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Abstract Children undergoing general anesthesia require air-
way monitoring by an anesthesia provider. The airway may be
supported with noninvasive devices such as face mask or in-
vasive devices such as a laryngeal mask airway or an endo-
tracheal tube. The physiologic data stored provides an oppor-
tunity to apply machine learning algorithms distinguish be-
tween these modes based on pattern recognition. We retrieved
three data sets from patients receiving general anesthesia in
2015 with either mask, laryngeal mask airway or endotracheal
tube. Patients underwent myringotomy, tonsillectomy,
adenoidectomy or inguinal hernia repair procedures. We re-
trieved measurements for end-tidal carbon dioxide, tidal vol-
ume, and peak inspiratory pressure and calculated statistical
features for each data element per patient.We applied machine
learning algorithms (decision tree, support vector machine,
and neural network) to classify patients into noninvasive or
invasive airway device support. We identified 300 patients per
group (mask, laryngeal mask airway, and endotracheal tube)
for a total of 900 patients. The neural network classifier per-
formed better than the boosted trees and support vector

machine classifiers based on the test data sets. The sensitivity,
specificity, and accuracy for neural network classification are
97.5%, 96.3%, and 95.8%. In contrast, the sensitivity, speci-
ficity, and accuracy of support vector machine are 89.1%,
92.3%, and 88.3% and with the boosted tree classifier they
are 93.8%, 92.1%, and 91.4%. We describe a method to auto-
matically distinguish between noninvasive and invasive air-
way device support in a pediatric surgical setting based on
respiratory monitoring parameters. The results show that the
neural network classifier algorithm can accurately classify
noninvasive and invasive airway device support.

Keywords Algorithms . Laryngeal masks . Intubation,
intratracheal, masks . Neural networks (computer)

Introduction

Anesthesia provider’s responsibility

Pediatric anesthesiologists must manage children’s needs dur-
ing surgery while documenting their physiologic state in the
anesthesia record. Anesthesiologists have access to electronic
health record systems, known as anesthesia information man-
agement systems (AIMS), that facilitate automatic recording
of physiologic monitoring data obtained during surgical pro-
cedures [1–4]. The physiologic data stored provides an oppor-
tunity to apply machine learning algorithms to identify clini-
cally relevant patterns that can be potentially used to provide
decision support for physicians [5].

Respiratory monitoring

Children under general anesthesia may breathe spontaneously
without assistance or receive mechanical ventilator support.
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Patients who are breathing spontaneously generate negative
intrathoracic pressure during inspiration and positive intratho-
racic pressure during exhalation, whereas patients requiring
mechanical respiratory support receive positive intrathoracic
pressure during inspiration [6]. Positive pressure ventilation
may be administered manually via squeezing the ventilation
bag on the anesthesia machine or by activating the ventilator
on the anesthesia machine. Anesthesia machines continuously
measure respiratory parameters including end-tidal CO2, tidal
volume, peak inspiratory pressure and minute ventilation. A
patient’s airway may be supported using various devices that
can be classified as noninvasive or invasive ventilation de-
vices. Noninvasive techniques include spontaneous ventilation
with a mask, while invasive techniques include devices such as
laryngeal mask airways or endotracheal tubes. Each of these
support devices and ventilation techniques produce subtle dif-
ferences in the patient’s ventilation parameters outlined above.

