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Abstract This work studies the impact of using dynamic
information as features in a machine learning algorithm for
the prediction task of classifying critically ill patients in two
classes according to the time they need to reach a stable
state after coronary bypass surgery: less or more than 9 h.
On the basis of five physiological variables (heart rate,
systolic arterial blood pressure, systolic pulmonary pres-
sure, blood temperature and oxygen saturation), different
dynamic features were extracted, namely the means and
standard deviations at different moments in time, coeffi-
cients of multivariate autoregressive models and cepstral
coefficients. These sets of features served subsequently as
inputs for a Gaussian process and the prediction results
were compared with the case where only admission data
was used for the classification. The dynamic features,
especially the cepstral coefficients (aROC: 0.749, Brier
score: 0.206), resulted in higher performances when
compared to static admission data (aROC: 0.547, Brier
score: 0.247). The differences in performance are shown to

be significant. In all cases, the Gaussian process classifier
outperformed to logistic regression.
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Introduction

In cardiac surgery, optimal use of intensive care unit (ICU)
and operating room (OR) capacity requires the prediction of
future availability of ICU beds. On the level of the
management of the department, a number of beds are
reserved for cardiac surgery patients. In order to manage the
planning of the intensive care unit and the operating theatre,
it would be very helpful to have a system that provides an
early alert if there is a high probability that a patient will be
disconnected from ventilation during the next day. When
the patients are still ventilated, they cannot be sent to a
normal ward, the bed does not become available and the
surgeon cannot operate on new patients. This medically
relevant prediction task, concerning the time instant on
which patients can be disconnected from mechanical
ventilation, is well suited for our research, where we want
to focus, in the first place, on the impact of using dynamic
information in the prediction task.

Information on vital signs such as heart rate, blood
pressure, oxygenation, etc. is routinely gathered in the ICU.
Continuous evaluation of the values of these variables
starting from the arrival in the ICU is important because the
alterations are relevant to patient management [1]. For our
analysis, we wanted to use the trends of the vital signals
during the first hours of ICU stay to predict a short or
prolonged length of stay from early on. Prognostic models
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in medicine can be useful for various tasks: from capacity
planning to individual patient interventions. For an over-
view of uses and development approaches in the statistical
and artificial intelligence field, we refer to the work of Abu-
Hanna et al. and Ohno-Machado et al. [2, 3].

Minimal conditions used to start the weaning from
mechanical ventilation in these critically ill patients are:
hemodynamic and respiratory stability, absence of bleeding
and normothermia. A lot of different physiological param-
eters related to these criteria are measured, monitored and
stored in a typical ICU. From research it was shown that
humans have difficulties with interpreting and handling more
than seven variables at the same time. On top of that, the
interpretation of the information can differ between clinicians
and interpretation of temporal data seems to be the most
important problem [4]. So, the need for decision support in
the medical environment is very high [5]. Medical diagnostic
decision support systems already have been an established
component of medical technology [6]. A number of
quantitative models, including logistic regression, neural
networks and many others, have been used in this kind of
systems to assist human decision-makers in several applica-
tions [6, 7], e.g. in epileptic detections [8].

Since all living organisms are characterized by the fact
that they are complex individually different time-variant
and dynamic (so called CITD systems) [9], it is expected
that taking these characteristics into account will lead to
better models of the physiological signals of intensive care
patients. For example, Cappi et al. used repeated measure-
ments of Acute Physiology and Chronic Health Evaluation
(APACHE) instead of only one score on the day of
admission [10], since this APACHE score is based on
physiological measurements on a certain moment in time
and does not consider the evolution of the signals in time.
Chang et al. predicted deaths among ICU patients on the
basis of trend analysis of daily measured APACHE II
scores that were corrected for organ system failure. They
applied this approach because they were convinced that the
patho-physiological processes affecting ICU patients are
dynamic and cannot be reflected by a single assessment of a
static score on the day of admission [11–13]. Also
Clermont et al. used repeated static scores in their micro
simulation model to predict temporal patterns of multiple
outcomes on the basis of demographic variables and the
Sequential Organ Failure (SOFA) scores on admission [14].
The work of Toma et al. describes a method that captures
the temporal evolution of organ functioning which is
quantified by SOFA scores or Individual Organ System
Failure (IOSF) scores and uses these patterns in a logistic
regression modeling framework [15, 16].

