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Abstract
Multi-access edge computing (MEC) is a key enabler to fulfill the promises of a 
new generation of immersive and low-latency services in 5G and Beyond networks. 
MEC represents a defining function of 5G, offering significant computational power 
at a reduced latency, allowing to augment the capabilities of user equipments while 
preserving their battery life. However, the demands generated by a plethora of inno-
vative and concurrent IT services requiring high quality of service and quality of 
experience levels will likely overwhelm the—albeit considerable—resources avail-
able in 5G and Beyond scenarios. To take full advantage of its potential, MEC needs 
to be paired with innovative resource management solutions capable of effectively 
addressing the highly dynamic aspects of the scenario and of properly considering 
the heterogeneous and ever-changing nature of next generation IT services, prioritiz-
ing the assignment of resources in a highly dynamic and contextual fashion. This 
calls for the adoption of Artificial Intelligence based tools, implementing self-* 
approaches capable of learning the best resource management strategy to adapt to 
the ever changing conditions. In this paper, we present MECForge, a novel solution 
based on deep reinforcement learning that considers the maximization of total value-
of-information delivered to end-user as a coherent and comprehensive resource 
management criterion. The experimental evaluation we conducted in a simulated but 
realistic environment shows how the Deep Q-Network based algorithm implemented 
by MECForge is capable of learning effective autonomous resource management 
policies that allocate service components to maximize the overall value delivered to 
the end-users.
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1  Introduction

The deployment of 5G communications is opening up new computing scenarios that 
enable the next generation of immersive applications leveraging distributed comput-
ing resources in proximity to end-users [1]. To this end, applications can take advan-
tage of the functions provided by Multi-access Edge Computing (MEC) to run soft-
ware components in relatively resource rich servers that communicate with mobile 
devices at very low latency (1–10 msec).

In fact, together with Non Orthogonal Multiple Access (NOMA) which signifi-
cantly improves network density and spectrum efficiency, MEC arguably represents 
the defining feature of 5G [2]. While per se, not a novel concept—previous incarna-
tions of the data-center-at-the-edge concept, such as Cloudlets, go as far back as 
the early 00’s—MEC represents the first widely available and commercially viable 
implementation of edge computing on public infrastructure. These capabilities are 
supposed to be pushed forward even further in the near future, with the development 
and deployment of so-called Beyond 5G technologies.

However, while 5G and Beyond environments will be relatively resourced rich 
in terms of computation, bandwidth, and storage, it is conceivable that the resource 
demands generated by a plethora of innovative services will saturate the available 
resources. 5G and Beyond applications will thus require smart, adaptive, and robust 
resource management solutions, capable of dealing with the highly dynamic nature 
of the environment and the challenging demands of a new generation of immersive, 
context-aware, and latency-sensitive services [3, 4].

The optimal resource management in 5G has been investigated from several per-
spectives, including latency and energy consumption minimization. However, most 
of those approaches follow an operator-centric perspective and assume relatively 
low dynamicity, which is not necessarily aligned to the performance experienced 
by end-users. Instead, we argue that optimizing resource management to maximize 
the utility of end-users represents a compelling avenue of research, which provides 
interesting opportunities to investigate and develop innovative methodologies and 
tools to consider the value that an IT service provides to the users from a compre-
hensive perspective [5].

More specifically, considering the MEC services instantiation and offloading 
aspects of resource management in 5G and Beyond environments, there is the need 
to identify which configuration can provide the highest value for the end-users. 
While some efforts have been proposed so far, there is still wide room for investiga-
tion to solve the remaining challenges, e.g., dynamic and adapting network slicing 
for real-time applications [6, 7], and so on. This requires next generation resource 
management solutions that provide two fundamental characteristics: they will need 
to be adaptive and capable to address the highly dynamic aspects of the scenario and 
will need to consider the heterogeneous and ever-changing nature of next generation 
IT services in resource assignment criteria.

These issues arguably call for the adoption of Artificial Intelligence (AI) tech-
niques, which researchers have identified as a key enabling technology for the man-
agement of future networks [8–11]. Therefore, it is essential to identify the key 
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contributions that AI and Machine Learning (ML) can bring to the management of 
future networks to face the increasing complexity of new generation networks to 
find a correct configuration of resources without incurring into further complexity 
for tuning the optimization parameters of these models [12, 13].

Within AI, a different and potentially very promising research avenue lies in the 
adoption of approaches capable of learning the best strategies to adapt to the cur-
rent environmental conditions, e.g., network and computing resources and users’ 
demand [14]. In particular, reinforcement learning (RL) is a field of AI that attracts 
the increasing attention of the research community [15–17]. RL provides a rather 
simplistic but effective approach inspired by trial and error that mimics the behavior 
of human intelligence through reward maximization [18]. Therefore, MEC resource 
management solutions can leverage RL for automatically tuning the configuration 
parameters when the environmental conditions change to guarantee the delivery of 
the expected QoS and QoE.

Motivated by the promising capabilities of such techniques, this work investigates 
a novel methodology for resource management in 5G and Beyond and proposes the 
application of a deep reinforcement learning (DRL) algorithm to address the con-
tinuously changing requirements of these scenarios, such as demand variations, 
network and resource fluctuations, and users and devices mobility. To achieve that 
goal, we focus on maximization of total value-of-information (VoI) delivered to the 
end-users as resource management policy—and use that as a reward function for our 
DRL-based solution. VoI methodologies and tools aim to find an optimal configura-
tion for the available computational and network resources [5] which prioritizes the 
most important data to be processed and disseminated, thus effectively addressing 
the data deluge of IoT applications. As a promising concept for addressing infor-
mation management and prioritization in constrained environments, VoI has been 
recently proposed for resource management in several works [19–21].

Built upon our previous work [22], in which we formalized an optimization 
framework for the value-based management of fog services, this paper investigates 
DRL for MEC resource management by presenting a use-case scenario and its opti-
mization. In this paper, we first discuss the application of MEC to a Smart City 
scenario, and then we formulate a problem description and a DRL approach called 
MECForge to maximize the amount of VoI that a given MEC resource allocation 
can provide to its users. More specifically, MECForge leverages Deep Q-Network 
(DQN) that given a MEC resource configuration is capable to migrate and/or acti-
vate service components to find configurations that achieve increased value-based 
utility for end-users.

The remainder of the paper is organized as follows. Section  2 introduces RL 
and discusses related efforts. Section  3 presents an overview of MEC in 5G and 
beyond to introduce the particular topic on which the contributions of this manu-
script belong. Then, Sect. 4 illustrates the system model presenting the problem for-
mulation and the concept of VoI for MEC resource management. Section 5 presents 
MECForge, an implementation of a Deep Q-Network (DQN) algorithm to solve the 
VoI resource allocation problem in MEC scenarios. Finally, Sect. 6 presents a com-
prehensive evaluation of MECForge and Sect. 7 concludes this manuscript.
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2 � Background and Related Work

Reinforcement Learning (RL) is an evolving field of AI, in which a software 
agent interacts with an environment to learn the best possible actions that maxi-
mize a reward [23]. Given the promising capabilities of RL, several approaches 
have been proposed to deal with problems of different sizes and complexity. 
Among them, deep reinforcement learning (DRL) represents a compelling set of 
algorithms to solve complex and large problems. DRL is a subset of RL, which 
involves the application of machine learning methodologies such as neural net-
works to avoid the memory and time limitations of standard RL approaches.

The applicability of RL and DRL tools for network management has been 
investigated in several works, such as the optimal placement of virtual network 
functions (VNF) [24, 25], energy-efficient resource allocation [26], and latency 
minimization [27]. Differently from supervised learning methods, that require 
human intervention for labeling data, RL allows to naturally train a software agent 
to learn an optimal policy by interacting directly with the environment. This pro-
vides a valuable tool to tame the dynamicity of these environments, which require 
continuous interventions to manage the available resources and meet the current 
applications’ requirements [4, 28].

