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Abstract
We investigate a second-order accurate time-stepping scheme for solving a time-fractional
diffusion equation with a Caputo derivative of order α ∈ (0, 1). The basic idea of our scheme
is based on local integration followed by linear interpolation. It reduces to the standardCrank–
Nicolson scheme in the classical diffusion case, that is, as α → 1. Using a novel approach,
we show that the proposed scheme is α-robust and second-order accurate in the L2(L2)-
norm, assuming a suitable time-graded mesh. For completeness, we use the Galerkin finite
element method for the spatial discretization and discuss the error analysis under reasonable
regularity assumptions on the given data. Some numerical results are presented at the end.

Keywords Fractional diffusion equation · Second-order scheme · Graded meshes · Uniform
convergence · Error analysis

1 Introduction

We shall approximate the solution of the time-fractional diffusion equation

∂α
t u(x, t) + Au(x, t) = f (x, t) for (x, t) ∈ � × (0, T ], (1.1)

subject to homogeneous Dirichlet boundary conditions, that is, u(x, t) = 0 on ∂� × (0, T ],
with u(x, 0) = u0(x) at the initial time level t = 0. The spatial domain� ⊂ R

d (with d = 1,
2, 3) is a convex polyhedron, 0 < α < 1, the time fractional Caputo derivative

∂α
t v(t) := I1−αv′(t) =

∫ t

0
ω1−α(t − s)v′(s) ds, with ω1−α(t) := t−α

�(1 − α)
,
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where v′ = ∂v/∂t and � denotes the gamma function. We use the notation Iv(t) for the
standard time integral of v from 0 to t . In (1.1),A is an elliptic operator in the spatial variables,
defined byAw(x) = −∇ · (κ(x)∇w)(x). The diffusivity κ ∈ L∞(�) satisfies 0 < κmin ≤ κ

on �, for some constant κmin. For the error analysis, we also require that κ ∈ W 1,∞(�).
The presence of the nonlocal time fractional (Caputo) derivative in (1.1) and the fact that

the solution u suffers from aweak singularity near t = 0 have a direct impact on the accuracy,
and consequently the convergence rates, of numerical methods. To overcome this difficulty,
different approaches have been applied including corrections, graded meshes, and convolu-
tion quadrature [6, 9, 15, 24, 29, 30]. Indeed, the numerical solutions for model problems of
the form (1.1), including a priori and a posteriori error analyses and fast algorithms, were
studied by various authors over the past fifteen years using multiple approaches [1, 3, 5, 8,
10, 11, 13, 14, 18], see also [27, 31–33, 35, 36]. For more references and details, see the
recent monograph by Jin and Zhou [12].

In this work, we investigate rigorously the error from approximating the solution of the
initial-boundary value problem (1.1) using a uniform second-order accurate time-stepping
method. The latter is defined via a local time-integration of problem (1.1) on each subinter-
val of the time mesh combined with continuous piecewise linear interpolation. The proposed
scheme is identical to the piecewise-linear case of a discontinuous Petrov–Galerkin method
proposed in [21]. Therein, with τ being the maximum time mesh step size, a suboptimal
convergence rate of order O(τ (3−α)/2) was proved. A time-graded mesh (2.1) was employed
to compensate for the singular behaviour of the continuous solution at t = 0. In the limit-
ing case as α → 1, the problem (1.1) reduces to the classical diffusion equation, and the
considered numerical scheme reduces to the classical Crank–Nicolson method. In this case,
O(τ (3−α)/2) reduces to O(τ ) which is far from the optimal O(τ 2) rate achieved in practice.

By using an innovative approach that relies on interesting implicit polynomial interpola-
tions and duality arguments, we show O(τ 2) convergence, whilst at the same time relaxing
the imposed regularity assumptions from the earlier analysis [21]. This convergence rate
is α-robust in the sense that the constant in the error bound remains bounded as α → 1.
Implementation wise, although the proposed scheme is uniformly second-order accurate,
the computational cost is comparable to the well-known backward Euler or L1 [16, 24, 28]
methods, which are not even first-order accurate.

