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Abstract
The extension of conventional computed tomography known as spectral computed tomography involves utilizing the variations
in X-ray attenuation, driven by spectral and material dependencies. This technique enables the virtual decomposition of
scanned objects, revealing their elemental constituents. The resultant images provide quantitative information, such asmaterial
concentration within the scanned volume. Enhancements in results are achievable through methods that capitalize on the
strong correlation among decomposed images, effectively minimizing noise and artifacts. The Rigaku nano3DX submicron
tomograph uses a dual-target source, which allows the generation of two distinct X-ray spectra through different target
materials. This configuration holds promise for high-resolution applications in spectral tomography, particularly for low-Z
materials, where it offers high contrast in the acquired images. The potential of this setup in the context of spectral computed
tomography is explored in this contribution, delving into its applications for materials characterized by low atomic numbers.

Keywords Computed tomography · Spectral CT · Dual-target · Material decomposition · Low-Z materials · Correlated noise

1 Introduction

Spectral computed tomography represents an advancement
over traditional computed tomography (CT) by not only pro-
vidingvisualizations of internal structures in scannedobjects,
but also by enabling the identification, differentiation, and
quantification of materials along with their concentrations
within these objects [1]. This process, which is known as
basis material decomposition (BMD), relies on the X-ray
attenuation properties of materials, which vary with both
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X-ray energy and the specific material [1]. To implement
BMD or other spectral CT techniques, two or more datasets
with distinct X-ray spectramust be acquired [1]. Dual-energy
computed tomography (DECT), a common form of spectral
CT, involves using two X-ray spectra with sufficient sep-
aration, i.e., minimal spectral overlap [2]. When DECT is
performed using a single X-ray source, spectral separation is
typically achieved by adjusting the tube voltage and/or filter-
ing [1]. While DECT is well-established in medicine [3], it
also finds applications in industrial and laboratory CT, where
ongoing developments aim to enhance spectral separation [4,
5].

In this work, existing DECT material decomposition
methods are applied to data obtained using a dual-target X-
ray source. This variation of DECT is termed dual-target CT
(DTCT) throughout this work. In DTCT, measurements are
performed not only with different settings of accelerating
voltage, but also with different target materials to generate
distinct X-ray spectra, and spectral separation is achieved by
a change of not only bremsstrahlung, but also characteristic
radiation. Therefore, the goal of this work is to explore the
feasibility of DTCT measurements for material decompo-
sition and spectral CT processing, with a particular focus
on high-resolution scans of low-density, low-Z materials,
such as organic compounds. It is presumed that such applica-
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Fig. 1 Geometry of the Rigaku
nano3DX, exaggerated for
illustrative purposes

tions of DTCT are feasible, but, to the authors’ knowledge,
experimental evaluation is currently missing in the existing
literature. The particular algorithm used in this work is an
existing approach based on entropy minimization to reduce
noise in the decomposed data.

2 Materials andMethods

2.1 Rigaku nano3DX

The Rigaku nano3DX (Rigaku Corporation; Japan) is uti-
lized in this work for the acquisition of DTCT data. It is an
X-ray microscope with the capability to conduct CT mea-
surements at submicron resolution, and the MicroMax-007
HF X-ray source with two user-switchable target materials.
In this case, the source is equipped with a copper (Cu) and a
molybdenum (Mo) target, with a pre-determined accelerat-
ing voltage of 40 kV and 50 kV, respectively. The voltages
are tuned to optimize the ratio of characteristic radiation
and bremsstrahlung, leading to X-ray spectra with promi-
nent peaks at roughly 8.0 keV for Cu and 17.5 keV for Mo
(Fig. 2), and effective spectral separation. DTCT measure-
ments on this setup are performed sequentially, with a switch
of the target material and accelerating voltage in-between.
This switch is automated and it can be completed in sev-
eral minutes. No other components of the scan geometry
move during this time, so although the twomeasurements are
sequential, they are usually well-aligned without the need for
substantial image registration during post-processing.

