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Introduction

The COVID-19 pandemic first appeared in China in late 
2019 [1]. Since then, the epidemic has spread throughout 
the world, causing a considerable number of deaths [2]. 
Furthermore, the virus has caused an overload of hospital 
systems, especially intensive care units (ICUs) in many 
countries [3].

Italy, in particular, is the first European country in which 
the outbreak of the COVID-19 epidemic has spread since 
the end of February 2020 [4]. In the so-called first phase 
of the epidemic, the infection spread mainly in northern 
regions such as Lombardy, Veneto, Piedmont, and Emilia-
Romagna [5].

Measures to contain the COVID-19 outbreak, includ-
ing social distancing, business and school closures, and 
temporary travel bans, have been implemented since Feb-
ruary 2020. These policies were initially introduced in the 
northern regions and later extended to the whole country 
[6]. The national lockdown contained the spread of the virus 
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Abstract
The experience of the COVID-19 pandemic showed the importance of timely monitoring of admissions to the ICU admis-
sions. The ability to promptly forecast the epidemic impact on the occupancy of beds in the ICU is a key issue for adequate 
management of the health care system.

Despite this, most of the literature on predictive COVID-19 models in Italy has focused on predicting the number of 
infections, leaving trends in ordinary hospitalizations and ICU occupancies in the background.

This work aims to present an ETS approach (Exponential Smoothing Time Series) time series forecasting tool for 
admissions to the ICU admissions based on ETS models. The results of the forecasting model are presented for the regions 
most affected by the epidemic, such as Veneto, Lombardy, Emilia-Romagna, and Piedmont.

The mean absolute percentage errors (MAPE) between observed and predicted admissions to the ICU admissions 
remain lower than 11% for all considered geographical areas.

In this epidemiological context, the proposed ETS forecasting model could be suitable to monitor, in a timely manner, 
the impact of COVID-19 disease on the health care system, not only during the early stages of the pandemic but also 
during the vaccination campaign, to quickly adapt possible preventive interventions.

Keywords  ETS · COVID-19 · ICU · Monitoring tool · Time Series · Forecast

Received: 8 August 2022 / Accepted: 21 July 2023 / Published online: 5 August 2023
© The Author(s) 2023

Automatic Forecast of Intensive Care Unit Admissions: The Experience 
During the COVID-19 Pandemic in Italy

Danila Azzolina1,2 · Corrado Lanera2 · Rosanna Comoretto3 · Andrea Francavilla2 · Paolo Rosi4,5 · Veronica Casotto2 · 
Paolo Navalesi4,5 · Dario Gregori2

1 3

http://crossmark.crossref.org/dialog/?doi=10.1007/s10916-023-01982-9&domain=pdf&date_stamp=2023-8-4


Journal of Medical Systems (2023) 47:84

throughout the territory almost completely, halting the pro-
gression of the infection throughout the summer period of 
2020 [7].

The COVID-19 epidemic resumed its run, involving all 
Italian regions, from October 2020 [7]. On March 2021, 
there were 101,881 cumulative COVID deaths in Italy, with 
2982 beds occupied in the ICU [8].

From then on, Italy has adopted diversified containment 
policies according to regions, due to the autonomy of the 
single region in deciding on health issues. According to the 
latest government measures, Italy is divided into three risk 
zones: high-risk (red zone), intermediate (orange zone), and 
low-risk (yellow zone) [9]. Different rules and prohibitions 
correspond to different colors. The classification of a region 
in one of the three risk zones is decided by the Ministry of 
Health according to 21 criteria. One of the most relevant 
criteria is the occupancy situation of the hospital and the 
ICU bed [9], together with the current number of Rt repro-
duction numbers [10] and the presence of local outbreaks 
of infection.

The experience of the COVID-19 pandemic in Italy 
showed the importance of timely monitoring of admissions 
to the ICU [11]. The shortage of beds in the ICU can result 
in a trade-off between saving one patient’s life over another; 
therefore, the ability to quickly forecast the epidemic impact 
on the occupancy of beds in the ICU is a key issue for ade-
quate management of the healthcare system during an emer-
gency [12]. Timely forecasting of ICU occupancy levels 
is essential to adjust ICU capacity to meet demand or plan 
patient transfer efforts [13].

