plays a key role to provide the capability to enable 
the new business models expected in the pre-6G era. To avoid expensive context 
switches between kernel and user space, there is increasing popularity of special-
purpose toolkits such as DPDK [5] for software packet processing, where a user-
space application takes the complete control of the networking hardware with the 
while operating system (OS) bypassed. Similarly, there are also other frameworks 
such as Netmap [6] and PF_RING [7], which offer high packet processing perfor-
mance without bypassing the kernel completely, whilst partially aiming to lower 
the overhead of transporting packet data from the network device to a user-space 
application. While these approaches can significantly increase performance, they 
lack of easy integration with the existing system since applications have to re-imple-
ment functionality, otherwise exposed by the OS network stack. Instead, this paper 
focuses on providing a solution that works in conjunction with the kernel network-
ing stack, thereby taking advantage of eBPF-XDP-based technologies, as these are 
part of the mainline Linux kernel.
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2.2 � Software‑Based Approaches

If no kernel bypass is performed, the driver builds new socket buffer (sk_buffer) 
instances and packets are sent to the network stack. In the first level of this net-
work stack, the Traffic Control (TC) [8] is placed. TC is a packet scheduler 
that provides hooking points in the Linux kernel and allows configuring differ-
ent queues disciplines for scheduling and shaping purposes. Apart from built-in 
packets processing and classification capabilities, TC can also use u32 modules 
for classifying and allows the attachment of eBPF programs. After TC, packets 
reach Linux bridges or virtual switches for further processing. One of the most 
commonly used tools at the bridging level is Open vSwitch (OVS) [9]. OVS is an 
open-source virtual multi-layer distributed switch integrated in the mainstream 
in the Linux kernel, which provides a switching stack for virtualised hardware 
environments. After this, packets that need to be processed at the network level 
will traverse multiple Netfilter hooks. Here, diverse packet filtering and mangling 
expressions can be enforced by using the well-known user-space tool iptables 
[10]. Iptables provides excellent performance for traditional networks especially 
for firewalling purposes. However, it does not scale for high traffic rates and lacks 
native support for tackling deeply encapsulated traffic in 5G as well as in the new 
generation of mobile networks as expected.

Through the literature review, there are manifold studies that approach soft-
ware-level solutions to address this topic. In [11], an efficient virtual video-
optimization mechanism which maintains QoS in critical services is proposed. 
This paper uses iptables to control and optimise video traffic in multi-tenant 5G 
networks. Similarly, Matencio-Escolar et  al. [12] presents an adaptive network 
slicing solution for multi-tenant 5G IoT network. The implementation is based 
on OVS and provides good performance for different IoT scenarios. Meanwhile, 
the solution is also limited by the Linux kernel stack performance, which does 
not scale up for more than 1-2M packets per second. Kurtz et  al. [13] propose 
and implement an SDN/NFV network slicing tool for 5G networks. They utilise 
OVS and SDN controllers to control the network traffic. However, the data path 
they propose does not fulfill the 5G requirements in terms of virtualisation; there-
fore, they do not use real 5G traffic for the experimentation. In [14], an algorithm 
to provide information regarding the paths traversed by the network traffic in a 
multi-tenant architecture is presented. This implementation uses P4 language to 
create a flexible and programmable network data path that allows its scaling using 
different network topologies. Although it provides a promising network algorithm 
with strong impact in the creation of multi-tenant architectures, the data pre-
sented is based on simulations without performance evaluation with real network 
traffic. Despite there are manifold software solutions in the related work, in this 
particular area, any software approach may come too late because any degrada-
tion in network traffic performance may have already occurred.
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2.3 � Hardware‑Based Programmability

Programmable hardware presents multiple advantages and disadvantages in com-
parison with software-based solutions. First, the use of Content-Addressable 
Memory (CAM) provides constant access to memory and therefore, the number 
of rules inserted does not necessarily implies more memory access time. Second, 
hardware devices provide superior processing capabilities and thus, compared 
with software implementations, higher performance and bandwidths. Nonethe-
less, these devices provide less flexibility in terms of programmability and also 
the commercial cost is usually higher.

Intel has been producing in recent years several NICs with novel firewalling and 
QoS capabilities [15–18]. The most advanced [18] provides a QoS-aware mecha-
nism based on a sophisticated scheduling algorithm composed of two different levels 
of queues. However, this card only allows data paths based on the 5-tuple (Source 
IP, Destination IP, Source Port, Destination Port, L4 protocol) filtering and Virtual 
LAN (VLAN) classification. Moreover, the network rules granularity provided is too 
limited, which is a strong limitation to perform the Deep Packet Inspection (DPI) in 
the virtualised 5G/6G networks where transmissions are deeply encapsulated.

