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Abstract
The increasing number of Voice over LTE deployments and IP-based voice services 
raise the demand for their user-centric service quality monitoring. This domain’s 
leading challenge is measuring user experience quality reliably without perform-
ing subjective assessments or applying the standard full-reference objective models. 
While the former is time- and resource-consuming and primarily executed ad-hoc, 
the latter depends upon a reference source and processes the voice payload that may 
offend user privacy. This paper presents a packet-level measurement method (intro-
ducing a novel metric set) to objectively assess network and service quality online. 
It is accomplished without inspecting the voice payload and needing the reference 
voice sample. The proposal has three contributions: (i) our method focuses on the 
timeliness of the media traffic. It introduces new performance metrics that describe 
and measure the service’s time-domain behavior from the voice application view-
point. (ii) Based on the proposed metrics, we also present a no-reference Quality of 
Experience (QoE) estimation model. (iii) Additionally, we propose a new method 
to identify the pace of the speech (slow or dynamic) as long as voice activity detec-
tion (VAD) is present between the endpoints. This identification supports the intro-
duced quality model to estimate the perceived quality with higher accuracy. The per-
formance of the proposed model is validated against a full-reference voice quality 
estimation model called AQuA, using real VoIP traffic (originated in assorted voice 
samples) in controlled transmission scenarios.
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1 Introduction

Regarding the latest telecommunication standards [1, 2], the IP-based voice services 
became the dominators of global voice communication in the last decade. The new 
technologies and architectures, i.e., Voice over LTE (VoLTE), Voice over IP (VoIP), 
offer improved service quality and high-definition real-time voice services. This 
technological evolution raised users’ expectations against interactive voice services. 
Transmitting voice data real-time end-to-end over an IP-based network path, which 
is the current operational model of the mentioned services in the near past, defines 
strict criteria. The requirement against the management tasks includes the control of 
end-to-end delay, delay variation, and packet reordering. From the telecommunica-
tion operator and service management point of view, the main task is to inspect the 
quality of the provided voice service and acquire live feedback about the state of 
the IP-based real-time voice transmission. The most crucial supervision task is the 
analysis of the listening quality. Operators have multiple options to monitor whether 
it complies with the raised expectation against user experience.

The service provider can monitor the signaling plane or the voice traffic and 
measure the classic packet-level QoS parameters (e.g., delay, delay variation, packet 
loss, and reordering). While this method reveals primary transmission impairments, 
it does not give a result that is based on the viewpoint of the voice application. The 
analysis of the classic packet-level metrics does not consider the effect of the appli-
cation-level packetized media and jitter buffer properties that directly influence the 
listening quality.

To analyze the degradation of the waveform, the provider can post-process the 
impaired voice sample using reference-based objective quality standards (e.g., PESQ 
[3], POLQA [4]). The primary disadvantages of these models are (a) offline opera-
tion (i.e., post-processing), (b) requirement for the original voice sample (as a refer-
ence), and as a fundamental privacy issue, (c) analyzing of user data, i.e., decoding 
the whole voice conversation for quality inspection.

The commonly used network protocol for delivering the audio samples within the 
previously mentioned ecosystems is the Real-Time Transport Protocol (RTP) [5]. 
It travels over IP/UDP protocols to carry the media flow end-to-end. RTP applies 
a unique timestamping mechanism combined with continually increasing sequence 
numbers to convey the time-sensitive media samples over packet-switched systems. 
The main features of the protocol are the ability to detect packet losses and recover 
orderliness and timing at the receiver side. The latter feature is based on a special 
timestamp format derived from the voice codec’s internal sampling frequency.

As a shared property, the IETF RFC recommendations [6–12] separate the delay, 
reorder, and loss concept to measure the traditional packet-level QoS metrics. As we 
will show in this paper, in real-time media transmission, it may have several benefits 
to handle these parameters side by side.

This paper aims to present VoicePerf (Voice Service Performance Measurement 
Metrics), a new listening quality inspection model for real-time RTP flows. VoiceP-
erf considers the application-level media buffering properties and inspects the play-
out timing properties of the arrived packets. It operates without processing the voice 
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payload (i.e., the private media data) and the need for the corresponding reference 
voice material. Instead of analyzing media data directly at the endpoint’s playout 
buffer, we model its operation and estimate its state. This approach enables to detach 
the evaluation from the user equipment and implement it at any point of the IP voice 
network.

Based on the new metric-set, we propose a derivative objective quality model 
that estimates the voice session’s perceived quality on the Mean Opinion Score 
(MOS) scale. The novelty of the proposed QoE estimation model is threefold: (i) 
it introduces new performance metrics that enable measuring and describing the 
time-domain behavior of the service from the viewpoint of the voice application. (ii) 
Based on the proposed metrics, we also introduce a no-reference Quality of Experi-
ence (QoE) estimation model. (iii) Additionally, we propose a new method to detect 
the pace of the speech (dynamic or slow) when voice activity detection (VAD) is 
present between the endpoints. This identification supports the introduced quality 
model to estimate the perceived quality with higher accuracy.

The remainder of the paper is organized as follows. Section 2 presents the related 
works in the field of voice quality analysis. Section 3 introduces our new method 
focusing on the base metrics, and Sect.  4 describes the derived QoE estimation 
model. In contrast, Section 5 presents 480 test cases and validation results to demon-
strate the effectiveness of our model. Finally, Section 6 concludes the paper.

2  Related Work

Examining the previous publications and standards, the E-model [13] is a wide-
spread no-reference voice quality estimation method. It is an ITU-T standard for 
subjective quality estimation, registered as Recommendation G.107. The E-model 
applies several input parameters, which are derived from previously known network 
impairment probability (e.g., packet loss probability) or waveform-based parameters 
(e.g., talker echo, loudness, and noise). The standard results in an R-value, which 
could be translated into the MOS [14] scale.