Machine learning algorithms

Current physiologic monitors and ventilators provide alarms
when individual parameters cross a specific threshold, such as
tidal volume below or above a certain value. This results in a
variety of alerts, most of which may not indicate clinical prob-
lems but can distract the clinicians, producing alert fatigue [7, 8].
Machine learning systems that can accurately identify these
changes have the potential to improve clinical monitors and
documentation systems by reducing alert fatigue. Machine
learning techniques have increasingly attracted attention from
researchers in the biomedical field as a result of their superior
performance in comparison with traditional statistical-based ap-
proaches in prediction, modeling, and classification of biomed-
ical systems [9–11]. The main reasons for such performance
include: (i) unlike the statistical approaches, the machine learn-
ing methods do not rely on any hypothesis to carry out the
analysis. As a result, machine learning systems achieve unbiased
results and can discover new patterns in the data 12, 13]. (ii)
Logistic or linear regression methods cannot classify problems
where the data is significantly complex and inherently non-
linear [13, 14]. The spectrum of machine learning techniques
includes data mining algorithms and methods such as decision
trees, support vector machine, and neural networks. These tools
facilitate data exploration using data analysis techniques with
sophisticated algorithms to discover unrecognized patterns.

The goal of decision trees is to use a dataset with known
attribute-class combinations for generating a tree structure with
a set of rules for classification and prediction of the desired
event [15]. The decision tree consists of a root, internal deci-
sion nodes and a set of terminal nodes or leaves, each
representing a class. There are two phases in decision tree
induction: tree building and tree pruning. In tree building phase
the goal is to split the data in the way that the divided data-set is
more homogenous. To this end we need to define a measure

that quantifies impurity in the data. One of the commonly used
criteria is called information gain which is defined by:

I tð Þ ¼ ∑
M

i¼1
P wijtð ÞlnP wijtð Þ ð1Þ

where, t is the node,M is the number of classes which in binary
classification is equal to 2, w is the class, and | represents
conditional probability. Boosting or boosted trees is a method
of combining hundreds of smaller and weak decision trees to
improve accuracy in prediction and classification, and robust-
ness to noise in the data.

Support vector machine is a relatively new type of statisti-
cal learning machine that provides good generalization capa-
bility, which is an important prerogative in the design of any
classifier [16]. Generalization capability refers to the capabil-
ity of a learning machine to perform well with unseen testing
data. Support vector machines aim to construct an optimal
hyperplane that divide the data with minimum misclassifica-
tion. The separating hyperplane is represented by equation
k(wx + b) = 0 where, k is the nonlinear kernel, w is set of
weights, x is the input vector, and b is bias. Support vector
machines have been extensively used in design of clinical
decision support systems [17–19].

Neural networks are a type of machine learning classifier
that mimic human nervous systems throughmodeling neurons
and their connection. The neural network consists of a series
of neurons in different layers—input, hidden, and output
layers—that are connected by weights. The neurons apply a
function to their input which is called activation function.
Multi-layer perceptron neural networks are composed of dif-
ferent layer. The first layer is called input layer which get the
input to the network; hidden layers are then consequently
connected to the input layer and map the input to the higher
dimension. The final layer is the output layer which contains
the probability of the output. Neural network with sufficient
number of parameters and tuning is able to learn any mathe-
matical transformation [20].

The primary hypothesis of this manuscript was to deter-
mine whether machine learning algorithms could accurately
distinguish patients that have invasive ventilation with either a
laryngeal mask airway or an endotracheal tube from those that
have non-invasive ventilation during surgery. We evaluated
the three types of machine learning algorithms: boosted tree,
support vector machine and neural networks.