For completeness,we discretize the problem (1.1) over the spatial domain� using the stan-
dard Galerkin finite element method (FEM), thereby defining a fully discrete approximation
to u. An additional error of order O(h2) is anticipated under certain regularity assumptions
on the continuous solution, where h is the maximum spatial finite element mesh size. This is
proved via a concise approach that relies on the discrete version of the earlier error analysis.
To make this feasible, the solution of the semidiscrete Galerkin finite element solution of
problem (1.1) plays the role of the comparison function.

Outline of the paper. In the next section, we define our time-stepping scheme, introduce
some notations and technical lemmas, and summarize the convergence results in Theorem 1.
The required regularity properties are also highlighted. Section 3 proves some error bounds
for the implicit piecewise-linear interpolant û defined in (2.6). Section 4 is devoted to showing
the second-order of accuracy of the proposed time-stepping scheme via a duality argument.
In Sect. 5, we discretize in space via the Galerkin finite element method and discuss the
convergence of the fully discrete solution. To support our theoretical findings, we present
some numerical results in Sect. 6. Finally, a short technical appendix derives an α-robust
interpolation estimate.
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2 Time-Stepping Scheme

This section is devoted to discretizing the model problem (1.1) over the time interval [0, T ]
through a second-order accurate method, and stating our main convergence results. We begin
by introducing some notations that will be used throughout the paper.

For 	 ≥ 0, the norm on H 	(�) is denoted by ‖ · ‖	. The Sobolev spaces H 	(�) and
H1
0 (�) are defined as usual, and the norm ‖ · ‖Ḣr (�) in the (fractional-order) Sobolev space

Ḣr (�) is defined in the usual way via the Dirichlet eigenfunctions of the self-adjoint elliptic
operator A on �. The inner product in L2(�) is denoted by 〈·, ·〉, and the associated norm
by ‖ · ‖. The generic constant C remains bounded for 0 < α ≤ 1, and is independent of
the time mesh and the finite element mesh, but may depend on �, T , and other quantities,
including κ , u0 and f .

Define the time mesh 0 = t0 < t1 < t2 < · · · < tN = T by

tn = (n τ)γ , with τ = T 1/γ /N and γ ≥ 1, for 0 ≤ n ≤ N , (2.1)

and let τn = tn − tn−1. Such a time-graded mesh has the properties [19]

tn ≤ 2γ tn−1 and γ τ t1−1/γ
n−1 ≤ τn ≤ γ τ t1−1/γ

n , for n ≥ 2. (2.2)

Integrating problem (1.1) over In := (tn−1, tn) and then dividing by τn yields

1

τn

∫
In

∂α
t u dt + Aūn = f̄n, for 1 ≤ n ≤ N , (2.3)

where f̄n = τ−1
n

∫
In

f (t) dt denotes the averagevalue of a function f over the time interval In ,
and similarly, ūn is defined. Motivated by (2.3), for t ∈ In and for 1 ≤ n ≤ N , our
semidiscrete approximate solution U (t) ≈ u(t) is defined by requiring that

U (t) = tn − t

τn
Un−1 + t − tn−1

τn
Un, Un := U (tn),

with
1

τn

∫
In

∂α
t U dt + AUn−1/2 = f̄n, with U 0 = U (0) = u0, (2.4)

whereUn−1/2 = Ūn = 1
2 (U

n +Un−1). If α → 1, then ∂α
t u → u′ and ∂α

t U → U ′, implying
that our scheme reduces to the Crank–Nicolson scheme for the classical diffusion equation.