Therefore, the market is moving from conventional NICs to NICs based on Field-
Programmable Gate Arrays (FPGAs) and Network Processing Units (NPUs). These 
technologies overcome the lack of flexibility and programmability of the network 
data path in traditional NICs and they also reduce the overheads induced by the net-
work data processing in software implementations. FPGAs and NPUs are commonly 
called as SmartNICs. They reduce CPU cycles, and save CPU cores and power, by 
offloading CPU-intensive tasks to dedicated hardware. Furthermore, SmartNICs 
provide the possibility of programming complex data planes and highly granular 
network rules, both required in the next generation of mobile networks.

The FPGA [19] launched by Intel proposed open-source platform supported 
by DPDK and targeted for different use cases, such as cyber security or Network 
Functions Virtualisation (NFV). The programmable data path provided by this card 
is based on Verilog [20] and VHDL [21]. Bittware [22] presents another FPGA-
based solution with P4 language support, which provides high flexibility and easy 
programmability of the network data plane. However, no framework is provided to 
control the creation of new rules or hardware-based filters. The Netcope FPGA [23], 
although providing good performance, does not provide open source modules and 
therefore it is very difficult to extend the native capabilities of the card beyond the 
existing programmability of the data path. NetFPGA-SUME [24] is an open source 
FPGA, which provides a programmable network data path with P4 support. This 
card provides high flexibility and has an extensible framework that allows the con-
trol and definition of the tables content. However, it has been demonstrated [25, 26] 
that it does not provide superior performance in high-rate network transmissions.

Ricart-Sanchez et al. [27, 28] propose a NetFPGA-based network slicing solution 
implemented in P4 language [29] for 5G MEC architectures. Moreover, an analysis 
and evaluation of the performance is presented. However, these empirical valida-
tions do not present any detailed evaluation about the queues or CPUs performance. 
In [30], Yan et  al. propose a SmartNIC-based implementation to enable network 
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slicing for scalable cloud systems, with the objective of meeting 5G/B5G network 
requirements. This solution also employs P4 language to program the network data 
path for L2/L3/L4 classification and action. Although P4 is very flexible and it is 
supported by several network technologies, the range of actions provided is limited 
and difficult to extend in comparison with other data plane development technolo-
gies, such as eBPF or XDP. P4 language presents some limitations [31]: it does not 
support internal methods, P4 only support external functions or methods which are 
implemented outside P4 and they are called from the P4 pipeline; there is no itera-
tions, loops are not supported; there is no dynamic memory allocation; there are no 
pointers or references; P4 has no built-in support for scheduling, multiplexing or 
queuing; there is no standard communication channel between data plane and con-
trol plane, this is usually provided by external methods; among others. Although 
these are promising solutions, they do not expose any accessible API through which 
the network policy rules can be dynamically enforced.

2.4 � XDP Approaches

The improvement of the packet processing performance is a key enabling element 
for the deployment of virtualised pre-6G architectures, where a high performance 
is required. eBPF and XDP enable the implementation of high-performance net-
working applications based on Linux kernel and hardware offloading. In [32], an 
eBPF-based prototype using bpf-iptables is proposed. It presents an empirical com-
parison between the eBPF-based solution and the current implementation of ipta-
bles, showing improved performance especially when a high number of rules are 
involved. Scholz et al. [33] focus on the study of two different eBPF XDP scenarios, 
based on the Linux space and the application layer respectively. Nevertheless, none 
of the previous work has been implemented or tested in hardware offloading mode. 
Enberg et  al. [34] propose a combined application and hardware packet steering 
implementation using eBPF and XDP. It provides a practical approach for accelerat-
ing network-intensive applications. Although it presents an extended description of 
different XDP scenarios and modes, it does not provide any empirical validation on 
packet processing performance. In [35] a hybrid DDoS mitigation pipeline archi-
tecture is proposed, leveraging the flexibility of eBPF and XDP to handle different 
types of traffic and attackers. Although achieving a dropping rate of approximately 
15 Mpps in the SmartNIC CPU, it does not present packet processing scalability 
when network traffic is sent to other network applications. A design, prototyping and 
empirical validation of a network slicing approach based on eBPF, XDP and Netro-
nome over a pre-6G infrastructure is proposed in [36]. Although this is a promising 
approach to provide hardware-based network slicing, they do not define any conges-
tion control mechanism of the network node and therefore, it becomes a non suit-
able solution for scenarios with high data transmissions. Furthermore, none of the 
solution has provided a classification mechanism to identity and take decisions over 
virtualised multi-tenant network traffic. Despite the considerable number of related 
work that exist in eBPF and XDP technologies, they are mostly to introduce the con-
cept to the research community by demonstrating promising performance results. 
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However, there has not yet been sufficient research from the virtualised infrastruc-
ture data path perspective on how to: (a) Satisfy the performance demands of use 
cases with diverging requirements and prioritisation levels; (b) Analyse the system 
status to avoid packet losses by proposing a reactive solution.

