Skip to main content
Log in

Buried Service Line Material Characterization Using Stress Wave Propagation: Numerical and Experimental Investigations

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Lead-based water pipelines pose a significant public health risk in the US. The challenge lies in locating these pipelines, as current identification technologies have limitations. This study discusses potential and challenges of identifying the water Service Line (SL) material through a stress wave propagation methodology. Since buried service lines are surrounded by soil and contain water, the stress wave propagation is non trivial. This work presents numerical simulations to investigate the applicability of the proposed method. First, authors consider wave propagation properties that could be used in a stress wave approach to identify buried lead based pipelines. For instance, dispersion curves are quite different for steel, copper, Lead, and PVC pipes filled with water. While the soil surrounding pipes causes a decrease in wave propagation energy due to the energy leakage into the soil medium, this phenomenon can enable the detection of leaked waves with sufficiently sensitive sensors installed near the soil surface. The received signals vary for different types of pipe materials, allowing to differentiate among service line materials. This study’s numerical simulations and lab experiments suggest that stress wave propagation could become a valuable tool for identifying buried lead-based water SL materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

Yes

References

  1. U.S. Environmental Protection Agency. Integrated science assessment for lead. Office of Research and Development. EPA/600/R-10/075F (2013)

  2. National Toxicology Program: Ntp monograph on health effects of low-level lead. Hypertension 160, 95 (2012)

    Google Scholar 

  3. Cornwell, D.A., Brown, R.A., Via, S.H.: National survey of lead service line occurrence. J. Am. Water Works Assoc. 108(4), E182–E191 (2016)

    Google Scholar 

  4. Aminpour, P., Sjoblom, K., Bartoli, I.: Identification of water pipe material based on stress wave propagation: numerical investigations. Mater. Eval. 79(8) (2021)

  5. Hensley, K., Bosscher, V., Triantafyllidou, S., Lytle, D.A.: Lead service line identification: a review of strategies and approaches. AWWA Water Sci. 3(3), e1226 (2021)

    CAS  Google Scholar 

  6. Great Lakes Michigan Department of Environment and Energy (DEGLE): Michigan lead and copper rules service line material notification requirements. Drinking Water and Environmental Health Division (2020)

  7. US Environmental Protection Agency. National primary drinking water regulations: lead and copper rule revisions. Fed. Regist. 84(219) (2021)

  8. Liggett, J., Baribeau, H., Deshommes, E., Lytle, D.A., Masters, S.V., Muylwyk, Q., Triantafyllidou, S.: Service line material identification: experiences from north American water systems. J. Am. Water Works Assoc. 114(1), 8–19 (2022)

    Google Scholar 

  9. Nelson, C.V.: Metal detection and classification technologies. Johns Hopkins APL Technical Digest 25(1), 62–67 (2004)

    CAS  Google Scholar 

  10. Ni, S.-H., Huang, Y.-H., Lo, K.-F., Lin, D.-C.: Buried pipe detection by ground penetrating radar using the discrete wavelet transform. Comput. Geotech. 37(4), 440–448 (2010)

    Google Scholar 

  11. Papandreou, B., Brennan, M.J., Rustighi, E.: On the detection of objects buried at a shallow depth using seismic wave reflections. J. Acoust. Soc. Am. 129(3), 1366–1374 (2011)

    PubMed  ADS  Google Scholar 

  12. Seo, D.J., Kim, T.G., Noh, S.W.: Underground pipeline tracking robot development based on magnetic inductive sensor (ICCAS 2016). In: 2016 16th International Conference on Control, Automation and Systems (ICCAS), pp. 338–340. IEEE (2016)

  13. Li, W., Yong Han, Yu., Liu, C.Z., Ren, Y., Wang, Y., Chen, G.: Real-time location-based rendering of urban underground pipelines. ISPRS Int. J. Geo Inf. 7(1), 32 (2018)

  14. Rose, J.L., Soley, L.E.: Ultrasonic guided waves for anomaly detection in aircraft components. Mater. Eval. 58, 1080–1086 (2000)

    Google Scholar 

  15. Rose, J.L.: Ultrasonic Guided Waves in Solid Media. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  16. Alleyne, D.N., Cawley, P.: The interaction of lamb waves with defects. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39(3), 381–397 (1992)

    CAS  PubMed  ADS  Google Scholar 

  17. Lowe, M.J.S., Alleyne, D.N., Cawley, P.: Defect detection in pipes using guided waves. Ultrasonics 36(1–5), 147–154 (1998)