Unlike conventional industrial cone-beam CTs, the
nano3DX employs a quasi-parallel X-ray beam, which is
achieved through a large source-object distance (SOD) and
a relatively small object-detector distance (ODD) (figure 1)
[6]. Based on a previous work, the SOD is approximately
263.35 mm [7]. The ODD is adjustable, and is usually set to
a few millimeters. Other parameters such as the material and
thickness of the scintillation layer are not available. The X-
ray image is magnified through optical elements housed in
exchangeable units mounted in front of the detector. Sub-
sequently, the magnified image is captured by an XSight
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Fig. 2 X-ray spectrum for the Cu target and Mo target with filter Al
0.1 mm of the nano3DX. The simulation was created in the software
aRTist [8]

Micron LC camera (Rigaku Corporation; Japan) equipped
with a 3300 x 2500 pixel CCD chip. The chosen optical unit
determines the effective pixel size, which ranges from 0.27
μm to 4.32 μm (excluding pixel binning) [6].

2.2 Material Decomposition

The use of spectral CT can be divided into several categories
[1]. For this work, however, the division into two groups
is sufficient. The first group are problems in which it is
necessary to recognize and distinguish different materials
occurring in the investigated object. This can be achieved by
using two ormoreX-ray spectrawith different systemweight
functions (SWFs) [1]. This approach can be described as a
classification problem in which the data are segmented based
on whether a given material is present at a position or not
[5]. In medicine, this segmentation can be used to efficiently
distinguish tissues and contrast agents that may otherwise
be difficult to separate in conventional CT [3]. The second
group consists of questions related to quantitative informa-
tion about the given material, such as the concentrations of
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various compounds and mixtures [9], or the determination of
the atomic number and density of the individual components
of the material [10].

Alvarez and Macovski [11] described the first basis mate-
rial decomposition (BMD) algorithm in 1976. Since then,
BMDhasbeen the standarddecomposition algorithm in spec-
tral CT. Outputs from BMD are nowadays used as initial
values for various iterative methods [12]. The main idea of
BMD is that the spectral attenuation coefficient μ(E, x) can
be written using a superposition of basis functions

μ(E, x) = c1(x) f1(E) + c2(x) f2(E) + . . . + cn(x) fn(E),

(1)

where ci are concentrations of N different and linearly inde-
pendent basis material attenuation functions f1, f2, . . . , fn
[1]. It is also assumed that

∑N
i=1 ci = 1, based on themixture

rule [13].
For DECT, the following system of equations describing

the attenuation of X-rays can be obtained:

(
ACu

AMo

)

=
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−
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∫ 50
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(

−
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dE

⎞

⎟
⎟
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where indices denotemeasurements for different X-ray spec-
tra, A is the ratio between the output intensity I of the X-ray
radiation from thematerial of thickness L and its initial inten-
sity I0 andμ(E, x) is linear attenuation coefficient [1]. There
are also SWFs in equation (2), which are given by

w(E) = S(E)D(E)
∫
E S(E)D(E)dE

, (3)

where S(E) is X-ray spectrum for specific measurements
[1] and D(E) is detector responsivity [14], which remains
unchanged between measurements. Due to the unknown
scintillator thickness of nano3DX, it is assumed that D(E)
equals 1.0 for all E. Using the superposition described by
Eq. (1) the equations (2) can be parameterized and the
solutions of the system of integral nonlinear equations thus
obtained are the concentrations ci of the individual materials.
Finding a solution to the system (2) is not straightforward,
so BMD is performed on the reconstructed data, leading to a
system of equations

(
μCu(x)
μMo(x)

)

= K

⎛
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⎜
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⎝

c1(x)
c2(x)

...

cn(x)

⎞

⎟
⎟
⎟
⎠

, (4)

where μi are reconstructed data and K is material composi-
tion matrix given by the elements [1]

Ki, j =
∫

E
wi (E) f j (E)dE, i = Cu,Mo; j = 1, . . . , n.

The system (4) can be easily solved by pseudoinversion [15]
to obtain a system of equations

⎛

⎜
⎜
⎜
⎝

c1(x)
c2(x)

...

cn(x)

⎞

⎟
⎟
⎟
⎠

= K+
(

μCu(x)
μMo(x)

)

. (5)

This process is referred to as Direct Inversion (DI) [16].
Clearly, in the case of DECT, we have two different datasets
occurring on the right-hand side with which we want to find
N unknown concentrations, which is an indeterminate sys-
tem. Therefore, it is best to choose the number of search
materials N = 2. For increasing number of materials, there
is an accumulation of errors, i.e. inaccurate determination of
the concentration of a given material.