5G and Beyond networks would bring enormous capabilities from both a net-
work and computing perspective to the end-users at the edge of the network [8]. 
However, such scenarios would represent dynamic and challenging environments 
presenting both a higher availability of resources in terms of bandwidth, comput-
ing powers, lower latency but also a higher demand from its users. To tackle this 
increasing dinamicity there is the need for novel solutions capable of exploiting 
non-static optimization methodologies, such as machine-learning techniques for 
the online management of resources at the edge of the cellular network.

Machine learning (ML) can be particularly useful to address network manage-
ment challenges, such as traffic prediction and network monitoring. To this end, 
De Shepper et. al describe a traffic classification approach based on Convolution 
Neural Network (CNN) to recognize User Datagram Protocol (UDP) and Trans-
mission Control Protocol (TCP) traffic along with network bursts and data rates 
in [29]. Another approach exploiting CNN for network management is [30], in 
which the authors present a framework for spectrum management in Wi-Fi net-
works. Similarly, in [31] the authors present a Graph Neural-Network (GNN) 
approach to address interference management in Wi-Fi networks.

As for ML, RL can well suit this kind of management challenges, as demon-
strated by a recent survey that analyses the application of DRL in networking 
[32]. Li et al. investigate the applicability of RL to network slicing and resource 
management in [33]. More specifically, the authors formulate a radio resource 
slicing problem using DRL to find a bandwidth-sharing solution that maximizes 
resource utilization and QoE. Then, they discuss that the same problem can be 
applied to priority-based scheduling of virtualized network functions (VNF). 
In another work [34], the authors introduce a DRL framework for dealing with 
network slicing under heterogeneous resource requirements and dynamic traffic 
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demands from network users. To achieve this objective, the authors propose to 
adopt DRL algorithms to maximize the overall QoS by reducing the delay to pro-
cess requests. Montero et al. discuss the importance of network slicing for service 
management in 5G networks in [35]. Liu et  al. discuss an interesting formula-
tion to divide the resource allocation problem for network slicing into a master 
and slave problem to reduce its complexity in [36]. More specifically, the authors 
propose an algorithm called DeepSlicing to find the resource allocation policy 
that maximizes the utility for users. In [37], the authors present a decentralized 
DRL approach for network slicing to achieve optimal orchestration of network 
resources by proposing a detailed architecture with multiple orchestration agents.

DRL has been investigated for the resolution of service placement problems. 
A recent work discussing online and fault-tolerant SFC placement using DRL is 
[40]. Dab et al. formalize an RL problem to learn the best offloading decisions to 
minimize energy consumption on the devices-side under latency constraints for 5G 
applications in [39]. Long-Term latency minimization for fog computing using RL is 
also discussed in [27]. In particular, this paper proposes an RL approach combined 
with evolution strategies for dealing with real-time task assignments and reducing 
computation latency in the long-term period. Finally, Goethals et al. present a self-
organizing service scheduler for fog and edge networks with hundreds of nodes in 
[14].

In [38], Nakanoya et  al. propose an interesting and cost-effective technique for 
applying RL to online optimization of VNFs sizing and placement. In particular, 
the authors propose a two-step RL that divides the learning process with the aim of 
decreasing the learning exploration steps. Pujol et al. present a DRL-based approach 
to deal with the online management and orchestration of VNFs in [41]. More spe-
cifically, they propose an algorithm called PAT that leverages an actor-critic method 
to learn how to configure network resources and when to offload the execution of 
VNFs. In [4] Chen et  al. discuss two Double Deep Q-Network (DDQN) learning 
algorithms for task offloading decisions in MEC in ultra-dense sliced Radio Access 
Network (RAN). More specifically, this paper proposes two DDQN learning algo-
rithms to solve computational offloading under dynamic network conditions to max-
imize the long-term utility performance.

The authors in [43] discuss a Q-learning-based load-balancing algorithm for 
fog networks that enables to reduce the processing time and overload probability 
of networks. Another formulation leveraging DQN is the one presented in [42]. In 
this work, the authors address the problem of best task offloading and bandwidth 
allocation in MEC scenarios by proposing the Joint Task Offloading and Bandwidth 
Allocation (JTOBA) algorithm. Kim et al. present the application of DRL to Active 
Queue Management (AQM) policy to deal with the deluge of traffic generated by 
IoT devices in fog and edge networks. A different application for DRL is described 
in [44], in which a Fast Task Allocation (FTA) algorithm leveraging DRL is pro-
posed to allocate tasks among heterogeneous UAVs. Finally, Table 1 reports a sum-
mary of related works in network and service management.

Differently from related efforts, this work addresses computing resource man-
agement in MEC scenarios using novel Value-of-Information (VoI) methodolo-
gies and tools. We believe that VoI represents an interesting criterion to deal with 
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the processing of mission-critical information, thus enabling to prioritize the most 
important offloading requests in case of resource saturation, i.e., when the comput-
ing resources available at MEC servers cannot meet the users’ demand. Therefore, in 
this work we present a system model that evaluates the performance of MEC com-
puting configurations considering the amount of VoI they can provide to end-users. 
Finally, VoI can bring great benefits to the management of computing and network 
resources of next-generation networks, which would require novel techniques for 
rapidly reconfiguring resources to adapt to the requirements of the most important 
services.

3 � MEC for 5G and Beyond

5G and Beyond scenarios will enable a new generation of immersive and context-
aware applications with low-latency requirements that cannot rely on cloud comput-
ing approaches but require computing capabilities located in the proximity of users 
and devices [45]. To this end, MEC represents a very interesting solution to fulfill 
this requirement. More specifically, MEC is a standard proposed by the European 
Telecommunications Standards Institute (ETSI) to bring computing capabilities in 
cellular networks [46].

MEC allows users to offload the processing of computational tasks to servers (or 
other computing equipment) installed by MEC providers (telco operators, cloud pro-
viders, municipality) at the edge of the cellular network, e.g., in proximity to base 
stations [2] as shown in Fig. 1.

More specifically, Fig.  1 shows an example deployment of a MEC scenario in 
a smart city environment with multiple software components (colored blocks in 
Fig. 1) deployed at MEC servers or in cloud facilities. Users can leverage the avail-
able software components through their User Equipments (UEs) by requesting their 
offloading (solid lines in Fig. 1). Furthermore, it is conceivable that existing soft-
ware components can be migrated to MEC servers (dashed line in Fig. 1), which are 
managed by a MEC orchestrator.

As it finally promises to be a widely available and commercially viable solu-
tion for enabling low-latency computation and high levels of Quality-of-Experience 
(QoE) and Quality-of-Service (QoS) [47], MEC is poised to play an important role 
in 5G and Beyond applications, and for that reason, it is receiving an increasing 
attention in scientific literature.

It is expected that communication latency between UEs and MEC servers, located 
within the same gNodeB, will likely be very low (1–10 ms) [8, 48], thus enabling 
the aggressive offloading of computational tasks from UEs and the cloud to MEC 
servers and preserving the battery life of UEs. In addition, 5G and Beyond would 
overcome the limitations of previous-generation networks by providing high-data 
rates and ultra-low latency for a new range of services such as Augmented Reality 
(AR), Virtual Reality (VR), and Industry 4.0 [42].

As illustrated in Fig.  1, it is conceivable that many adaptive and dynamic 
IT services will run on the architecture described above, leveraging a plethora 
of software components executing concurrently on MEC servers with different 
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priorities, requirements, outreach, and mobility management policies. Some ser-
vices, e.g., crowdsourcing/crowdsensing or widely available IT services, might 
leverage components that serve multiple UEs and are typically activated/deacti-
vated in a given MEC server as UEs enter/leave the corresponding cell. Other ser-
vices, e.g., autonomous driving or surveillance, need to leverage components that 
are guaranteed to receive the required share of resources and to run in the closest 
possible MEC server, possibly migrating between MEC servers as the UEs roam 
between cells [49].