Methods

This study was exempt from review by the institutional re-
view board. We retrieved de-identified electronic anesthesia
records from the Clinical Data Warehouse (CDW) consisting
of three groups of patients that received general anesthesia in
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2015. We selected patients undergoing elective surgical pro-
cedures which to achieve a balanced group of patients with
each of the ventilation devices. The inclusion criteria
consisted of 1) surgical procedures: myringotomy, tonsillec-
tomy, adenoidectomy or inguinal hernia repair, 2) document-
ed airway device: mask, laryngeal mask airway or endotra-
cheal tube, and 3) American Society of Anesthesiologists
Physical Status Classification 1 or 2. Patients undergoing
myringotomy tubes typically have natural airway with spon-
taneous ventilation that may transition to positive pressure
ventilation. Adenoidectomy and tonsillectomy patients al-
ways have an endotracheal tube and may be breathing spon-
taneously or have positive pressure ventilation. Finally, pa-
tients undergoing hernia repairs may have either a laryngeal
mask airway or an endotracheal tube for the procedure.
Patients underwent one of the following procedures: The air-
way device type was determined from the clinical documen-
tation. Respiratory parameter measurements were originally
measured with the anesthesia machine (Drager Apollo,
Drager, Lubeck, Germany) and recorded automatically in
the AIMS (Epic, Verona, WI) and the clinical data warehouse
in one-minute intervals (Fig. 1). The physiologic data is re-
corded without filtering, and zero values are included. We
retrieved respiratory parameters including respiratory rate,
tidal volume, end-tidal CO2, peak inspiratory pressure from
the clinical data warehouse. We calculated the minute venti-
lation using the following formula [21]:

Minute Ventilation ¼ Respiratory Rate x Tidal Volume:

Changes to physiological variables such as oxygen satura-
tion, heart rate, or blood pressure are delayed indicator of
changes in the ventilation [22]. Furthermore, changes in air-
way management type during routine anesthesia care does not
typically have a visible effect on them. We calculated the
following statistical features for each data element per patient:

mean, minimum, maximum, first quartile, third quartile, stan-
dard deviation, skewness, kurtosis, median, 10% percentile,
90% percentile, geometric mean, and harmonic mean. The
geometric mean is an indicator of central tendency of the
variable and is calculated using,

Gm xð Þ ¼
ffiffiffiffiffiffiffiffiffiffi
∏
n

i¼1
xi

n

s
ð2Þ

where x is the physiological measurement and n is the length
of the measurement. The harmonic mean is an indicator of
rates of changes in themeasurement as it is an average of rates.
The harmonic mean is calculated using the equation:

Hm xð Þ ¼ n

∑n
i¼1

1

xi

ð3Þ

We used the MATLAB Version R2015b (MathWorks,
Natick, MA) statistical toolbox package for extracting the sta-
tistical features from the data. Each patient had a total of 65
statistical features (13 statistical features for each of the five
vital signs). We reduced the size of the feature pool with the
mutual information method in order to avoid over-fitting the
model. The mutual information method calculates the mutual
dependencies of two random variables.We ranked the features
based on their mutual information with the outcome based on
the following equation:

I X ; Yð Þ ¼ ∑
y∈Y

∑
x∈X

p x; yð Þlog p x; yð Þ
p xð Þp yð Þ

� �
ð4Þ

Where X is the feature vector, Y is the output vector, and
p(x,y) is the joint probability of x and y.

The data were randomized and then divided into three sets
of 300 patients with 100 in each airway device category
(mask, laryngeal mask airway, and endotracheal tube) per
set. The machine learning based classifier was designed with

Fig. 1 Data flow from patient to the electronic health record and clinical
data warehouse. The patient is attached to monitors in the operating room
and is ventilated via the anesthesia machine. The physiologic data
acquired through the monitors and anesthesia machine is transmitted to
through the medical device integration server (MDI). The MDI server

consists of the IDM4000 gateway which transmits the data via the
EGate to the electronic health record and to the Clinical Data
Warehouse simultaneously. The Vega server monitors the performance
of data transmission through the IDM4000 gateway
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MATLAB to classify the data into two classes (Mask versus
airway device: LMA, or ETT). We evaluated three different
types of machine learning classifiers BTs, SVM, and NNs. We
used the Mathworks® MATLAB R2015b neural networks,
statistics andmachine learning packages to carry on the design
of the classifier and implementation of the machine learning
algorithm. We designed a 5-layer feedforward neural network
classifier consisting of one input layer, three hidden layers,
and one output layer. The input layer was configured with
20 neurons, the hidden layers had 70, 50 and 15 neurons
respectively, and the output layer had two neurons for each
of the two classes (invasive and non-invasive ventilation). The
input and output layer activation function is sigmoid while the
hidden layers activation function is rectified linear units.