3 Noise Analysis

Jiang [17] states, that the utilization of the direct inver-
sion algorithm significantly diminishes the signal-to-noise
ratio (SNR) in decomposed images, adversely impacting the
quality of any subsequent analysis. Numerous conventional
image denoising algorithms suffer from a common issue of
losing information around edges, resulting in blurring. How-
ever, specific properties of noise in decomposed images are
harnessed by specialized algorithms to effectively mitigate
noise without losing image details [17].

3.1 Distribution of Noise

The noise analysis is performed on two decomposed mate-
rials in the image domain. Two CT datasets acquired with
different targets are scanned independently, and their noise
is therefore independent [18]. Two values can be assigned to
each pixel position. The first, μCu, corresponds to the mea-
surement with the copper target and the second, μMo, to the
measurement with the molybdeum target. Given the system
of equations (4), one pixel p with respect to position can be
expressed as

μp = Kcp, (6)

where μp = (μ
p
Cu, μ

p
Mo)

T , cp = (cp1 , cp2 , . . . , cpn )T and
K is the material composition matrix [17]. Aside from the
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amplification of noise during thematerial decomposition pro-
cess, the noise in the resulting decomposed images exhibits
a strong correlation [18]. We make the assumption that the
noise in individual pixels of both CT datasets follows a nor-
mal distribution:

μp ∼ N(Kcp,V), (7)

where V = diag(var(μCu), var(μMo)) is a diagonal matrix
whose diagonal elements are the noise variance in the first
and second CT dataset [19]. Using the DI applied to equation
(6) and probability distribution (7) it can be seen that the
probability distribution of the concentration of decomposed
images is

cp ∼ N
(
(K+μp),K

+V(K+)T
)

, (8)

where K+ denotes pseudoinversion (inversion) of material
composition matrix [18]. This indicates that the decomposed
images share a jointly Gaussian distribution, characterized
by an elliptical and highly asymmetric nature, as described
by the covariance matrixK+V(K+)T . Using SVD decompo-
sition [20], it can be shown that the covariance matrix of the
distribution (8) has only two non-zero singular values [18].
This implies that the noise in the multi-material decomposed
images is distributed solely in two directions and is absent in
the remaining directions.

3.2 Reduction of Noise

Petrongolo [18] states, that the entropy of the object under
observation serves as a valuable tool for noise reduction
in DECT. Entropy is a quantification of "uncertainty" or
disorder. In terms of probability, entropy is elucidated as fol-
lows: probability distributions with clear distinctions have
low entropy, while those with more ambiguity, such as nor-
mal distributions, exhibit higher entropy. The Image-domain
Decomposition throughEntropyMinimization (IDEM) algo-
rithm leverages the correlation among decomposed images
to effectively suppress noise [18].

The IDEM algorithm [18] operates on the premise that
pixels in decomposed images representing similar materials
form clusters in a 2D scatter plot. When noise is minimal,
the scatter plot should exhibit tight clusters with distinct cen-
ters of mass (COM). In its initial step, the IDEM algorithm
identifies the direction (optimized axis) in the 2D scatter plot
where the entropy is minimal. This direction is defined by
the axis passing through the origin. Subsequently, noise is
suppressed in the direction perpendicular to the optimized
axis. For each x pixel pair at the corresponding location in
the decomposed images, a projection onto the optimized axis

is performed. Pixels indicating similar materials are identi-
fied if their projected values fall within a small pre-defined
neighborhood around the x projection. The COM, denoted
as xc, is calculated for a given group of pixels. The original x
value is then replacedwith the computed xc value. In the final
step, the pixels are rotated back into the original space. The
extent of noise suppression in the COM calculation increases
along with the inclusion of more pixels, but this comes at the
cost of signal distortion. This phenomenon is akin to the
impact observed in other noise reduction techniques, where
increased noise suppression leads to a compromise in spatial
resolution. Introducing pixel weighting in the COM calcu-
lation proves beneficial in mitigating image distortion and
enhancing the precision of distinguishing different materi-
als. Pixels with values proximate to those at position x exert
a stronger influence, while pixel values significantly distant
from the value at location x carry less weight, thus minimiz-
ing their impact [18]. For this article, the spatial weighting
function used was the same as in the reference [18].