3 � Background of the Proposed Approach

This section provides brief and essential background information on eBPF together 
with XDP to facilitate the understanding of the proposed approach, where the com-
bination of eBPF and XDP serves as the basis. Full details of the related background 
can be found in [37–39].

eBPF enables programmed code to be executed in the kernel space in a more secure and 
restricted environment, which allows creating tools that otherwise would require modifying 
kernel’s source code or implementing new kernel modules. eBPF employs a highly flex-
ible and efficient virtual machine (VM) construct in the Linux kernel to execute bytecode 
at multiple hook points safely. Thanks to those hooks including XDP hooks, eBPF pro-
grams can be designed for manifold use cases, most prominently networking, tracing and 
security. eBPF programs are written in restricted C code and compiled to eBPF bytecode, 
which is injected from the user space into the kernel, where it is verified before attached. 
eBPF is able to call a fixed set of in-kernel helper functions (via BPF_CALL) and access 
shared data structures such as eBPF maps, which act as efficient key/value stores. It offers 
helper functions to communicate with and to take advantage of the kernel functionality 
tail calls to interact with other eBPF programs, security capabilities, object pinning (maps, 
programs), and infrastructure for allowing eBPF to be offloaded to Smart Network Cards 
(SmartNICs). In the following, eBPF VM, XDP hooks and eBPF maps are outlined.

3.1 � eBPF Virtual Machine

eBPF in-kernel VM allows injecting and executing programs from the user space by 
attaching them to specific hooks. These programs run in a restricted sandbox environment 
with access only to a limited set of functions. The VM consists of 11 64-bit registers, a pro-
gram counter and a 512 byte fixed-size stack. Registers are named r0–r10.

•	 r0 Contains the return value of a helper function call.
•	 r1–r5 Hold arguments from the BPF program to the kernel helper function.
•	 r6–r9 Are called saved registers that will be preserved on helper function call.
•	 r10 Read-only frame pointer to access stack.

Some SmartNICs have already mapped this well constrained VM for offloading to 
lightweight Network Processing Unit (NPU) general purpose cores [40], whilst this 
paper leverages these capabilities for the kernel to execute eBPF programs on the 
network interface instead of on the host CPU.
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3.2 � XDP Hooks

eBPF employs a number of hooks for attaching programs, including those concerned 
at the lower end of the datapath. From Linux 4.8 +, new hooks have been added 
for XDP, a new programmable high-performance networking datapath that works 
in conjunction with the Linux stack, and relies on eBPF to perform very fast packet 
processing. The key difference is that XDP hooks allow executing programs to pro-
cess packets at very early stages, before they arrive at the Linux network stack. The 
execution can happen in three different places (1) Generic Mode where the XDP 
hook is called from netif_ receive_ skb(), after the packet Direct Memory Allocation 
(DMA) and Socket Buffer (SKB) allocation are finished, thereby loosing most of the 
performance benefits; (2) Native Mode where the execution takes place in the driver 
before the kernel allocates an SKB; (3) Offloaded Mode which attaches eBPF pro-
grams into hardware network devices, and thus is the fastest mode of all. This paper 
focuses on the Offloaded Mode to offload eBPF program to the network card itself.

A valid eBPF program attached to a XDP hook must return a xdp_action indicat-
ing the decision on what to do with the packet after it has been processed. Available 
values, which are defined in bpf.h, are listed below:

•	 XDP_ABORTED Error, Drop packet.
•	 XDP_DROP Drop packet.
•	 XDP_PASS Allow further processing by kernel stack.
•	 XDP_TX Transmit from the interface the packet came from.
•	 XDP_REDIRECT Transmit the packet from another interface.

As further explained in Sect. 5.4, this paper uses a combination of XDP_PASS and 
XDP_TX to both send priority traffic up to the kernel network stack for regular pro-
cessing, and to forward non-prioritised network traffic to other available physical 
hosts in the infrastructure.

3.3 � eBPF Maps

eBPF utilises maps as generic key/value data structure for data transfer between Kernel/
hardware and user space. The maps are managed by using file descriptor and they are 
accessed from user space via BPF syscalls. eBPF provides multiple useful data structures 
that we can explore to store persisted data or even to exchange data from/to the user space. 
Each map type has a distinct functionality, with some being used globally and others hav-
ing specific applications. Although a full list is defined in the enum bpf_map_type, from /
usr/include/linux/bpf.h, some of the most important are listed below:

•	 BPF_MAP_TYPE_HASH A map with items indexed by a hash function.
•	 BPF_MAP_TYPE_ARRAY​ A map with items indexed by a number.
•	 BPF_MAP_TYPE_PROG_ARRAY​ A map that contains references to other eBPF 

programs.
•	 BPF_MAP_TYPE_SOCKMAP A map with socket references.
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•	 BPF_MAP_TYPE_CPUMAP A map that can redirect raw XDP frames to 
another CPU.

•	 BPF_MAP_TYPE_XSKMAP A map that can redirect XDP frames to an AF_
XDP socket.

•	 BPF_MAP_TYPE_QUEUE A map with a queue behaviour.
•	 BPF_MAP_TYPE_STACK A map that uses last-in, first-out (LIFO) to keep ele-

ments in the map.