Instead of using repeated static scores as described
before to obtain dynamic information about a patient, it is
also possible to extract dynamically relevant features from

the commonly measured physiological data itself. Since a
lot of time series of physiological variables are available in
the ICU environment, these signals could be well suited as
inputs for different modeling techniques and for cepstral
coefficient analysis. These techniques can all be used to
analyze individual patients whose health status varies with
time. So far, univariate autoregressive analyses of physio-
logical variables have been applied in several studies in the
field of intensive care medicine [17, 18]. Akaike used a
multivariate autoregressive method for the identification of
a multivariate feedback system [19]. A lot of systems, e.g.
in the human body, can be explained using this kind of
systems [20]. His method has been applied in several
medical applications [21–23] and helps to detect the
relationships between all variables included in the model.
The calculation of cepstral coefficients is another possibility
to extract the significant features from time series. Curcie et
al., for example, used this technique to identify individual
heart rate patterns [24].

For making classifications using many variables at the
same time, several data mining techniques are available. It
has been demonstrated that machine learning algorithms
can analyze data from a collection of patients and can be
trained to make predictions on new unseen patients.
Machine learning algorithms have been used in a variety
of medical applications [25] and have been shown to be
specially valuable in data mining scenarios involving large
databases and where the domain is poorly understood and
therefore difficult to model by humans [26]. Intensive care
is one of those domains that can benefit from the use of
machine learning techniques [27]. In this field they have
been used for prediction and classification tasks. For
instance they have been used for classifying pressure-
volume curves into different measurement methods for
artificially ventilated patients suffering from the Adult
Respiratory Distress Syndrome (ARDS) [28]. They have
been shown to outperform to logistic regression in the task
of classifying ICU patients with head injuries according to
their outcome: good vs. poor Glasgow Coma Scores (GOS)
and dead vs. alive [29]. In a different prediction task, Tong
and colleagues successfully classified a neonatal ICU
population according to ventilation duration, a study that
extends their previous success with the same machine
learning technique and classification task but on an adult
ICU setting [30]. Giraldo and colleagues [31] classified
respiratory patterns of patients on weaning trials into those
that will succeed or fail to sustain spontaneous breathing.
Gaussian processes (GP) have been applied to the problem of
neonatal seizure detection from electroencephalograph (EEG)
signals, where they are shown to outperform other modeling
methods currently in clinical use for EEG analysis [32].

However, in the above cases no dynamic information
about the patients is taken into account when applying the
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data mining approach although it is important and useful to
capture and analyze the temporal aspects of the data as part
of the knowledge discovery process [33]. Several attempts
on temporal feature extraction for time series classification
have been made [34–37]. According to Kadous et al. [38],
abstracting temporal features is not a trivial task, especially
not when it has to be done automatically. In this work,
several automatically extracted representations of the
dynamics of time series will be studied. Moreover, the
classification results will be compared with the classifica-
tion based on admission data only, while in the references
cited above only monitoring data was considered, even
though in clinical practice, static admission data plays an
important role in the calculation of health evaluation scores
such as APACHE scores.

The general objective of this study was to explore and
quantify the prognostic value of dynamic information that
was abstracted from time series data in various ways. More
specifically, it was investigated whether the prediction of
the timeframe in which the minimal clinical conditions to
start weaning of the mechanical ventilation are reached, can
be more accurately predicted by using dynamic information
of the individual patients when compared to predictions on
the basis of static admission data.

