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Abstract The surgical Apgar score predicts major 30-day
postoperative complications using data assessed at the end
of surgery. We hypothesized that evaluating the surgical
Apgar score continuously during surgery may identify pa-
tients at high risk for postoperative complications. We retro-
spectively identified general, vascular, and general oncology
patients at Vanderbilt University Medical Center. Logistic re-
gression methods were used to construct a series of predictive
models in order to continuously estimate the risk of major
postoperative complications, and to alert care providers during
surgery should the risk exceed a given threshold. Area under
the receiver operating characteristic curve (AUROC)was used
to evaluate the discriminative ability of a model utilizing a
continuously measured surgical Apgar score relative to
models that use only preoperative clinical factors or continu-
ously monitored individual constituents of the surgical Apgar
score (i.e. heart rate, blood pressure, and blood loss). AUROC
estimates were validated internally using a bootstrap method.
4,728 patients were included. Combining the ASA PS classi-
fication with continuously measured surgical Apgar score
demonstrated improved discriminative ability (AUROC
0.80) in the pooled cohort compared to ASA (0.73) and the
surgical Apgar score alone (0.74). To optimize the tradeoff
between inadequate and excessive alerting with future real-
time notifications, we recommend a threshold probability of
0.24. Continuous assessment of the surgical Apgar score is
predictive for major postoperative complications. In the

future, real-time notifications might allow for detection and
mitigation of changes in a patient’s accumulating risk of com-
plications during a surgical procedure.
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Introduction

Measurement of risk for postoperative complications
perioperatively is important in guiding medical decision mak-
ing. Having a better understanding of when a patient’s risk
profile changes during a surgical procedure is an important
goal which might guide more timely interventions, triage de-
cisions, and enhance communication among clinicians. In
spite of rapid technological advances, the state of the art with
respect to perioperative risk measurement and appropriate
real-time notification dynamic changes in operative risk is still
quite limited [1].

Since early identification of high-risk patients and appro-
priate intervention aimed at improving patient outcome can
reduce the length of hospital stay [2], morbidity, and mortality
[3–5], multiple risk scores have been designed to identify
vulnerable patient populations pre- and post-operatively
[3–6]. However, most of these risk scores are based on com-
plicated algorithms and are not easily applied [6].

In 2007 Gawande et al. developed the surgical Apgar score
(sAs), a ten- point scoring system based on lowest intraoper-
ative mean arterial blood pressure (MAP), lowest heart rate
(HR), and estimated blood loss (EBL) during surgery [3].
(Table 1) This score can be easily assessed at the conclusion
of the surgery and has proven to be applicable in most surgical
subspecialties [7–11]. The sAs predicts an individual patient’s
risk for major postoperative complications as defined by the
National Surgical Quality Improvement Program (NSQIP)
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[12] and death within 30 days following surgery [3, 8]. It is
possible to monitor sAs trends throughout a case. Real-time
assessment of the sAs and notification systems apprising cli-
nicians of rapid changes in a patient’s sAs may represent an
objective tool to aid providers in their decision making pro-
cess, allowing them to rely on objective data. Given the rise in
adoption of perioperative information management systems
[13, 14], we therefore hypothesize that a model based on the
continuous sAs monitoring may be used intraoperatively to
identify patients at high risk of postoperative complications.

Methods

The Vanderbilt University Human Research Protection Pro-
gram, Nashville, TN, approved the study. We conducted a
retrospective evaluation of patients who had general, vascular,
or general oncology surgery at Vanderbilt University Medical
Center between January 1, 2009 and December 31, 2011.
Intraoperative data were extracted from the Vanderbilt Medi-
cal Center’s perioperative data warehouse.

Patients ≥18 years of age who underwent surgery under
general anesthesia, and had completed electronic anesthesia
records, were included in the study. Patients that received care
in our off-campus surgical centers and non-operative cases
(i.e., bronchoscopy cases, dental procedures, procedures in
the intensive care unit, and gastrointestinal, radiological, and
electrophysiology cases) and all organ donors were also ex-
cluded. We excluded patients with only a single documented
blood loss recording at the end of the case when that blood
loss recording was greater than 100 mL. This allowed us to
avoid sudden artificial changes of sAs trends at the end of a
case in patients where blood loss was not documented as it
occurred throughout the procedure.