Despite this, most of the literature on predictive COVID-
19 outbreak models in Italy has focused on predicting the 
number of infections, leaving trends in ordinary hospitaliza-
tions and ICU occupancies in the background.

Stochastic-compartmental models (SI, SIR, SEIRD) [14, 
15] are widely applied to predict the spread pattern of the 
disease focusing on public health interventions to limit the 
spread of the pandemic [16]. However, these models are 
based on assumptions derived from validated information 
on virus transmission mechanisms [16]. These stochastic-
compartmental methods are widely applied to model the 
spreading diffusion of the epidemic but are little used to 
monitor ICU occupancy.

Classical prediction approaches such as exponential, 
Poisson, and logistic models, have been widely applied to 
characterize the spread of disease during the early stages 
of the epidemic [17]. Classical models are also considered 
in the literature to predict admissions to ICU admissions in 
Italy in the early stages of the pandemic [13, 18]. Exponen-
tial models show unreasonable predictions in the late stages 
of the pandemic. Alternatively, logistic-related growth 
models revealed a more suitable fit for the late stages of 

the epidemic, as disease spread begins to decelerate as it 
approaches the maximum capacity limit [19].

Other prediction models are based on the ARIMA (Auto-
Regressive Integrated Moving Average) time-series fore-
casting technique. These methods, unlike classical models, 
have improved performance in adjusting estimates to time-
series fluctuations in different stages of the epidemic [20–
23]. These models deal with both seasonal and non-seasonal 
time series.

The model selection procedure can be performed in an 
automated way in an ARIMA model to maximize the fore-
cast accuracy [24]. These time series models have been 
applied in the literature to develop predictive ICU occu-
pancy tools in Italy [25].

Other time-series parameterizations are Exponential 
Smoothing Time-Series models (ETS). One of the advan-
tages of this technique is that it provides a higher weighting 
of estimates in the correspondence of observations closer to 
the forecast time [26]. ETS models make seasonal adjust-
ments easier, handle multiple time series of seasonality, and 
are flexible enough to handle noninteger seasonal periods 
[27].

An important issue to deal with in a time series analy-
sis is the stationarity assumption. The probabilistic struc-
ture of stationary time series satisfies certain conditions 
of time invariance. For example, parameters such as mean 
and variance do not change over time [28]. The literature 
demonstrated that in several research fields, this assump-
tion could not be proven. In this regard, ETS models, unlike 
some ARIMA parameterizations, appropriately handle non-
stationary time series [29].

However, ETS models have little been applied in the lit-
erature to forecasting COVID-19 ICU occupancy trends, 
and only one research article shows that these models also 
outperform classical time series models for predictions of 
the trends of the COVID-19 epidemic in Italy [30].

This work aims to present a time series forecasting tool 
for admissions to the ICU based on ETS models. The results 
of the forecasting model are presented for the regions most 
affected by the epidemic, such as Veneto, Lombardy, Emilia-
Romagna, and Piedmont [31].

Materials and Methods

The prediction of the ETS model was developed according 
to regions using the official data on admissions to the ICU 
admissions published by the Civil Protection Department 
[8].

The prediction models are available, for all Italian regions, 
on the COVID-19ita [32] website (https://r-ubesp.dctv.
unipd.it/shiny/covid19ita/) created by the COVID-19-Ita 
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research group (Unit of Biostatistics, University of Padua, 
Italy). The proposed tool is available in the ICU Regional 
Monitoring Section [33].

The same predictions have been published on the official 
platform of the Italian agency AGENAS (National Agency 
for Regional Health Services) (https://www.agenas.gov.it/
covid19/web/index.php?r=site/index).

ETS Model

The ETS (Error, Trend, Seasonality) models are widely used 
for time series forecasting during the pandemic period [34]. 
This model leads to identifying and quantifying different 
components that contribute to the fluctuation in the observed 
ICU occupancy data. These components are error, trend, 
and seasonality. This parametrization provides a framework 
for making predictions and forecasts regarding ICU admis-
sions [35]. The models utilize a weighted average of past 
ICU admissions to predict future values by assigning more 
relevance to recent observations in the time series, resulting 
in a decreasing exponential weighting of older observations 
[36].

1.	 Error: the error component accounts for random fluc-
tuations or unexpected variations in the pandemic data. 
It represents the deviation between the observed values 
and the predicted values [35].