    Google Scholar 

  18. Long, R., Vine, K., Lowe, M.J.S., Cawley, P.: The effect of soil properties on acoustic wave propagation in buried iron water pipes. In: AIP Conference Proceedings, vol. 615, pp. 1310–1317. American Institute of Physics (2002)

  19. Demma, A., Alleyne, D., Pavlakovic, B.: Testing of buried pipelines using guided waves. In: Middle East Nondestructive Testing Conference & Exhibition, Bahrain, Manama (2005)

  20. Sun, L., Li, Y., Jin, S.: Study on guided ultrasonic waves propagating along pipes with fluid loading. In: 2006 6th World Congress on Intelligent Control and Automation, vol. 1, pp. 5037–5041. IEEE (2006)

  21. Muggleton, J.M., Brennan, M.J., Pinnington, R.J.: Wavenumber prediction of waves in buried pipes for water leak detection. J. Sound Vib. 249(5), 939–954 (2002)

    ADS  Google Scholar 

  22. Muggleton, J.M., Brennan, M.J., Linford, P.W.: Axisymmetric wave propagation in fluid-filled pipes: wavenumber measurements in in vacuo and buried pipes. J. Sound Vib. 270(1–2), 171–190 (2004)

    ADS  Google Scholar 

  23. Muggleton, J.M., Brennan, M.J.: Axisymmetric wave propagation in buried, fluid-filled pipes: effects of wall discontinuities. J. Sound Vib. 281(3–5), 849–867 (2005)

    ADS  Google Scholar 

  24. Bartoli, I., di Scalea, F.L., Fateh, M., Viola, E.: Modeling guided wave propagation with application to the long-range defect detection in railroad tracks. Ndt & E Int. 38(5), 325–334 (2005)

    Google Scholar 

  25. Bartoli, I., Marzani, A., Di Scalea, F.L., Viola, E.: Modeling guided wave propagation for structural health monitoring applications. Department of Structural Engineering, University of California, San Diego, USA 3-5(295), 685–707 (2006)

  26. Davies, J., Cawley, P.: The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(4), 759–771 (2009)

    PubMed  Google Scholar 

  27. Ghavamian, A., Mustapha, F., Baharudin, B.T.H.T., Yidris, N.: Detection, localisation and assessment of defects in pipes using guided wave techniques: a review. Sensors 18(12), 4470 (2018)

    PubMed  PubMed Central  ADS  Google Scholar 

  28. Long, R., Cawley, P., Lowe, M.: Acoustic wave propagation in buried iron water pipes. Proc. R. Soc. Lond. A 459(2039), 2749–2770 (2003)

    ADS  Google Scholar 

  29. Aristegui, C., Lowe, M.J.S., Cawley, P.: Guided waves in fluid-filled pipes surrounded by different fluids. Ultrasonics 39(5), 367–375 (2001)

    Google Scholar 

  30. Long, R., Lowe, M., Cawley, P.: Attenuation characteristics of the fundamental modes that propagate in buried iron water pipes. Ultrasonics 41(7), 509–519 (2003)

    CAS  PubMed  Google Scholar 

  31. Boaratti, M.F.G., Ting, D.K.S., et al.: Measurement of stress waves propagation velocities in solid media using wavelet transforms (2005)

  32. Long, R., Lowe, M.J.S., Cawley, P.: Axisymmetric modes that propagate in buried iron water pipes. In: AIP Conference Proceedings, vol. 657, pp. 1201–1208. American Institute of Physics (2003)

  33. Barker, L.M.: A model for stress wave propagation in composite materials. J. Compos. Mater. 5(2), 140–162 (1971)

    ADS  Google Scholar 

  34. Langenecker, B., Frandsen, W.H., Fountain, C.W., Colberg, S.R., Langenecker, J.A.M.: Effects of ultrasound on deformation characteristics of structural metals. Technical report, Naval Ordnance Test Station China Lakeca (1964)

    Google Scholar 

  35. Shantharaja, M., Sandeep, G.M.: Experimental and numerical analysis of propagation of stress wave in sheet metal. Int. J. Sci. Technol. Res. 3(10), 40–42 (2014)

    Google Scholar 

  36. Pavlakovic, B., Lowe, M., Alleyne, D., Cawley, P.: Disperse: a general purpose program for creating dispersion curves. In: Review of Progress in Quantitative Nondestructive Evaluation, vol. 16A, pp. 185–192 (1997)

  37. Lowe, M.J.S.: Matrix techniques for modeling ultrasonic waves in multilayered media. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42(4), 525–542 (1995)