The following variables were then extracted from
Vanderbilt’s perioperative data warehouse using Microsoft
SQL server technology (Microsoft Corporation, Redmond,
WA): patient demographics, surgery date and starting time,
length of the surgical procedure, type of primary surgical pro-
cedure, indication (emergency or elective procedure), Ameri-
can Society of Anesthesiologists Physical Status Classifica-
tion (ASA classification), and hospital discharge date. All

values for HR, MAP, and EBL were extracted from the data-
base, as time stamped data.

The sAs was calculated as previously described [3] each
time new information (i.e., vital signs or EBL) was document-
ed in the record (typically every 30–60 s). The initial set of
vital signs, defined as the patient’s baseline were captured
once the patient reached sufficient anesthetic depth to start
the surgery. HR values outside the range of 15 to 200 beats
per minute and mean arterial pressures outside of the range of
25 to 180 mmHg were interpreted as artifact and were
discarded. On average, EBL was recorded in 15-min intervals
during standard surgical procedures without extensive blood
loss.

Our primary endpoint was death within 30 days of surgery
or the occurrence of major complications displayed in Table 2
based on the NSQIP registry, which collects peri- and postop-
erative data from various institutions for a comparative anal-
ysis of complication rates and surgical outcomes [15, 16].

Statistical analysis

Pairwise analyses were performed to evaluate the associations
between demographic and operative patient characteristics

Table 2 Major postoperative complications

Acute renal failure

Cardiac arrest requiring cardiopulmonary resuscitation

Coma for 24 h or longer

Deep venous thrombosis

Septic shock, myocardial infarction

Pneumonia, pulmonary embolism

Stroke

Deep or organ-space surgical site infection

Sepsis

Systemic inflammatory response syndrome

Vascular graft failure

Bleeding requiring transfusion with ≥4 units red cells within 72 h after
operation

Unplanned intubation

Presents major postoperative complications as defined by NSQIP

Table 1 Ten-point surgical
Apgar score 0 Points 1 Point 2 Points 3 Points 4 Points

Estimated blood loss (mL) >1000 601–1,000 101–600 ≤100 –

Lowest mean arterial pressure (mmHg) <40 40–54 55–69 ≥70 –

Lowest mean heart rate (beats/minute) >85 76–85 66–75 56–65 ≤55*

The surgical Apgar score equals the sum of points earned in each of the three categories listed above and is
determined at the end of a surgical procedure

*Occurrence of pathologic bradyarrhythmia, including sinus arrest, atrioventricular block or dissociation, junc-
tional or ventricular escape rhythms, and asystole also receive 0 points in the category of lowest heart rate
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and major postoperative complications within 30 days of sur-
gery. Logistic regression was used to assess the association of
end-of-case sAs with investigated outcomes. P-values less
than 0.05 were considered statistically significant.

Logistic regression models were used to intraoperatively
update the risk of major complications, conditional on preop-
erative and continuously monitored clinical factors, including
HR, MAP, EBL, sAs, and derived factors. Logistic regression
was implemented by assigning each patient’s outcome to ev-
ery corresponding intraoperative record. At each intraopera-
tive time-point, all continuously monitored factors were addi-
tionally summarized using two derived factors: the largest
drop from baseline to the most current measurement, and a
measure that we denote Binsult.^ Insult represents the cumu-
lative drop in a continuouslymonitored factor from baseline to
the current measurement multiplied by time (Fig. 1). Once the
value is below baseline, the contribution to insult is positive.
When the current value of a continuously monitored factor is
greater than or equal to the baseline value, the contribution to
insult is zero. The magnitude of insult may grow over the
course of a procedure, but not shrink.

Eight different models were constructed for each of the
three surgical services, as described in Table 3. These models
are denoted as follows: the ‘ASA,’ ‘sAs,’ ‘sAs and ASA,’
‘HR,’ ‘HR and ASA,’ ‘MAP,’ ‘MAP and ASA,’ ‘HR, MAP,
and ASA.’ Interactions between the current value of continu-
ously measured factors and each of the two associated deri-
vates were also considered.

Each risk model was used to evaluate a protocol for raising
notifications intraoperatively. Based on the risk estimate at

each intraoperative record, and for a sequence of threshold
probabilities, we noted the procedure time at which the first
notification would have been raised. Procedures where no
notification was given were also noted. Box and whisker plots
are used to display the times of first alert at various threshold
probabilities. Since the ‘ASA’ model utilizes only preopera-
tive information, an alert may only arise at the beginning of
the surgical case. In contrast, the ‘sAs and ASA’ model may
activate an alert at any time during the procedure.