2.	 Trend: the trend component captures the long-term 
direction or pattern observed in the ICU entrance data. 
This component leads to identifying whether the data 
is increasing, decreasing, or exhibiting a more com-
plex pattern over time. By understanding the pandemic 
trend, epidemiologists can gain insights into the overall 
progress or changes in the disease evolution and ICU 
occupancy [34].

3.	 Seasonality: the seasonality component deals with 
recurring patterns or cycles that occur within specific 
time intervals. In epidemiological settings, these cycles 
could be related to seasonal effects, such as fluctuations 
in diffusion or disease prevalence that occur at certain 
times of the year. The seasonality can aid clinicians, 
epidemiologists, and decision-makers in understanding 
the timing and potential triggers of the pandemic diffu-
sion [35].

To apply the ETS model it is useful to select the appropri-
ate configuration based on the characteristics of the patient 
data. This involves determining whether the error, trend, 
and seasonality components should be added, multiplied, 
or excluded from the model. The error component can be 
additive (A) or multiplicative (M). The trend component 
can be additive (A), additive damped (Ad) specifically for 

the trend, or could be excluded (N). Similarly, the seasonal-
ity component can be additive (A), multiplicative (M), or 
excluded (N) from the model [37].

The possible combinations for each model component 
are as follows:

1.	 Error ={A, M};
2.	 Trend = {N, A, Ad};
3.	 Seasonal = {N, A, M}.

For example, let’s consider the ETS(A, Ad, N) model, which 
represents an exponential time series smoothing approach 
with additive error, additively damped trend, and no season-
ality components. The damped trend method assumes the 
presence of a trend in the time series but expects that the 
pandemic growth rate observed at the end of the historical 
data will not continue for an extended period into the future 
[38]. The introduction of a damping parameter slows down 
the trend, leading to a nonlinear trend component [37].

The model is mathematically composed of three equa-
tions: (1) a level equation, and (2) a growth equation with a 
common source of additive error εt

[36]. These two compo-
nents are combined in the (3) forecast equation to generate 
predictions for future periods.

• Level equation gt
 at t time:gt = gt−1 + φbt−1 + αεt

• Growth equation bt  at t time:bt = ϕbt−1 + βεt

• Forecast equation:yt = gt−1 + ϕbt−1 + εt

Therefore, the growth for the one-step forecast of yt
 is 

ϕbt−1, and the growth is dampened by a factor of ϕ  for each 
additional future period. Instead, the values α and β , are 
smoothing constants [39].

The supplementary material provides detailed taxono-
mies [38] for additive error models (Table S1) and multipli-
cative error models (Table S2).

Model Selection Procedure

The parameters of the ETS model are estimated using a 
maximum likelihood approach [36]. The likelihood is the 
probability of the data that arises from the specified model. 
A higher likelihood is associated with a good model [40].

Likelihood-based approaches are also considered for 
the ETS model selection criteria [36]. The widely used 
approaches are the Akaike Information Criterion (AIC), 
the small sample corrected Akaike Information Criterion 
(AICc), and the Bayesian Information Criterion (BIC) [41]. 
The BIC criterion, which accounts for the time series length, 
was considered for the automatic model selection procedure. 
Automatically identified changes in model parameterization 
have been reported for the selected regions considering ETS 
models parameterized on a daily growing fraction of the 
time series.
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has been applied for time series regularization [46, 47]. 
Guerrero’s method [48] has been used to define an optimal 
regularization parameter () that minimizes the coefficient of 
variation within the data.

Results

Epidemic Pattern Description

Figure  1 reports the number of admissions to the ICU 
observed (blue lines) and estimated by ETS (red lines) from 
March 1st 2020 to December 18th 2021. The overall trend 
pattern is similar for all regions analyzed.

The absolute numbers of admissions to the ICU in Lom-
bardy were higher throughout the epidemic compared to 
other regions. During the first wave, all regions had a peak 
in admissions in ICU around the end of March, and then a 
rapid decrease to almost zero admissions was observed in 
the summer of 2020 (Fig. 1).

In contrast, the trends that characterize the epidemic 
since October 2020 (second wave) have a different pattern 
between regions.

In the Veneto region (Fig. 1, panel A), for example, the 
phenomenon reached a peak on January 1st, 2021 with 
372 admissions to the ICU, similar to the first peak of 356 
admissions registered on March 30th, 2020. The number of 
admissions remained high and close to the maximum value 
from mid-November to mid-January 2021. The effect of the 
epidemic on ICU occupancy decreased until the middle of 
February, with a net increase in March 2021.