Several papers analyzed the efficiency of the E-model to inspect the user percep-
tion and found that it is not accurate enough for estimating subjective quality [15]. 
It underestimates the audio quality in a longer transmission delay scenario [16] and 
does not consider the consecutive media frame loss [17].

Raake et  al. [16] proposed a new parameter set for the E-model and enhanced 
the original algorithm with two new inputs: random loss and burst ratio of the 
packet loss. The presented work also defined two viewpoints for packet loss: mac-
roscopic loss (speech quality changes over time) and microscopic loss (the effect of 
packet loss at the decoder side). The loss prediction method has been adopted in the 
E-model standard.

Takahashi et  al. [15] also proposed a G.107 standard-based work for quality 
inspection. The authors found a correlation between network delay and speech dis-
tortion. They also examine the problem of terminals’ loss rate. Regarding the imple-
mentation of the jitter buffer, it can differ in each terminal type, which results in 
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different packet loss rates. Thus, a dedicated calibration data file (describing the 
characteristics of the jitter buffer) should be used to support the model [18].

Takahashi et al. [19] examined further the previous problem space [15] and ana-
lyzed the relationship between delay effects and speech distortion when both coin-
cide. The authors defined an E-model-based method to derive a subjective MOS 
from the R-value. The proposed quality estimation model uses the following input 
parameters: one-way-delay, echo-path loudness rating, noise level, and equipment 
impairment factor. It considers the applied audio codec and the packet loss rate as 
known in advance.

The second group of the related works applies a reference waveform or a full-
reference standard (e.g., PESQ [3], POLQA [4]) to analyze the degraded voice 
material.

Jung and Manzano [17] analyzed the impact of consecutive packet loss. The 
authors also found that the E-model does not consider the burst packet loss. Accord-
ing to this observation, the publication introduces burst-related metrics (duration 
and density metrics for burst and gap events). Their experimental results showed 
that the defined loss parameters correlate with the result of the PESQ standard. The 
authors defined multiple loss-range categories for MOS estimation. They found that 
under 7% of packet loss, there is no benefit, in terms of accuracy, including the burst 
in the estimation formula.

Ouyang et  al. [20] implemented an Android App for VoLTE service quality 
inspection. The proposed method analyzes the wireless plane of the communica-
tion path and applies the POLQA standard within an initial calibration step. The 
new model includes two phases: a training phase and a testing phase. In the training 
phase, the mobile phone is directly connected to an external box to calculate MOS 
indices based on reference waveforms. In the testing phase, the client operates in 
the background and periodically transmits network metrics to a database server for 
further examination.

Zou et  al. [21] proposed a machine learning algorithm (random forest-based 
training and assessment) for voice quality estimation. The algorithm uses nine input 
parameters during the quality estimation phase (e.g., UDP length, bitrate, and aver-
age packet loss). The authors analyzed 2400 degraded voice samples and compared 
the PESQ scores as a reference. The statistical results showed that the correlation 
between the proposed method and PESQ is higher than between PESQ and the 
E-model.

Conway [22] published a passive assessment model that combines the offline 
algorithm of the PESQ standard [3] and an audio sample replacement technique 
to exchange the original user payload with a test audio source. Using this payload 
injection method, the author avoided any privacy issues raised by decoding user’s 
conversation. However, the presented model does not reflect the behavior of the 
application’s jitter buffer. Therefore, the real data loss present at the input of the 
voice decoder is not incorporated in the result of the quality assessment.

Han and Muntean [23] proposed HCQ, a hybrid model for call quality assess-
ment. The authors combined the advantages of the reference-based (e.g., PESQ, 
POLQA) and no-reference-based (e.g., ITU-T G.107) standards and mixed them into 
one method. HCQ operates with two MOS values, which are calculated in the final 
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processing phase. The first value is the result of the online model, and an offline 
reference-based model estimates the other one. The offline MOS estimation is based 
on the PESQ standard, where the method records a few seconds of the voice and 
inspects its quality. The disadvantage of this model is that the recorded audio sam-
ples are sent through the network for further analysis, which is not a viable scenario 
in many cases. Regarding the offline calculation phase, the authors recommend a 
reduced reference waveform-based method.

Sun and Ifeachor [24] introduced a new passive non-intrusive model for develop-
ing accurate solutions to predict voice quality for IP-based voice services. Based 
on the methodology, the authors defined regression models for predicting conversa-
tional voice quality for four widespread audio codecs: G.729, G.723.1, AMR, and 
iLBC. Using real VoIP traces, the authors showed that the prediction accuracy of the 
generated models is close to the combined ITU PESQ/E-model method.

Lin et al. [25] proposed a new parametrical neural network-based model to ana-
lyze the audio quality in VoIP services. The publication complements the methodol-
ogy presented in [24]. The major impact of their work is the statistics-based packet 
loss assessment. The presented method is more efficient computationally than [24] 
since it does not require Markov model mapping.

Let us note that both [24] and [25] omits the impact of packet reordering and 
packet losses derived from the overrun of the playout buffer.

Majed et al. [26] examined the network delay in VoLTE systems as a model input 
parameter. The authors found that 3GPP metrics (e.g., IPDV) do not represent the 
behavior of jitter-buffers in real VoLTE services. They defined a set of improve-
ments to achieve a higher correlation.

Abareghi et al. [27] published an improved ITU-T standard, namely P.563 [28]. 
This standard realizes a non-intrusive model for voice quality evaluation, but it is 
not appropriate to examine IP-based conversation (e.g., VoIP calls). The authors pre-
sented a new distortion class for proper network condition detection.