    Google Scholar 

  38. Mace, B.R., Duhamel, D., Brennan, M.J., Hinke, L.: Wave number prediction using finite element analysis. In: 11th International Congress on Sound and Vibration, St. Petersburg, pp. 3241–3248 (2004)

  39. Maess, M., Gaul, L.: Dispersion in fluid-filled pipes by analyzing finite elemente models. Fortschritte Der Akustik 31(1), 127 (2005)

    Google Scholar 

  40. Maess, M., Wagner, N., Gaul, L.: Dispersion curves of fluid filled elastic pipes by standard fe models and eigenpath analysis. J. Sound Vib. 296(1–2), 264–276 (2006)

    ADS  Google Scholar 

  41. Mazzotti, M., Bartoli, I., Marzani, A.: Ultrasonic leaky guided waves in fluid-coupled generic waveguides: hybrid finite-boundary element dispersion analysis and experimental validation. J. Appl. Phys. 115(14), 143512 (2014)

    ADS  Google Scholar 

  42. Marzani, A.: Time-transient response for ultrasonic guided waves propagating in damped cylinders. Int. J. Solids Struct. 45(25–26), 6347–6368 (2008)

    Google Scholar 

  43. Li-Ying, S.: Study on excitation frequency of longitudinal and torsional guided waves. In: 2009 Chinese Control and Decision Conference, pp. 4465–4469. IEEE (2009)

  44. Lin, T.C., Morgan, G.W.: Wave propagation through fluid contained in a cylindrical, elastic shell. J. Acoust. Soc. Am. 28(6), 1165–1176 (1956)

    ADS  Google Scholar 

  45. Fuller, C.R., Fahy, F.J.: Characteristics of wave propagation and energy distributions in cylindrical elastic shells filled with fluid. J. Sound Vib. 81(4), 501–518 (1982)

    ADS  Google Scholar 

  46. Pan, H., Koyano, K., Usui, Y.: Experimental and numerical investigations of axisymmetric wave propagation in cylindrical pipe filled with fluid. J. Acoust. Soc. Am. 113(6), 3209–3214 (2003)

    PubMed  ADS  Google Scholar 

  47. Kwun, H., Bartels, K.A., Dynes, C.: Dispersion of longitudinal waves propagating in liquid-filled cylindrical shells. J. Acoust. Soc. Am. 105(5), 2601–2611 (1999)

    ADS  Google Scholar 

  48. Chuan, X., Luo, M., Hei, C., Song, G.: Estimate buried metal pipe length using pzt detected stress wave reflection. J. Intell. Mater. Syst. Struct. 32(8), 799–816 (2021)

    Google Scholar 

  49. Long, R., Vine, K., Lowe, M.J.S., Cawley, P.: Monitoring acoustic wave propagation in buried cast iron water pipes. In: AIP Conference Proceedings, vol. 557, pp. 1202–1209. American Institute of Physics (2001)

  50. Nana, S., Qingbang Han, Yu., Yang, M.S., Jiang, J.: Analysis of longitudinal guided wave propagation in a liquid-filled pipe embedded in porous medium. Appl. Sci. 11(5), 2281 (2021)

  51. Gao, Y., Muggleton, J.M., Liu, Y., Rustighi, E.: An analytical model of ground surface vibration due to axisymmetric wave motion in buried fluid-filled pipes. J. Sound Vib. 395, 142–159 (2017)

    Google Scholar 

  52. Oelze, M.L., O’Brien, W.D., Darmody, R.G.: Measurement of attenuation and speed of sound in soils. Soil Sci. Soc. Am. J. 66(3), 788–796 (2002)

    CAS  ADS  Google Scholar 

  53. Li, Z., Jing, L., Wang, W., Lee, P., Murch, R.: The influence of pipeline thickness and radius on guided wave attenuation in water-filled steel pipelines: theoretical analysis and experimental measurement. J. the Acoust. Soc. Am. 145(1), 361–371 (2019)

    CAS  ADS  Google Scholar 

  54. ABAQUS. Abaqus v6.14 analysis user’s manual. www.simulia.com (2014)

  55. Zerwer, A., Cascante, G., Hutchinson, J.: Parameter estimation in finite element simulations of rayleigh waves. J. Geotech. Geoenviron. Eng. 128(3), 250–261 (2002)

    Google Scholar 

  56. Moser, F., Jacobs, L.J., Qu, J.: Modeling elastic wave propagation in waveguides with the finite element method. Ndt & E Int. 32(4), 225–234 (1999)