Note that it is highly likely that only a relatively small share of these services 
will have a mission-critical nature that requires the static and preemptive assign-
ment of the required resources in the MEC servers nearest to the corresponding 
UEs. Most services are instead very likely to provide a good QoE/QoS even when 
provided with a slightly suboptimal resource assignment, with, e.g., software 
components running on a near MEC server (but not on the nearest one), possibly 
supported by additional components running in the cloud.

In this situation, resource management solutions based on static and/or fixed 
priority resource assignment policies are likely to lead to suboptimal and wasteful 
resource allocations. Instead, there is the need for smart and adaptive AI-based 

Fig. 1   An illustration of a MEC Scenario in a Smart City environment. Users can offload the processing 
of service components (colored blocks) to MEC servers within the RAN or other MEC servers connected 
to the 5G network
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resource management solutions that explicitly consider contextual information 
and aggressively explore trade-offs in resource assignment in order to make the 
best use of available resources at the entire system level, avoiding processing bot-
tlenecks, waste of resources, and maximizing the overall utility at the end-user 
level.

More specifically, the dynamic resource management and service orchestration 
for 5G and Beyond environments can particularly benefit from the adoption of 
self-* approaches based on Deep Reinforcement Learning (DRL) that are capable 
of learning the best resource management strategy to adapt to the ever-changing 
conditions. DRL is a relatively recent branch of reinforcement learning (RL) that 
has proved to be quite effective in dynamic and complex domains where the space 
of possible states is large and high dimensional [50]. As a result, it can well suit 
dynamic resource management problems such as MEC.

However, a DRL solution needs an accurate, coherent, and comprehensive 
criteria to evaluate the performance of IT service configurations. In the case of 
applications dealing with a significant number of users with heterogeneous inter-
ests, a large number of devices, and applications with different QoS and QoE 
requirements, this represents quite a challenge. In this context, Value of Informa-
tion (VoI) maximization, i.e., the maximization of the utility that the information 
contained in service responses deliver to end recipients, represents an interesting 
subjective criterion [5]. In fact, VoI-based optimization would allow to naturally 
and seamlessly prioritize the assignment of resources to services that are provid-
ing the highest value to their end-users – either because they are serving a consid-
erable amount of users or because they are providing highly valuable information.

4 � System Model

In this work, we assume a 5G and Beyond scenario with multiple Base Stations 
(BS) each one provided with a MEC server Si as shown in Fig.  2. At each BS 
a Radio Access Network (RAN) provides communication capabilities to User 
Equipments (UEs) and MEC servers. We also assume that MEC servers are feder-
ated using the 5G core network, thus users can offload the processing of service 
components not only to the closest MEC server but also to the other servers avail-
able in a geographical area, e.g. a Smart City.

With regard to the offloading of service components in MEC, we assume that a 
user can offload the computation of a service component to a MEC server instead 
of processing it locally. In fact, some service components could not be processed 
on the UE because they require dedicated resources (large neural networks, GPU, 
etc.). In general, there are several variables that contribute to the offloading deci-
sion such as remaining battery life, reduced computing latency, QoS and QoE 
requirements, and so on. This work assumes that all service components required 
by users residing at the edge of the network are offloaded to MEC servers for 
processing.



	 Journal of Network and Systems Management (2022) 30: 63

1 3

63  Page 10 of 35

4.1 � Problem Description

To define our MEC resource allocation problem we need:

–	 a set of service components C
–	 a set of offloading requests R
–	 a set of users U
–	 a set of MEC servers S

We suppose that users can offload several service components correspond-
ing to different types of applications or micro-services. More specifically, 
C = {c1, c2, ..., cn} is the set of service components that users can offload to MEC 
servers. Furthermore, each service component type ci requires ci(res) amount of 
resources for processing. Without lack of generality, we assume that res repre-
sents the number of CPU cores assigned to the specific service component for 
processing.

Then, S = {s1, s2, ..., sn} is the set of MEC servers available to compute the 
users’ offloading requests. We consider that all MEC servers are accessible within 
a low latency range but we also assume that users in the close proximity of a 
MEC server can benefit of very limited latency, e.g., within 5ms range if they are 
covered by the same gNodeB [8]. Finally, MEC servers have associated comput-
ing resources for processing, thus enabling to model different types of servers and 
their computing capabilities. More specifically, a MEC server sj ∈ S is assigned 
with sj,res resources where res represents the number of CPU cores.

Therefore, at a given time t the amount of resources allocated for the process-
ing of service components on a single MEC server must not exceed its capacity:

Fig. 2   Problem model. MEC servers have associate service queue that store service components to be 
processed. The different colors are to indicate distinct service component types
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where xi,j equals to 1 when a service component ci is allocated for processing off-
loading requests on a MEC server sj and to 0 otherwise.

Let us note that MEC resources are configured for a given time-window, which 
size depends on the specific scenario. In this work, we consider resource manage-
ment as the act of allocating computing resources for a set of service components 
on each MEC server. More specifically, we consider that at a given time t each MEC 
server sj ∈ S is associated with a subset of service components ci ∈ C for which 
users can request the offloading, i.e, a MEC server can process only the offload-
ing requests regarding the subset of allocated service components. Therefore, the 
resource management operations define a set of MEC servers on which it is possible 
to execute a certain type of service component ci ∈ C . Finally, let us specify that a 
service component ci ∈ C would be allocated for processing on at least one MEC 
server—as specified in the second constraint of Eq. (1).

4.2 � Value of Information (VoI)

Value-of-Information (VoI) is an interesting criterion for resource management opti-
mization that we explored in previous works [5, 22]. VoI enables to assign a value to 
every single piece of information to quantify the utility that it can bring to its con-
sumers. The concept of VoI was originally born from the seminal research by How-
ard in 1966 [51], which tried to extend Shannon’s information theory to economics 
and decision sciences.

We believe that scenarios for 5G and Beyond applications can benefit from 
the adoption of VoI methodologies and tools to prioritize the processing of most 
important and mission-critical service components (from a MEC user perspective) 
by distributing the set of computing resources accordingly. More specifically, with 
VoI-based policies, we want to propose a set of methodologies and tools that would 
maximize the utility that a set of computing and network resources can provide to 
its users when these resources cannot entirely satisfy the users’ requests. There-
fore, VoI methodologies and tools can be beneficial in all those situations involving 
environments characterized by a limited amount of computing, network, and stor-
age resources where there is the need to prioritize important and mission-critical 
services. Interested readers can refer to the work in [5] for a numerical example of 
the application of VoI methodologies and tools that shows how compelling VoI can 
be for addressing the computation of important information in resource constrained 
scenarios.

To contribute to MEC resource management, we express the VoI optimization 
problem as an objective function that measures the VoI generated by the processing 

(1)

∑
i∈C

ci(res) × xi,j ≤ sj,res ∀sj ∈ S

∑
j∈S

xi,j ≥ 1 ∀ci ∈ C
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of offloaded requests r ∈ R in a given time-window with a specific resources con-
figuration.1 We have:

where R is set of offloading requests sent by users that need MEC computing capa-
bilities for processing service components and c the service component associated to 
r. The processing of r is performed by MEC server si ∈ S and generates a response 
mr,c , which is returned to the user that requested the offloading.

To measure the VoIΘ(r, c) we need to express different components: the initial 
VoI of a message, decay functions, and a utility function. First, we express the initial 
VoI of a message using the notation VoI0(r, c) . We suppose that VoI0(r, c) is service 
component specific, e.g., a priority factor, and it is to measure the initial VoI of a 
request r.

Second, we consider a Proximity Relevance Decay (PRD) and a Time Relevance 
Decay (TRD) functions to take into account the decay a request is subjected to from 
its originating (location/time) to its processing (location/time) and back to its origi-
nating (location/time). Let us note that it is possible to specify multiple TRD defini-
tions for modeling latency-sensitive and -tolerant service components [5, 52, 53]. 
For example, a latency-sensitive service component would likely have a strong VoI 
decay if not processed within a useful time, while the VoI of a latency-tolerant ser-
vice component is less subjected to time-decay. In this work, we define a TRD and 
PRD function for each service component ci ∈ C by modeling these functions as 
decay multipliers with values in [0, 1] ∈ ℝ.