Broom [29] found that the system characteristics should be utilized as an impair-
ment factor for MOS estimation. The proposed work concludes that the packet loss 
and jitter values are insufficient for estimating voice quality. The author introduced a 
calibration method to measure the characteristics of the VoIP equipment. Using this 
device- specific parameter, a higher correlation rate is achievable.

Luksa et al. [30] represented that the audio codec (G.711, GSM, Speex, iLBC 20, 
iLBC 30, and G.729) has no effect on the intelligibility of voice performance and 
does not influence the objective voice quality.

Orosz and Tóthfalusi proposed a metric-set and a preliminary objective model to 
measure voice service quality online [31]. The number of voice scenarios used for 
building the model and perform the validation was 34. Based on these early results, 
our current paper introduces an enhanced metric set and a new, more generic estima-
tion model that is created by involving 480 voice samples (scenarios) and validated 
using the k-fold cross-validation method.

In contrast to previously published works, our proposed method distinguishes 
the packet loss events, defines three loss-categories, and applies a time window-
ing technique to model the endpoint’s playout buffer behavior. Additionally, it is 
enhanced with a new method to detect the pace of the speech (dynamic or slow) 
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when voice activity detection (VAD) is present between the endpoints. This iden-
tification enables weight packet loss differently for dynamic and slow speech seg-
ments. This auxiliary method assists the primary model to estimate the perceptive 
listening quality with higher correlation.

3  The Proposed Quality Model

3.1  Voice Codec and Transport Protocol Background

To maintain low end-to-end delay, RTP operates with a small-sized application-
level receiver buffer, namely a playout or (de-) jitter buffer, to smooth out delay 
variation and perform reordering when needed. The recovery processes (jitter 
elimination and packet reordering) are limited by the effective size of this buffer. 
Typically, real-time voice codecs release 10–30  ms voice frames at their out-
puts. 20 ms frame size is the most common choice for VoLTE and VoIP codecs 
such as Adaptive Multi-Rate Wideband (AMR-WB) [32], Opus [33], and Speex 
[34]. Accordingly, the average extent of the jitter buffer is usually in the range of 
60–140 ms, which provides temporal storage for a few consecutive media frames 
only.

The proposal is optimized for passive network measurement at an appropriate 
aggregation point of the network (typically, in the IP Multimedia Subsystem (IMS) 
network core where RTP packets are unencrypted). At this high traffic density point 
of the network, RTP voice conversations can be detected and measured concur-
rently with a dedicated monitoring device. In contrast, monitoring RTP traffic at the 
receiver endpoint may require additional computing resources. From the viewpoint 
of a voice service provider, it is more common and reasonable to perform service 
monitoring in the IMS core network, where the voice sessions also appear and RTP 
header fields can be accessed. Our method invokes only two protocol metadata, i.e., 
the sequence number to measure packet orderliness and the packet timestamp to 
analyze timeliness.

To examine the behavior of real-time media flows from the application’s perspec-
tive, we have to overview the operation of the RTP protocol. RTP supports media 
delivery by recovering order and time information at the receiver end. These proto-
col features enable scheduled decoding of media samples delivered through the net-
work. Each RTP header contains a sequence number and a timestamp value. While 
the sequence number is incremented by one for each packet and used to detect loss 
or reordering, the timestamp carries codec-related temporal information and is used 
to schedule the arrived packets in time. For voice services, RTP timestamp is incre-
mented in every packet by the number of audio samples it carries. When a packet 
contains 20 ms of audio sampled at 8 kHz, the timestamp is incremented by 160 in 
each RTP packet (see Fig. 1), for example. Let us note that the initial value of the 
sequence number is random within the 16-bit range.

Let Si be the sequence number of the ith arrived packet, and let Pi be the packetiz-
ing period of the used codec.
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3.2  Introducing the Packet‑Level VoicePerf Metrics

Based on the media recovering mechanism above, VoicePerf applies a refer-
ence timeline, on which the current time is incremented by the delta arrival time 
between two consecutive packets. The delta time is calculated from the local 
timestamp of the arrived packets. The reference timeline is used to analyze the 
arrived packet’s relevance in time.

Let ti be the arrival time and let di be the delta time of the ith RTP packet from 
the previously arrived packet. Let Ct be the current time that represents a time 
relative to the beginning of the measurement. When a media frame arrives, the  di 
value is calculated and added to the current time Ct (Fig. 2).

To inspect the arrived packet based on its expected arrival interval, VoiceP-
erf calculates time windows for the classification and the metric calculation. Our 
proposed model defines six reference points in time to handle five time windows. 
The reference points and thus the time windows are re-calculated for each arrived 
packet in real-time and fitted on the reference timeline to determine the perfor-
mance metrics (see Fig. 3). The width of a time window represents the duration 
of the voice sample within a media frame (20 ms, typically).

Let Rpij be the jth reference point of the ith arrived packet, where 1 ≤ j ≤ 6 . 
This model considers the Pi parameter as available information in each calcula-
tion period. When the RTP stream involves multiple payload types (i.e., multiple 
codecs and sampling period combinations), Pi should be properly synchronized to 
the calculation cycles. The sampling rate could be pre-defined if it is previously 
known from the codec properties. Otherwise, it could be indirectly measured dur-
ing the initial phase of the algorithm. (The initial phase will be discussed later 
in this section). Let us note that the resolution of Pi should correspond with the 
resolution of Ct. (In Sect. 4, we applied  Pi with microsecond resolution.)

Fig. 1  Timestamp increment in RTP packets

Fig. 2  Reference time incremented by delta arrival times
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Let T be a threshold value that defines the overall interval of the time windows. 
Its value is determined by the playout buffering scheme of the voice application. T is 
practically an integer value, and T ≥ 2 . The T threshold makes the method scalable 
for any playout buffer size. T = 2 case assumes a jitter buffer of 100 ms. According 
to the recommendation of the International Telecommunication Union (ITU), the 
one-way delay between the communication user equipment should be kept under 
150 ms (including propagation delay as well as buffering delay). Most of the com-
mon voice software applications have a default jitter buffer of around 80–120 ms.