As further explained in Sect. 5.3, this paper explores two different types of maps for 
sharing data between eBPF offloaded programs and user-space applications. Spe-
cifically BPF_MAP_TYPE_HASH and BPF_MAP_TYPE_ARRAY​ are employed 
to store packet data structures of priority traffic and a list of alternative server 
addresses, respectively.

4 � Pre‑6G Network Architecture

Whilst the research into the next-generation networks towards 6G is emerging, there 
is no official architecture proposal yet. Figure 1 envisions a pre-6G MEC architec-
ture, which attempts to present a view of a pre-6G architecture, following an evolu-
tion of the MEC paradigm. MEC moves part of the service processing and data stor-
age from the core of the network (central cloud) to the edge nodes. This physical and 
logical movement of the services to the last miles implies several benefits already 
seen in current 5G networks, such as performance improvements and traffic opti-
misation. In pre-6G networks, it is expected that intelligent edge processing will be 
more pervasive and powerful, being built upon 5G MEC yet significantly enhance 
and extend the benefits, empowered by advanced traffic control and Artificial Intel-
ligence (AI) techniques at the edge, beyond the advances in 5G networks. This paper 

Fig. 1   Pre-6G architecture overview
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focuses on advanced edge traffic control. Moreover, such improved MEC will play 
an increasingly important role to support new functions and services. Beyond the 5G 
use case requirements in terms of eMBB (enhanced Mobile Broadband), URLLC 
(Ultra Reliable Low Latency Communications) and mMTC (massive Machine Type 
Communications), it is expected that pre-6G networks would allow a flexible com-
bination and expansion of the requirements in 5G to provide improved support for 
complex use cases such as Industry 4.0+ and Factories and Cities of Future [41].

To this end, the Autonomous and Cognitive layers provide intelligent network 
management, comprising aggregation, AI, network slicing and NetApps Orchestra-
tion modules [42]. Intelligent network management intents are then transformed into 
actions by the Data Plane Control layer and inserted into the network applications. 
These actions are enforced to control the network traffic in the data plane and thus 
to guarantee the service-level agreements to fulfil the requirements of the various 
demanding use cases, and new business models and vertical services at the Business 
Application layer.

The infrastructure presented in Fig.  1 consists of three main network segments, the 
Radio Access Network (RAN), the Edge and the Core. These segments are distributed in 
different geographical locations, managed by virtual infrastructure managers (VIMs), e.g., 
using OpenStack [43] and Kubernetes [44]. The RAN segment is composed of gNodeBs 
(gNBs), which represent the logical radio nodes and allow the wireless communications 
between the end devices and the RAN. For a proof-of-concept implementation, these 
gNBs can be built upon the OpenAirInterface (OAI) platform [45] as part of the pre-6G 
architecture using Ettus B210 [46] software-defined radio. In the edge segment of the net-
work, Commercial Off-The-Shelf (COTS) hardware is used to deployed logical services 
using Network Function Virtualisation (NFV) technologies, which allow the massive 
deployment of virtualised network applications closer to final users. These COTS com-
puters also provide offloading mechanisms, such as XDP and eBPF programs, employed 
to execute network functions of using the hardware directly. Virtualisation technologies 
imply a considerable reduction in the Capital Expenditure (CAPEX) for mobile network 
operators, while offloading tools also provide the mechanisms to achieve the demanding 
performance required by the next-generation services. The different edges of the network 
are connected to the core network segment, where the data centre of the architecture with 
different network functions are deployed. These functions are responsible for mobility and 
session management, user authentication, authorisation and accounting, among others.

4.1 � Network Traffic in Virtualised Architectures

Pre-6G is a major evolution over previous technologies in many senses. Apart from 
introducing performance improvements of orders of magnitude over today’s net-
works, 6G infrastructures provide native support for multi-tenancy, mobility and 
knowledge discovery, automatic network adjustment, smart resource management 
and intelligent service provisioning. In order to provide these features, Pre-6G data 
packets follow a nested structure, which is illustrated as it follows: (1) MAC/IP/L4, 
(2) VXLAN/MAC/IP/L4 and (3) GTP/IP/L4/SERVICE.
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The first group of headers (1) MAC/IP/L4 is related to the communication 
between physical machines including Medium Access Control (MAC), IP and the 
transport protocol (TCP or UDP). The second group (2) VXLAN/MAC/IP/L4 
includes a VXLAN encapsulation protocol, MAC, IP and the transport layer (TCP 
or UDP). This second first encapsulation layer is used to isolate tenant traffic, espe-
cially for mobile network operators sharing the same physical 5G infrastructure as 
tenants. The group three of headers, (3) GTP/IP/L4/SERVICE, includes GTP, IP 
and TCP or UDP, and it is introduced to allow the management of the user mobility 
across different gNB in a transparent way without losing connectivity. Finally, the 
application header contains the data being transmitted by the end users, for example 
RTP for video communications or HTTP for web services. The VXLAN encapsula-
tion protocol is used to achieve tenant isolation, however other alternative protocols 
like GRE or GENEVE can be employed to fit the same purpose. Normal IP network 
packets uses a very limited subset of these headers, for instance, MAC/IP/UDP/
SERVICE, nonetheless, compared to this simple case, several additional headers 
have been added to achieve both multi-tenancy and mobility. These encapsulation 
protocols are applied by both ends of the data path, i.e. edge and core.

