Skip to main content
Log in

Arbitrary Virtual Array Source Aperture (AVASA) Ultrasound Imaging Technique Using Phased Array Excitation

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

In this paper, we proposed an advanced ultrasound imaging technique for enhancing the resolution and reducing the imaging processing time by phased array excitement to create beamforming at virtual source positions. In the conventional full matrix capture (FMC) technique, a single element is used for excitation, limiting the transmitted energy and hence reducing the single-to-noise Ratio (SNR) of the received A-scans. The total focusing method (TFM) is implemented on the vast data volume of the received FMC signals to generate virtually focused imaging, requiring high processing time. Therefore, we have introduced two different scanning techniques to increase transmitted energy by exciting the group of the element to form the virtual source below the transducer: (1) virtual array source aperture (VASA) method consists of multiple virtual sources placed below the center of an active aperture with a fixed focal distance. (2) arbitrary virtual array source aperture (AVASA) method consists of multiple virtual sources located randomly below the active aperture. The ultrasound beam is sequentially excited on each virtual source with predefined delay law. While reception, all the transducers are used to form the FMC. The image generation process is similar to the FMC–TFM method. To demonstrate the imaging capabilities of the proposed techniques, we have performed experimentation on two sets of defective specimens with (a) side-drilled holes (SDHs) and (b) cracks. Experimental results quantitatively compared with conventional FMC–TFM, the proposed method improves the SNR by 35% and reduces computation time by 8 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Drinkwater, B.W., Wilcox, P.D.: Ultrasonic arrays for non-destructive evaluation: a review. NDT e Int. 39(7), 525–541 (2006). https://doi.org/10.1016/j.ndteint.2006.03.006

    Article  Google Scholar 

  2. Satyanarayan, L., Sridhar, C., Krishnamurthy, C.V., Balasubramaniam, K.: Simulation of ultrasonic phased array technique for imaging and sizing of defects using longitudinal waves. Int. J. Press. Vessel. Pip. 84(12), 716–729 (2007). https://doi.org/10.1016/j.ijpvp.2007.08.002

    Article  Google Scholar 

  3. Dixon, S., Hill, S., Fan, Y., Rowlands, G.: The wave-field from an array of periodic emitters driven simultaneously by a broadband pulse. J. Acoust. Soc. Am. 133(6), 3692–3699 (2013). https://doi.org/10.1121/1.4802648

    Article  Google Scholar 

  4. Cruza, J.F., Camacho, J., Mateos, R., Fritsch, C.: A new beamforming method and hardware architecture for real time two way dynamic depth focusing. Ultrasonics 99(July), 105965 (2019). https://doi.org/10.1016/j.ultras.2019.105965

    Article  Google Scholar 

  5. Schmerr, L.: Fundamentals of Ultrasonic Phased Arrays. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07272-2

    Book  Google Scholar 

  6. Pillarisetti, L.S.S., Raju, G., Subramanian, A.: Sectorial plane wave imaging for ultrasonic array-based angle beam inspection. J. Nondestruct. Eval. 40(3), 1–16 (2021). https://doi.org/10.1007/s10921-021-00813-6

    Article  Google Scholar 

  7. Reverdy, F., Benoist, G., Ber, L.E.: Advantages and complementarity of phased-array technology and total focusing method. In: 19th World Conference on Non-Destructive Testing 2016 pp. 2–9 (2016)

  8. Kraus, H.: Generalized synthetic aperture, focused transducer, pulse-echo, ultrasonic scan data processing for non-destructive inspection. Ultrasonics 21(1), 11–18 (1983). https://doi.org/10.1016/0041-624X(83)90017-3

    Article  Google Scholar 

  9. Holmes, C., Drinkwater, B.W., Wilcox, P.D.: Post-processing of the full matrix of ultrasonic transmit-receive array data for non-destructive evaluation. NDT e Int. 38(8), 701–711 (2005). https://doi.org/10.1016/j.ndteint.2005.04.002

    Article  Google Scholar 

  10. Connolly, G.D., Jobst, M.: Demonstration of the application of the Total Focusing Method to the inspection of steel welds. In: Proceedings of the ECNDT 1.3.4. (2010)