Using the previously defined T parameter, Rpik reference points are calculated by 
formulae (1–6), respectively:

Rpik reference points define five time windows (w1, w2, w3, w4 and w5) based on the 
following intervals:

(1)Rpi1 =
(

Si × Pi

)

− ((T + 0.5) × Pi)

(2)Rpi2 =
(

Si × Pi

)

−
(

1.5 × Pi

)

(3)Rpi3 =
(

Si × Pi

)

−
(

0.5 × Pi

)

(4)Rpi4 =
(

Si × Pi

)

+
(

0.5 × Pi

)

(5)Rpi5 =
(

Si × Pi

)

+
(

1.5 × Pi

)

(6)Rpi6 =
(

Si × Pi

)

+ ((T + 0.5) × Pi)

Rpi1 ≤ w1 < Rpi2

Rpi2 ≤ w2 < Rpi3

Fig. 3  Time window fitting on the reference timeline
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The width of the three middle time windows (w2, w3, and w4) is fixed and deter-
mined by the sample length within a voice frame. The two outer windows (w1, w5) 
specify adjustable intervals that could be increased by the T threshold value.

Rpik reference points are updated for each arrived packet, and time windows are 
slid accordingly. Then they are fitted on the reference timeline to perform classifica-
tion and to calculate the performance metrics. Figure 4 presents an example calcula-
tion: T = 2 (100 ms jitter buffer), S = 5, P = 20 and Ct = 104.

VoicePerf takes the arrived sequence number Si and the packetizing period Pi to 
determine the relevant time windows w1–w5 and the expected arrival interval for the 
current voice frame (see Formulae 1–6). The classification categories are defined via 
the corresponding time windows. Classifying a packet to a pre-defined category is a 
1:1 association, where categories correspond to performance metrics (Fig. 5).

Our method has an initialization phase followed by an assessment phase. During 
the initial phase, the reference timeline and the packetizing period should be appro-
priately adjusted. A reference timer is typically a common local clock source (e.g., 
TSC, HPET), which is used to timestamp the arrived packets. However, the refer-
ence timeline is initialized by the S0 × P0 product. If reordering or loss occurs in the 
init phase, the reference timeline must be re-initialized by the next in-order packet. 
The method maintains the initialization phase until the packetizing period is fixed 
and no out-of-order packet arrives for at least a (4 + 2T)Pi period. This criterion 

Rpi3 ≤ w3 < Rpi4

Rpi4 ≤ w4 < Rpi5

Rpi5 ≤ w5 ≤ Rpi6

Fig. 4  Time windows in [ms] in the case of S = 5, P = 20, Ct = 104, T = 2 

Fig. 5  Time windows in the case of S = 5, P = 20, Ct = 43, T = 2.5 
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grants that the values of the  RPik reference points will be higher than the initial 
value of the timeline. As soon as the above conditions are met, the method steps into 
the assessment phase. The assessment phase relies on the previously introduced time 
windows, applying the categories and the corresponding performance metrics.

VoicePerf defines four categories for the arrived packets, which are differentiated 
by the time windows. Furthermore, it specifies an additional category for packets 
that have not arrived and are therefore considered lost (namely, not-arrived-loss). 
Derivative performance metrics are the number of packets in < categoryk > /call or 
the percent of packets in < categoryk/call >.

• Early arrived loss (EAL)
• Late arrived loss (LAL)
• Time window offset
• Intra-window delay variation (IwDV)
• Not-arrived loss (NAL)

In the rest of the paper, we apply the abbreviated format for indexing the 
parameters.

3.3  Loss Category Types

Since voice codecs and thus RTP operate with time frames, the decoding algorithm 
always has to process a voice frame sequence. When a packet comes earlier than 
expected, the media application stores its payload in the playout buffer. When a packet 
with an early arrival faces a filled buffer, the application may discard its payload (i.e., the 
voice frame) despite the packet arrived at the endpoint. This is because its playout time 
is far from the current time window. VoicePerf recognizes the mentioned behavior and 
defines the early-arrived loss metric to represent the media frames that arrived too early. 
Using the time window fitting, the packet is counted as early arrived loss when Ct < Rpi1.

Similarly, the method also differentiates the late arrived loss event. When a voice 
frame arrives too late from its expected interval, the application may handle the miss-
ing time information with different techniques because the received audio information is 
irrelevant in time. VoicePerf counts the ith packet as a late arrived loss when Ct > Rpi6.

When Ct of the ith arrived packet is greater than or equal to Rpi1 or less than or 
equal to Rpi6, the packet is categorized as time window offset. The reason is that 
the application may use the carried voice frame and places it in the playout buffer. 
VoicePerf also counts each packet within a measurement period with the appropriate 
time window counter. The variance of arrivals within the time windows can be an 
early indication of a transmission timing problem.

3.4  Measuring the Window‑Based Timing Offset

Based on the result of the continuous window fitting, a time window offset is cal-
culated for each arrived packet. This offset represents the deviation of the currently 
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assigned time window from the expected (optimal) w3 window. For example, when 
an arrived packet is assigned to w2, its offset is 1. The offset is a signed integer value 
and could reveal network timing or routing misbehavior.

Since VoicePerf operates with timestamps and the Cn center point of each time 
window is given, the |Ct − Cn| formula properly defines the intra-window delay var-
iation (IwDV) metric. Let us note here that we advisedly avoid using the term jitter 
in this context.  IwDVn (where n is the index of the time window) is a more precise 
measurement of timing error (typically in microsecond resolution) within time win-
dow  wn. Both the offset and the intra-window delay variation are calculated in each 
measurement period.

