Skip to main content
Log in

Rupture Disc Monitoring Using Electro-mechanical Impedance (EMI): A Feasibility Study

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Rupture disc is widely used in pressure vessels. To prevent catastrophic overpressure in pressure vessels, it is vital to replace the rupture disc before its premature failure. This paper presents a systematic and comprehensive study of EMI-based rupture disc monitoring. A PZT actuator-driven one-degree-of-freedom spring-mass-damper model was established, and the analytical result shows that the EMI is determined by the local stiffness of the coupled structures. Since the stiffness of a clamped rupture disc is mainly controlled by its inner pressure, the operating conditions can therefore be estimated by measuring the impedance signal. To verify this finding, a numerical model is built and the simulation result shows that as the pressure increases, the resonant frequencies of the impedance signals decrease gradually. Conventional simple domed rupture discs were tested for validation experiments. Three replacement matrices (RMs) were proposed and compared based on the root mean square deviation (RMRMSD), mean absolute percentage deviation (RMMAPD), and correlation coefficient deviation (RMCCD). The optimum rupture disc update time can be determined by the calculation of the RMMAPD. In addition, the influences of temperature variation on EMI signals were investigated and a temperature compensation method was proposed. Experimental results demonstrated that EMI-based rupture disc monitoring is an effective method of preventing the occurrence of catastrophic overpressure accidents in pressure vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Material

Data and materials are available from the corresponding author upon reasonable request.

References

  1. Bursting Disc Safety Devices. The Standardization Administration of China: Beijing. (2007)

  2. The American society of mechanical engineers in ASME boiler and pressure vessel code III. Class 1 components: Division 1-subsection NB. (1995)

  3. Belevtsev, B.A., Freitag, V.A.: Pressure-relief valve with rupture disk. Chem. Petrol. Eng. 4(3), 267–269 (1968)

    Article  Google Scholar 

  4. Asahara, M., Saburi, T., Ando, T., Takahashi, Y., Miyasaka, T., Kubota, S.: Self-ignited flame behavior of high-pressure hydrogen release by rupture disk through a long tube. Int. J. Hydrogen. Energ. 46(24), 13484–13500 (2021). https://doi.org/10.1016/j.ijhydene.2021.01.097

    Article  Google Scholar 

  5. Somerday, B.P., Wiggans, K.T., Bradshaw, R.W.: Environment-assisted failure of alloy C-276 burst disks in a batch supercritical water oxidation reactor. Eng. Fail. Anal. 13(1), 80–95 (2006). https://doi.org/10.1016/j.engfailanal.2004.10.017

    Article  Google Scholar 

  6. Yang, C., Hui, H., Song, X., Huang, S.: Theoretical and experimental research on designed bursting pressure of ultrahigh pressure rupture disk. J. Press. Vess. T. 143(3), 031301 (2021). https://doi.org/10.1115/1.4048420

    Article  Google Scholar 

  7. Hu, Z., Yang, X., Wu, Z.: A study of bursting characteristics on hole-slot flat rupture discs (In Chinese). J. Nanchang Univ. (Engineering & Technology). 15(2), 14–21 (1993)

    Google Scholar 

  8. Jeong, J.Y., Lee, J., Yeom, S., Hong, S.C., Choi, W., Ryu, M., Kim, H., Lee, S.B.: A study on the grooving process of a cross-scored rupture disc. Int. J. Precis. Eng. Man. 13(2), 219–227 (2012). https://doi.org/10.1007/s12541-012-0027-1

    Article  Google Scholar 

  9. Sudha, C., Parameswaran, P., Kishore, S., Murthy, C.M., Rajan, M., Vijayalakshmi, M., Raghunathan, V.S.: Microstructure and deformation mode of a stainless steel rupture disc exposed to sodium-water reaction. Mater. Charact. 59(8), 1088–1095 (2008)

    Article  Google Scholar 

  10. Tang, J.Q., Geng, L.Y., Gong, J.M.: Analysis on bursting of rupture disc made by Inconel 600 Alloy. Key. Eng. Mater. 795, 290–295 (2019). https://doi.org/10.4028/www.scientific.net/KEM.795.290

    Article  Google Scholar 

  11. Hill, R.: A theory of the plastic bulging of a metal diaphragm by lateral pressure. Philos. Mag. 41(322), 1133–1142 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lake, G.F., Inglis, N.P.: The design and manufacture of bursting disks. Proc. Inst. Mech. Eng. 142, 365–378 (1939). https://doi.org/10.1243/PIME_PROC_1939_142_026_02