4 Testing Data

4.1 SimulatedWater-Ethanol Phantom

Avirtual phantomwas created using Autodesk Inventor soft-
ware (Autodesk; USA) to test material decomposition in a
controlled, simulated setting. The phantom comprises six
spheres with a diameter of 0.05 mm, evenly distributed on a
circle with a diameter of 0.125 mm. The chosen sizes align
with the capabilities of the Rigaku nano3DX in terms of res-
olution. Each sphere contains a different mixture of water
(H2O) and ethanol (C2H6O). Notably, one of the spheres is
composed entirely of water, and another is composed of pure
ethanol, as illustrated in Fig. 3A. These spheres serve as ref-
erences.Water and ethanol were deliberately chosen for their
similar attenuation properties (Fig. 3B).

Two phantom measurements were simulated for the Cu
and Mo targets. Generation of synthetic data was accom-
plished using the aRTist simulation software (BAM; Ger-
many). The geometry and parameters of the nano3DX were
modeled closely (Table 1) to produce realistic images which
would help predict the viability of material decomposition in
real measurement conditions.

Tomographic reconstruction of the simulated datasets was
performed in Matlab (The Mathworks; USA) using the FDK
reconstruction algorithm [21] implemented in the ASTRA
toolbox [22, 23]. The reconstruction process involved apply-
ing a circular masking function to zero out values outside the
field of view. The reconstructed CT slices for both targets are
shown in Fig. 4.
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Table 1 Input parameters set in
aRTist

Parameter Value Parameter Value

Target material Cu/Mo SOD [μm] 264 500

Tube voltage [kV] 40/50 ODD [μm] 500

Tube current [mA] 30/24 Environment material Air

Detector height [px] 500 Background value 60 000

Detector width [px] 500 Noise factor 0.01

Pixel size [μm] 0.54 Flat field correction Yes

The background value denotes the pixel value corresponding to unattenuated X-rays. A noise factor of 0.01
in the projections was determined through experimental findings, as it approximately corresponds to a normal
distribution with a standard deviation of σ ≈ 12.7 for the specified acquisition setting

Fig. 3 3D model of the synthetic phantom and the composition and density of its spheres (A), along with a graph of the linear attenuation of the
materials used in creating the phantom (B). Concentrations are expressed in volume percentages. Data was created in the software aRTist

Fig. 4 Reconstructions of
simulated data of the synthetic
water-ethanol Phantom

4.2 PhysicalWater-Ethanol Phantom

To test the DTCT on the nano3DX, a real phantom was cre-
ated based on the one designed for simulated measurements.
Seven kapton tubeswith diameters of 1mmwerewere placed
in a bundle, with the central tube serving only as a struc-
tural component. The six outer tubes were filled with various

mixtures of water and ethanol, corresponding to the same
volume percentages as the simulated phantom. The phantom
was constructed to resemble the simulated dataset reason-
ably closely, but its shape and size were modified to take into
account restrictions such as the size of the available materi-
als and tools. After the tubes were filled, they were plugged
on both sides with dental wax. The ends were wrapped with
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Table 2 Scan settings used for the DTCT measurement of the water-
ethanol phantom on the nano3DX

Measurement 1 2

Target Cu Mo

Tube Voltage [kV] 40 50

Tube Current [mA] 30 24

estimated ODD [mm] 6.5 6.5

Filter none 0.1 mm Al

Exposure [s] 0.65 0.33

parafilm and then glued with hot glue, so as to seal the con-
tents of the tubes from the outside environment. The tubes
were then placed on a metal rod, which was then attached to
a standard nano3DX sample holder.