The discriminative value of notification protocols was
assessed for each model and surgical service by constructing
receiver operating characteristic (ROC) curves. Area under the
ROC curve (AUROC) values were compared among models
in a pair wise manner by constructing a 95 % confidence
interval for the ratio of two AUROC values. The AUROC
estimate in the general surgery cohort was internally validated
using a bootstrap validation technique [17]. In addition to
these summaries of model discriminative value, calibration
curves associated with the ‘sAs and ASA’model are presented
for each surgery service at procedure times 0, 60, and 120 min.

All statistical analyses were computed using SAS 9.3 sta-
tistical software package (SAS Institute, Cary, NC) and R
version 3.0.3 (Vienna, Austria).

Results

We obtained complete electronic intraoperative data on 4,728
patients that fulfilled our inclusion criteria: 1,924 general sur-
gery patients, 1,795 general oncology patients, and 1,009 vas-
cular surgery patients. Out of 243,057 available patients 238,
329 subjects had to be excluded for the reasons listed in Table 4.
Demographic and intraoperative characteristics of the study
population are displayed in Table 5. The incidence of major
complications within 30 days of surgery was 16.11 % (95 %
CI, 15.08–17.20), corresponding to a total of 762 patients. Ma-
jor complications included 71 deaths (1.50 %, 95 % CI, 1.17–
1.89) within 30 days of surgery. Mean age of the study popu-
lation was 55 years, with patients suffering from major compli-
cations being on average 4 years older than patients without
complications (p<0.001). Increased patient age, higher ASA
classification, and longer duration of the surgical procedure
were associated with a statistically significant increase in ad-
verse events (p<0.001). The lowest intraoperative HR was sig-
nificantly higher (62 versus 56, p<0.001) and the lowest MAP
was significantly lower (49 versus 51, p<0.001) in patients with
complications compared to patients without complications. Pa-
tients with EBL exceeding 800 mL were significantly more
likely to suffer from adverse events (p<0.001), as were patients
with a lower sAs (p<0.001). For every unit decrease in the sAs,
the univariate odds of having a major postoperative complica-
tion increased by 62 % (OR 1.62; 95 % confidence interval
[CI], 1.59–1.65; p<0.001).

Fig. 1 Illustration of an example heart rate (bpm) over procedure time
(min) and the positive, cumulative contribution every drop in heart rate
below the baseline value makes to HR insult. Baseline is defined as the
first vital sign captured once a patient reaches sufficient anesthetic depth
to start the surgery. Shaded areas demark heart rate values below baseline
during the procedure. The second graph illustrates how drops in heart rate
cumulatively contribute to HR insult and thereby account for the depicted
rise in HR insult over time
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The association between major postoperative compli-
cations and various ranges of sAs is illustrated in Table 6.
Among 402 patients with a score of 9 or 10, only 32 patients
(8.0 %, 95 % CI, 5.51–11.05) suffered from major compli-
cations. In comparison, among 443 patients with a score
of≤4, 206 patients (46.5 %, 95 % CI, 41.78–51.27) experi-
enced adverse events postoperatively. Patients who had
end-of-case sAs between 0 and 4 had almost a five-times
increased risk (Relative Risk [RR] 4.8, 95 % CI, 4.1–5.6;
p < 0.001) of suffer ing from major postoperat ive

complications compared to patients with a sAs between 7
and 8. On the other hand, patients with an end-sAs of 9 or
10 had a mildly decreased risk (RR 0.9, 95 % CI, 0.6–1.3;
p<0.001) of experiencing major complications compared
to patients with a score of 7–8.

Out of 4,728 patients, 762 (16.11 %) experienced one or
more adverse events. The five most frequent major complica-
tions in our study population were ventilator use for more than
48 h (27.86 %), wound disruption (15.03 %), deep or organ-
space surgical site infection (12.58%), renal failure (10.13%),
and sepsis (8.25 %).