    Article  Google Scholar 

  13. Nesbitt, B.: Handbook of Valves and Actuators Valves Manual International. 1st Edition. (2006)

  14. Moran, S.: An Applied Guide to Process and Plant Design. 2nd Edition. (2019)

  15. Chen, D.D., Zhang, N.N., Huo, L.S., Song, G.B.: Full-range bolt preload monitoring with multi-resolution using the time shifts of the direct wave and coda waves. Struct. Health. Monit. OnlineFirst (2022). https://doi.org/10.1177/14759217231158297

    Article  Google Scholar 

  16. Qu, C., Yi, T., Li, H.: Mode identification by eigensystem realization algorithm through virtual frequency response function. Struct. Control. Health. Monit. 26(10), e2429 (2019). https://doi.org/10.1002/stc.2429

    Article  Google Scholar 

  17. Yuan, S., Wang, H., Chen, J.: A PZT based on-line updated guided wave-Gaussian process method for crack evaluation. IEEE. Sensor J. 20(15), 8204–8212 (2020). https://doi.org/10.1109/JSEN.2019.2960408

    Article  Google Scholar 

  18. Qiu, L., Yuan, S.: On development of a multi-channel PZT array scanning system and its evaluating application on UAV wing box. Sensor. Actuat. A. Phys. 151(2), 220–230 (2009). https://doi.org/10.1016/j.sna.2009.02.032

    Article  Google Scholar 

  19. Patel, Y.R., Janušas, G., Palevicius, A., Palevicius, A., Lepšík, P.: Investigation of the hydrophobic properties of piezoelectric nanocomposites and applications in biomedical micro-hydraulic devices. Mater. Tehnol. 54(3), 407–415 (2020). https://doi.org/10.17222/mit.2019.249

    Article  Google Scholar 

  20. Bansal, T., Talakokula, V., Sathujoda, P.: A machine learning approach for predicting the electro-mechanical impedance data of blended RC structures subjected to chloride laden environment. Smart. Mater. Struct. 31(1), 015036 (2021)

    Article  Google Scholar 

  21. Chen, H., Xu, B., Wang, J., Luan, L., Zhou, T., Nie, X., Mo, Y.: Interfacial debonding detection for rectangular CFST using the MASW method and its physical mechanism analysis at the meso-level. Sensors. 19(12), 2778 (2019). https://doi.org/10.3390/s19122778

    Article  Google Scholar 

  22. Gao, W., Huo, L., Li, H., Song, G.: An embedded tubular PZT transducer based damage imaging method for two-dimensional concrete structures. IEEE. Access. 6, 30100–30109 (2018). https://doi.org/10.1109/ACCESS.2018.2843788

    Article  Google Scholar 

  23. Wang, J., Li, W., Luo, W., Wu, J., Lan, C.: Modeling and experimental validation of a quantitative bar-type corrosion measuring probe using piezoelectric stack and electromechanical impedance technique. Measurement 188, 110546 (2022). https://doi.org/10.1016/j.measurement.2021.110546

    Article  Google Scholar 

  24. Chen, D.D., Shen, Z.H., Fu, R.L., Yuan, B., Huo, L.S.: Coda wave interferometry-based very early stage bolt looseness monitoring using a single piezoceramic transducer. Smart. Mater. Struct. 31(3), 035030 (2022). https://doi.org/10.1088/1361-665X/ac5128

    Article  Google Scholar 

  25. Chen, D.D., Huo, L.S., Song, G.B.: High resolution bolt pre-load looseness monitoring using Coda Wave Interferometry. Struct. Health. Monit. 21(5), 1959–1972 (2022). https://doi.org/10.1177/14759217211063420

    Article  Google Scholar 

  26. Hei, C., Luo, M., Gong, P., Song, G.: Quantitative evaluation of bolt connection using a single piezoceramic transducer and ultrasonic coda wave energy with the consideration of the piezoceramic aging effect. Smart. Mater. Struct. 29(2), 027001 (2019). https://doi.org/10.1088/1361-665X/ab6076

    Article  Google Scholar 

  27. Kong, Q.Z., Rachel, R., Pedro, S., Mo, Y.: Cyclic crack monitoring of a reinforced concrete column under simulated pseudo-dynamic loading using Piezoceramic-based smart aggregates. Appl. Sci. 6(11), 341–341 (2016). https://doi.org/10.3390/app6110341

    Article  Google Scholar 

  28. Feng, Q., Kong, Q.Z., Tan, J., Song, G.B.: Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers. Smart. Struct. Syst. 20(2), 175–180 (2017). https://doi.org/10.12989/sss.2017.20.2.175