Before the actual measurement, the sample was left to
stabilize in the measurement chamber of the scanner to min-
imize unwanted movement during scanning. A high binning
setting was applied on the acquired projection images, lead-
ing to lower resolution but much shorter scan times, both in
terms of exposure and also a lower total number of projec-
tions. In this case 300 projections were acquired over a 180◦
arc for each measurement. The final voxel size of both mea-
surements after binning was approximately 8.34 μm. The
increased measurement speed was useful in the specific case
of the water-ethanol phantom, to prevent the liquids from
potentially evaporating over the course of a longer measure-
ment. The two DTCTmeasurements were done sequentially,
first for the Cu target, then for the Mo target. Scan settings
are summarised in Table 2.

Tomographic reconstruction of the real datasets was per-
formed using version 2.0.3.0 of the proprietary Rigaku
reconstruction software. Standard settings of the software
were used, including any potential additional processing dur-
ing the reconstruction process. The axis of rotation of the
datasets was corrected manually prior to reconstruction, and
no other processing was applied on the data before recon-
struction.

In the reconstructed slices in Fig. 5 shows, that kapton
has very similar attenuation as water, as in some areas it
is not completely distinguishable. Unlike in other DECT
approaches, data measured at higher energies (Mo target)
contain more noise than data measured using lower energies
(Cu target). Additionaly, parts of the glue used to fix and seal
the phantom can be seen in-between the kapton tubes.

5 Results and Discussion

The resulting images of material decomposition applied on
the simulated data can be seen in the Fig. 6. The resulting
evaluation was performed in six different regions of inter-

est (RoI), one in each sphere of the phantom (Fig. 3). The
material decompositionmatrixwas constructed using the ref-
erence regions RoI1 and RoI2, which contain pure water
and pure ethanol. The decomposed images without noise fil-
tering can be seen in the Fig. 6a. It is clear that there is a
significant increase in noise when DI is applied. The noise
degrades the structures of the spheres, especially those with
higher ethanol concentration. A beam hardening artifact can
also be observed in the data, which is a likely occurrence,
due to the homogeneous nature of the phantom. Moreover,
beam hardening is generally more likely to occur at lower X-
ray energies [24]. Values present in the individual RoIs are
listed in Table 3. Although the mean values closely match
the known reference concentration values, the high values
of standard deviation (STD) make the result very uncertain.
This may play a role in further data analysis, making it dif-
ficult to clearly identify the boundaries of different regions
and possibly skewing the average values, especially when
smaller regions are evaluated.

To reduce the influence of noise in the decomposed data, it
is necessary to use noise reduction based on the IDEM algo-
rithm, as shown in Fig. 6b. It can be seen that IDEM noise
reduction preserves the edges of individual objects well. As
a side-effect, there has also been a slight reduction in the
beam hardening artifact, which can be seen as a type of spe-
cific noise in the data. Table 3 shows the specific values of
the concentrations of substances occurring in each sphere, as
well as a significant reduction in STDs in all RoIs, with much
more acceptable error rates of less than 7%. The reduction
in the uncertainty of measured concentrations is visualized
in Fig. 7. It is important to note that negative values or val-
ues greater than one have no physical meaning in terms of
concentrations. As such, values outside the range of 0% and
100% can be treated as invalid, or they can be clipped to fit
within this range.

The resulting material decomposition data for the physi-
cal phantom are shown in the Fig. 8. As with the simulated
data, DI results in a significant increase in noise. This hin-
ders the evaluation of concentrations of water and ethanol
in the RoIs. Moreover, beam hardening also causes local
distortions of decomposed values. Therefore, reduction of
beam hardening artifacts may lead to a potential improve-
ment in the results of material decomposition. Table 4 shows
that the standard deviations of the estimated concentration
values in the RoIs range from 50% to 90%. Such high devi-
ations cause too much uncertainty in the measurements, and
it was therefore necessary to reduce the noise using IDEM.
The noise-reduced data are shown in Fig. 8.