To address the bias-variance dilemma in designing the clas-
sifier, that is, making the classifier unbiased to the output by
increasing the size of the neural network and suppress the
resulting variance, we trained the five layers neural network
using resilient back-propagation algorithm 200 times and then
calculated the average for connecting weights of the neural
network. We trained the neural network using the back prop-
agation of an error. We used cross-entropy between the neural
network estimation and actual output as the loss function to
minimize. The cross-entropy for binary classification is de-
fined using the following equations:

ecross−entropy ¼ −
1

N
∑
N

i¼1
yilogŷi þ 1−yið Þlog 1−ŷi

� �h i
ð5Þ

Where, y ∈ {0, 1} is the actual output ŷ is the estimated
output, and N is the batch size. The cross-entropy is proved
to be a better loss function for training neural networks as
its gradient is not approaching zero when the estimated
error approaches zero [23]. We used L2 regularization
method to regularize the weights and biases of network to
avoid overfitting [23]. We used stochastic gradient descent
to optimize the loss function. The gradient descent is cal-
culated using:

s
0 ¼ s−ϵ∇loss ð6Þ

Where, s’ is the new estimation of parameter s that mini-
mize the loss function and ε the learning rate which controls
the step length at each iteration of the gradient descent algo-
rithm. The stopping criteria for training each of the neural
networks were reaching error rate of less than 0.001.

In boosted trees method we combined 200 trees. Each tree
is constructed using a different subset sample from the original
data. About one-third of the cases are left out of the subset
sample and not used in the construction of the kth tree. For
building each decision tree we used information gain criterion
described by Eq. (1) to split the data. We used Fisher’s exact t-
test to prune redundant branches in the tree. We then used

random forest method to combine the trees. Since the random
forest algorithm is built based on subsampling the data there is
no need for cross-validation or a separate test set to get an
unbiased estimate of the test set error.

We used soft-margin support vector machine (ν-SVM)
classifier for this problem. The ν-SVM is specifically useful
for the cases that high noise level will cause overlap in the data
which in turn causes high number of misclassified subjects
[24]. Designing the ν-SVM will lead to solve the following
optimization problem:

minimize W αð Þ ¼ 1

2
∑
m

i; j¼1
αiα jyiy jk xi; x j

� �

subject to 0≤α≤
1

m
∑
m

i¼1
αiyi ¼ 0

∑
m

i¼1
αi ¼ ν

ð7Þ

Where, where α is the Lagrangian variable, and v is the
user-defined soft margin. We used sequential minimal optimi-
zation (SMO) which is an algorithm for solving the quadratic
programming (QP) problem presented by Eq. (7).

Results

A total of 900 records were retrieved from the CDW
(Table 1). We used a training set to design the classifier
and then applied the test data set to determine accuracy and
generalizability of the classifier. We performed the feature
ranking only on the training data set to avoid any bias
which may be caused by the testing data sets and increase
the generalizability of the classifier’s performance. The
mutual information ranking showed the 20 features [end-
tidal carbon dioxide mean, 2nd quantile, geometric mean,
3rd quantile, harmonic mean, 1st quantile, maximum, mo-
ment 5; peak inspiratory pressure 1st quantile, harmonic
mean, geometric mean, mean; tidal volume 1st quantile,
harmonic mean, geometric mean; minute ventilation har-
monic mean, range, 1st quantile, 3rd quantile; respiratory
rate range] that represented 90% information required for
classification. Among the top 20 ranked features that were
included in the classifier, eight are extracted from end-tidal
carbon dioxide, four from minute ventilation, four from
peak inspiratory pressure, three from tidal volume, and
one from the respiratory rate. The top seven features are
extracted from end-tidal carbon dioxide.