In the Lombardy region (Fig. 1, Panel B), on the other 
hand, the second wave of the epidemic presented a peak of 
942 admissions to the ICU on November 22nd, 2021. In 
this setting, a continuous decrease was also observed until 
February 2021. In March, another resurgence of the effects 
of the infection on ICU admissions was registered.

The pattern of admissions to the ICU in the second wave 
in the Piedmont region (Fig. 1, Panel C) was similar to that 
in Lombardy. The region experienced the first peak of ICU 
admissions on November 24th 202 (404 cases) and then 
a decrease in the phenomenon until a new peak in March 
2021.

Finally, in the Emilia-Romagna region (Fig.  1, Panel 
D), the number of admissions to the ICU increased in the 
second wave to approximately 200–250 cases for a long 
period ranging from November 2020 to mid-February 2021. 
In March 2021, the spread of the epidemic led to a rapid 
increase in ICU admissions up to 402 cases on March 25th, 
2021, exceeding the peak observed during the first wave on 
April 5th, 2020 (375 admissions).

Predictive Model Assessment

A predictive model assessment has been considered using 
a proper scoring rule procedure, adapted to count data [42]. 
This rule leads to the simultaneous evaluation of the model 
calibration and sharpness summarized in a single score [43]. 
The calibration property refers to the statistical consistency 
between the predictive distribution and the time-series data, 
while the sharpness refers to the concentration of the pre-
dictive distribution and is a property of the forecasted val-
ues. The more concentrated the predictive distribution, the 
sharper the forecasts obtained [43].

Proper Scoring Rule

A proper scores (Pt, Yt) is a function of the observed data 
Yt and a predictive cumulative density function (CDF) Pt

. The author assumed a Poisson or negative binomial CDF 
for the general estimation of the proper scoring rule of the 
count data [44].

The Mean Squared Error Score (SES), defined 
asses (Pt, Yt) = (Yt − µPt)

2, has been considered for the 
predictive model because it does not depend on distribution 
assumptions. SES is identical for both the Poisson and nega-
tive binomial distribution assumption since the conditional 
means µPt  are equal for both distributions [45].

The mean SES has been estimated on a sequentially daily 
growing fraction of time series data from 10 to 2020 until 18 
December 2021. A local polynomial regression smoothing 
(LOESS) has been estimated in the point data with a span of 
0.75 and a degree of approximation equal to 2.

The Root Mean Square Error (RMSE), defined 
asRMSE =

√(
Yt − Ŷt

)2
 ( Ŷt are the estimated time series 

value) has been calculated together with the Mean Square 
Error (MSE) (MSE =

(
Yt − Ŷt

)2
) on the sequentially 

growing fraction of time daily.

Time-series Assessment via Cross-Validation 
Procedure

The regional time series have been divided into 94 times of 
weekly data. The model has been trained in each fold and 
validated in the remaining time series. The median and inter-
quartile range (IQR) performance metrics across folds have 
been computed using SES, RMSE MSE, and Mean Absolute 
Percent Error (MAPE), defined asMAPE =

∑n
t=1

∣∣∣Yt−Ŷt
Yt

∣∣∣

Time-series Regularization

The Box-Cox transformation procedure, one of the most 
applied methods used to regulate count data, often charac-
terized by the presence of heteroskedasticity regarding time, 
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damped (Table S3). The Lombardy region records the high-
est number of parameter changes, essentially alternating 
between an additive and a damped additive trend (Table S3, 
Fig. 2, Figure S1, Figure S2).

ETS Performance

For all selected regions, the SES decreases considering 
increasing fractions of the time series (Fig. 2) and tends to 
stabilize from December 2020. A minimal increase in error 
is also observed during the first signs of the resurgence of 
the epidemic at the end of October 2020, especially in the 
Emilia-Romagna region (Fig. 2). A similar pattern is also 
observed when considering RMSE (Figure S1) and MSE 
(Figure S2).

According to the information criteria calculated on the 
overall time series, the BIC is generally higher than the AIC 
and AICc and higher for the Lombardy and Veneto regions 
(Table 1). Regarding cross-validated error measures, SES, 
RMSE, and MSE are similar in the Veneto, Emilia-Romagna, 
and Piedmont regions, with a three-fold pattern lower than 
those calculated for the Lombardy region. In contrast, the 
percentage error (MAPE) is lower for the Lombardy region 
compared to the others (Table 2).