Table 7 summarizes the discriminative value of each model
using the AUROC, with 95 % bootstrap confidence intervals.
In general surgery, the AUROC for the ‘ASA’ model is 0.69
compared to 0.71 for the ‘sAs’model. The ‘HR and ASA’ and
the ‘HR, MAP, and ASA’ models demonstrated a slightly
better predictive ability than the ‘sAs’ model, with an
AUROC of 0.72 in both models, respectively. Nevertheless,
the ‘sAs and ASA’ model results in a better predictive ability,
with an AUROC of 0.74. The bootstrap validated estimate of
AUROC for the ‘sAs and ASA’ model in general surgery
cases was 0.74, indicating very little ‘optimism’ due to model
overfitting (Table 7). In vascular surgery, the AUROCs for the
‘ASA’ and ‘sAs’ models are similar, with an AUROC of 0.73
and 0.72, respectively. Even in this specialty the combined
‘sAs and ASA’ model exhibits a better predictive ability, with
an AUROC of 0.80 (95 %, CI: 0.78–0.81). In general oncol-
ogy the ‘ASA’ model predicts complications slightly more
accurately (AUROC 0.71) than the ‘sAs’ model (AUROC
0.70), ‘HR’ model (AUROC 0.70), and the ‘MAP’ model
(AUROC 0.59). Among all three subspecialties investigated
in the study, the discriminative value of the ‘sAs and ASA’

Table 4 Excluded patient characteristics

Patient characteristics Number

All available patients 243,057

All excluded patients 238,329

Non-operative cases 97,664

Age <18 years 39,581

Single EBL recording >100 mL 39,048

Other surgical subspecialities 28,380

Incomplete medical record 13,137

Other than general anesthesia 12,752

Cardiac patients 5,312

Community surgical patients 2,371

Age >100 years 41

Organ donors 21

Date of death > surgery start date 12

Test patients 10

Eligible patients 4,728

Displayed are the number of patients excluded from the study for the
reasons cited

Table 3 Description of prediction models

Model Description

‘ASA’ ASA class assessed prior to surgery, adjusted for age, race, and gender

‘sAs’ Continuously monitored surgical Apgar score, adjusted for age, race, and gender

‘sAs and ASA’ Combination of ASA class assessed prior to surgery and continuously monitored surgical Apgar
score, adjusted for age, race, and gender

‘HR’ Continuously monitored heart rate, largest drop in heart rate from the baseline heart rate to the most
recent recording, and the heart rate insult

‘HR and ASA’ Combination of ASA class assessed prior to surgery and continuously monitored heart rate, largest
drop in heart rate from the baseline heart rate to the most recent recording, and the heart rate insult

‘MAP’ Continuously measured mean arterial pressure assessed during surgery, the largest drop in mean
arterial pressure from baseline to the most recent recording, and the mean arterial pressure insult

‘MAP and ASA’ Combination of ASA class assessed prior to surgery and continuously measured mean arterial pressure
assessed during surgery, the largest drop in mean arterial pressure from baseline to the most recent
recording, and the mean arterial pressure insult

‘HR, MAP, and ASA’ Combination of ASA class assessed prior to surgery, continuously measured mean arterial pressure
assessed during surgery, the largest drop in mean arterial pressure from baseline to the most recent
recording, and the mean arterial pressure insult, and continuously monitored heart rate, largest drop in
heart rate from the baseline heart rate to the most recent recording, and the heart rate insult

Provided are a detailed description of the eight risk models examined for their predictive ability in regard to postoperative complications
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model is the strongest in vascular surgery with an AUROC of
0.80. When all subspecialties were merged, the predictive
ability of the ‘sAs’ model (AUROC 0.74) was slightly better
than that of the ‘ASA’ model (AUROC 0.73). The ‘sAs and
ASA’ model (AUROC 0.80) remained superior to the ‘HR’
model (AUROC 0.66), the ‘HR and ASA’ model (AUROC
0.75), the ‘MAP’model (AUROC 0.60), the ‘MAP and ASA’

model (AUROC 0.72), and the ‘HR, MAP, and ASA’ model
(AUROC 0.73). Calibration curves associated with the ‘sAs
and ASA’ model for each surgical service at procedure times
0, 60, and 120 min (Fig. 2) indicate acceptable calibration.
Table 8 describes the pairwise comparison of the eight risk
models, using ratios (expressed as percentages) of the corre-
sponding AUROCs. In particular, the AUROC for the

Table 6 Major complications within 30 days by end-of-case surgical Apgar score

Surgical Apgar score

0–4 5–6 7–8 9–10

Number of all patients 443 (9.4 %) 1,422 (30.1 %) 2,461 (52.0 %) 402 (8.5 %)