The parsing and classification of this complex network packages is one of the 
problems that current NICs face. Commercial-off-the-shelf (COTS) NICs do not 
provide classification and control support for the double encapsulated network traf-
fic required for most of the novel 5G/6G network architectures. It can lead to an 
issue when the final user information is contained in the nested headers and packet 
steering protocol is based on this information. In this context, when COTS NICs 
receive 5G/6G network data flows they are not able to inspect inner headers and the 
packet steering is made based on the outer headers information. This can end in a 
CPU bottleneck, since the destination queue and CPU decision is based on the phys-
ical machine, which is static for our Pre-6G architecture proposed and not based on 
the final user information. However, these final user addresses are totally dynamic, 
based on the flow, and will vary depending on the final service. The SmartNIC-
based solution proposed in this paper supports this complex data path, as well as 
to offload the network functionality using eBPF and XDP. The flexibility and high 
performance provided by SmartNICs is implying a needed change from traditional 
NICs to SmartNICs in the new generation of mobile networks.

4.2 � Focused Use Case Scenario

Future 6G networks are expected to process 10 to 100 times more data volume 
than their predecessors [47]. However, more and more, it is the network end sys-
tem, instead of the network, that is responsible for degraded performance of network 
applications. The proposed use case presents a scenario where some services have 
been migrated/deployed at the edge, closer to the final user, to improve the overall 
services performance on demand. However, a situation with an ultra-high rate of 
data traffic passing through a single edge node can lead to performance bottleneck 
e.g., causing massive packet loss. This paper addresses this problem by proposing a 
dynamic multi-queue discipline mechanism that avoids the congestion of the edge 
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node by distributing traffic processing among different CPUs. Although this multi-
queue discipline allows prioritisation of the traffic and offers better performance 
in terms of throughput, the Linux Network Stack still presents some limitations in 
terms of scalability when high volumes of data need to be processed. To tackle this, 
this paper also proposes the forwarding of non-prioritised packets to a different edge 
node or even to the core segment of the network for further processing, when the 
receiving system exceeds its processing capacity. This allow flexible balancing the 
network traffic between different nodes and therefore improve the overall perfor-
mance of the network.

5 � The Proposed Framework

This section provides more details on the proposed pre-6G architecture and an 
implementation of a network accelerator framework towards realising the architec-
ture. Figure 2a shows the system diagram to establish the position, connections, and 
different roles of the framework components.

(a) (b)

Fig. 2   a Framework diagram to establish the position, connections, and different roles among the dif-
ferent modules; b Lifecycle overview of Data Plane Programmability Network Application containing 
the logic to offload eBPF programs into SmartNICs and access eBPF maps to both add new entries, and 
collect stats
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5.1 � Control Layer

On top of Fig. 2a it shows how network policy rules can be enforced through the 
Northbound Interface (NBI) of the Data Plane Programmability Network Adapter 
Application (DPPnApp). This enables any authorised entity of higher layers of the 
described pre-6G architecture to send intent-based messages to perform specific 
network actions over the system. An Intent defines what type of traffic should be 
controlled and the action that needs to be enforced over packets matching its net-
work specifications. As it is represented in Listing 1 Intent-based messages reach-
ing this NBI are composed of one or more resources describing the flows to take 
action to, one action that defines which kind of action has to be applied over such 
flows (e.g. send to rx_queue), and a list of parameters for fine-grained specifications 
(e.g, network interface, mode, time, duration, etc.). This gives enough information 
for the DPPnApp to parse a given intent parameters into a C structure which will 
later be added as a new entry on the eBPF-MAP (see Sect. 3.3). Listing 1 gives a 
simple example of an intent-based message where a specific flow service (identified 
by its resourceId) needs to be prioritised. For classifying tasks, the packet structure 
(network protocol stack) is provided in the Resources section. In this example, the 
flow service is encapsulated in two different network protocols, VXLAN and GTP , 
which will need to be added as part of the filter in the network policy rule.