A subsequent general decline in both the overall epidemic 
pattern and its impact on admissions to the ICU was regis-
tered in all regions considered from April 2021 until the end 
of October. At that time, the number of admissions to the 
ICU admissions increased throughout November-December 
2021, especially in the Veneto and Emilia-Romagna regions 
(Fig. 1, Panel A and D), although at notably lower levels 
compared to the same period in 2020.

Forecasting

The 7-day forecasts indicate an increase in admissions to the 
ICU for all selected regions (Fig. 1, red lines). The increase 
is most marked in the Veneto and Emilia-Romagna regions. 
The situation for Piedmont seems to be oriented toward the 
stabilization of the phenomenon.

ETS Parameterizations

Concerning the ETS estimation, the BIC selected param-
eterizations are ETS(A, Ad, N) for all the regions except for 
Lombardy, for which the optimal model is an ETS(A, A, N). 
The additive error and the absence of seasonality is a com-
mon issue in all the ETS parameterizations (Fig. 1).

For all regions, after an initial adaptation phase, a change 
in parameterization is observed around May-June 2020; the 
trend in that period smoothes out from additive to additive 

Fig. 1  ETS predictions for admissions to the ICU. The trend of 
observed (blue line) and expected (red line) ICU admissions has been 
reported. The 7-day predictions from the ETS model have also been 

also shown together with the 95% confidence intervals (small light-red 
area). On the plots, also the ETS parametrizations were selected via 
BIC criterion
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most affected by pandemics since the virus first appeared 
in Italy.

COVID-19 exploded in Northern Italy with the great-
est impact in Lombardy, where the first outbreak took hold 
[49]. This analysis confirmed that the absolute observed and 
estimated absolute values of admissions to the COVID-19 
ICU admissions, during the pandemic period, are constantly 
higher for Lombardy compared to the other considered 
regions (Veneto, Emilia-Romagna, Piedmont).

Regarding the time series pattern, all regions had a 
peak in ICU admissions around the end of March and then 
observed a rapid decrease to almost zero admissions in 
the summer of 2020. This common trend probably reflects 
national health measures, where the decision-making power 
of a single region was marginal during the first wave. Con-
tainment policies were initially introduced in February 2020 
in northern regions and were later extended to the whole 
country [6]. The national lockdown contained the spread of 
the virus throughout the territory almost completely halt-
ing the progression of the infection throughout the summer 
period of 2020 [7].

In October 2020, as the pandemic spread again, pre-
vention policies were differentiated by region and defined 
according to indicators of epidemic progression. All this 

Discussion

This research presents a time series forecasting tool for 
COVID-19 ICU admissions based on ETS models. Estima-
tion of time series of ETS has been reported for the regions 

Table 1  Information criteria of the final ETS estimated model accord-
ing to metrics and regions

Veneto Emilia-Romagna Piedmont Lombardy
BIC 6488 6339 6404 7424

Table 2  ETS (94 weekly folds) according to regions. The median and 
interquartile range (IQR) has been reported

Veneto Emilia-Romagna Piedmont Lombardy
SES 40 

(153)
38 (74) 36 (141) 114 (647)

RMSE 6 (10) 6 (7) 5 (10) 12 (25)
MSE 38 

(171)
39 (105) 24 (150) 149 (871)

MAPE 11 (17) 8 (12) 9.5 (11) 7 (11)
Abbreviations SES (Squared Error Score), RMSE (Root Mean 
Square Error), MSE (Mean Square Error); MAPE (Mean Absolute 
Percentage Error

Fig. 2  The squared error score (SES) has been estimated on a sequen-
tially daily growing fraction of time series data from 10 of March 2020 
until the 10 March 2021. A local polynomial regression smoothing 

(LOESS) has been estimated in the point data with a span of 0.75 and a 
degree of approximation equal to 2. The vertical dotted lines represent 
the changes in the model parameterizations
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79.9%, with few differences between the regions considered 
(Veneto 79.7%, Piedmont 78.6, Lombardy 81.6%, Emilia-
Romagna 82.5%) [57–59].