Materials and methods

Figure 1 gives an overview of the consecutive steps in our
analyses. In this section the used signals, different types of
time series analyses, the GP classifier and the prediction
task are briefly explained.

Data generation

In the surgical ICU of the university hospitals of Leuven,
22 beds are reserved for cardiac surgery patients. We
screened all patients admitted to the ICU after planned
coronary bypass surgery, between February 2006 and
December 2006 for this retrospective study. Ethics com-
mittee approval was obtained, and the need for informed
consent was waived because of the retrospective nature of

the study. We selected five physiological variables, rou-
tinely monitored in these patients (Philips Merlin monitor),
to be used as inputs. Since we were focusing on the
dynamics of the patients in this study, we took into account
signals that were measured with the highest frequency (i.e.
a sample interval of 1 min) in the Patient Data Management
System (Metavision®, iMD-Soft®) and that were, on top of
that, almost always measured and registered and showed
enough variability. For an overview, see Table 1. Data of a
total of 203 patients was used for analysis.

For these patients also admission data was used (see
Table 2). For this, parameters from the Parsonnet score [39]
and Euroscore [40] were selected, as far as they were
available. Both scores have been shown to be predictive for
ICU length of stay. The following seven variables were
taken into account: age, sex, body mass index (BMI),
normal lung function, diabetes, creatinine level, and NYHA
class. The NYHA (New York Heart Association) classifies
the extent of heart failure and ranges from I (no symptoms
or limitations) to IV (severe limitations).

Modeling analysis

Abstraction of dynamic information

In order to quantify the dynamics of the patients’
physiological variables, we used the mean and standard
deviations of the signals (Avgstd), we applied multivariate
autoregressive models (MAR) and calculated cepstral
coefficients (CEP). The latter two are explained in more
detail in this section.

Multivariate autoregressive models (MAR) A time series is
a sequence of observations taken sequentially in time. Most
time series consist of elements that are serially dependent.
A common approach for analyzing this dependence is the
AR model. In this type of model, a coefficient or a set of
coefficients is estimated that describes the association
between consecutive elements of the series [41]. The
general equation of a multivariate autoregressive model
(MAR) can be written as

Y tð Þ ¼
XM
m¼1

A mð ÞY t � mð Þ þ E tð Þ ð1Þ

Every observation is made up of a linear combination of
M prior observations (the order of the model) and a white
noise term, which is a vector of mutually independent white
noises. Y tð Þ ¼ y1 tð Þ; y2 tð Þ; . . . ; yK tð Þ½ � is the vector of
simultaneously measured values at time t for K variables,
in this case all variables of Table 1, and E tð Þ ¼
e1 tð Þ; e2 tð Þ; . . . ; eK tð Þ½ � is a prediction error vector. TheFig. 1 Schematic overview of the analyses performed in this research
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generation of the AR models was performed using the
ARfit package for Matlab [42]. The matrices A(m) are the
MAR coefficients and are estimated using a stepwise least
squares algorithm. In this study, the coefficients of matrix A
are used as features in the data mining (cfr. Fig. 1) since
they describe the dynamics of the considered system.

Cepstral coefficients (CEP) Cepstrum analysis is a nonlin-
ear signal processing technique with a variety of applica-
tions in areas such as speech and image processing. The
cepstrum is defined as the inverse Fourier transform of the
short-time logarithmic amplitude spectrum [43, 44]. More
detailed, the real cepstrum for a sequence x is given by the
sequence y:

y ¼ 1

2p

Z p

�p
log X e jw

� ��� ��ejwt dw ð2Þ

where X e jwð Þ is the Fourier transform of y.

The difference between the cepstral coefficients of
different time series can be used as a similarity measure
between these time series. Cepstral coefficients decay
rapidly to zero, so only the first few coefficients are needed
to capture most of the dynamic information in the time
series. An example of the cepstrum of the heart rate signal
of one patient is shown in Fig. 2. Because of the good
clustering results of Kalpakis et al. [43] on the basis of
cepstral coefficients, it is interesting to use these coeffi-
cients as input features in the data mining analysis as an
alternative summary of the dynamics of the signals.