Then, we model the function U(ut,mr,c) to define the utility for a MEC user of 
type ut in receiving a message (successful execution of the offloaded request) mr,c , 
where c is the service component type.

We have that the VoI of a processed request can be calculated as follows:

where VoI0(r, c) is the initial VoI of a request r considering a service component 
c ∈ C , r is the user’s offloading request, and mr,c represents the result of the service 
component processing.

Let us specify that the VoI of a message is calculated in several steps, during 
which the VoI value associated with a message changes. For instance, when a user 
requires the offloading of a service component, the underlying framework gener-
ates a message with associated VoI metadata that describes the end-user utility, the 
generation time, the originating location, the initial VoI value, and the current VoI 
value. Then, when the offloading request arrives at the MEC server for processing, 
the associated VoI will change according to the definition of the PRD and TRD 
functions, which model the decay from the originating time/location to the delivery 

(2)fn = TOTALVoI(tn, tn+1) =
∑

r∈R(tn,tn+1)

VoIΘ(r, c).

(3)VoIΘ(r, c) = VoI0(r, c) × TRD(mr,c) × PRD(mr,c) × U(ut,mr,c)

1  Since a request r is uniquely related to a service component, to simplify the notation we do not con-
sider subscripts for service components in Sect. 4.2.
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time/location. Afterward, the service component processing would add increased 
value to the message, thus further changing its current VoI value. When the user 
receives the service response, it will perform the last calculation step to include the 
additional decay from the processing time/location to the delivery time/location.

4.3 � Computing and Communication Models

As for the computing model, we consider that offloaded requests are processed 
sequentially by modeling service queues that buffer incoming requests. At a given 
time t, sqi

s
(t) defines the number of queued requests, where i represents the offloaded 

service component type, and s the MEC server associated with the service queue. 
We also assume that a service queue sqi has an associated maximum capacity sqi

max
 

that is equal for each service queue. In addition, we consider that service queues will 
start dropping offloaded requests as soon as sqi

s
(t) reaches the maximum capacity. 

Finally, let us note that each service queue sqi
s
(t) , allocated on a MEC server, is asso-

ciated with an amount of allocated res (CPU cores). Therefore, we assume that the 
processing of the different service queues can proceed in parallel.

With regard to the buffer processing, we assume that different policies can be 
adopted such as first-in first-out (FIFO) and VoI based policies. In the case of a 
FIFO policy, queued requests will wait for a time that is proportional to the service 
component processing time and the number of queued requests:

where r is an offloading request, service_time(c_i) the processing time for service 
component ci , sqis(t) is the number of queued requests in the service queue process-
ing the service component ci on the MEC server sj ∈ S.

Instead, using VoI queue management policies we have that the Qtime for an off-
loading request r′ depends not only on the VoI value of the request ( VoI0(r�) ) but 
also from the VoI value of the other queued requests. Therefore, in the case of a VoI 
queue management, we model the Qtime for a request r′ as follows:

where we suppose to have a sorted service queue, in which service components with 
higher VoI would be the first to be processed. Therefore, such priority-based mecha-
nisms require the implementation of load-balancing and sorting dispatching at the 
MEC server level. Let us also note that service components with high VoI values 
will likely be prioritized if using (5) and they will have a shorter Qtime . On the other 
hand, this mechanism penalizes service components with low VoI values, thus caus-
ing possible starvation for low-priority service components.

Then, we model the links between users and MEC servers using a simplistic 
assumption for the MEC scenario illustrated in Fig. 1. More specifically, we con-
sider that users can communicate with the MEC server in the proximity of the Base 
Station using at a very reduced latency by exploiting the RAN cell coverage, e.g. 

(4)Qtime(r, ci, t) = Service_time(ci) × sqi
s
(t)

(5)Qtime(r
�, ci, t) = Service_time(ci) ×

∑
r∣VoI(r)≥VoI(r�)

sqi
s
(t)
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a ultra-Reliable Low Latency Communications (uRLLC) network slice of the 5G 
network. On the other hand, users can also request the offloading of a service com-
ponent to other MEC servers attached to the core network at the expense of greater 
communication latency. We express the communication time between users and 
MEC servers using the simplified notation:

where TRAN represents the communication time to access computing resources 
within the RAN where the user u resides, and TCORE the communication time to 
access computing resources attached to the core network. Let us note that for off-
loading a request to a MEC server in a different location, a user spend both TRAN and 
TCORE to access the MEC server sj ∈ S at a different gNodeB.

It is worth noting that in the case of successful execution of an offloaded request 
for the service component ci , the user receives a message m containing the response 
of service component processing in time:

where we assume 2 × Tcomm to send the request and to receive the response, the 
queue time to be calculated using either (4) or (5) , plus the time for processing the 
request itself.

Let us further specify that Qtime(r, ci, t) in (7) depends on the buffer processing 
policy. More specifically, if the system processes the requests according to the VoI 
model presented in (5), it is expected that requests carrying higher VoI values would 
have lower queuing times, and consequently lower Treq times. Finally, to give readers 
a comprehensive summary of the system model notation, we present Table 2.

5 � MECForge for Resource Management in MEC

Finding a MEC resource configuration that maximizes the value for (3) is a chal-
lenging task because it requires solving the resource management problem for dif-
ferent values of t, i.e. for consequent time-windows, thus transforming a static prob-
lem into a time-variant and dynamic problem. Let us note that if static optimization 
methods can be useful to maximize (3) for a specific time-window, they could be 
less effective when dealing with a dynamic environment, which presents significant 
differences between time-windows.

To overcome the limitations of static optimization methodologies, we investigate 
the adoption of an RL approach for MEC resource management. More specifically, 
we propose the adoption of DRL to train a software agent (resource orchestrator) 
through reward-maximization [18]. To exploit DRL for our specific problem, we 
choose the Deep Q-Network (DQN) algorithm as it demonstrated to be well applica-
ble to a wide range of optimization problems in the related literature [4, 18, 28, 42]. 

(6)

Tcomm(u, s) =

{
T
RAN if user u resides within RAN with MEC server s

T
RAN + T

CORE if user u communicate with MEC server s using the core network

(7)Treq(r, ci, si) = 2 × Tcomm + Qtime(r, ci, t) + Service_time(ci)
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This section provides a brief background on DQN and then describes the Markov 
Decision Process (MDP) for maximizing VoI in MEC resource management.

5.1 � DQN

Classical RL algorithms require the exploration of the state’s space to learn a 
sequence of actions capable to maximize the agent’s reward. This requires evalu-
ating a considerable amount of actions and to store the corresponding rewards in 
memory using tabular encoding functions [23].

A representative example of a simple RL approach is Q-Learning, which adopts 
a tabular encoding, called Q-Table, to store Q-value state action transactions. More 
specifically, we have that the learning process updates the Q-value function in an 
iterative way using the Bellman equation as follows [23]:

Table 2   Summary of the used notation

Term Meaning

C Set of service components hosted in MEC servers
c ∈ C A service component
r A service request to a service component
R(tn, tn+1) Set of offloading requests within time window (tn, tn+1)
U Set of users
S Set of MEC servers
sj ∈ S A MEC server sj
xi,j The allocation of service component ci on MEC server sj
mr,c The result returned in response to the processing of request r by service component c
Θ A system configuration
VoIΘ(r, c) The VoI delivered by request r to service component c with configuration Θ
VoI0(r, c) The initial VoI of a service request r for service component c
ut A user type
PRD Proximity Relevance Decay function
PRD(mr,c) Ratio of VoI lost by response mr,c at its receival due to proximity relevance decay
TRD Timeliness Relevance Decay function
TRD(mr,c) Ratio of VoI lost by response mr,c at its receival due to timeliness relevance decay
U(ut ,mr,c) Differential utility of mr,c for a user of type ut
sqi

s
Service queue at MEC Server s for processing offloaded service component of type i

sqi
s
(t) Number of queued requests at time t

sqi
max

Service queue maximum capacity
Qtime(r, ci, t) Queue time for a request r
service_time(ci) Service time for ci
Tcomm(u, s) Communication time between user u and MEC server s
TRAN Communication Time to access the RAN network

TCORE Communication Time to access the core network
Treq(ci, sj) Time to receive the response
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where lr is the learning rate, R(S, a) the immediate reward for performing action a 
under state S, � the discount rate for taking into account the expected future reward 
given by state S′ and all consequent possible actions.