Mean represents the mean value of the recording.
Generally, the mean values for mask ventilation recordings
are lower than the mean values for tube and LMA because
of higher amount of gas leaks in mask ventilation. Geometric
mean as a feature is regularly used in situations which wewant
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to compare different subjects when we have multiple record-
ing from each subject and each of these recordings have dif-
ferent numeric range. Furthermore, geometric mean is often
used to mitigate the effect outliers and since the data collected
from intubation are very noisy due to patient movement, leaks,
etc. the geometric mean can reduce the effect of noise in the
data when comparing different airway management types.
Harmonic mean is typically used in the cases where we want
to calculate the average of rates. It is particularly useful for
detection of airway management type since we are interested
to understand the rate of changes in the anesthesia machine
measurements. Mask ventilation has typically more sudden
changes in the measurement because of gas leaks. Hence,
the harmonic means of anesthesia machine measurements
such as respiratory rate is usually higher for mask ventilation
is comparison with endotracheal tube or laryngeal mask air-
way. Quartiles, including first, second, and third quartiles, and
statistical moments are a way to determine the probability
distribution functions of the measurements to be able to better
classify them. Machine learning in general tries to learn the
probability density function that generates the input to the
classifier (anesthesia machine measurements) to be able to

distinguish different classes (mask vs laryngeal mask airway
or endotracheal tube).

The neural network classifier performed better than
boosted tree and support vector machine classifiers based on
the test data sets. The sensitivity, specificity, and accuracy for
each airway device neural network are 97.5%, 96.3%, and
95.8%. In contrast, the sensitivity, specificity, and accuracy
are 89.1%, 92.3% and 88.3% for support vector machine
and 93.8%, 92.1% and 91.4% for boosted trees respectively
(Table 2). There were 10 false negative cases and nine false
positive cases. We performed 5-fold cross validation on the
data which means that we divided the data randomly into 5
groups of 180 patients and then trained the algorithm using 4
groups and tested it using the excluded group from training.
This process was repeated 5 times and results are shown in
Table 3.

The confusion rates showing the false negative, false pos-
itive, true positive and true negative rates for the neural net-
work classifier for validation and test datasets are shown in
Figs. 2 and 3. The neural network classifier performs consis-
tently in the test data sets and works best in distinguishing
patients with noninvasive ventilation via mask from those that

Table 1 Composition of anesthesia records across the three data sets

Training data set Test data set #1 Test data set #2

Mask LMA ETT Mask LMA ETT Mask LMA ETT

Age (Years) Mean 6.7 6.7 5.9 6.1 6.8 6.1 5.5 6.7 5.4

Standard Deviation 4.3 3.7 3.9 4.9 3.9 4.1 4.8 3.2 3.8

Minimum < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

Median 6 5 6 4 6 5 4 6 5

Maximum 19 18 21 17 18 18 20 17 17

Sex Male 54 56 71 66 62 64 61 57 77

Female 46 44 29 34 38 36 39 43 23

ASA Status 1 38 13 60 55 11 54 52 7 58

2 62 87 40 45 89 46 48 93 42

Length of Procedure (Minutes) Mean 7.6 18.8 28.2 5.4 16.9 27 5.4 20.5 29.4

Standard Deviation 6.4 15.5 15.2 3.9 8.5 14.3 4.5 20 14

Minimum 1 0 4 1 5 0 1 5 9

Median 5 17 24 5 15 22 4 18 26

Maximum 34 148 85 38 62 78 29 190 102

Length of Anesthesia (Minutes) Mean 22.1 40.2 42.2 13.9 36.2 48.6 13.9 41.2 50.6

Standard Deviation 21 20.5 20.2 7.5 13.3 17.7 7.9 27.6 17.1

Minimum 7 8 7 5 20 21 6 22 25

Median 17 36.5 39 12 33 43 12 35 47

Maximum 198 137 125 61 104 107 54 224 138

Comparison of patient characteristics and duration of procedure and anesthesia record. Each data set consists of patients with mask, laryngeal mask
airway (LMA) and endotracheal tube (ETT). The American society of anesthesiologists (ASA) status is a categorical variable that is assigned by
anesthesiologists caring for each patient. ASA 1 is defined by a normal healthy patient, and ASA 2 is defined as a patient with mild systemic disease.
The length of procedure indicates the duration of the surgical procedure. The length of anesthesia indicates the duration of the anesthesia record, which
typically begins before the procedure and ends after the procedure is completed
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have invasive ventilation with an airway device (laryngeal
mask airway or endotracheal tube).