Moreover, other techniques based on frequency informa-
tion, such as the calculation of wavelet coefficients [34],
have been applied for the summarization of data. Given the
good results of Zhang et al. it is worthwhile to explore and
use frequency information (such as cepstrum coefficients)
in the classification task.

Gaussian processes for classification

Gaussian processes [45], a type of kernel method, are a
machine learning technique that has been successfully used
to model and forecast real dynamic systems because of their
flexible modeling abilities and their high predictive per-
formances. They allow for multi-dimensional inputs and
they assign a confidence value to their predictions. The
main advantage of using a GP classifier over other kernel
method classifiers is that it produces an output with a clear
probabilistic interpretation [46].

In probabilistic binary classification the task is to
determine for an unlabeled test input vector x* the
probability of belonging to the class C : pc x�ð Þ ¼ p t� ¼ð
1jx�Þ when a training set {X, t} is given. The training set is
comprised of N training input vectors X ¼ x1; x2; . . . ; xNf g
and their corresponding N binary class labels t ¼
t1; t2; . . . ; tNf g such that ti=+1 if xi belongs to a given class

C and ti=–1 if xi does not belong to the class. The
probability that x* does not belong to the class can then be
computed as p t� ¼ �1jx�ð Þ ¼ 1� pc x�ð Þ. In the remainder
of this text the input vectors X will be referred to as
examples.

Table 1 Physiological variables

Var nr Physiological variable Unit Sampling frequency

1 Arterial blood pressure, systolic mmHg 1 / min
2 SpO2 (oxygen saturation in arterial blood flow) % 1 / min
3 Heart rate bpm 1 / min
4 Blood temperature °C 1 / min
5 Arterial pulmonary pressure, systolic mmHg 1 / min

Table 2 The population description table

Class 1
(Criteria met<=9 h)

Class 2
(Criteria met>9 h)

Number of patients 102 101
Age (mean ± std) 66±11 66±10
Sex (male/female) % 66% / 34% 84% / 16%
BMI (mean±std) 27.7±4.6 27.7±3,8
Normal lung function (%) 90% 84%
Diabetes (%) 65% 68%
Creatinine (mg/dL) (mean ± std) 1,15±0,45 1,18±0,40
NYHA class (I/II/III/IV) (%) 55% / 28% / 12% / 5% 61% / 19% / 19% / 1%
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In GP binary classification [47], a GP over a function
f(x) is defined and then transformed through a logistic or
squashing function σ(. ) so that its outputs lie in the [0,1]
interval, and can be thus interpreted as probabilities:
pc xð Þ :¼ p t ¼ þ1jxð Þ ¼ s f xð Þð Þ. Conditioning the predic-
tive distribution on the training data allows for a probabi-
listic prediction on a test input example [48].

A GP is a distribution over functions and is a natural
generalization of a Gaussian Distribution, the latter of
which has a vector as mean and as covariance a matrix. The
GP over a function is accordingly specified by a mean
function and a covariance function. The covariance func-
tion is given by a positive semi-definite kernel function k
(xi, xj). The covariance function determines the properties
of the function distribution in the GP, for example it can
impose smoothness so that nearby inputs xi, xj have similar
values f (xi), f (xj), with high probability.

Learning from data in the GP case means to modify the
function distribution by conditioning it on the observed
data. This modified or posterior function distribution has a
mean function that coincides with the target values when
evaluated on the training examples.

Figure 3 shows a GP learned from the one-dimensional
training data depicted with crosses. The shaded area

corresponds to the 95% confidence region learned for the
function distribution; it can be seen that the uncertainty of
the prediction grows in regions where there are few training
points. Figure 4 shows a cut-section of the predicted dis-
tribution for the test input at -6, which has a mean predicted
value of 1.92. Also shown (dashed line) is the predicted
distribution before training, which has a mean predicted value
of 0 and is very broad to reflect the uncertainty associated with
this prediction. Once learning has occurred, the predictions
become more certain because data has been seen in the
vicinity of the test point, and the predictions must be
consistent with these observations.