3.5  Representation of the Categories

Figure 6 summarizes the four metrics defined by the windows: early-arrived loss, 
late-arrived loss, time window offset, and intra-window variation.

It should be noted that the not-arrived-loss metric is also determined in the 
measurement phase, but it is calculated only from the sequence number and the T 
threshold.

Based on the time windows, Ct exactly defines the relationship between the 
packet and the playout buffer usage. Generating a histogram from the metric coun-
ters represents graphical feedback about the network conditions besides buffer usage 
from the application’s perspective. Figures 7, 8 and 9 show synthesized examples.

Determining sub-windows means that the pre-defined time windows are split into 
sub-intervals, which enables to represent low-level timing properties of the voice 
call. The time window histogram represents a rough overview, but we get a higher 
resolution view of arrivals by applying sub-windows (Fig. 8). The reason is that the 
aggregated counters often veil slight variations. Since loss categories cover large 
intervals and w1, w5 exterior windows are defined by the TPi threshold; the sub-
windows should be used only for w3 or the middle three (w2, w3, w4) windows.

Figure 9 represents an example of good service quality since the arrived packets 
are mainly grouped to the w3 window.

In a rare but realistic scenario when a network device introduces an additional 
fixed delay (e.g., due to hardware reconfiguration), the categorization of the incom-
ing voice packets may drive to a constant offset. Our method detects a continuous 

Fig. 6  VoicePerf metrics, based on the time windows
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Fig. 7  Live chart about the packet classification

Fig. 8  Applying sub-windows on time windows

Fig. 9  Drawing histogram based on the sub-windows and categories, in case the of an optimal service 
operation
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shifting based on the time window counters, and a reset event is effectuated by step-
ping back to the initial phase.

4  Estimating Perceptual Quality Using the Proposed Metrics

In the next phase, we aimed to define a quality model derived from the VoiceP-
erf metrics, which can estimate Quality of Experience on the common P.800 MOS-
scale (see Sect.  4.4 for a detailed introduction). This quality index represents the 
overall performance of the call session. It is important to note that by calculating 
QoE, the primary aim is to provide an indication of how a network path complies 
with the requirement of delivering real-time voice traffic end-to-end. Typically, a 
low-level degradation of the transmission, in terms of timing, can be eliminated by 
the receiver side jitter buffer, and therefore the perceived service quality may be 
unaffected. Nevertheless, such low-level impairments can be forerunners for a nega-
tive trend within the network path (i.e., evolving congestion) that will degrade user 
experience in the very near future. Meanwhile, there are various transmission errors 
the jitter buffer cannot cope with and therefore result in voice quality degradation at 
the application-level.

During our preliminary work, we found a correlation between VoicePerf metrics 
and service QoE. To define appropriate functions for the QoE estimation model, we 
had to profile the loss categories by applying the Audio Quality Analyzer software 
(AQuA) [35] from Sevana.

There are several test methodologies to measure perceptual quality degradation 
in a voice material [36]. One of the well-known algorithms is the Perceptual Evalu-
ation of Speech Quality (PESQ), which is standardized as ITU-T P.862 recommen-
dation [3]. PESQ applies a full-reference (FR) model to estimate the quality degra-
dation and calculate a Mean Opinion Score (MOS) [37] value. FR means that the 
algorithm is based on a reference speech signal, which is compared to the degraded 
waveform.

A more recent ITU-T standard is the Perceptual Objective Listening Quality 
Analysis (POLQA) model [4], which applies new methods for wideband and super-
wideband voice signals.

The AQuA software is an industrial product that includes and utilizes the features 
of the previously defined models, but it developed further to handle some of their 
weaknesses.

The AQuA software is an easy-to-use voice quality tester. It also implements an 
FR model, which provides quality analysis between audio files. The software calcu-
lates an estimated P.800 MOS value, a classic indication of perception, and a qual-
ity percentage value, both derived from the waveform. The latter, i.e., the quality 
percentage calculation procedure, is based on the analysis of spectrum vibration, 
energy distortion, and other waveform-specific parameters. AQuA uses a different 
perceptual model than PESQ to reveal more information about the loss of voice 
quality. This is because there are cases of degradation that PESQ fails to detect [38]. 
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To give a comparative summary, Sevana collected the features of the well-known 
speech quality calculation methods, i.e., PESQ, POLQA, and AQuA [39].

4.1  Speech Pace: Slow and Dynamic Speech Types

We shortly discuss the voice activity detection (VAD) method commonly used in IP-
based voice services to identify the slow and dynamic speech categories. VAD is an 
essential tool to reduce the voice bit rate in VoLTE and VoIP communication. It rec-
ognizes the silent periods of the conversation and marks the beginning and the end 
of the suppressed intervals accordingly. While each voice codec implements its own 
silence suppression algorithm, they have the following common properties. During a 
silence interval, the sender does not transmit voice frames; meanwhile, the decoder 
at the receiver-end generates comfort noise for the listener. This is a typical scenario 
when one of the participants just listens without saying anything. The recognition 
of these suppressed periods supports the quality model to obtain a higher accuracy 
estimation of the perceived quality.

Therefore, the fundamental task is the identification of the speech type without 
processing the voice data. Accordingly, we propose a real-time method that relies 
on the relationship between variation of voice packet rate, voice/silence ratio and 
speech type. The packet rate is constant (50 packet per second, typically) as long as 
the voice coder is not in silence state; we can detect the ratio of voice and silence 
states as per time unit. Since the codec significantly reduces the packet rate in sup-
pression mode, we propose a method to identify the speech type based on the effec-
tive packet rate (corrected by the measured loss) versus the maximum packet rate 
(i.e., the constant 50 pps packet rate of the voice mode). We show real-life speech 
examples in Figs. 10 and 11.