Discussion

We designed a neural network classifier that can accurately
identify the use of mask ventilation versus an endotracheal or
laryngeal mask airway based on physiologic data associated
with the anesthesia record. These devices are commonly used
caring for patients undergoing surgical procedures that require
general anesthesia. Machine learning algorithms that can accu-
rately identify clinical changes such as insertion of an endotra-
cheal tube may be useful for various clinical applications in-
cluding clinical decision support systems and information re-
trieval systems for electronic health records and clinical data
warehouses. The machine learning algorithms we developed
rely on the complete dataset and can identify transitions of
airway device interventions in a dataset. This system can be
applied to guide clinical documentation by accurately identify-
ing the time that an endotracheal tube or laryngeal mask are
inserted. At a minimum, these timestamps can be used as
prompts to guide clinical documentation during anesthesia

care. Future applications could also include sophisticated mon-
itor or ventilator alarms that indicate when the endotracheal
tube is inserted or removed. Previous authors have demonstrat-
ed that manual documentation leads to inaccurate charting in
comparison with automated documentation. This can poten-
tially provide a more detailed description of the events in the
anesthesia record, particularly in comparison with manual doc-
umentation of isolated events such as Bmask ventilation.^

The reason that the neural network classifier’s performance
was better than boosted tree and support vector machine clas-
sifiers could be because of its non-linear pattern mining na-
ture. Neural network models can evaluate a large number of
parameters and extract many different patterns. Meanwhile,
the performance of the ensemble methods such as boosted
trees performance is optimal well when the base classifiers
or so-called Bweak classifiers^ have a weak performance. It
is possible that in this case, the base classifiers have an accept-
able performance, resulting in minimal gains in performance
after performing the boosting procedure. Lastly, support vec-
tor machine classifiers can perform very well in binary classi-
fication problems [25]. However, the support vector machine
classifiers may not demonstrate the same performance with
multi-class classification.

We observed that the end-tidal carbon dioxide data was the
most influential variable for the classifier’s performance. In
our previous study on the detection of intubation time, we also
discovered that end-tidal carbon dioxide data is the most im-
portant measurement for detection of the endotracheal intuba-
tion time [26]. One explanation is that the pattern of changes
in the end-tidal carbon dioxide data is fairly independent of the
mechanical ventilation mode being used to ventilate the pa-
tient. In comparison with the anesthesia machine measure-
ments, the demographic observations such as age, gender,
weight and ASA score have lower mutual information with
the output of the classifier. Therefore, we did not include these
variables in the training model for the classifier.

The machine learning classifier has several limitations in-
herent to its design. The classifiers were compared against the
final clinical documentation for the airway type. It is possible
that the clinical documentation was inaccurate, for example,
by omission of a structured data element in lieu of text docu-
mentation. As a result, the classifier’s performance at accu-
rately identifying the airway device could be under or over-
estimated. The clinical documentation system allows pro-
viders to document the insertion of a laryngeal mask airway
and endotracheal tube in structured data fields which are easily
retrieved. On the other hand, mask ventilation is not docu-
mented in a structured data field. Therefore, the number of
patients that had noninvasive ventilation with a mask could
be under-estimated in this study in our clinical data ware-
house. To address this, we retrieved anesthesia records for
patients undergoing myringotomy tube insertion because the
patient’s airway is managed exclusively with a mask. We