Our convergence analysis relies on decomposing the error as

η = u −U = ψ − θ with ψ = u − û and θ = U − û, (2.5)

where û is a continuous piecewise-linear function in time satisfying∫
In
û(t) dt =

∫
In
u(t) dt for 1 ≤ n ≤ N , with û(0) = û0 = u0. (2.6)

Alternatively, û can be defined via Iû(tn) = Iu(tn) for 1 ≤ n ≤ N , with û(0) = u0, and we
say that û interpolates u implicitly. The decomposition (2.5) of the error η follows a well-
known pattern, but the novel choice of the piecewise linear function û makes possible our
improved error analysis under reasonable regularity assumptions. The continuous average
of u equals both the continuous and the discrete average of û on each time subinterval In .
For comparison, let uI denote the usual continuous piecewise-linear interpolant to u, that is,

uI (t) = tn − t

τn
u(tn−1) + t − tn−1

τn
u(tn) for t ∈ In, (2.7)
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and observe that uI and u have the same discrete average 1
2 (u(tn) + u(tn−1)) on each In , but

their continuous averages will differ unless u is linear on In .
Subtracting (2.4) from (2.3) and using (2.6), we obtain∫

In
∂α
t (ψ − θ) dt −

∫
In
Aθ dt = 0.

Taking the L2(�)-inner product with a test function ϕ ∈ H1
0 (�), and applying the divergence

theorem, it follows that∫
In

〈I1−αθ ′, ϕ〉 dt +
∫
In

〈κ∇θ,∇ϕ〉 dt =
∫
In

〈I1−αψ ′, ϕ〉 dt . (2.8)

Choosing ϕ = θ ′ and summing over n yields

I(〈I1−αθ ′, θ ′〉)(tn) + I(〈κ∇θ,∇θ ′〉)(tn) = I(〈I1−αψ ′, θ ′〉)(tn).
Since I(〈κ∇θ,∇θ ′〉)(tn) = 1

2 (‖
√

κ∇θ(tn)‖2 − ‖√κ∇θ(0)‖2) = 1
2‖

√
κ∇θ(tn)‖2,

I(〈I1−αθ ′, θ ′〉)(tn) ≤ I(〈I1−αψ ′, θ ′〉)(tn). (2.9)

To proceed in our analysis, we make use of the following technical lemma. For the proof,
we refer to Mustapha and Schötzau [22, Lemma 3.1 (iii)].

Lemma 1 For 0 < α ≤ 1 and ε > 0,

I(〈I1−αv,w〉)(t) ≤ 1

α

(
I(〈I1−αv, v〉)(t)

)1/2(
I(〈I1−αw,w〉)(t)

)1/2

≤ εI(〈I1−αv, v〉)(t) + 1

4εα2 I(〈I1−αw,w〉)(t).

For later use, by expanding 〈I1−α(v +w), v +w)〉 then applying Lemma 1 with ε = 1/(2α)

we deduce the inequality in the next lemma.

Lemma 2 For 0 < α ≤ 1,

I(〈I1−α(v + w), v + w〉)(t) ≤ (1 + α−1)
(
I(〈I1−αv, v〉)(t) + I(〈I1−αw,w〉)(t)

)
.

We now apply Lemma 1 to the right-hand side of (2.9) with ε = 1/(2α2). Multiplying
through by 2, and then cancelling the similar terms, leads to the estimate below that will be
used later in our convergence analysis.

I(〈I1−αθ ′, θ ′〉)(tn) ≤ 1

α2 I(〈I1−αψ ′, ψ ′〉)(tn), (2.10)

Under reasonable regularity assumptions, a novel error analysis involving implicit inter-
polations and a duality argument leads to the convergence results in the next theorem. With
J = (0, T ), an optimal O(τ 2)-rate of convergence is achieved in the L2(J ; L2(�))-norm.
Our numerical results illustrate this in the stronger L∞(J ; L2(�))-norm. Moreover, our
numerical results suggest that the condition on the graded mesh exponent can be further
relaxed. More precisely, instead of γ > max{2/σ, (3 − α)/(2σ − α)} it suffices to impose
γ > 2/σ .