  11. Martín-Arguedas, C.J., Romero-Laorden, D., Martínez-Graullera, O., Pérez-López, M., Gómez-Ullate, L.: An ultrasonic imaging systembbased on a new saft approach and a gpu beamformer. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 59(7), 1402–1412 (2012). https://doi.org/10.1109/TUFFC.2012.2341

    Article  Google Scholar 

  12. Choe, J.W., Nikoozadeh, A., Oralkan, O., Khuri-Yakub, B.T.: Gpu-based real-time volumetric ultrasound image reconstruction for a ring array. IEEE Trans. Medi. Imaging 32(7), 1258–1264 (2013). https://doi.org/10.1109/TMI.2013.2253117

    Article  Google Scholar 

  13. Wang, C., Mao, J., Leng, T., Zhuang, Z., Wang, X.: Efficient acceleration for total focusing method based on advanced parallel computing in fpga. Int. J. Acoust. Vib. 22(4), 536–540 (2017). https://doi.org/10.20855/ijav.2017.22.4500

    Article  Google Scholar 

  14. Lewandowski, M., Walczak, M., Witek, B., Rozbicki, J., Steifer, T.: A gpu-based portable phased-array system with full-matrix capture. In: 2018 IEEE International Ultrasonics Symposium (IUS) pp. 1–3 (2018)

  15. Hu, H., Du, J., Xu, N., Jeong, H., Wang, X.: Ultrasonic sparse-tfm imaging for a two-layer medium using genetic algorithm optimization and effective aperture correction. NDT e Int. 90, 24–32 (2017)

    Article  Google Scholar 

  16. Dupont-Marillia, F., Jahazi, M., Lafreniere, S., Belanger, P.: Design and optimisation of a phased array transducer for ultrasonic inspection of large forged steel ingots. NDT e Int. 103, 119–129 (2019). https://doi.org/10.1016/j.ndteint.2019.02.007

    Article  Google Scholar 

  17. Zhang, J., Drinkwater, B.W., Wilcox, P.D.: Comparison of ultrasonic array imaging algorithms for nondestructive evaluation. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 60(8), 1732–1745 (2013)

    Article  Google Scholar 

  18. Bottenus, N.: Comparison of virtual source synthetic aperture beamforming with an element-based model. J. Acoust. Soc. Am. 143(5), 2801–2812 (2018). https://doi.org/10.1121/1.5036733

    Article  Google Scholar 

  19. Frazier, C., O’Brien, W.: Synthetic aperture techniques with a virtual source element. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 45(1), 196–207 (1998). https://doi.org/10.1109/58.646925

    Article  Google Scholar 

  20. Karaman, M., Li, P.-C., O’Donnell, M.: Synthetic aperture imaging for small scale systems. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 42(3), 429–442 (1995). https://doi.org/10.1109/58.384453

    Article  Google Scholar 

  21. Alavudeen, S., Krishnamurthy, C.V., Balasubramaniam, K.: Technique for imaging using virtual array of sources (tivas). AIP Conf. Proc. 1335, 1687–1694 (2011). https://doi.org/10.1063/1.3592131

    Article  Google Scholar 

  22. Sutcliffe, M., Weston, M., Charlton, P., Dutton, B., Donne, K.: Virtual source aperture imaging for non-destructive testing. Insight 54(7), 371–375 (2012). https://doi.org/10.1784/insi.2012.54.7.371

    Article  Google Scholar 

  23. Nanekar, P., Kumar, A., Jayakumar, T.: Saft-assisted sound beam focusing using phased arrays (pa-saft) for non-destructive evaluation. Nondestruct. Test. Eval. 30(2), 105–123 (2015). https://doi.org/10.1080/10589759.2014.1002837

    Article  Google Scholar 

  24. Balasubramaniam, K., Alavudeen, S., Krishnamurthy, C.V.: Technique for imaging using array of focused virtual sources using phased excitation. U.S. Patent 9.261.486 B2 (2016)

  25. Jensen, J.A., Nikolov, S.I., Gammelmark, K.L., Pedersen, M.H.: Synthetic aperture ultrasound imaging. Ultrasonics 44, e5–e15 (2006). https://doi.org/10.1016/j.ultras.2006.07.017