Given that the GP is defined by its covariance function,
and that the covariance or kernel function is defined by a
set of parameters (referred to as hyper parameters), then
training the GP amounts to finding the values of the hyper
parameters such that the probability of the data given these
hyper parameters is maximized.

Because of the inclusion of the logistic function σ(. )
required for classification, the inference of the predictive or
posterior distribution requires the solution to integrals
which are analytically intractable, a problem that is solved
either by resorting to Monte Carlo sampling or analytical
approximations to the integrals. In this study we follow the
latter approach through the use of expectation propagation
[49].

Fig. 3 Gaussian Process learned from the one-dimensional training
data depicted with crosses. The shaded area corresponds to the 95%
confidence region learned for the function distribution, and bold line
indicates the mean predictions. The dashed line indicates a test point
more thoroughly studied in Fig. 4

Fig. 4 Predicted distribution for the test input at -6, with a mean
predicted value of 1.92.Dashed line is the predicted distribution before
training, which is very broad and has a mean predicted value of 0

Fig. 2 A heart rate signal in
beats per minute of 230 samples.
Right: The corresponding ceps-
trum truncated at 50 cepstral
coefficients
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The covariance function used in this study is the so
called rational quadratic with ARD (automatic relevance
determination) defined as follows:

k xi; xj
� � ¼ s 2

f 1þ xi � xj
� �T

M xi � xj
� �

2a

" #� a

ð3Þ

Recall that each example x corresponds to a vector
obtained from the different time series models. In this
equation M=diag(l )–2, and the l1; l2; . . . ; lD parameters in
the diagonal matrix are characteristic length-scales for each
dimension of the input examples. The σf is the signal
variance of the process, which controls its magnitude and
α is the shape parameter. Learning or training the GP
amounts to finding the values for the parameters q ¼
s f ;a; l1; l2; . . . ; lD

� �
(which are iteratively updated accord-

ing to the expectation propagation algorithm) so as to
maximize the likelihood of the class labels given the
training data [46]. The values of the parameters of the di-
agonal matrix M determine the relevance of the
corresponding input dimension. If after training, a length-
scale has a very large value, the covariance will become
almost independent of that input dimension. This ARD
covariance function has been found in other works to
successfully remove uninformative input dimensions [50].
Also, the increase in degrees of freedom of the ARD
covariance function given by the increase in hyper
parameters allows for more complex mappings between
the inputs and the targets to be found.

It has been shown [46] that in the limit a→∞, the
covariance function of Eq. (3) converges to the squared
exponential covariance function, one of the most frequently
used covariance function in kernel methods. The rational
quadratic covariance function can thus be seen as an infinite
sum of squared exponential covariance functions with
different characteristic length-scales. A detailed description
of commonly used covariance functions can be found in the
work of Rasmussen et al. [46].

Protocol

Prediction task

Can we predict the time frame in which the patients fulfill
the criteria for stability that will lead to weaning from
mechanical ventilation? In our ICU, cardiac surgery
patients are weaned off the ventilator using a protocol. In
this protocol, the following criteria have to be met before
sedation can be switched off: hemodynamic stability
(dobutamine ≤5 μg/kg/min, levophed ≤0,2 μg/kg/min and
lactate <2 mmol/L), respiratory stability (the oxygen
saturation in arterial blood flow (PaO2) ≥75 mmHg, the

fraction of inspired oxygen concentration (FiO2) ≤0.5, the
positive end-expiratory pressure (PEEP) ≤8 mbar), temper-
ature stability (blood temperature >36°C, peripheral tem-
perature >30°C) and blood loss stability (sum of blood loss
of all drains <100 ml/h).