The developed error analysis requires the following regularity property [11, Theorems
2.1 and 2.2], [26, Theorems 1 and 2], and: for some σ > 0,

t‖u′(t)‖ + t2‖u′′(t)‖ + t3‖u′′′(t)‖ ≤ Ctσ for t > 0. (2.11)

123



Journal of Scientific Computing (2024) 99 :87 Page 5 of 22 87

For example, if f ≡ 0 and u0 ∈ Ḣr (�)with 1 ≤ r ≤ 2, then (2.11) holds true for σ = rα/2.
For a given time interval Q, let

‖w‖Q = sup
t∈Q

‖w(t)‖ and ‖w‖L2(Q) =
( ∫

Q
‖w(t)‖2 dt

)1/2

denote the norms in L∞(
Q; L2(�)

)
and L2

(
Q; L2(�)

)
, respectively.

Theorem 1 Let u and U be the solutions of (1.1) and (2.4), respectively. If the graded time
mesh exponent γ > max{2/σ, (3 − α)/(2σ − α)} and if the regularity assumption (2.11)
holds true with σ > α/2, then we have

‖u −U‖L2(J ) ≤ Cα−2τ 2, for 0 < α < 1.

Proof The desired estimate follows from Lemma 6 and Theorem 2 below. ��

3 Errors from Implicit Interpolations

In preparation for our convergence analysis, we now study the error from approximating
u by û, and proceed to estimate ‖ψ‖ and I(〈I1−αψ ′, ψ ′〉). These estimates assume that
the regularity property (2.11) holds. For ease of reference, we here introduce the parameter
δ = σ − 2

γ
whichwill subsequently appear repeatedly.We start this sectionwith the following

representation of the implicit interpolation error in the approximation u ≈ û at t = tn .

Lemma 3 For 1 ≤ n ≤ N, ψn = ∑n
j=1(−1)n+ j+1� j where

� j = 2

τ j

∫
I j

(u − uI ) dt = − 1

τ j

∫
I j

(t j − t)(t − t j−1)u
′′(t) dt .

Proof Since
∫
In
u I dt = 1

2 τn(u
n + un−1), we find using (2.6) that

ψn = −ψn−1 − 2

τn

∫
In

(u − uI ) dt .

The formula for ψn then follows by induction on n, after noting that ψ0 = 0. Recalling the
Peano kernel for the trapezoidal rule, we see that∫

I j
(u − uI )(t) dt = −1

2

∫
I j

(t j − t)(t − t j−1)u
′′(t) dt,

implying the second expression for � j . ��
Lemma 4 For 1 ≤ n ≤ N,

‖ψn‖ ≤
∫
I1
t‖u′′(t)‖ dt + 1

12

(
τ 22 ‖u′′(t1)‖ + 2τ 2n ‖u′′(tn)‖ + 3

n∑
j=2

τ 2j

∫
I j

‖u′′′‖ dt
)

and ‖ψ(t)‖ ≤ ‖u(t) − uI (t)‖ + max
(‖ψn‖, ‖ψn−1‖) for t ∈ In.

Proof For t ∈ I j , we have the identity

−u′′(t) = 1

2

∫ t j

t
u′′′(s) ds − 1

2

∫ t

t j−1

u′′′(s) ds − (u′′(t j ) + u′′(t j−1))/2.

123
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Multiply both sides by (t j − t)(t − t j−1) and integrate to obtain

� j = − τ 2j

12
[u′′(t j ) + u′′(t j−1)] + R j ,

where

R j = 1

2τ j

∫
I j

(t j − t)(t − t j−1)

(∫ t j

t
u′′′(s) ds −

∫ t

t j−1

u′′′(s) ds
)
dt .

Thus, by Lemma 3,

(−1)nψn = �1 + 1

12

n∑
j=2

(−1) jτ 2j [u′′(t j ) + u′′(t j−1)] −
n∑
j=2

(−1) j R j .

Shifting the summation index, so

n∑
j=2

(−1) jτ 2j u
′′(t j−1) = τ 22 u

′′(t1) −
n−1∑
j=2

(−1) jτ 2j+1u
′′(t j ).