Complications 206 (46.5 %) 305 (21.4 %) 219 (9.0 %) 32 (8.0 %)

Relative risk (95 % CI) 4.8 2.4 Reference 0.9

(4.1; 5.6) (2.1; 2.8) (0.6; 1.3)

Listed are the number and percentage of patients who experienced major complications as defined by the National Surgical Quality Improvement
Program (NSQIP) registry within 30 days of surgery. Patients were grouped into four classes based on their end-of-case surgical Apgar score. Simple
logistic regression was used to assess the association of end-of-case surgical Apgar score with investigated outcomes. The relative risk of suffering from
major complications was referenced to patients with an end-of-case score of 7–8, with 95 % confidence intervals

CI confidence interval

Table 5 Patient characteristics (n=4,728)

Variable With major complications/
death (n=762)

Without major complications/
death (n=3,966)

Total
(n=4,728)

P-value

Age, years (mean±SD) 58±13.1 54±14.7 55±14.9 <0.001

Gender <0.001

Female 333 (43.70 %) 2,191 (55.24 %) 2,524 (53.39 %)

Male 427 (56.04 %) 1,775 (44.76 %) 2,202 (46.57 %)

Unknown 2 (0.26 %) 0 (0.00 %) 2 (0.04 %)

Race <0.001

Caucasian 662 (86.88 %) 3,491 (88.02 %) 4,153 (87.84 %)

African American 64 (8.40 %) 335 (8.45 %) 399 (8.44 %)

Other 10 (1.31 %) 54 (1.36 %) 64 (1.35 %)

Unknown 26 (3.41 %) 86 (2.17 %) 112 (1.89 %)

ASA Class <0.001

1 2 (0.26 %) 58 (1.46 %) 60 (1.27 %)

2 101 (13.25 %) 1,485 (37.44 %) 1,586 (33.54 %)

3 413 (54.20 %) 2,217 (55.90 %) 2,630 (55.63 %)

4 234 (30.71 %) 205 (5.17 %) 439 (9.29 %)

5 12 (1.57 %) 1 (0.03 %) 13 (0.27 %)

Lowest HR ± SD (beats/minute) 62±17.6 56±12.4 57±13.3 <0.001

Lowest MAP ± SD (mmHg) 49±12.3 51±10.9 51±11.1 <0.001

EBL ± SD 835 mL±1,608.0 240 mL±419.9 337 mL±782.2 <0.001

Average operation duration (minutes) 256.80 min 200.17 min 209.40 min <0.001

Displayed are characteristics of the patient population with and without major postoperative complications within 30 days of surgery. Characteristics
includemean age with standard deviation, number and percentage of patients of a specific gender, race, and within each ASA class. Surgical data include
average surgical procedure duration, as well as lowest heart rate (HR), mean lowest mean arterial pressure (MAP), and mean estimated blood loss (EBL)
with standard deviations. Pairwise analyses were performed to evaluate the associations between demographic and operative patient characteristics and
major postoperative complications

SD, standard deviation
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combined ‘sAs and ASA’ model was improved by 7.9 %
(95 % CI, 6.3–9.6) relative to the ‘ASA’ model in general
surgery cases, 9.1 % (95 % CI, 7.1–11.0) in vascular surgery,

10.1 % (95 % CI, 6.4–13.5) in oncology surgery, and 8.5 %
(95 % CI, 7.8–9.4) in the combined cohort. The AUROC for
the combined ‘sAs and ASA’ model, relative to the ‘sAs’

Table 7 Summary of areas under
the receiver operating
characteristic curve

General Vascular Oncology Combined

sAs and ASA 0.74 (0.73; 0.75) 0.80 (0.78; 0.81) 0.78 (0.76; 0.80) 0.80 (0.79; 0.80)

ASA 0.69 (0.68; 0.69) 0.73 (0.72; 0.74) 0.71 (0.69; 0.74) 0.73 (0.73; 0.74)

sAs 0.71 (0.69; 0.72) 0.72 (0.70; 0.74) 0.70 (0.65; 0.74) 0.74 (0.74; 0.75)

HR 0.67 (0.65; 0.69) 0.68 (0.65; 0.70) 0.70 (0.64; 0.74) 0.66 (0.62; 0.69)