    Article  Google Scholar 

  29. Wang, T., Liu, S.P., Shao, J.H., Li, Y.R.: Health monitoring of bolted joints using the time reversal method and piezoelectric transducers. Smart. Mater. Struct. 25(2), 025010 (2016). https://doi.org/10.1088/1361-665X/aa6e93

    Article  Google Scholar 

  30. Li, W., Wang, J., Liu, T., Luo, M.: Electromechanical impedance instrumented circular piezoelectric-metal transducer for corrosion monitoring: modeling and validation. Smart. Mater. Struct. 29, 035008 (2020). https://doi.org/10.1088/1361-665X/ab675c

    Article  Google Scholar 

  31. Huo, L., Wang, F., Li, H., Song, G.: A fractal contact theory based model for bolted connection looseness monitoring using piezoceramic transducers. Smart. Mater. Struct. 26(10), 104010 (2017). https://doi.org/10.1088/1361-665X/aa6e93

    Article  Google Scholar 

  32. Zhang, H., Wang, L.L., Li, J.J., Kang, F.: Embedded PZT aggregates for monitoring crack growth and predicting surface crack in reinforced concrete beam. Constr. Build. Mater. 364, 129979 (2023). https://doi.org/10.1016/j.conbuildmat.2022.129979

    Article  Google Scholar 

  33. Fu, R.L., Mao, R.W., Yuan, B., Chen, D.D., Huo, L.S.: Multi-resolution bolt preload monitoring based on the acoustoelastic effect of ultrasonic guided waves. Smart. Mater. Syst. 30(5), 513–520 (2022). https://doi.org/10.12989/sss.2022.30.5.513

    Article  Google Scholar 

  34. He, S., Zhang, G., Song, G.: Design of a networking stress wave communication method along pipelines. Mech. Syst. Signal. Pr. 163, 108192 (2022). https://doi.org/10.1016/j.ymssp.2021.108192

    Article  Google Scholar 

  35. Li, W., Liu, T., Zou, D., Wang, J., Yi, T.: PZT based smart corrosion coupon using electromechanical impedance. Mech. Syst. Signal. Pr. 129, 455–469 (2019). https://doi.org/10.1016/j.ymssp.2019.04.049

    Article  Google Scholar 

  36. Liang, C., Sun, F.P., Rogers, C.A.: An impedance method for dynamic analysis of active material systems. J. Intel. Mat. Syst. Str. 116(1), 120–128 (1994). https://doi.org/10.1115/1.2930387

    Article  Google Scholar 

  37. Giurgiutiu, V., Reynolds, A., Rogers, C.A.: Experimental investigation of E/M impedance health monitoring for spot-welded structural joints. J. Intel. Mat. Syst. Str. 10(10), 802–812 (1999). https://doi.org/10.1106/N0J5-6UJ2-WlGV-Q8MC

    Article  Google Scholar 

  38. Chen, D., Huo, L., Song, G.: EMI based multi-bolt looseness detection using series/parallel multi-sensing technique. Smart. Struct. Syst. 25(4), 423–432 (2020). https://doi.org/10.12989/sss.2020.25.4.423

    Article  Google Scholar 

  39. Kim, J.T., Nguyen, K.D., Park, J.H.: Wireless impedance sensor node and interface washer for damage monitoring in structural connections. Adv. Struct. Eng. 15(6), 871–885 (2012). https://doi.org/10.1260/1369-4332.15.6.871

    Article  Google Scholar 

  40. Na, W., Baek, J.: Impedance-based non-destructive testing method combined with unmanned aerial vehicle for structural health monitoring of civil infrastructures. Appl. Sci. 7(1), 15 (2016). https://doi.org/10.3390/app7010015

    Article  Google Scholar 

  41. Giurgiutiu, V., Rogers, C.A.: Recent advancements in the electromechanical (E/M) impedance method for structural health monitoring and NDE. Proceedings of SPIE - The International Society for Optical Engineering. 3329 (1998)

  42. Liang, Y.B., Li, D.S., Parvasi, S.M., Song, G.B.: Load monitoring of pin-connected structures using piezoelectric impedance measurement. Smart. Mater. Struct. 25(10), 105011 (2016)

    Article  Google Scholar 

  43. Lim, Y.Y., Soh, C.K.: Effect of varying axial load under fixed boundary condition on admittance signatures of electromechanical impedance technique. J. Intel. Mat. Syst. Str. 23(7), 815–826 (2012). https://doi.org/10.1177/1045389X12437888