According to the analysis of 12 selected voice samples (Table  1), the average 
effective packet rate is 0.883 × 50 pps for the dynamic speeches and 0.703 for the 
slow ones. Subsequently, we set up a 0.8 threshold to automatically differentiate the 
two defined types. The selection criteria of the voice samples were the n number of 
(at least t second long) silence blocks with parameters set to n = 10 and t = 1. Using 

Fig. 10  Packet rate pattern for dynamic speech
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these criteria, we have analyzed 40 various voice samples, all 1 min long. Figure 12 
shows examples of both slow and dynamic speech samples.

4.2  Measurement Infrastructure and Scenarios

To determine weights for the loss categories based on the AQuA results, we gen-
erated 480 audio files with various impairment parameters (described later in this 
subsection).

We used two × 86–64 workstations with Ubuntu (v16.04 LTS) operating sys-
tem as caller and callee (see Fig. 13) and the NetEM kernel module [40] in both 
directions between them to emulate network impairments. We applied Ekiga 
(v4.0.1) [41] to perform the VoIP calls and arecord [42] to redirect and record the 
audio files. We generated 480 test cases (160 for each loss type) derived from slow 

Fig. 11  Packet rate pattern for slow speech

Table 1  Speech type versus 
effective packet rate (pps)

Speech type #1 #2 #3 Average

Male—dynamic 0.877 0.872 0.904 0.88433
Male—slow 0.726 0.767 0.653 0.71533
Female—dynamic 0.883 0.869 0.893 0.88167
Female—slow 0.722 0.619 0.732 0.691

Fig. 12  Examples: audio waveforms of dynamic and slow voice samples classified by our method with 
parameter n and t set to 10 and 1, respectively
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and dynamic reference speeches. As voice references, we chose four independent 
samples from audiobooks: a slow (calm) male speech, a slow female speech, a 
dynamic male speech, and a dynamic female speech. We replayed the audio files 
and streamed them into the VoIP call. In the Ekiga client, we applied AMR-WB 
as the default codec type and set up a jitter buffer of 100 ms. Since the input jitter 
buffer eliminates the effect of a reordered packet with a relatively low sequence 
offset and grants an ordered playout, a reordered packet with a lower delay vari-
ation than the buffer capacity does not result in voice quality degradation. How-
ever, a more extensive sequence offset drives to receiver-side packet elimination, 
i.e., data loss. We checked this statement with replayed audio files.

Since the voice payload is not processed during the evaluation, the number of ref-
erence samples should represent packet-level variations only in terms of packet per 
second rate introduced by the voice activity detection algorithm. Since the presented 
method is independent of the payload content, a highly variable pps rate is the only 
factor that must be assured within each sample. For each test case generation, we chose 
one of the four reference speeches and messed up the network properties. To induce 
early loss, not arrived loss, and late loss events, we activated and deactivated the fol-
lowing NetEm kernel module parameters (network delay, reordering, and loss) during 
the call:

• loss i% (where i = 0…40, incremented by 1) to induce NAL,
• delay 200 ms reorder j% (where j = 100…60, decremented by 1) to induce LAL,
• delay 200 ms reorder i% (where i = 0…40, incremented by 1) to induce EAL.

In contrast, to measure reordering and packet loss independently, we analyzed 
both of them side by side to provide a higher accuracy estimation of voice quality 
degradation.

Using the previously presented AQuA analyzer, we calculated the MOS value for 
each output voice file and measured its packet-level loss metrics according to the pro-
posed VoicePerf method.

Fig. 13  Laboratory setup for 
audio test file generation
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4.3  Methodology for Estimating the Perceptive Quality

In the next phase, we applied the k-fold cross-validation model [43] to correlate the 
waveform-based MOS values with our packet loss properties (not-arrived loss, late 
loss, and early loss categories).

The k-fold cross-validation method is designed to predict and test on the same 
data set and estimate the accuracy of the examined model. The data set is split 
into fix-sized subsets of training and test cases (see Fig. 14), based on the pre-
defined k value.

The k value defines the number of loops (more precisely, the number of train-
ing and test rounds) and divides the data set into equal parts.

The k-fold cross-validation technique could be effectively used to find the 
weight parameters for our loss categories.

Each training phase results in a formula to estimate the MOS value from 
the measured loss categories, and the test phases show the correlation with the 
expected AQuA MOS values.

We applied k = 6 to split our 480 voice samples into training and testing 
data sets. As a first step, we split the voice samples into two independent data 
sets: 240 samples for dynamic speeches and 240 samples for slow speeches. 
To better correlate with the AQuA MOS results, we further split the 240 slow 
speech samples into two subcategories: mid-slow (120 samples) and slow (120 
samples). We evaluated the original 240 slow samples without subcategories 
during the first measurement steps, and we get 0.56 as an average delta MOS 
value. As an optimization step, we examined the audio samples and created 
further two subcategories based on the length of the silence. To differentiate 
the mid-slow and slow categories, we set the t time value to 1 for mid-slow 
and to 1.5 for slow (t is previously defined in subsect. 4.1). The n value was 
unchanged (n = 10).

Fig. 14  Steps of k-fold cross-validation, k = 4
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To create a MOS estimation formula from the loss categories, we applied 
regression analysis using linear estimation in IBM SPSS [44]. We performed sev-
eral regression analyses (e.g., linear, non-linear, and curve-estimation models, 
supported by SPSS), but linear regression resulted in the highest correlation with 
the AQuA MOS values.

As a training data set for the dynamic speech MOS estimation, we applied 200 
training samples and 40 test samples for each round. For the mid-slow and slow 
categories, we used 100 training cases and 20 test cases.

Tables 2, 3 and 4 summarize the coefficients of the regression lines. B1 is the 
weight for the not-arrived loss rate, B2 is for the early-arrived loss rate, and B3 is 
for the late-arrived loss rate.