In a similar manner, higher layers of the pre-6G architecture can also monitor the 
performance and implications of existing network policy rules in the system (e.g, 
throughput, packet loss, cpu-usage, etc.). This offers fine-grained control of the plat-
form and paves the way for network operators or even AI-based models to update, 

8 ” encapsu lat ionID 2” : ”8894D0D4” ,
9 ” encapsulat ionType 2” : ”gtp”

10 } , {
11 ” r e sou r c e Id ” : ”5A07C580” ,
12 ” src IP ” : ”192 . 188 . 0 . 140” ,
13 ” dstPort ” : ”5004” ,
14 } ] ,
15 ”Action ” : {
16 ”actionType” : ”INSERT” ,
17 ”actionName” : ”PRIO QUEUE” ,
18 ” f low hash ” : ”E918D704” ,
19 ” rx queue ” : ”1”} ,
20 ”Params” : [ {
21 ”paramName” : ” inter faceName” ,
22 ”paramValue” : ” eth 0”} ] }

1 {
2 ”Resources ” : [ {
3 ” r e sou r c e Id ” : ”F8A4C949” ,
4 ” encapsu lat ionID 1” : ”00000445” ,
5 ” encapsulat ionType 1” : ” vxlan ”
6 } , {
7 ” r e sou r c e Id ” : ”B6E6B2B3” ,

Listing 1   Intent-based message
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remove or create new network policy rules based on the current behaviour of the 
overall system or a particular service.

5.2 � DPPnApp: Data Plane Programmability Network Adapter Application

The DPPnApp is the core control module. Its NBI exposes functions to both enforce 
and monitor network policy rules. DPPnApp provisions the system by offloading 
maps and programs in its first execution, parses intent-based messages and inserts 
them as new entries of the eBPF maps, reads from those maps to generate statistical 
reports, and provides feedback to the higher layers of the architecture by sending 
periodical informs. Figure 2b depicts the logical representation of the DPPnAPP’s 
lifecycle flow, which provides desegregated policy management and statistics. The 
lifecycle starts when a network policy is received by the intent parser, transforms it 
into eBPF rules and inserts them into the eBPF program maps. Statistics about the 
rules inserted and traffic processed are collected and stored in different eBPF maps. 
These statistics are periodically collected from the maps in order to generate statis-
tics reports used for further analysis of the eBPF-XDP framework deployed.

5.3 � eBPF Maps Framework Requirements

As displayed in Fig.  2a, eBPF-maps are used for the communication (by sharing 
data) of the user space application with the eBPF program that is offloaded in the 
SmartNIC. This paper envisions two different types of maps. The first eBPF-map 
(Prio-Map in Fig.  2a) is a BPF_MAP_TYPE_HASH and contains all the required 
information of the network traffic that has to be accepted in the system. The second 
eBPF-map (Alt-Map in Fig. 2a) is a BPF_MAP_TYPE_ARRAY​ and contains a list of 
alternative server addresses to which to forward traffic that has not been accepted by 
the system (non-prioritised traffic). When a new network policy rule is enforced, the 
DPPnApp will parse and accommodate the intent-based message as a new entry of 
a eBPF-map structure. By doing so, the eBPF program can look up for new entries 
on such maps and perform actions to every packet matching their network protocol 
specifications.

Listing 2 shows the data structure used as value for any (key/value) entry of 
the prio-MAP. It is worth highlighting that the key would be the flow hash that is 
passed in the Intent message. The attribute is_active lets the eBPF program know 
that there is a pending action to be performed, and it lets the user space application 

1 s t r u c t p r i o va l u e {
2 u i n t 8 t i s a c t i v e ;

Listing 2   Data structure used as value for the key/value BPF_MAP_TYPE_HASH prio-MAP
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know that this rule has been performed successfully and is ready to provide statisti-
cal data. target_rx_queue_index indicates to which rx_queue packets matching the 
network specifications have to be sent. f_stats is a structure that contains up-to-date 
statistics (number of packets, bytes, packet size, etc.) of the network policy rule. 
Finally, f_struct is also a structure that represents an abstraction of the Intent mes-
sage (Resources in 1) defining the network protocol fields that traffic reaching the 
network interface must accomplish to be part of this flow.

5.4 � Offloaded eBPF Program Details

Algorithm  1 shows the eBPF program implemented, using the constraint C lan-
guage, which allows packet classification, processing and accelerating tunnelled 
network traffic in the architecture presented. This algorithm also guarantees a fair 
distribution of the tunnelled traffic between the different RSS queues allocated in the 
kernel space and controlled by the Netronome Flow Processor (NFP) driver. From 
the point of view of the NIC, when a packet arrives, the eBPF-program starts by 
parsing packet headers to extract the metadata information it will react on (see lines 
3 and 4). It then generates a hash by using an adapted version of the /include/linux/
jhash.h library, which is distributed with the Linux kernel source code; the main 
difference here is that the proposed packet parser also covers network tunnelling 
protocols required for 5G and pre-6G network traffic, and for this reason the jhash 
library needs to be adapted to include more entries in its hash generator function 
(see line 5). Next, the eBPF program reads from the prio-MAP to look up for the 
key with the same hash value (see line 6). If successful, and the associated statistics 
do not indicate an overloaded system, it extracts the target_rx_queue_index attribute 
its map entry and rewrites the current packet metadata with that value (see lines 7 
and 8). After the packet is changed, the final verdict is given in the form of a eBPF 
program return code (see Sect. 3.2). In this case, the return code is XDP_PASS that 
will allow packets to be sent to the kernel network stack for regular processing (see 
line 13). If the hash value does not match with any prio-MAP entry and conges-
tion is detected in the system, the eBPF program will look up of the Alt-MAP to 
select an alternative destination where non-prioritised traffic can be processed (see 
line 10). The eBPF program will change the MAC and IP destination addresses of 
such a packet, and return a XDP_TX code to send it back to the same interface (see 
lines 11 and 12). The MAC address value retrieved from the Alt-MAP represents the 
direction of the alternative network node that is used to process the network packet.