HR and ASA 0.72 (0.70; 0.73) 0.76 (0.74; 0.77) 0.77 (0.73; 0.79) 0.75 (0.72; 0.77)

MAP 0.62 (0.59; 0.64) 0.64 (0.62; 0.66) 0.59 (0.55; 0.63) 0.60 (0.57; 0.63)

MAP and ASA 0.70 (0.68; 0.71) 0.75 (0.72; 0.76) 0.72 (0.69; 0.74) 0.72 (0.70; 0.74)

HR, MAP, and ASA 0.72 (0.70; 0.73) 0.74 (0.72; 0.76) 0.74 (0.71; 0.77) 0.73 (0.70; 0.75)

Summarized are the area under the receiver operating characteristic curve (AUROC) statistics for each model and
surgical service, with bootstrap 95 % confidence interval, demonstrating the discriminative value of each model

Time 0.0 (min) Time 60.0 (min) Time 120.0 (min)

G
eneral Surgery

Vascular Surgery

0.0 0.2 0.4 0.6 0.8 1.0
Model Probability.
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2

0.
4

0.
6
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8

1.
0
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Fig. 2 Calibration curves associated with the ‘sAs and ASA’model were constructed for each of the three surgical services at procedure times 0, 60, and
120 min
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Table 8 Model AUROC comparison

ASA sAs HR HR and ASA MAP MAP and ASA HR, MAP, and ASA

General surgery

sAs and ASA 7.9
(6.3; 9.6)

4.5
(3.6; 5.5)

10.1
(7.5; 13.2)

3.0
(1.3; 5.0)

20.4
(16.4; 25.5)

6.0
(3.7; 8.6)

3.0
(0.7; 5.8)

ASA −3.2
(−4.6; −1.2)

2.0
(−0.5; 5.0)

−4.5
(−6.3; −2.5)

11.5
(8.3; 16.0)

−1.8
(−3.8; 0.5)

−4.6
(−6.8; −2.0)

sAs 5.4
(2.9; 8.3)

−1.4
(−3.4; 0.7)

15.2
(11.3; 20.0)

1.4
(−1.0; 3.9)

−1.4
(−3.8; 1.3)

HR −6.3
(−7.7; −5.3)

9.3
(5.4; 13.9)

−3.7
(−6.4; 0.8)

−6.5
(−8.8; −4.0)

HR and ASA 16.9
(12.7; 22.0)

2.9
(0.4; 5.6)

0.0
(−2.1; 2.4)

MAP −11.9
(−14.3; −10.3)

−14.4
(−17.1; −12.2)

MAP and ASA −2.8
(−4.4; −1.3)

Vascular surgery

sAs and ASA 9.1
(7.1; 11.0)

11.3
(9.4; 13.7)

18.6
(14.9; 23.0)

5.9
(3.6; 8.3)

24.5
(20.4; 29.8)

7.5
(4.5; 10.5)

8.0
(4.6; 11.3)

ASA 2.1
(−1.2; 5.6)

8.8
(5.5; 12.9)

−2.9
(−5.0; −0.42)

14.1
(10.3; 18.6)

−1.4
(−4.2; 1.4)

−1.0
(−4.0; 2.3)

sAs 6.6
(2.7; 11.0)

−4.8
(−8.1; −1.7)

11.9
(7.7; 17.1)

−3.4
(−7.1; −0.1)

−3.0
(−6.8; 0.5)

HR −10.7
(−12.8; −9.0)

5.0
(−0.1; 10.0)

−9.3
(−13.2; −5.6)

−9.0
(−12.2; −6.0)

HR and ASA 17.5
(13.3; 22.3)

1.5
(−1.4; 4.5)

1.9
(−0.6; 4.6)

MAP −13.6
(−15.9; −11.4)

−13.3
(−15.8; −10.7)

MAP and ASA 0.4
(−1.8; 2.7)

Oncology surgery

sAs and ASA 10.1
(6.4; 13.5)

12.0
(7.9; 17.2)

11.6
(6.2; 19.9)

2.0
(−1.3; 6.5)

32.6
(25.5; 40.4)

8.8
(4.7; 13.2)

5.2
(1.5; 9.7)

ASA 1.7
(−3.2; 8.2)

1.3
(−4.4; 10.0)

−7.4
(−11.0; −2.6)

20.4
(15.1; 26.8)