Table 3 Neural network 5-fold cross validation

Group number Sensitivity Specificity Accuracy

1 97.1 96.6 95.8

2 95.8 96.1 95.2

3 98.3 96.7 95.4

4 96.7 97.2 95.9

5 97.4 95.9 95.1

The neural network cross-validation consisted of randomly assigning
patients to 5 groups of 180 patients. The first four groups were used to
train the neural network, and the final group was used to validate it. The
process was repeated five times with different groups, and the validation
results for each test are presented above

Table 2 Machine learning classifiers aggregate performance on test
data sets based on correct identification of the airway device (mask,
laryngeal mask airway or endotracheal tube)

Comparison of accuracy between the 3 machine learning classifiers.

Neural network Support vector
machine

Boosted trees

Sensitivity 97.5% 89.1% 93.8%

Specificity 96.3% 92.3% 92.1%

Accuracy 95.8% 88.3% 91.4%

Side-by-side comparison of the classification performance between the
three machine learning algorithms
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confirmed that the procedures retrieved in the mask group did
not have any documentation of a laryngeal mask airway or an
endotracheal tube in the final anesthesia record. Lastly, the
classifier is configured to identify only one airway device type
for each procedure, which was applicable to this research
study. However, in clinical practice, a patient may need mul-
tiple airway devices during a procedure. We plan to continue
to develop the classifier to account for these scenarios, as well
as to improve the accuracy of the detected time of transition
from one airway device to another.

One potential application of this type of algorithm is in
developing clinical decision support systems such as automatic
documentation of timestamps for intubation and extubation.
Furthermore, as these machine learning systems become more
refined, they can be used to create better alarm systems to
reduce alert fatigue in the operating room and intensive care
units [8]. For example, the classifier could alert a clinician that
the endotracheal tube has become compromised or removed in
real time. This type of alert could prompt clinicians to evaluate

a patient’s status in a timely fashion. However, the algorithm
needs to be validated for its performance in real time as well as
identifying multiple transition points during a procedure.

Another potential application of this tool is in information
retrieval for electronic health records. Anesthesia information
management systems are increasingly used to create large data
repositories from various institutions throughout the world
[27–31]. The data quality in Anesthesia information manage-
ment systems has improved over time, specifically when deal-
ing with automatic recording of physiologic data streams [1, 2,
4, 32]. Furthermore, machine learning algorithms can assist
data mining and interpretation of large and heterogeneous
datasets arising from multi-institutional anesthesia information
management systems. For example, identification of the air-
way device based on data streams that are captured automati-
cally may retrieve records where the clinical documentation
may have been incomplete. The classifier could be configured
to identify records that have a potential discrepancy in airway
device type documented versus what is detected. Clinicians

Fig. 3 Test Data Set. (Panel A) Confusion matrix for neural network
classifier. (Panel B) Bar graph of false negative rate (FNR), false positive
rate (FPR), true positive rate (TPR) and true negative rate (TNR) based on

the neural network classifier. (Panel C) Neural network classifier ROC
graphs for the mask ventilation and airway device categories

Fig. 2 Training Data Set. (PanelA) Confusion matrix for neural network
classifier. (Panel B) Bar graph of false negative rate (FNR), false positive
rate (FPR), true positive rate (TPR) and true negative rate (TNR) based on

the neural network classifier. (Panel C) Neural network classifier ROC
graphs for the mask ventilation and airway device categories
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could be notified of such discrepancies in real time to prompt a
review of the documentation for accuracy and completeness.

Future work will attempt to validate the classifier’s accura-
cy with data obtained from direct observation and classifica-
tion of the airway device used. We aim to design a real-time
decision support alert system that can notify health care pro-
viders about insertion and removal of invasive airway devices.
These alerts can be used to alert clinicians of acute changes in
a patient’s status as well as to provide prompts to ensure ac-
curate clinical documentation. Furthermore, this classifier can
also be used to validate data sets for research.
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