To enable future comparisons with predictions per-
formed by intensivists, the considered task was restated as
follows: Predict the probability that the patient will begin to
satisfy the stability criteria within each of the following
time frames (classes): class 1: earlier than 9 h after
admission; class 2: later than 9 h after admission. This
9 h threshold was chosen such that the resulting classes
contained roughly same amount of patients. In class 1 there
was a total of 102 patients and class 2 contained 101
patients. These classes also conform to an intuitive
classification into patients that recover quickly and those
that require prolonged ICU stays.

Preprocessing

Before doing any analysis, the signals were normalized: the
mean was put to zero and the standard deviation to one.
Furthermore, the recorded time series contained a limited
number of missing values or artifacts, usually due to sensor
disconnections. The missing data points were calculated
using linear interpolation. In order to remove these artifacts,
a peak-shaving algorithm was applied. This algorithm
consisted of three major parts. In the first step, the trend
of the original time series was calculated. Secondly, an
upper and lower bound were computed as the trend plus
and minus four times the standard deviation of the trend
respectively. In the third step, values of the original signal
that did not lie in between the lower and upper bound were
replaced by linearly interpolated values calculated from the
previous and next value that lay in between the two
borders.

In total, the inclusion of the missing values and the
removal of artifacts affected 1.9% of all data points.

Time series models

Data from each patient, collected during the first 4 h ICU
stay, were used to generate the different time-series models,
the parameters of which were used as the features of the
examples. One of the two possible class labels was assigned
to each example. Figure 5 shows data from one patient used
to generate a training example, and how the appropriate
class label was assigned.

On the one hand, sufficient data points should be taken
into account in the modeling process. On the other hand,
the sooner after admission of the patient a reliable
prediction can be made about the extubation time, the
better. Therefore, an interval duration of 4 h was chosen for
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our analysis. Shorter time intervals led to non-stable MAR
models. The different time-series analysis techniques
described above, were applied to each of the 4-hour
intervals of data for each patient in order to generate the
examples used as inputs for the GP classifier. In order to
avoid over-fitting, the dimension of the examples should be
kept low enough. According to traditional rules of thumb, 5
to 10 observations are required for each parameter to be
estimated [51]. This leads to maximum number of
parameters between 18 and 36 in our 10-fold cross-
validation schema (explained below) for 203 patients. The
types of examples (input vectors) used to train the GP
classifiers in our experiments are explained below. They
were designed in a way that the rule above is not violated.

Signal Average and standard deviation (Avgstd) Each
example is a 20 dimensional vector containing four values
for each of the five physiological variables of Table 1. For
two intervals of 2 h the mean and the standard deviation
were calculated for each signal.

MAR coefficients All five variables of Table 1 were used as
input of a first order MAR model. The first order was chosen
in order to keep all models as simple and compact as possible.
Moreover, higher order models would lead to examples of
high dimensions and in that case there is a higher chance for
over-fitting (cfr. supra). So, matrix A of Eq. 1 was a 5×5
matrix of which all 25 parameters were put in a 25
dimensional vector that served as input example of the GP.

Cepstral coefficients (CEP) Each example contained the
four (CEP_4) or five (CEP_5) first cepstral coefficients of

all variables in Table 1, i.e. the four or five first numbers of
the sequence y of Eq. 2. This resulted in a 20 or 25
dimensional vector respectively.

Gaussian processes

A binary probabilistic classifier was learned for class 1,
such that for each patient a probability p of belonging to the
class was obtained, the probability of belonging to class 2
could readily be determined as 1−p. Training examples for
each classifier were labeled positive (t=+1) if the moment
when the patient became stable started within the
corresponding time interval and were labeled negative (t=
−1) otherwise.