The aforementioned history of the epidemic’s evolu-
tion, with its variations and rapid increases and decreases, 
makes it difficult for the healthcare system to adapt [60]. 
The lesson learned in these situations is that monitoring bed 
occupancy in the ICU is crucial to avoid situations of health 
system overload [14]. This is evidenced especially during 
the expansive phases of the epidemic [60]. For this reason, 
simple, data-driven methods are useful that may provide 
accurate and timely forecasts of hospital bed demand [13].

The literature has shown that ETS-type time series mod-
els perform well in predicting ICU occupancy in the short 
term. Our results, along the same lines, show optimal per-
formance for the predictive tool [30]. The predictive error 
decreases as the length of the series increases and stabilizes 
after six months for all regions considered. Moreover, other 
applications of the ETS-type smoothing model have been 
shown to predict the optimal number of ICU beds to reduce 
patient waiting time even in ordinary pre-COVID-19 man-
agement situations [61].

As a result, our forecasting tool, implemented on the 
COVID-19ita [32] website, provides stable estimates, not 
only in the more advanced stages of the epidemic but also 
during the vaccination campaign. Taking into account this 
general framework, an ICU occupancy forecasting tool, 
customized to regional healthcare systems, is useful to mon-
itor the pandemic situation facilitating the timely adoption 
of appropriate measures and prevention policies to avoid the 
uncontrolled impacts of the COVID-19 epidemic on hospi-
tal facilities.

Conclusions

The structural load monitoring process in the ICU has 
proven to be of great importance in the different phases of 
the COVID-19 pandemic. The lesson learned is that flexible 
and up-to-date forecasting tools could be useful to follow 
the evolution of the pandemic at the macro territorial level, 
especially when containment policies are defined at regional 
levels and are quickly adapted to follow the evolution of 
epidemic diffusion.
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is reflected in a heterogeneous second-phase trend of ICU 
occupancy in the Italian regions.

Lombardy and Piedmont, for example, were immediately 
subjected, as of October 26, 2020 [50], to more restrictive 
measures being placed in the so-called red zone, where 
movements are limited only to work and emergency rea-
sons. This led to a peak in admissions to the ICU admissions 
that lasted until the end of November, followed by a sudden 
reduction in admissions throughout December.

A long-term policy effect is evidenced in the reduction of 
the ICU from 26 to 2020. This is supposed to be explained 
by the fact that the median time between symptoms onset 
and admission to symptoms onset and ICU is approximately 
11 (IQR 8-14) [51] days, to which a median incubation time 
of 5.1 days (95% CI: 4.5–5.8) days [52].

Lombardy and Veneto are the Italian centers of excel-
lence in healthcare facilities [53]. The Lombardy region has 
a higher number of intensive care and resuscitation beds; 
unfortunately, these hospitals are rapidly running out of hos-
pital beds for the provision of primary care for conditions 
other than COVID-19 [53].

The Veneto region, on the other hand, has adopted poli-
cies less restrictive compared to Lombardy during the second 
wave of the pandemic, probably due to the prompt response 
of the regional health system [54]. The region remained in 
the yellow zone from October 26th until mid-March [50]. 
The stores and activities remained open during the day and 
restrictions were imposed on movement during the evening 
hours [55]. This probably led to a peak in ICU admissions 
at levels comparable to the first wave, which lasted until the 
second half of January. Since then, the epidemic has begun 
to slow its effects on ICU entrances.

In particular, the second wave in Emilia-Romagna car-
ried a less empathic peak, a lower resolution, and almost no 
transition between the second and subsequent third surge in 
infections and the number of admissions to the ICU. Like 
the Veneto region, Emilia-Romagna has also been in the 
yellow zone for a long time, with a consequent long-wave 
effect on the number of ICU accesses [56].

In January 2021, many of the restrictions were relaxed, 
and almost all regions moved into the yellow zone [56]. 
After this period, from the end of February 2021, there was 
an increase in the number of admissions to the COVID-19 
ICU admissions in all the regions considered, with estimates 
and forecasts tending to an increasing pattern.

Following the recovery of the epidemic in the summer 
of 2021, a resurgence of the epidemic and its impact on the 
ICUs is observed starting in October. The impact is more 
limited than in the previous year but is still increasing, espe-
cially in Veneto and Emilia-Romagna. The effect is more 
limited because the coverage of COVID vaccination with 
at least two doses in Italy is currently at December 18th at 
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