To overcome the limitations of classic RL approaches, DRL has emerged as a 
promising solution to deal with problems with large-scale states and action spaces 
[54]. Differently from RL, DRL exploits other machine learning methodologies 
such as neural networks to approximate the state, action transition values. More 
specifically, instead of using a tabular encoding to store transitions and correspond-
ing rewards, DRL-based algorithms model the transition function using deep neu-
ral networks whose parameters and sizes depend on the complexity and size of the 
problem.

Within DRL, a widely used Q-learning algorithm is DQN, in which the prefix 
Deep is to introduce the adoption of neural-networks to learn a parameterized esti-
mation of the Q-value function Q(s, a, w) [54]. More specifically, DQN algorithms 
substitute the Q-table with a deep neural network for mapping states into action 
values. The goal of DQN algorithms is to minimize a loss function defined as the 
squared difference from the target and predicted value:

where R(S, a) the immediate reward for performing action a under state S, w and 
w′ represent weight parameters (for the Q-network), Q(S�, a�;w�) indicates the target 
value for the state S′ , and Q(s, a; w) is the current predicted value. During the train-
ing iterations, the DQN algorithm minimizes the Loss function using the gradient 
descent method for updating the weights parameters w:

Moreover, to learn the parameterized estimation of the Q-value function, DQN 
exploits two different Q-value networks: a local Q-network and a target Q-network. 
During this process, the target network is updated after a configurable amount of 
iterations with the weights from the local Q-network to stabilize the training pro-
cess. Finally, most recent DQN versions rely on a replay memory to store some state 
transitions for training. The algorithm randomly samples mini-batch transitions from 
the replay memory to update the neural network, thus reducing the correlation and 
enabling experience replay.

5.2 � MDP Description

To solve the MEC resource management problem using an RL approach we define 
a Markov Decision Process (MDP) for the presented system model [55]. A MDP 
is a general framework (particularly suited for RL) to define decision making 

(8)Q(S, a) = Q(S, a) + lr[R(S, a) + � max(Q�(S�, a�) − Q(S, a)].

(9)Loss = (R(S, a) + � max
a�

Q(S�, a�;w�) − Q(S, a;w))2

(10)wt+1 = wt + lr[R(S, a) + � max(Q�(S�, a�;w) − Q(S, a;w)]∇wQ(S, a;w).
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problems [23]. Let us note that using proper modeling of states and actions is 
essential to solve a particular problem using RL. In fact, RL in general requires a 
good knowledge of the whole problem and a proper reward definition in order to 
allow the training process to converge.

The MDP for VoI allocation defines a set ST of states {S, S�, S��, ...} , a set A 
of actions that allow an agent to move from a state S to another state S′ , and 
a Reward function R that defines the reward given by an action that moves the 
environment into a different state. In particular, Ra(S, S

�) is the immediate reward 
for performing action a ∈ A under state S ∈ ST  . Finally, the goal of the MDP is 
to find the optimal policy a = �(S) that gives the best action a ∈ A under state 
S ∈ ST  that allows maximizing the Q-function Q(S, a) for each state action pair.

With regard to a state S ∈ ST  , we define it as a two-elements tuple:

where �RATIO describes the processing ratio, i.e., the ratio of offloaded requests pro-
cessed using a particular MEC resource configuration, and CONF describes the con-
figuration of MEC servers.

To model CONF service configuration we adopt an array-like service configu-
ration with binary values:

where the value of the element Xci,sj
 describes if on MEC server sj are allocated 

computing resources for processing service of type ci , n is the number of MEC serv-
ers and k the |C|. For instance, Xc1,s3

= 1 is an example of a resource configuration in 
CONF that allocates on MEC server s3 ∈ S the computational resources cr

1
 requested 

for processing offloading requests of type c1.
On the other hand, we define an action a ∈ A as the binary decision 0,  1 to 

allocate or not computing resources for processing the service component ci ∈ C 
on MEC server sj ∈ S , e.g. the setting of variable Xci,sj

 . More specifically, at each 
step l the agent analyzes a Xci,sj

 variable that describes the CONF[l] element of a 
particular state S ∈ ST  and decides whether to allocate or not the computing 
resources for the service component ci on MEC server sj . It is worth noting that a 
particular action could result in an infeasible allocation that violates the resource 
capacity constraints defined in Eq. (1). When this happens, the action is invali-
dated by not allocating resources on the saturated MEC server.

With regard to the problem resolution, we model the MDP as a sequence of n 
discrete time steps l = 0, 1, 2, ..., i, ..., n , where n = |S| × |C| , |S| is the number of 
MEC servers, and |C| represents the number of service component types. During 
each step, l the software agent analyzes the CONF[l] element (where the l index 
corresponds to the l time step) and decides whatever or not allocates computing 
resources for the service component on the MEC server indicated by CONF[l] 
value.

S = (�RATIO, CONF)

CONF = {Xc1,s1
,Xc2,s1

,Xc3,s1
, ...,Xck−1,sn−1

, ...,Xck ,sn
}
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Every time the agents performs an action a ∈ A under state S ∈ ST  , a new state 
S′ is reached, and the agent gets an immediate reward Ra(S, S

�) . In this work, we 
model rewards using the following policy:

where we assign 1 + ΘRATIO to those actions that improve the generated VoI, 0.5 to 
those actions that do not improve the value for (2) but can increase the ΘRATIO of 
the system, and 0 to all actions that do not improve the MEC resource configuration 
described at the previous step.

We designed this reward model to let MECForge learn how to allocate resources 
according to 2 criteria: total VoI maximization and processing ratio maximization. 
Towards that goal, Eq. 11 assigns higher rewards to the actions capable of improv-
ing the total amount of VoI delivered to users (according to Eq. 2), thus prioritizing 
the actions capable of maximizing the amount of VoI delivered to the end-users. On 
the other hand, our model also rewards those actions that can increase ΘRATIO (with 
a limited reward value) and thus teaches MECForge to prefer configurations that 
deliver a high total VoI but also lead to a high number of requests served on MEC, 
with the result of higher utilization of MEC. Finally, readers can find a summary of 
the used notation and their meaning in Table 3.

(11)Ra(S, S
�) =

⎧
⎪⎨⎪⎩

1 + ΘRATIO if S� improves the value of (2)

0.5 ifS� improves theΘRATIObut not the value of (2)

0 otherwise

Table 3   Summary of the MDP 
notation

Term Meaning

ST Set of states
S ∈ ST A particular state
A Set of actions
a ∈ A An action a in A
R Reward
Ra(S, S

�) Reward from performing action a under state S
a = �(S) Optimal policy that selects action a under state S
Q(S, a) Q-function for a state S and action a pair
ΘRATIO The processing ratio
CONF MEC servers configuration
Xci ,sj

Allocation of service component ci on MEC server sj
l A step l
CONF[l] The l-th CONF element
scrr

k
(t) Amount of resources requested by k-th service 

component at time t
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5.3 � MECForge Allocation Algorithm

To solve the described MDP, we present the MECForge algorithm, which imple-
ments a DQN based approach. MECForge aims to find the VoI optimal allocation 
for service components by learning the optimal policy a = �(S) that selects the 
best actions to take under a particular state S ∈ ST  that lead to a VoI optimal MEC 
resource configuration in a finite number of steps N.