Tables 5, 6 and 7 summarize the correlation of each round with the AQuA MOS 

values.

Table 2  The coefficients of 
the linear-regression (dynamic 
speech-based rounds)

Round (k) Constant B1 B2 B3

1 3.943 − 4.162 − 2.304 − 3.947
2 3.941 − 4.177 − 2.273 − 3.976
3 3.941 − 4.149 − 2.360 − 3.913
4 3.921 − 4.017 − 2.082 − 3.948
5 3.931 − 4.074 − 2.261 − 3.892
6 3.938 − 4.200 − 2.320 − 3.917

Table 3  The coefficients of the 
linear-regression (mid-slow 
speech-based rounds)

Round (k) Constant B1 B2 B3

1 3.816 − 3.816 − 2.490 − 3.391
2 3.895 − 5.315 − 2.505 − 3.905
3 3.896 − 5.677 − 2.416 − 4.015
4 3.903 − 5.080 − 2.867 − 4.025
5 3.847 − 5.363 − 2.493 − 3.656
6 3.910 − 5.220 − 2.602 − 4.040

Table 4  The coefficients of the 
linear-regression (slow speech-
based rounds)

Round (k) Constant B1 B2 B3

1 4.444 − 1.288 − 1.408 − 1.188
2 4.542 − 1.661 − 1.686 − 1.627
3 4.491 − 1.375 − 1.644 − 1.381
4 4.522 − 1.492 − 1.666 − 1.572
5 4.520 − 1.540 − 1.659 − 1.535
6 4.509 − 1.451 − 1.496 − 1.446
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4.4  MOS Estimation

To estimate the MOS value from the VoicePerf loss values, the loss categories (i.e., 
early loss, late loss, not-arrived loss) have to be weighted by the linear regression 
coefficients.

Let Pc be the rate of the given category counter versus the total RTP packets sent, 
where c means the category (NAL, EAL, and LAL), and 0 ≤ Pc ≤ 1.

Table 5  Summary of the 
average delta (dynamic speech-
based rounds)

Round (k) Average 
delta 
MOS

1 0.124
2 0.159
3 0.148
4 0.167
5 0.139
6 0.115

Table 6  Summary of the 
average delta (mid-slow speech-
based rounds)

Round (k) Average 
delta 
MOS

1 0.330
2 0.291
3 0.364
4 0.320
5 0.258
6 0.787

Table 7  Summary of the 
average delta (slow speech-
based rounds)

Round (k) Average 
delta 
MOS

1 0.241
2 0.266
3 0.204
4 0.247
5 0.199
6 0.246
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Using the measured loss values as explanatory variables, the MOS values for the 
different speech types can be determined by unique estimation functions. Based on 
the outcomes of the regression analysis, we defined a (predictor) function (1) for the 
dynamic speech samples (g(PNAL, PEAL, PLAL)), and two others for the slow speech 
samples (h1(PNAL, PEAL, PLAL), h2(PNAL, PEAL, PLAL)).

The formulae’ coefficients suggest that the punishment of the early-, late- and 
not-arrived loss should not be equal. In case of an early-arrived loss event, buffer 
resources can be available for a portion of the early arrived packet burst; thus, they 
can be stored within the jitter buffer, and the rest are dropped. While in case of a 
late-arrived loss event, all packets within the burst are dropped.

Let us note that the regression analysis results in less than − 5.0 weight values in 
some rounds. This is because of the AQuA’s measurement range and output values, 
which is used as a reference.

The estimated QoE value is calculated by (7–10). Let f(PNAL, PEAL, PLAL, st) be 
the function used in (10), where st is the speech type that returns the appropriate 
formula (g(PNAL, PEAL, PLAL), h1(PNAL, PEAL, PLAL), or h2(PNAL, PEAL, PLAL) respec-
tively) based on the speech type and the corresponding loss categories. (For the 
pseudo-code, see Algorithm I)

Algorithm I Pseudo-code of the estimator algorithm

(7)
g
(

PNAL,PEAL,PLAL

)

= 3.936 + PNAL × (−4.13) + PEAL × (−2.267) + PLAL × (−3.933)

(8)
h1

(

PNAL,PEAL,PLAL

)

= 3.878 + PNAL × (−5.256) + PEAL × (−2.573) + PLAL × (−3.837)

(9)
h2

(

PNAL,PEAL,PLAL

)

= 4.504 + PNAL × (−1.466) + PEAL × (−1.593) + PLAL × (−1.453)

(10)VoicePerfMOS = f
(

PNAL,PEAL,PLAL, st
)
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function calcVperfMOS(P, T, speechType)

Initialize EAL, LAL, NAL, CT and numberOfRTPPackets 
with 0

while (process all RTP packets) 
do

if numberOfRTPPackets < (4 + (2 * T)) then
Initialize CT with (P * packetSeqNumb)
Wait for in-order packets, save prevPacketTs

end if

numberOfRTPPackets = numberOfRTPPackets + 1
deltaT = packetTs - prevPacketTs
prevPacketTs = packetTs
CT = CT + deltaT
nextExpectedSeqNumb = packetSeqNumb + 1
rp1 = packetSeqNumb * P - ((T + 0.5) * P)
rp6 = packetSeqNumb * P + ((T + 0.5) * P)

if CT < rp1 then
EAL = EAL + 1

else if CT > rp6 then
LAL = LAL + 1

end if

Also check for NAL based on the previously arrived 
sequence numbers

end while

pN = NAL / numberOfRTPPackets
pE = EAL / numberOfRTPPackets
pL = LAL / numberOfRTPPackets

return f(pN, pE, pL, speechType)
end function

function f(pN, pE, pL, speechType)

if speechType = dynamic then
return 3.936 + pN*(-4.13) + pE*(-2.267) + pL*(-3.933)

else if speechType = slow1 then
return 3.878 + pN*(-5.256) + pE*(-2.573) + pL*(-3.837)

else if speechType = slow2 then
return 4.504 + pN*(-1.466) + pE*(-1.593) + pL*(-1.453)

end if

end function

5  Validation Results

To validate our voice quality assessment model (7–10) in a laboratory environment, 
we implemented Algorithm I in C++, and applied it to the 480 sample files.
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The final evaluation rounds of the k-fold cross-validation result in a final for-
mula for each speech type, containing the final weights for the loss categories 
(summarized by Table  8). We applied these weights in our quality assessment 
model (7–10).