−1.2
(−4.7; 3.2)

−4.4
(−8.5; 1.1)

sAs −0.3
(−6.0; 6.0)

−8.8
(−14.3; −3.3)

18.5
(10.0; 25.9)

−2.7
(−9.7; 3.1)

−6.0
(−12.2; −0.9)

HR −8.5
(−13.0; −5.4)

19.0
(9.6; 27.4)

−2.4
(−9.9; 4.2)

−5.6
(−11.5; −0.8)

HR and ASA 30.1
(21.8; 38.2)

6.7
(1.9; 11.7)

3.2
(−0.1; 6.5)

MAP −17.9
(−21.4; −14.5)

−20.6
(−24.8; −16.2)

MAP and ASA −3.3
(−6.7; 0.5)

Combined surgery

sAs and ASA 8.5
(7.8; 9.4)

7.2
(6.8; 7.8)

20.0
(14.4; 28.1)

6.9
(4.0; 10.8)

33.2
(27.7; 40.5)

10.8
(7.9; 14.5)

9.1
(5.7; 13.0)

ASA −1.2
(−2.2; −0.3)

10.5
(5.4; 17.8)

−1.6
(−4.3; 2.4)

22.8
(17.7; 29.5)

2.0
(−0.6; 5.6)

0.5
(−2.7; 4.2)

sAs 11.9
(6.4; 19.3)

−0.3
(−3.2; 3.1)

24.3
(18.9; 31.1)

3.3
(0.5; 6.8)

1.8
(−1.5; 5.6)

HR −10.9
(−14.3; −8.5)

11.1
(4.7; 17.3)

−7.6
(−13.3; −3.0)

−9.0
(−13.7; −5.2)
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model, was improved by 4.5 % (95 % CI, 3.6–5.5) in general
surgery, 11.3 % (95 % CI, 9.4–13.7) in vascular surgery,

12.0 % (95 % CI, 7.9–17.2) in oncology surgery, and 7.2 %
(95 % CI, 6.8–7.8) in the pooled cohort. In summary, in all

Table 8 (continued)

ASA sAs HR HR and ASA MAP MAP and ASA HR, MAP, and ASA

HR and ASA 24.7
(19.1; 30.6)

3.7
(0.2; 7.6)

2.1
(−0.6; 5.0)

MAP −16.9
(−19.8; −14.2)

−18.1
(−21.1; −14.9)

MAP and ASA −1.5
(−3.6; 1.2)

Presented the ratio of the corresponding AUROC values (row/col) as a percentage, with bootstrap 95% confidence interval. Positive values indicate that
the area under the receiver operating curve corresponding to the model listed in the row header was larger than that in the column header
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Fig. 3 Displayed are box and whisker plots for the times to first
hypothetical intraoperative notification, at increasing threshold
probabilities for each surgical service and the pooled cohort. At high
threshold probabilities, alerts are raised later during the surgical

procedure. Alerts are activated earlier in the case when the threshold
probability is set low since with this low tolerance for postoperative
complications the threshold is exceeded more readily
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three specialties and in the pooled cohort, combining ASA
classification with sAs trend analysis showed a superior dis-
criminative value in comparison to either risk score alone
(Table 8).

Figure 3 displays box and whisker plots for the times
to first hypothetical intraoperative notification, at in-
creasing threshold probabilities. A notification criterion
based exclusively on the ASA classification would have
raised a notification either at the very beginning of the
procedure or not at all since the ASA classification uti-
lizes only preoperative information. In contrast, utilizing
continuously monitored intraoperative factors in addition
to ASA classification enables notification at any time
during the surgical procedure. We believe that this fea-
ture is largely responsible for gains in sensitivity and
specificity. Outliers in Fig. 3 may be attributed to a
paucity of patients who had a high probability of
experiencing adverse events. Although threshold levels
for notification should be optimized and validated in a
prospective manner, our findings indicate that a thresh-
old probability of 0.24 would exhibit acceptable speci-
ficity (0.85) and sensitivity (0.53) while maximizing
clinical utility and avoiding premature activation.

Discussion

In this study we found that continuous sAs measurement can
provide useful information about acute changes in a patient’s
status and his/her risk for postoperative complications in gen-
eral, vascular, and general oncology surgery. General surgery
and vascular surgery were chosen for our study since the sAs
had originally been validated in these subspecialties. General
oncology was chosen due to the large sample size of this
patient cohort.