    Article  Google Scholar 

  44. Park, G., Sohn, H., Farrar, C.R., Inman, D.J.: Overview of piezoelectric impedance-based health monitoring and path forward. Shock. Vib. 35(6), 451–464 (2003). https://doi.org/10.1177/05831024030356001

    Article  Google Scholar 

  45. Park, S., Ahmad, S., Yun, C.B., Roh, Y.: Multiple crack detection of concrete structures using impedance-based structural health monitoring techniques. Exp. Mech. 46(5), 609–618 (2006). https://doi.org/10.1007/s11340-006-8734-0

    Article  Google Scholar 

  46. Stepanov, A.P.: Rupture disks. Chem. Petrol. Eng. 4, 46–47 (1976). https://doi.org/10.1007/BF01161331

    Article  Google Scholar 

  47. Li, S.C.: Burst pressure calculation for grooved explosion proof membrane (in Chinese). Petro-chem. Eq. Technol. 3, 49–54 (1986)

    Google Scholar 

  48. Lin, S.Y.: Analysis on the resonance frequency of a thin piezoelectric ceramic disk in radial vibration. J Shaanxi Norm. Univ. (Natural Science Edition) 34(1), 27–31 (2006). https://doi.org/10.15983/j.cnki.jsnu.2006.01.008

    Article  Google Scholar 

  49. Guo, B., Chen, D.D., Huo, L.S., Song, G.B.: Monitoring of grouting compactness in tendon duct using multi-sensing Electro-mechanical impedance method. Appl. Sci. (2020). https://doi.org/10.3390/app10062018

    Article  Google Scholar 

  50. Tseng, K.K.H., Naidu, A.S.K.: Non-parametric damage detection and characterization using smart piezoceramic material. Smart. Mater. Struct. 11(3), 317 (2002). https://doi.org/10.1088/0964-1726/11/3/301

    Article  Google Scholar 

  51. Zhao, S., Fan, S.L., Chen, J.Y.: Quantitative assessment of the concrete gravity dam damage under earthquake excitation using electro-mechanical impedance measurements. Eng. Struct. 191, 162–178 (2019). https://doi.org/10.1016/j.engstruct.2019.04.061

    Article  Google Scholar 

  52. Sun, F.P., Chaudhry, Z., Liang, C., Rogers, C.A.: Truss structure integrity identification using PZT sensor-actuator. J. Intel. Mat. Syst. Str. 6(1), 134–139 (1995). https://doi.org/10.1177/1045389X9500600117

    Article  Google Scholar 

  53. Sirohi, J., Chopra, I.: Fundamental understanding of piezoelectric strain sensors. J. Intel. Mat. Syst. Str. 11(4), 246–257 (2000). https://doi.org/10.1106/8BFB-GC8P-XQ47-YCQ0

    Article  Google Scholar 

  54. Park, S., Kim, J.W., Lee, C., Park, S.K.: Impedance-based wireless debonding condition monitoring of CFRP laminated concrete structures. Ndt&E. Int. 44(2), 232–238 (2011). https://doi.org/10.1016/j.ndteint.2010.10.006

    Article  Google Scholar 

  55. Grisso, B.L., Inman, D.J.: Autonomous hardware development for impedance-based structural health monitoring. Smart. Struct. Syst. 4(3), 305–318 (2008). https://doi.org/10.12989/sss.2008.4.3.305

    Article  Google Scholar 

  56. Nguyen, K.D., Kim, J.T.: Smart PZT-interface for wireless impedance-based prestress-loss monitoring in tendon-anchorage connection. Smart. Struct. Syst. 9(6), 489–504 (2012). https://doi.org/10.12989/sss.2012.9.6.489

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

DC: conceptualization, methodology, formal analysis, investigation, writing—original draft, visualization. XX: investigation, writing—original draft, visualization. HX: formal analysis, investigation, writing—original draft. BG: formal analysis, investigation, writing—review and editing. LH: validation, writing—review and editing, supervision, funding acquisition. JY: writing—review and editing, supervision, project administration.

Corresponding authors

Correspondence to Linsheng Huo or Jianliang Yu.

Ethics declarations

Competing Interests

The authors declare that they have no competing financial interests.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Xu, X., Xuan, H. et al. Rupture Disc Monitoring Using Electro-mechanical Impedance (EMI): A Feasibility Study. J Nondestruct Eval 42, 61 (2023). https://doi.org/10.1007/s10921-023-00974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-023-00974-6

Keywords

Navigation