We applied the AQuA [35] analyzer tool to calculate the MOS values for each 
speech sample. To determine the accuracy of our VoicePerf quality assessment 
model, we calculated the window-specific counters and the different loss category 
counters per speech sample. We applied the VoicePerf MOS formulae (7–10).

Figure 15 represents the correlation between AQuA MOS and VoicePerf MOS 
values. The validation results reveal that the absolute error range is between 0.003 
and 1.2 MOS, and the average delta MOS is 0.256.

To conclude the observations, the difference value between AQuA and VoicePerf 
MOS in 91% of test cases is less or equal to 10% (0.5 MOS), in 87% of the cases, it 
is less or equal to 8% (0.4 MOS), and in 64% of the cases is less or equal to 4% (0.2 
MOS).

The results show that the average delta percent (Table 9), which comes from the 
difference between AQuA [35] MOS and VoicePerf model-based MOS values, is 

Table 8  The coefficients of 
the linear-regression (final 
evaluation round)

Speech type Constant B1 B2 B3

Dynamic 3.936 − 4.130 − 2.267 − 3.933
Mid-slow 3.878 − 5.256 − 2.573 − 3.837
Slow 4.504 − 1.466 − 1.593 − 1.453

Table 9  Numerical summary of 
MOS assessment validation

Speech type Average delta MOS Number of 
measure-
ments

Dynamic 0.14 240
Slow-1 0.39 120
Slow-2 0.23 120

0.25 480

Fig. 15  Correlation between AQuA and VoicePerf MOS (480 test cases)
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Fig. 16  Validation results for 240 test cases: correlation between AQuA and VoicePerf MOS values with 
dynamic speech type

Fig. 17  Validation results for 120 test cases: correlation between AQuA and VoicePerf MOS values with 
mid-slow speech type

Fig. 18  Validation results for 120 test cases: correlation between AQuA and VoicePerf MOS values with 
slow speech type
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2.8% in the case of dynamic speech (Fig. 16), 7.8% in the case of mid-slow speech 
(Fig.  17), and 4.7% in the case of slow speech (Fig. 18). The mid-slow and slow 
speech test cases frequently contain 1–3 s long silence blocks.

In 4% of the validation cases, the large early-arrived loss values (> 30%) have 
triggered the reset function of our proposed method with a relatively high fre-
quency. The reset event can be triggered by a pre-defined c number of consecutive 
early- or late-arrived packets, and c was set to 8 during the validation process (see 
Sect.  3.5). Accordingly, each reset introduced a short-term offset in the packet 
classification, i.e., c in-time arrived packets were classified as early-arrived and 
increased the loss counter of that test case. However, this additional loss is sig-
nificantly lower in magnitude (and can be compensated) than the improvement 
in the accuracy of our MOS estimation model. Without the reset function (re-
sync), the number of packets classified as early-loss would be significantly larger, 
degrading the estimation accuracy in the mentioned cases.

We have examined these samples without the reset function and got a worse 
correlation with the Aqua MOS values.

We note here that besides AMR-WB, we have verified our model with Speex 
codec as well, and we got similar results and accuracy. Table 9 shows the sum-
mary of the validation results. For reference, we made the validation data set 
available online [45].

6  Conclusion

In the last decade, IP-based communication ecosystems (i.e., VoIP, VoLTE, and 
VoWiFi) dominate the telecommunication market. This technological progression 
necessitates tight control over several transmission parameters to offer reliable 
and high-quality voice services. It raised the demand for real-time service quality 
monitoring of voice applications with a focus on the user’s perception.

This paper proposed an objective quality model called VoicePerf, contributing 
three novelties in assessing the quality of IP voice services. (i) A new classifi-
cation-based metric system for RTP-based voice traffic (early-arrived loss, late-
arrived loss, not-arrived loss, time window offset, and intra-window variation). 
(ii) We introduced a quality estimation model that calculates a MOS value for the 
call session derived from the measured packet-level metrics. (iii) Furthermore, we 
proposed a new method to identify the speech pace (dynamic or slow) based on 
the voice activity detection (VAD) induced traffic properties. This identification 
supports the proposed model to estimate the service quality with higher accuracy.

Our approach to monitoring service quality relies on the emulation of media 
frame availability inside the endpoint’s playout buffer that is a crucial element of 
the voice transmission. The key differentiator of our method is the categorization 
of the packet loss events. It defines three loss types, and applies a time window-
ing technique to model the endpoint’s playout buffer. The main benefit of the inte-
grated reorder-loss calculation is the capability to assign a status for each arrived 
RTP packet from the voice decoder’s perspective. Based on these statistics, we 
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get a multi-layer overview of the transmission that can be applied for estimating 
the perceptive quality. From the implementation viewpoint, we modeled the prop-
erties of the receiver-end playout buffer in our independent measurement system.

We validated our proposal against a full-reference objective model called 
AQuA with 480 voice scenarios (samples) using k-fold cross-validation. We 
found a high correlation between VoicePerf MOS and AQuA MOS in all sce-
narios. Results revealed that our model estimates the perceptive quality with an 
average of 5.12% error ratio.
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