All examples generated for all patients from one type of
time series model and their corresponding class labels were
collected in one dataset. The dataset was randomly split
into 10-folds, 1 fold was removed and used as test set,
while the data from the remaining folds was used as
training for the classifier. Once the classifier has been
trained, the predicted probability of belonging to class 1
was determined for each example in the test set. The
described process was repeated for each of the 10 folds so
that a probability of belonging to each class was assigned to
each of the N patients. In other words, a 10-fold cross-

Table 3 The aROC’s and Brier scores for all experiments

aROC / Brier score LOGREG GP

Admission (7) 0.543 0.547
0.249 0.247

Avgstd (20) 0.628 0.713
0.241 0.214

MAR (25) 0.591 0.708
0.250 0.219

CEP_4 (20) 0.542 0.707
0.250 0.218

CEP_5 (25) 0.542 0.749
0.247 0.206

The first column gives the logistic regression results, the second
column the results of the Gaussian process classifier

Fig. 5 The gray area corresponds to 4-hour interval of data used to
generate the example. The signals are numbered according to Table 1
(1: arterial blood pressure, 2: SpO2, 3: heart rate, 4: blood
temperature, 5: arterial pulmonary pressure). The dashed vertical line
depicts the 9-hour class-boundary and the solid vertical line indicates
the moment when the patient satisfies the stability criteria (minute
627). The example generated from this data is labeled as belonging to
Class 2 (Stability criteria met after 9 h)

Table 4 The statistical significance of the differences in performance
between the GP classifier and the logistic regression shown for the
Brier scores as well as the aROC’s

INPUT Brier score aROC

Admission No No
Avgstd Yes Yes
MAR Yes Yes
CEP_4 Yes Yes
CEP_5 Yes Yes
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validation was performed. The obtained probabilities
allowed for the computation of an aROC (area under the
receiver operating characteristic curve) for each classifier. If
a hard-classification is required, each patient would be
assigned to the class for which it had the highest
probability. To evaluate the calibration of the predicted
probabilities the Brier Score [52] was also computed.

To evaluate whether there was statistical significance
between the differences in performance of the classifiers
two approaches were followed. Regarding the Brier scores,
a non-parametric bootstrap method [53] was used to
generate a bootstrap distribution of 1,000 samples of mean
differences, from which a 95% confidence interval could be
determined based on the 2.5% and 97.5% quartiles. If the
confidence interval did not include 0, then a statistically
significant difference at the 0.05 level was declared.
Regarding the aROC scores the non-parametric method
described in DeLong et al. [54] was implemented to
determine significance at the 0.05 level.

Results and discussion

Table 3 gives the obtained aROCs as well as the Brier
scores for each experiment. The left column of 3 contains to
the results of the corresponding GP probabilistic binary
classifier with the covariance function of Eq. 3. The right
column contains the results obtained when using a logistic
regression (LOGREG) model [55], included here as a
baseline for performance.

The main goal of this research was to investigate the
prognostic value of dynamic information abstracted in
various ways when predicting how much time a critically
ill patient needs to reach a stable state after coronary bypass
surgery. Five physiological variables were considered, not

including demographic or historical patient information. A
separate model on the basis of admission data was
developed for comparison purposes.

Table 4 shows that the increase in performance for all
GP models versus the LOGREG models was found to be
significant, except for the model based on admission data
for which the difference in performance was not statistically
significant. So, although logistic regression techniques are
commonly used in medical applications, other classifiers
might lead to better results. This was, among others, also
concluded by Sakai et al. who found that artificial neural
networks have a higher level of accuracy than logistic
regression models for the diagnosis of acute appendicitis
[56]. In another study about assessing the posttraumatic
cerebral hemodynamia in minor head injured patients, Erol et
al. obtained better classification results with multi-layer
perceptron neural networks than with logistic regressions [57].