Algorithm 1 is to give readers a simplified illustration of the MECForge, which 
exploits a DQN algorithm with experience replay. Algorithm  1 takes as input 
the values for � (the exploration rate), � (the discount rate), and the update_step 
parameters used during the training of the Q-network. The replay memory RM 
is used to store the transitions and for sampling a mini-batch during the training 
with experience replay [50].
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As depicted in Algorithm 1, we define the allocation problem as an episodic 
task with a maximum number of episodes max_episode . Let us specify that MEC-
Forge defines an episode as a finite number of steps N, after which the episode is 
considered finished. At the beginning of a new episode, the initial state S1 is set 
to the random state S∗ generated in the initialization phase of the algorithm. This 
is a common practice when defining a DRL training process, however, different 
policies can be chosen. In addition, we set the values of ΘRATIO(t) and VoI(t) to 
0, where t indicates the current step. This is to implement the reward assignment 
policy described in (11).

During each step t, the agent interacts with the environment by selecting to allo-
cate or not resources for the given service component on the given MEC server 
identified by CONF[t], thus generating a new state St+1 . Then, MECForge simulates 
the new configuration St+1 to calculate the total amount of delivered ( VoI(t + 1) ), 
using (2), and the ΘRATIO(t + 1) value which are required for the reward calculation. 
During these steps, the goal of the agent is to maximize the cumulative reward that it 
collects over the episode in a given amount of iterations.

5.4 � Continuous Optimization Framework

To illustrate to readers how we intend to realize continuous reconfiguration of MEC 
resources we present a proof-of-concept framework leveraging MECForge and Digi-
tal Twin methods. A Digital Twin is a virtual replica of a real-world object on which 
experimenting changes and (re)configurations, without altering the real object. 
Digital Twin approaches are becoming more popular even in the networking area to 
tame the configuration complexity of new-generation networks and they represent 
an interesting trade-off for evaluating resource management strategies without risk-
ing misconfiguration and faults of systems running in a production environment [56, 
57]. Similar approaches have been studied in related literature, such as the one in 
[58], which exploits a simulation approach to validate a ML generated configuration 
before applying it to the real network.

Figure 3 shows the envisioned framework’s architecture for allowing continuous 
optimization of MEC resources running in a 5G and Beyond network. More specifi-
cally, the framework includes two main blocks: an optimizer and a Resource Moni-
toring block.

First, the Resource Monitoring block is responsible for collecting metrics and 
information regarding the behavior of the observed system, including users’ inter-
ests/utility, available MEC servers, and network conditions (latency, bandwidth, and 
so on). The Resource Monitoring block uses the collected metrics to update the con-
figuration of the Digital Twin of the system. We implemented the Digital Twin using 
a discrete-event simulator for MEC scenarios that we built by leveraging the experi-
ence of the Phileas research project [59]. The MEC simulator enables reenacting the 
execution of offloading requests in a MEC scenario using a particular MEC resource 
configuration, thus allowing us to estimate the amount of delivered VoI. Let us note 
that the simulator requires an input configuration that describes the scenario-specific 
settings such as the number of devices, service component types, user distribution, 
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and so on. This configuration can be defined by the simulator’s users or created in an 
automated matter as described above.

Second, the Optimizer is responsible to learn the best configuration for MEC 
resources by interacting with the Digital Twin. More specifically, MECForge interacts 
with the Digital Twin to find the MEC resource configuration that maximizes the value 
of (2). To this end, the Optimizer runs MECForge for a finite number of episodes dur-
ing which it measures the quality of different configurations and it keeps track of the 
one that maximizes the value of (2). When the Optimizer finds a suitable allocation, the 
orchestrator component configures the resources at the edge of the network by interact-
ing directly with the MEC servers.

To enable continuous optimization we envision this loop to run continuously, thus 
ensuring MECForge to exploit both the experience built by interacting with the Digital 
Twin during previous time-windows but also to keep experiencing with different envi-
ronmental conditions, which may require a re-configuration of resources (mobility of 
users, system’s load, etc...). We assume that the number of re-configurations depends 

Fig. 3   An overview of the management framework for MEC in 5G and Beyond that exploits a Digital 
Twin of a real-world scenario (a Smart City) on which MECForge is executed to find the best configura-
tions for MEC resources
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on the specific scenario, e.g., two or three re-configurations for relatively static sce-
narios. Finally, let us specify that the optimizer component can run on a dedicated edge 
computing node or on cloud computing resources.

6 � Evaluation

To verify the capabilities of the proposed framework, we first define an initial sce-
nario for Smart City applications on which we evaluate the DRL convergence, i.e. 
the capability of MECForge to learn a good rewarding function that solves the MEC 
resource management problem. Furthermore, we evaluate the VoI management poli-
cies under different configurations and we compare it with greedy approaches.

Then, we devised a second scenario in which we changed the distribution of users 
among the locations of interest, and investigated if MECForge was still capable of 
distributing offloading requests to MEC servers in a way that maximizes the total 
VoI without having to re-train the agent.

6.1 � MEC Scenario for Smart Cities

To verify the capabilities of the proposed solution we envision a Smart City of the 
near future where citizens are connected to a 5G and Beyond network that provides 
communication and computing capabilities at the edge of the network. In this sce-
nario, the citizen can offload the processing of service components to MEC servers 
nearby to save the battery life of their UEs and to benefit from the reduced processed 
latency that MEC servers can provide. We envision that MEC servers are installed 
by one or multiple providers at Base Stations (BS) or other equipment in the prox-
imity of the edge cellular network, in a configuration similar to the one illustrated in 
Fig. 1.

More specifically, the scenario contains the description of 12 MEC Servers and 4 
service components for which users can request the offloading. We model commu-
nication latency between UEs and MEC servers according to (6) to specify different 
latency values for users to access MEC servers inside and outside their RAN. In the 
illustrated scenario, users can communicate with the MEC server in their RAN with 
a reduced latency range, while other MEC servers connected to the core networks 
are available at the expense of a greater latency range. This would make the exploi-
tation of the local MEC server more convenient than the distant ones. However, 
offloaded requests need to be distributed accordingly to avoid processing bottlenecks 
and a dropping of processed requests.

With regard to the processing model, we assume that there is a service queue 
with a maximum capacity of 50 for each service component ( c ∈ C ) configured at a 
MEC server ( s ∈ S ); service queues will start dropping incoming requests as soon as 
the buffer is full. In addition, we model processing times of simulated service com-
ponents on MEC servers using a random variable with exponential distribution. To 
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this end, it is worth considering that we modeled service queues to process offload-
ing requests sequentially, i.e., one request at a time.

On the other hand, we model offloading requests by reenacting sets of users that 
generate, at different time slots, offloading requests with an initial VoI value -- 
VoI0(r, c) in Eq. (3). This would simulate the generation of approximately 2300 off-
loading requests that need to be processed on the available MEC servers. More spe-
cifically, we adopt the following distribution for the 2300 offloading requests: 35% 
for c1 , 23% for c2 , 28% for c3 , and 14% for c4 . Each of these requests is to offload the 
processing of a service component c ∈ C . Moreover, we assume to not have user 
mobility during the simulation time. Users would be equally distributed in different 
locations, which correspond to positions in the proximity of MEC servers.

To give readers a comprehensive illustration of the configuration parameters, 
Table 4 depicts the description and the value of the most important parameters we 
configured for the MEC scenario. Delving into details, we simulate the generation 
of offloading requests for four different service components using random variables 
with exponential distribution. To model communication latency from users to MEC 
servers and vice versa we use two random variables with normal distribution to rep-
resent a communication time for accessing resources within the RAN and another 
for resources attached to the core network according to other similar efforts [48, 60].