We have shown that a continuously monitored sAs and its
associated derivative factors improve on the discriminative
value of ASA classification alone for postoperative complica-
tions. Combining the ASA classification with the sAs im-
proves predictive ability in all three surgical specialties, dem-
onstrating the highest AUROC of 0.80 in vascular surgery.
Even when all three subspecialties were pooled, the predictive
ability was comparable to that of each subspecialty examined
separately. By combing the ASA classification with the sAs
the patient’s preoperative condition was pared with his/her
intraoperative performance. This allows clinicians to provide
patients with a realistic estimate of the postoperative course.
Lastly, we identified various time-points throughout the pro-
cedure at which the first notification would be raised for a
sequence of threshold probabilities.

Our findings were consistent with previous studies, as we
observed that the sAs could predict a patient’s risk of suffering

from major postoperative complications within 30 days fol-
lowing surgery [3, 7, 18].

Our results were consistent with findings by Hyder et
al., [19] who assessed the predictive ability of the sAs
computed on a continuous basis throughout a surgical
procedure or at sampling intervals ranging from five to
ten minutes. Hyder et al. determined that more frequent
assessment of the sAs improved its predictive ability yet
greater sampling intervals in their study population en-
hanced the specificity of the sAs allowing for better
model discrimination [19]. We extended previous studies
by establishing a notification model based on risk esti-
mates that would alert clinicians to a change in patient
condition warranting medical attention. In selecting an
appropriate threshold for raising alerts the contribution
of artifacts may be limited. In our study we found that
a threshold probability of 0.24 would exhibit acceptable
sensitivity and specificity. However, the utility and the
interpretation of this threshold probability need to be
validated in a prospective study.

Our study is limited by the following factors. First, this
is a single center study conducted at a major academic
institution and is restricted to an adult patient population
undergoing general, vascular, or general oncology surgery
under general anesthesia. Considering that our hospital
draws patients from a wide geographic radius, postopera-
tive complications of some patients who sought postoper-
ative care elsewhere would not have been captured in the
study if these patients were lost to follow-up. However,
95.2 % of all patients included in the study had a follow-
up visit at our hospital. Furthermore, the assessment of
EBL has been criticized to be imprecise and may present
a major limitation to the sAs [3, 7]. However, the original
authors argue that the amount of blood loss needed to
calculate the score falls into a wide enough range to ren-
der accurate assessment of intraoperative blood loss possi-
ble [3]. Moreover the manual assessment of EBL routinely
updated every 15 min is a limitation to our study as the
real-time score assessment relies on EBL data which is
outdated. Another limitation to our study is the subjective-
ness and interrater variability in the allocation of the ASA
classification among different physicians and the inaccura-
cy of clinical interpretation [20, 21]. Lastly, although ex-
treme values in HR and mean arterial pressure were ex-
cluded, artifactual measurements within these limits might
be present.

A variety of measures and intraoperative variables are used
to assess a patient’s condition during a surgical case, providing
clinicians with an overabundance of perioperative data ele-
ments [22, 23]. Owing to this large amount of information,
real-time notifications have been introduced to analyze data
elements, enable trend detection, and alert clinicians to abnor-
mal values or a patient’s deteriorating condition [22]. Real-
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time notifications draw the clinicians’ attention to acute
changes that may warrant timely intervention to improve pa-
tient outcome [24, 25]. Providing real-time notifications in
anesthesia has proven to reduce hospital costs, improve pa-
tient care, and prevent postoperative complications [22, 26].
Real-time notifications about changes in a patient’s sAs trend
will motivate providers to better allocate resources driven by
the patient’s tailored, acute physiology.

In a future prospective study we intend to investigate
the utility of providing the perioperative team with a
real-time display of the patient’s sAs. With such a study
we hope to elicit how continuous assessment of the sAs
over the course of a surgical case will affect clinical
decision-making, patient care, and postoperative patient
outcomes. Real-time display of sAs trends might lead to
a new approach to anesthetic and operative manage-
ment, [27, 28] with earlier medical interventions aimed
at stabilizing the patient intraoperatively, reducing peri-
operative morbidity and mortality. This approach to in-
tegrating real-time data capture and analysis, with cur-
rently available alert mechanisms, should ultimately fa-
cilitate a greater impact of our medical systems [29].
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