This behaviour aims to increase performance uniformly by forwarding different 
packets to different queues to distribute processing among CPUs. It also prevents the 
system from being overloaded by forwarding non-critical traffic to alternative desti-
nations for further processing.
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6 � Empirical Performance Evaluation

6.1 � Experimental Design and Implementation

Figure  3 shows a holistic view of our experimental deployment. The deployment 
used a Dell T5810 machine equipped with an Intel Xeon CPU E5-2630 v4, 32 768 
MB of RAM, and 512-GB solid-state drive (SSD) with support of hardware Direct 
Memory Access (DMA) system to place packet data directly in the CPU cache. The 
test machine is equipped with two Netronome cards Agilio CX 2x25GbE network 
adapters, which are supported by the NFP driver. These cards have one single port 
each, connected to a 25G SPF28 cable. They are depicts in in Fig. 3 as Netronome 1 
with port A associated and Netronome 2 with port B. The test computer runs Linux 
kernel version 5.4 supporting XDP for Netronome NICs, with the hyperthreading 
disabled and irq_affinity adjusted to match one queue per CPU. Each CPU is in 
C-State C0, meaning that they are fully turned on. For traffic generation, Pktgen was 
employed. With a total of 10 CPUs, for all the experiments, two CPUs (8–9) were 
reserved for the traffic generator while the remaining (0–7) were attached to the net-
work receiving queues. For the CPU usage, the mpstat system utility was utilised; 
in addition, the /proc/net/softnet_stat file is periodically inspected to monitor stats 
from network devices.

The traffic generated by pktgen is transmitted through Netronome 1 using port 
A and it is received in Netronome 2 through port B. Once the network traffic is 
received in Netronome 2, the eBPF programm determines the action to apply over 
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this traffic. The solution implemented provides two operational modes depending 
on the XDP action invoked in the network data plane. These actions, XDP_PASS 
and XDP_TX, define, respectively, if the packet is sent to the kernel of the system or 
if it is forwarded to a different physical machine, load balancing the traffic. There-
fore, when XDP_PASS is invoked, Netronome 2 Port B actuates only as a reception 

Fig. 3   Implementation of the performance evaluation testbed
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interface (Rx), while, when XDP_TX is invoked this Netronome card actuates as 
both, a reception (Rx) and a transmission (Tx) interface.

6.2 � Empirical Evaluation

This section presents the empirical performance evaluation of the proposed solution. 
A set of experiments has been conducted in order to validate its functionality and 
assess its performance. Table 1 shows the different experiments conducted. Packets 
of multiple sizes have been generated to provide different data plane traffic loads; 
for each of these scenarios, an increasing number of receiving queues were imple-
mented to evaluate the system behaviour. For all experiments, the traffic injected 
in the network had a total of 16 services of which 8 were identified as prioritised 
services. The prioritised services are selected depending on their Tunnel endpoint 
identifier (TEID) of the GTP Network protocol, that allowed to emulate different 
mobile users that require to be prioritised. In the experiments, all services sent pack-
ets at the same packet rate. Thus, the optimal performance point was reached when 
half of the injected network traffic (the prioritised traffic) reaches the network stack. 
This value is indicated as Desired Throughput in Table 1 and it is also shown as a 
horizontal line, located at 50% value, in Fig. 4.

The performance evaluation focuses on three metrics:

•	 Packet loss. In contrast to many other studies on the efficiency of XDP, this 
paper also offers packet loss results to show the maximum throughout perfor-
mance of the overall system. Although packet processing in hardware can be 
really fast, subsequent levels of kernel network processing tasks can present a 
bottleneck, causing packets to be discarded before they reach the application in 
the user space. This effectively measures the overhead of the system as a whole, 
and serves as a key indicator to assess the proposed solution under different traf-
fic load conditions.

•	 CPU usage. On reception, a NIC can forward different packets to different 
queues to distribute processing among CPUs, thereby increasing performance 
uniformly. This is quantified by measuring how CPU usage scales with the dif-
ferent queue implementations.

•	 Packet forwarding performance. As mentioned in the introduction section, the 
objective is to prioritise traffic belonging to specific services. However, it is 
equally important that no traffic is lost under normal conditions. This is achieved 
by redirecting non-prioritised traffic to other distributed network nodes for fur-
ther processing.

The following results attempt to find the optimal performance point in terms of 
the highest number of network packets per second that manage to be processed by 
the Linux network stack. To this end, hardware packet pre-processing was executed 
to distribute the prioritised traffic over different queues/CPUs while non-prioritised 
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traffic or packets exceeding the system capacities (overloaded CPUs) are forwarded 
to other systems to prevent them from being lost.