The statistical significances of the GP are shown in
Table 5. From this it is clear that all dynamic models
perform better than the model purely based on admission
information, with respect to both the Brier score and aROC.
In Table 4, the GP with 5 cepstral coefficients (CEP_5) had
the best performance (lowest Brier score and highest
aROC). From Table 5 it can be seen that the difference in
performance is shown to be significant. This agrees with
our assumptions that it is a promising approach towards
feature extraction for time-series prediction tasks. Only the
first five cepstral coefficients seem to contain enough
information to result in a good classification, which is
consistent with the findings of Kapalkis et al. [43]. The
poor performance of the models based on static information
alone can be attributed to the similarity of these parameters
for the two classes in our particular population (see Table 2).

There is no statistically significant difference in perfor-
mance between CEP_4 and MAR or between CEP_4 and

Table 5 The statistical significance of the differences between the different GP classifiers

Brier score / aROC Admission Avgstd MAR CEP_4 CEP_5

Admission – Yes/yes Yes/yes Yes/yes Yes/yes
Avgstd – No/yes No/no Yes/yes
MAR – No/no Yes/yes
CEP_4 – Yes/yes

Table 6 The statistical significance of the differences between the different logistic regressions

Brier score /aROC Admission Avgstd MAR CEP_4 CEP_5

Admission – No/yes No/yes No/no Yes/no
Avgstd – No/yes No/yes No/yes
MAR – No/yes No/yes
CEP_4 – No/no
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Avgstd. With respect to the Brier score there is no sta-
tistically significant difference between MAR and Avgstd,
but there is one regarding aROC values (in favor of Avgstd).

Table 6 gives the statistical significances for the logistic
regression models. From this table can be concluded that
there is no significant statistical difference between any of
the two models with respect to the Brier score. When
considering the aROC’s, Avgstd has the best performance
with statistical significance.

A possibility to improve the results is to combine the
parameters of several dynamic analysis techniques in one
input example for the GP classifier, or to combine static
admission data and dynamic information of the first hours
in the ICU.

To improve on the generalization capabilities of the
classifiers it would also be of use to increase the number of
patients used during training. When more patients are
included, the models can be trained on more features what
possibly results in better performances while over-fitting is
still avoided. This increase both in the number of
physiological variables and patients will however require
more complex implementations of the algorithms presented
such that they are able to cope with the data increase while
still remaining computationally tractable. Possible variants
of the GP classifier include the use of sparse methods,
aggregation, dimensionality reduction techniques and the
inclusion of more specialized kernels that better incorporate
the available prior knowledge.

To our knowledge, the work of Verduijn et al. [35] is
most closely related to our study. They compared two
temporal abstraction procedures, one that resulted in
symbolic descriptions of the data and one that resulted in
numerical mate features. These procedures were applied to
monitoring data from the ICU for the estimation of the risk
of prolonged mechanical ventilation after cardiac surgery.
The defined the outcome as “mechanical ventilation longer
than 24 h” and used high frequently measured physiolog-
ical data as well as laboratory values of the first 12 h in the
ICU. The main conclusion of their work was that induction
of numerical meta features is preferable to extraction of
symbolic meta features using existing clinical concepts.
These results compliment our own findings, in which for a
particular population, extracted dynamic features can be
used as predictors that outperform more typically used
clinical concepts such as static admission data.

Conclusion

In this study, the use of dynamic information, obtained
from physiological signals in various ways, was investigat-
ed for the prediction task about the future stability of ICU
patients, resulting in weaning of mechanical ventilators. For

every patient a probability of belonging to each of two
classes was assigned. Each class was defined according to
the time needed to reach a stable state after coronary bypass
surgery: less or more than 9 h. For this prediction, dynamic
data from the first 4 h of the patient’s ICU stay were
included and results were compared to a model built upon
admission data only. The main conclusion of this work is
that it is preferable to use dynamic information of the first
few hours after admission in the ICU above using only
static admission data for the considered prediction task. All
models based on dynamic information preformed better
with respect to aROC’s and Brier scores and the differences
were found to be significant. When compared to logistic
regression, the Gaussian process classifier results in better
performances in all cases.
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