For modeling the user utility function ( U(ut,mr,c) ) described in Eq. (3), we adopt 
a simplified approach where we have a single user type ut = � , which gains an utility 
for the successful execution of an offloading request. More specifically, we define for 
each service component type c ∈ C a multiplier in the [1, 2] range. This multiplier is 
described as U(ut,mr,c) , where c represents the service component type. Let us note 
that U(ut,mr,c) = 1 corresponds to an the empty multiplier, while U(ut,mr,c) = 2 is 
equivalent to a 100% increment. Finally, considering that a request r is uniquely 
related to a service component type c ∈ C , we simplify the notation mr,c to consider 
only the service component type. Therefore, to describe the utility for a user of type 

Table 4   Summary of the scenario configuration

Parameter Description Value

Service_time(c_1) Processing time (Exponential Distribution) � = 1∕0.250

Service_time(c_2) Processing time (Exponential Distribution) � = 1∕0.300

Service_time(c_3) Processing time (Exponential Distribution) � = 1∕0.200

Service_time(c_4) Processing time (Exponential Distribution) � = 1∕0.250

TRD for (c1, c2, c3, c4) Exponential Decay Function (Half-life) 1000 ms
PRD for (c1, c2, c3, c4) Linear Decay Function (Half-life) 1 km
Tcomm(RAN) TRAN end-to-end latency (normal distribution) � = 5ms, � = 2ms

Tcomm(RAN) TCORE end-to-end latency (normal distribution) � = 15ms, � = 5ms

U(�, c1) Users utility in service component c1 1.65
U(�, c2) Users utility in service component c2 1.3
U(�, c3) Users utility in service component c3 1.45
U(�, c4) Users utility in service component c3 1.80
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� and a service component c = c1 , we adopt the notation U(�, c1) , as illustrated in 
Table 4.

These experiments aim to verify the capabilities of MECForge in learning a pol-
icy that maximizes the value of (2), which indicates the total VoI generated by the 
processing of offloaded service components during a fixed time window. More spe-
cifically, MECForge will learn a reward-maximizing policy that configures comput-
ing resources for the processing of service components on the available MEC serv-
ers using the total VoI generated as feedback.

6.2 � MECForge Configuration Parameters

MECForge is a Deep Q-Learning Network (DQN) algorithm that we implemented 
in the Python programming language to solve the VoI allocation problem. We lev-
eraged the PyTorch library2 for implementing the training of the Deep Q-network 
(neural-network) responsible for mapping states in action values. We chose Python 
as a programming language because it is a valuable tool for implementing machine 
learning and data analysis tasks. In addition, the PyTorch library provides a user-
friendly API for implementing the state-of-the-art machine learning models and 
optimization algorithms.

The Q-Network is implemented as a two-layers neural network with 64 nodes 
for each hidden layer, a � = 0.95 the discount rate to determine the present value 
of future rewards, a learning rate of lr = 0.0005 , and � value (the exploration rate) 
starting from 1 and annealing to 0.01. Finally, for experience replay, we set the mini-
batch size to 64. To summarize the configuration, Table 5 shows the value for each 
configuration parameter. We experimentally validated these values to be adequate 
for the resolution of the scenario we will present in the following Section.

During the training phase, MECForge interacts with the MEC simulator (the Dig-
ital Twin of the scenario) by means of an HTTP REST interface, thus allowing the 
two different software modules to interact. More specifically, given a state S repre-
senting a MEC resource configuration, MECForge sends a request (via HTTP) to 
the MEC simulator for calculating the value of (2) for the given configuration. Even 

Table 5   Configuration 
Parameter for the Q-network

Parameter Value
Number of hidden layers 2

� 0.95

lr 0.0005
�start 1
�end 0.01
Mini-batch size 64

2  https://​pytor​ch.​org.

https://pytorch.org
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if performance-wise is not great, this is a common practice to integrate software 
components written in different programming languages. We plan to design a better 
integration of MECForge in future versions of this work to speed up the learning 
process.

With regard to the training configuration, we choose a number of episodes of 
1000 to give the agent a fair amount of iterations to learn an optimal policy, i.e. the 
optimal value for Q(S, a). More specifically, each episode is defined as a sequence 
of |S|x|C| = 48 steps, where |S| = 12 and |C| = 4 . The number of steps in an episode 
corresponds to the length of the configuration array that tracks which service com-
ponent types are allocated on each MEC server, which in turn emerges from the fact 
that we consider 12 servers and 4 service component types.

As described in Algorithm 1, the evaluation of each step requires a simulation 
run to estimate the value of (2). For this purpose, we configured the simulator to 
reenact the training scenario for a limited time-window of one minute. It is worth 
specifying that the computation of the one-minute simulation requires roughly 0.5 
seconds and that we selected this value for reducing the Q-network training time, 
which can be estimated in 1000 × 48 × 0.5 = 24000 seconds.

With regard to the starting state, we select a random resource configuration for 
service components on MEC servers. Let us note that the random starting state 
generation could result in an infeasible service components configuration, which 
would not be considered by MECForge. Other options such as a greedy to calculate 
a feasible starting state are possible. However, opting for a random state is a good 
assumption to verify if given a fair amount of training iterations, the agent can learn 
a sequence of actions leading to a high-value VoI state.

6.3 � Results

We configure MECForge using the parameters discussed in Sect.  6.2 to learn the 
optimal policy a = �(s) that would maximize the total VoI (2) on the scenario 
described in Sect. 6.1. At the beginning of each episode, MECForge initializes the 
initial state using a randomly generated state. Then, at each step, it learns the actions 
that maximize the cumulative reward of the episode. During the evaluation, for each 
episode, we collect the score, i.e. the sum of rewards, and the state soptimal , which 
leads to the best value of (2).

Finally, we would like to specify that the following results are divided into two 
different parts. First, in Sect. 6.3.1 we present the training and validation of MEC-
Forge on the scenario described in Sect. 6.1. Then, in Sect. 6.3.2 we test the perfor-
mance of MECForge on a modified version of the training scenario, which is charac-
terized by a concentrated request distribution.

6.3.1 � Training and Validation with Evenly Distributed Requests

Figure 4a is to report the learning phase of MECForge in maximizing the value 
of (2). More specifically, Fig. 4a depicts the time series of the cumulative rewards 
that MECForge achieved during the 1000 episodes of the learning process. The 
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reported trend is initially increasing, thus indicating that MECForge can learn 
a good rewarding policy in a relatively low amount of episodes for configuring 
resources accordingly. We believe this to be an encouraging result, which dem-
onstrates the viability of DRL methodologies for our particular VoI management 
framework. Finally, we would like to note that for each episode, the algorithm 
generates an initial random allocation, thus adopting a more-explorative-than-
exploitative approach that enables a broader states’ space exploration at the price 
of reducing the cumulative reward per episode. This is also one of the reasons for 
which Fig. 4a does not report an ever-increasing trend.

On the other hand, Fig. 4b illustrates the best VoI values for (2) achieved dur-
ing the training of MECForge. It is worth noting how the best value is achieved 
around the 600-th episode, thus indicating that MECForge is capable of improv-
ing the value of (2) in a relatively limited number of iterations. This also shows 
that MECForge can find a good rewarding policy that improves the allocation 
described by the random starting state S∗ , thus demonstrating to be capable of 
improving the system’s state (VoI generated, ΘRATIO,Qtime ) independently from 
the starting state.

To compare MECForge with other approaches in the training scenario (evenly 
distributed), we devised two other solutions with which we compare MECForge: 
a RANDOM approach and a GREEDY approach, which allocates all offloading 
requests to the closest MEC server (in terms of geographical distance).

On the one hand, RANDOM selects a random MEC resource configuration to 
distribute the amount of processing load between MEC servers. Let us note that an 
approach that assigns computing resources for the requested service types is not 
completely trivial, given that i) the same service component can be replicated on 
multiple MEC servers and ii) all MEC servers can be accessed within a reduced 
latency range. To collect the result for RANDOM, we simulated 1000 random MEC 
resource configurations from which we extract the best one in terms of generated 
VoI (2).

On the other hand, GREEDY adopts a proximity-processing policy for the pro-
cessing of offloading requests by selecting the MEC server closest to the user that 

(b)(a)

Fig. 4   The results of the MECForge training over 1000 episodes
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generated the offloaded request. Therefore, GREEDY tries to reduce the overall 
latency and the consequent VoI decay of messages by selecting configurations that 
reduce the transfer time Tcomm(u, s) . This can be a suitable choice when users need 
to offload the processing of latency-sensitive service components and would like to 
receive the processed response in the shortest time possible. Finally, let us also note 
that both RANDOM and GREEDY could be interesting solutions to generate a start-
ing state for MECForge.