(a) (b)

(c) (d) (e)

Fig. 4   Performance results in terms of accepted throughput, packet loss, and packet forwarding showing 
the comparison between the baseline implementation and the proposed eBPF-XDP-based approach. The 
optimal performance point is shown as Desired Throughput

Table 1   Performance evaluation 
experiments

Packet size 
(Bytes)

Offered 
load 
(Mpps)

Services Prio services Desired 
throughput 
(Mpps)

1500 ≈ 2.2 16 8 ≈ 1.1
1280 ≈ 2.6 16 8 ≈ 1.3
1024 ≈ 3.2 16 8 ≈ 1.6
512 ≈ 6.5 16 8 ≈ 3.2
256 ≈ 12 16 8 ≈ 6.0
132 ≈ 18 16 8 ≈ 9.0
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Figure 4 compares the performance between a baseline configuration and the pro-
posed eBPF-XDP-based implementations. For all the experiments, the prioritised 
throughput is exactly the half of the total traffic injected, consequently the "Desired 
Throughput" is depicted as an horizontal (green) line at the 50%, meaning that once 
the "Prio Throughput" has reached this threshold, critical network traffic is guar-
anteed to be processed locally. The remaining throughput (non priority), can then 
either be accepted to be processed locally (depicted as Non-prio throughput in 
Fig. 4) or forwarded to other destinations depending on the current system capac-
ity. It should be noted that in those scenarios in which the system cannot process all 
inbound prioritized traffic, this will also be forwarded. Figure 4a shows the normal 
behaviour of a traditional NIC attempting to process traffic from a muti-tenant vir-
tualised mobile network. The complexity that nested encapsulation adds to packet 
processing tasks makes baseline NICs unable to dissect network traffic and therefore 
limiting the number of receive queues/CPUs to just one. This situation results in a 
high level of packets loss for transmissions greater than  1 Mpps (which is roughly 
the limit of the Linux kernel). A similar behaviour is seen in Fig. 4b. Meanwhile, 
although with one receiving queue configuration it is not possible to increase the 
accepted throughput values, XDP allows traffic that exceeds the system’s capacity to 
be forwarded so as not to cause packet loss. The rest of the graphs show an improve-
ment in throughput as the number of queues increases. As shown in Fig.  4e, the 

(a) (b)

(c) (d) (e)

Fig. 5   Relation between packet loss/forwarded and CPU load with different number of CPU implementa-
tions. The irq_affinity was set so that one CPU is in charge of processing a particular system interrupt so 
the number of CPUs is directly proportional to the number of network receiving queues reserved in the 
system
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maximum performance point was achieved at 12 Mpps (approx. 24.5 Gbps) offered 
rate, where it reached the desired throughput (approx. 12.25 Gbps), meaning that all 
prioritised services will be handled by the host, and just the non-prioritised traffic 
will be forwarded.

Figure 5 provides details of the CPU usage and how it varied in relation to the 
different traffic load and the number of queues. Figure 5a shows a baseline configu-
ration with just one CPU being used. Given that this implementation barely accepts 
a traffic load greater than 1Mpps, it can be observed that in all experiments, the 
CPU capacities were exceeded, which led to an increasing number of packet loss. 
The remaining graphs show the results based on the proposed eBPF-XDP-based 
approach and depict how allowing traffic steering between multiple queues allevi-
ated CPU consumption levels. Even so, there were some cases where the number 
of queues was not enough to handle all the network traffic and the CPUs reached 
their maximum capacity. When this occurred, the percentage of forwarding traffic 
increases above 50% to also forward prioritised traffic before it was discarded. From 
these experiments it can be concluded that in the best case scenario (as shown in 
Fig. 5e) packet processing operations at 12Mpps with 8 CPUs working at their 80% 
of capacity were needed to handle all the prioritised traffic.

7 � Conclusion

Next-generation networking systems such as the beyond 5G or pre-6G networks 
entail ultra-high packet processing capabilities for traffic engineering to meet the 
ever-growing performance requirements of various use cases. This paper proposes 
a next-generation networking platform framework for an envisioned pre-6G archi-
tecture featuring SmartNICs for advanced data plane control and hardware accel-
eration for significantly enhanced mobile edge computing. The proposed program-
mable data plane explores a hardware-offloading-based approach that combines 
cutting-edge technologies especially eBPF and XDP, and a new eBPF-XDP packet 
processing algorithm is devised accordingly. Furthermore, in the core of the control, 
a novel Data Plane Programmability Network Adapter Application is proposed to 
allow intent-based actions for monitoring and control purposes, with the full lifecy-
cle defined. Experimental results have validated the design and implementation of 
the proposed solution, showing a superior packet processing capacity at 18 Mpps, 
system throughput up to 6.1 Mpps with no packet loss, and high flexibility of the 
framework to adapt to multiple network policy rules dynamically on demand.
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