    Article  Google Scholar 

  26. Skjelvareid, M.H., Birkelund, Y., Larsen, Y.: Internal pipeline inspection using virtual source synthetic aperture ultrasound imaging. NDT e Int. 54, 151–158 (2013). https://doi.org/10.1016/j.ndteint.2012.10.005

    Article  Google Scholar 

  27. Sutcliffe, M., Charlton, P., Weston, M.: Multiple virtual source aperture imaging for non-destructive testing. Insigh 56(2), 75–81 (2014). https://doi.org/10.1784/insi.2014.56.2.75

    Article  Google Scholar 

  28. Sutcliffe, M., Charlton, P., Weston, M.: Virtual source aperture image processing methods for non-destructive testing. Insight 58(2), 82–86 (2016). https://doi.org/10.1784/insi.2016.58.2.8

    Article  Google Scholar 

  29. Hoyle, E., Sutcliffe, M., Charlton, P., Rees, J.: Virtual source aperture imaging with auto-focusing of unknown complex geometry through dual layered media. NDT e Int. 98(March), 55–62 (2018). https://doi.org/10.1016/j.ndteint.2018.04.005

    Article  Google Scholar 

  30. Sumana, K.A.: Phased array ultrasonic imaging using angle beam virtual source full matrix capture-total focusing method. NDT e Int. 116(2), 102324 (2020). https://doi.org/10.1016/j.ndteint.2020.102324

    Article  Google Scholar 

  31. Cruza, J.F., Camacho, J.: Total focusing method with virtual sources in the presence of unknown geometry interfaces. IEEE Trans. Ultrasonics Ferroelectr. Freq. Control 63(10), 1581–1592 (2016). https://doi.org/10.1109/TUFFC.2016.2593439

    Article  Google Scholar 

  32. Jeune, L.L., Robert, S., Villaverde, E.L., Prada, C.: Plane wave imaging for ultrasonic non-destructive testing: generalization to multimodal imaging. Ultrasonics 64, 128–38 (2016)

    Article  Google Scholar 

  33. Zhang, J., Drinkwater, B.W., Wilcox, P.D.: Effects of array transducer inconsistencies on total focusing method imaging performance. NDT e Int. 44(4), 361–368 (2011). https://doi.org/10.1016/j.ndteint.2011.03.001

  34. Yang, J., Luo, L., Yang, K., Zhang, Y.: Ultrasonic phased array sparse TFM imaging based on virtual source and phase coherent weighting. IEEE Access 8, 185609–185618 (2020). https://doi.org/10.1109/ACCESS.2020.3030246

    Article  Google Scholar 

  35. Xu, C., Deng, M.: Waveform correlation factor (WCF) weighted TFM imaging for Lamb wave phased array. NDT e Int. 129, 3 (2022). https://doi.org/10.1016/j.ndteint.2022.102647

    Article  Google Scholar 

  36. Gantala, T., Balasubramaniam, K.: Automated Defect recognition for welds using simulation assisted TFM imaging with artificial intelligence. J. Nondestruct. Eval. 40(1), 28 (2021). https://doi.org/10.1007/s10921-021-00761-1

    Article  Google Scholar 

  37. Velichko, A., Wilcox, P.D.: An analytical comparison of ultrasonic array imaging algorithms. J. Acoust. Soc. Am. 127(4), 2377–2384 (2010). https://doi.org/10.1121/1.3308470

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This research work was supported by SERB, DST, the government of India, and a CII partnership with Baker Hughes, under the prime minister’s Fellowship Scheme for Doctoral Research, 2020.

Author information

Authors and Affiliations

Authors

Contributions

TG and KB together conceptualized and developed the methodology. TG wrote the main manuscript. MR Gurunathan and KB helped with the validation and interpretation of results. All the authors reviewed the manuscript.

Corresponding author

Correspondence to Thulsiram Gantala.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gantala, T., Gurunathan, M.R. & Balasubramaniam, K. Arbitrary Virtual Array Source Aperture (AVASA) Ultrasound Imaging Technique Using Phased Array Excitation. J Nondestruct Eval 42, 71 (2023). https://doi.org/10.1007/s10921-023-00985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-00985-3

Keywords

Navigation