We reported the comparison of the best MEC resource configuration between 
MECForge, RANDOM, and GREEDY in Fig. 5a to c using a logarithmic scale. 
More specifically, Fig. 5a illustrates the best configuration in terms of delivered 
VoI values found during the training of MECForge along with the two config-
urations found using RANDOM and GREEDY. When compared to RANDOM 
and GREEDY, MECForge finds the best configuration in terms of delivered VoI 
(5914.31). Let us note that RANDOM finds a lower VoI MEC resource configu-
ration (4563.21), which is greater than the one found in the local policy imple-
mented by GREEDY (4206.09) that seems to poorly perform in the evaluation 
scenario. These results confirm that MECForge can find high VoI MEC resource 
configurations, thus demonstrating the effectiveness of the presented approach 

Fig. 5   The best MEC resource configurations found during the MECForge training compared with RAN-
DOM and GREEDY
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in maximizing the total amount of VoI delivered to the end-users. Let us also 
specify that it is conceivable that RANDOM and GREEDY find lower VoI MEC 
resource configurations because they implement different policies rather than VoI 
maximization.

Figure 5b shows the processing ratio ( ΘRATIO ) associated with the best configu-
rations (in terms of VoI) illustrated in Fig. 5a. More specifically, Fig. 5b shows 
that the results of RANDOM and MECForge are very similar, thus indicating that 
these configurations can deliver higher processing ratios. Let us also note that 
MECForge finds the maximum value for ΘRATIO around the 600-th episode but 
it is associated with a MEC resource configuration delivering a lower amount of 
VoI. In fact, if we compare Fig. 5b with Fig. 5a we notice that higher processing 
ratios do not implicitly result in higher VoI resource configurations. Therefore, 
prioritizing the processing of offloaded requests with higher VoI can maximize 
the value of (2) delivered to end-users but can also cause possible starvation of 
requests with lower VoI values. Let us note that starvation for low VoI requests 
is possible only when the computing resources available at MEC servers can-
not meet the users’ demand. Therefore, we believe this to be a suitable trade-off 
considering that we propose VoI as a solution to deal with the processing of the 
most valuable requests (mission-critical services) in case of limited computing 
resources.

On the other hand, the GREEDY result shows that a local processing policy is not 
feasible for the evaluation scenario. In fact, selecting the closest MEC server to pro-
cess users’ offloaded requests will likely result in processing bottlenecks and request 
dropping. Therefore, this demonstrates that there is the need to configure MEC 
resources accordingly and to distribute requests among all available MEC servers.

Another result is the one illustrated in Fig. 5c, which depicts the average queue-
time associated with the best configurations found by MECForge during the 1000 
training episodes and the results of RANDOM and GREEDY. We calculated the 
average queue time as the ratio between the overall time spent by served requests 
within the service queues and the number of served requests. As supposed ear-
lier, Fig.  5c shows that the GREEDY local processing policy saturates the ser-
vice queues. In fact, GREEDY has the higher average queue time for processing 
only 964 requests. On the other hand, both RANDOM and MECForge show better 
results, thus demonstrating better coordination of resources. This is a result of nota-
ble importance, which demonstrates how GREEDY alone is not feasible for dealing 
with latency-sensitive services. More specifically, the choice to associate offload-
ing requests to the closest MEC server might be beneficial for minimizing the com-
munication latency but it does not guarantee having low processing/queue time. 
Therefore, this makes GREEDY infeasible for latency-sensitive and mission-critical 
services.

6.3.2 � Evaluation in Modified Scenario with Concentrated Request Distribution

To further validate the proposed approach, we test MECForge on a modified sce-
nario, without retraining the software agent. More specifically, we devised a modi-
fied scenario in which users have a different geographical distribution. Instead of 
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considering users to be evenly distributed among the 12 MEC servers locations (as 
we did for the training scenario), we move a consistent part of the users ( ∼ 80% ) 
into a single MEC server location. We then investigated it to verify if MECForge 
can find a suitable configuration for MEC computing resources using the experience 
built upon the previous scenario.

To devise this “concentrated” scenario, we consider that a particular event, 
such as an outdoor concert, is taking place in a specific location of the Smart 
City. Therefore, we can imagine that attracted by this event, a consistent part of 
the users move to this specific location, which we supposed to be in a single RAN 
coverage.

Let us note that for this evaluation we keep the number of offloading requests 
consistent with the previous scenario ( ∼2300) on which we trained MECForge. 
However, due to changed conditions, about 80% of the offloading requests will 
be generated in the same location, thus requiring a re-configuration of MEC 
resources to address the different requests’ distribution.

For this validation, we configure MECForge with the Q-network trained 
at the previous step without running another training procedure. More specifi-
cally, we run MECForge for 10 episodes during which we keep track of the best 

(b)(a)

(c)

Fig. 6   The best MEC resource configurations for the scenario under modified conditions
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configurations from which we report the Total VoI, ΘRATIO , and the queue-time. 
Then, we also execute RANDOM and GREEDY on the “concentrated” scenario 
to collect their configurations.

We report the result of the validation in Fig.  6, which illustrates that in the 
“concentrated” scenario MECForge outperforms the other approaches. More spe-
cifically, Fig.  6a shows that MECForge finds the configuration that delivers the 
greater amount of VoI to end-users, while RANDOM and GREEDY find simi-
lar but lower solutions. As for the processing-ratio, MECForge achieves the best 
result when compared to the solutions found by RANDOM and GREEDY.

Let us note that even in this case, the configuration (found by MECForge) with 
the higher processing-ratio is not the one resulting in the higher VoI. Finally, the 
average queue-time results confirm the validity of MECForge that outperforms 
RANDOM and GREEDY, which instead report higher average queue-times about 
1.5s for RANDOM and 3.0s for GREEDY.

Finally, it is worth noting that with the adoption of VoI based policies, the pro-
cessing of most important offloading requests will be prioritized. Therefore, mis-
sion-critical and latency-sensitive services would benefit from the adoption VoI 
methodologies at the expenses of lower VoI services. This is a reasonable choice 
when dealing with mission-critical service in a resource constrained environment.

7 � Conclusion and Future Works

This work presented our efforts for integrating DRL techniques into a VoI manage-
ment framework for MEC computing resources configuration. Starting from the 
experience of previous research projects defined in [5, 22], we investigated DRL 
as an interesting reinforcement learning approach to configure MEC computing 
resources (CPU cores at MEC servers) for maximizing the amount of VoI delivered 
to end-users requesting service components offloading. To this end, we defined a 
system model and an MDP on which a DRL agent can learn a reward-maximization 
function that allocates computing resources on MEC servers.

Then, we present MECForge, a DQN-based approach that we specifically imple-
mented to consider VoI policies for resource management problems in MEC. MEC-
Forge is to learn a resource management function to allocate a set of computing 
resources for the processing of service components on MEC servers that maximizes 
the total VoI delivered to the end-users that requested service components offload-
ing. Furthermore, we presented an architecture for a Continuous Optimization 
Framework that leverages a Digital Twin (a virtual replica) of a real-world MEC 
deployment to safely test different resource configurations.

To evaluate the capabilities of MECForge, we devised a training scenario for 
MEC in Smart City on which MECForge proved to be efficient in finding a good-
rewarding allocation policy and high VoI resource configurations in a relatively 
limited number of training iterations. Moreover, we compared MECForge with two 
other approaches to validate the achieved results both on the training scenario and 
on a “concentrated” scenario in which most of the users, and 80% of the service 
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requests, group in a single location, as opposed to the even distribution adopted for 
the training scenario.

Finally, let us note that even if RL approaches suffer from the curse of high train-
ing time, they provide an interesting and promising methodology for implementing 
an effective continuous optimization of resources in new generation networks. As 
future works, we intend to investigate different RL algorithms and to test the capa-
bilities of MECForge on other scenarios. Furthermore, we intend to investigate the 
application of VoI methodologies and tools to network slicing and other network 
management problems.
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