    Google Scholar 

  57. Barnard, R.E.: Design standards for steel water pipe. Am. Water Works Assoc. 40, 24–87 (1948)

    CAS  Google Scholar 

  58. Leinov, E., Lowe, M.J.S., Cawley, P.: Ultrasonic isolation of buried pipes. J. Sound Vib. 363, 225–239 (2016)

    ADS  Google Scholar 

  59. Cawley, P., Lowe, M.J.S., Alleyne, D.N., Pavlakovic, B., Wilcox, P.: Practical long range guided wave inspection-applications to pipes and rail. Mater. Eval. 61(1), 66–74 (2003)

    Google Scholar 

  60. Reber, K., Beller, M., Willems, H., Barbian, O.A.: A new generation of ultrasonic in-line inspection tools for detecting, sizing and locating metal loss and cracks in transmission pipelines. In: 2002 IEEE Ultrasonics Symposium, 2002. Proceedings., vol. 1, pp. 665–671. IEEE (2002)

  61. Demma, A., Cawley, P., Lowe, M., Roosenbrand, A.G., Pavlakovic, B.: The reflection of guided waves from notches in pipes: a guide for interpreting corrosion measurements. Ndt & E Int. 37(3), 167–180 (2004)

  62. Mazzotti, M.: Numerical methods for the dispersion analysis of Guided Waves. PhD thesis, University of Bologna (2013)

  63. Sachse, W., Pao, Y.-H.: On the determination of phase and group velocities of dispersive waves in solids. J. Appl. Phys. 49(8), 4320–4327 (1978)

    ADS  Google Scholar 

  64. Sorohan, Ş, Constantin, N., Găvan, M., Anghel, V.: Extraction of dispersion curves for waves propagating in free complex waveguides by standard finite element codes. Ultrasonics 51(4), 503–515 (2011)

    PubMed  Google Scholar 

  65. Wen, L., Zhang, Y., Liu, W., Zhang, A.: Mode analysis method for the computation of guided wave dispersion in metal sheet. IOP Conf. Ser. 252, 022113 (2019)

    Google Scholar 

  66. Gao, Y., Sui, F., Muggleton, J.M.: Yang, Jun: Simplified dispersion relationships for fluid-dominated axisymmetric wave motion in buried fluid-filled pipes. J. Sound Vib. 375, 386–402 (2016)

    ADS  Google Scholar 

  67. Hayashi, T., Song, W.-J., Rose, J.L.: Guided wave dispersion curves for a bar with an arbitrary cross-section, a rod and rail example. Ultrasonics 41(3), 175–183 (2003)

    PubMed  Google Scholar 

  68. Alleyne, D., Cawley, P.: A two-dimensional fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am. 89(3), 1159–1168 (1991)

    ADS  Google Scholar 

  69. Scholte, J.G.: On the stoneley wave equation. Proc. K. Ned. Akad. Wet. 45(part 1), 20–25 (1942)

  70. Long, C.S., Loveday, P.W.: Prediction of guided wave scattering by defects in rails using numerical modelling. In: AIP Conference Proceedings, vol. 1581, pp. 240–247. American Institute of Physics (2014)

Download references

Acknowledgements

The work was supported by the Coulter-Drexel Translational Research Partnership Program, with Dr. Kathie Jordan, as the program director. The opinions expressed in this paper are solely of the authors, and the Coulter-Drexel Program does not necessarily concur with, endorse, or adopt the findings, conclusions, and recommendations reported in the manuscript.

Funding

Coulter-Drexel Translational Research Partnership

Author information

Authors and Affiliations

Authors

Contributions

KIMI wrote the majority of the manuscript and obtained the bulk of the results presented FH obtained some of the results presented KS and CH reviewed the manuscript and provided feedback IB made major revisions to the paper and guided the research. The authors would like to thank the researchers of American Water, SGC, ZB and SG for the many invaluable discussions.

Corresponding author

Correspondence to Ivan Bartoli.

Ethics declarations

Conflict of interest

Not applicable

Ethical Approval

Not applicable

Consent to Participate

Not applicable

Consent for Publication

Yes

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iqbal, K.I.M., Hasan, F., Sjoblom, K. et al. Buried Service Line Material Characterization Using Stress Wave Propagation: Numerical and Experimental Investigations. J Nondestruct Eval 43, 12 (2024). https://doi.org/10.1007/s10921-023-01031-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-01031-y

Keywords

Navigation