The mean concentrations of the RoIs in decomposed
images of the physical phantom differ from the concentra-
tion values of the simulated data. This is likely because of
ethanol evaporating from the phantom during the measure-
ment, despite efforts to seal the tubes during preparation.
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Fig. 5 Reconstructions of real
data acquired using the Cu
target and the Mo target with Al
filter. RoIs are labeled in the
reconstruction for the Cu target

Fig. 6 Synthetic phantom, material decomposition using DI (a) and noise reduction using IDEM (b)

Table 3 Mean values of
concentrations and STDs in
decomposed images for
phantom simulations

DI DI IDEM IDEM
RoI H2O C2H6O H2O C2H6O

1 1.045 ± 0.230 0.088 ± 0.435 0.979 ± 0.064 0.056 ± 0.054

2 0.001 ± 0.231 0.999 ± 0.436 0.005 ± 0.057 0.988 ± 0.040

3 0.992 ± 0.228 0.031 ± 0.432 0.946 ± 0.064 0.071 ± 0.052

4 0.848 ± 0.230 0.113 ± 0.435 0.803 ± 0.065 0.214 ± 0.055

5 0.496 ± 0.227 0.527 ± 0.429 0.482 ± 0.057 0.561 ± 0.040

6 0.258 ± 0.219 0.749 ± 0.413 0.238 ± 0.052 0.791 ± 0.034

Additionally, evaporation could have also caused the con-
centrations in individual RoIs to vary between the sequential
measurements for the Cu and Mo targets, which could also
have affected the results. Despite this, differences in concen-
trations of the RoIs after the application of IDEM can be
distinguished. The achieved results show the feasibility of
high-resolution, high-contrast, low-energy material decom-
position of low-Z substances using DTCT. The results may
potentially be further improved using some of the more
advanced material decomposition algorithms based on itera-
tive optimization [12, 19].

Artifacts due to data truncation may also affect the results
of material decomposition. These artifacts are common in

high-resolution CT, where the scanned objects often do not
entirely fit into the field of view (FoV). The erroneous accu-
mulation of material on the edge of the FoV is a typical
artifact for FBP-type reconstruction algorithms, and it inval-
idates the decomposed values on the perimeter of the image.
This truncation artifact needs to be corrected or excluded
from further analysis, as was the case here. Alternatively, it
is possible to correct this artifact by padding the projection
data, which may be a more effective approach in terms of
preserving the practical extent of the FoV in terms of data
validity.
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(a) DI (b) IDEM

Fig. 7 Results from the Table 3 plotted in a bar graph with STDs and true values

Fig. 8 Material decomposition
using DI and noise reduction
using IDEM for data of the
prepared phantom. To improve
the clarity of values within the
relevant interval of 0%–100%,
data above and below a certain
value were covered by a
single-color overlay

6 Conclusion

This study focused on assessing the feasibility of applying
DECT material decomposition on dual-target CT data of
low-Z samples at high resolution, specifically in the Rigaku

nano3DX. Tests on simulated data verified that even for
mixtures of two materials with similar attenuation char-
acteristics, material decomposition can be performed with
a high-enough sensitivity to estimate their concentrations
accurately. The simulated testswere then supported by results
obtained with real data. Despite additional variables like
dataset alignment, physical effects such as evaporation and
beam hardening, and constraints of the scan field of view,
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Table 4 Mean values of
concentrations and STDs in
decomposed images for real
measurements

DI DI IDEM IDEM
RoI H2O C2H6O H2O C2H6O

1 1.007 ± 0.736 0.009 ± 0.926 0.879 ± 0.142 0.167 ± 0.115

2 0.003 ± 0.716 1.057 ± 0.903 0.048 ± 0.286 0.937 ± 0.307

3 1.033 ± 0.699 0.045 ± 0.878 0.879 ± 0.136 0.161 ± 0.108

4 0.963 ± 0.712 0.023 ± 0.894 0.833 ± 0.133 0.195 ± 0.103

5 0.599 ± 0.466 0.466 ± 0.896 0.756 ± 0.137 0.251 ± 0.110

6 0.428 ± 0.595 0.595 ± 0.888 0.566 ± 0.198 0.411 ± 0.192

it was possible to apply DTCT material decomposition in a
realistic setting. These results encourage further exploration
of novel approaches in the field of DECT and applications
of material decomposition for quantifying low-Zmaterials at
high resolution using DTCT, as well as further exploration of
various artifact and noise reduction techniques in the context
of this modality.
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