Since �1 = −τ−1
1

∫
I1

(t1 − s)su′′(s) ds and since ‖R j‖ ≤ τ 2j
6

∫
I j

‖u′′′(t)‖ dt,

‖ψn‖ ≤
∫
I1
t‖u′′(t)‖ dt + 1

12

(
τ 22 ‖u′′(t1)‖ + τ 2n ‖u′′(tn)‖

+
n−1∑
j=2

(τ 2j+1 − τ 2j )‖u′′(t j )‖ + 2
n∑
j=2

τ 2j

∫
I j

‖u′′′(t)‖ dt
)

.

Using

n−1∑
j=2

τ 2j+1‖u′′(t j )‖ =
n∑
j=3

τ 2j ‖u′′(t j−1)‖ ≤
n∑
j=3

τ 2j

(
‖u′′(t j )‖ +

∫
I j

‖u′′′(t)‖ dt
)
,

and the bound for ‖ψn‖ follows after canceling the common terms.
The interpolantψI , defined as in (2.7), satisfiesψI = uI −û, leading to the representation

ψ = u − û = ψI + u − uI , (3.1)

which implies the desired bound for ‖ψ(t)‖ (as stated in the statement of this lemma) because
‖ψI (t)‖ ≤ max

(‖ψn‖, ‖ψn−1‖) for t ∈ In . ��

Corollary 1 Under the regularity assumption in (2.11) and for a time mesh of the form (2.1)
with grading parameter γ ≥ 1 we have, for n ≥ 1,

‖ψn‖ ≤ ‖ψ‖In ≤ C ×
{

τ 2 log(tn/t1), if γ = 2/σ,

τmin(γ σ,2)tmax(0,δ)
n , if γ �= 2/σ.

Proof First we show that for γ ≥ 1,

‖u − uI ‖In ≤ Cτmin(γ σ,2)tmax(0,δ)
n . (3.2)
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Since the interpolation error u − uI vanishes if u is a polynomial of degree 1, by computing
the Peano kernel one finds that for t ∈ In ,

u(t) − uI (t) = − tn − t

τn

∫ t

tn−1

(s − tn−1)u
′′(s) ds − t − tn−1

τn

∫ tn

t
(tn − s)u′′(s) ds. (3.3)

The right-side is bounded by
∫ t

tn−1

(s − tn−1)‖u′′(s)‖ ds +
∫ tn

t
(t − tn−1)‖u′′(s)‖ ds ≤

∫
In

(s − tn−1)‖u′′(s)‖ ds

and so, by using the time mesh properties in (2.2), we get

‖u − uI ‖In ≤ Cτnt
−1
n

∫
In
t‖u′′(t)‖ dt ≤ Cτnt

−1
n

∫
In
tσ−1 dt ≤ Cτ 2n t

σ−2
n , n ≥ 1.

Since τn ≤ Cτ t1−1/γ
n , the proof of (3.2) is completed after noting that

τ 2n t
σ−2
n ≤ Cτ 2tδn ≤ Cτ 2 max(tδn , t

δ
1 ) ≤ Cτmin(γ σ,2)tmax(0,δ)

n . (3.4)

Turning to the estimate for ψn , Lemma 4 and (2.11) imply that

‖ψn‖ ≤ C
∫
I1
tσ−1 dt + Cτ 22 t

σ−2
1 + Cτ 2n t

σ−2
n + C

n∑
j=2

τ 2j

∫
I j
tσ−3 dt,

for 1 ≤ n ≤ N . Since t1 = τγ and τ2 ≤ 2γ τ γ ,
∫
I1
tσ−1 dt + τ 22 t

σ−2
1 ≤ Cτγσ , and we again

bound τ 2n t
σ−2
n using (3.4). For the sum over j ,

n∑
j=2

τ 2j

∫
I j
tσ−3 dt ≤ C

n∑
j=2

τ 2t2−2/γ
j

∫
I j
tσ−3 dt ≤ Cτ 2

∫ tn

t1
tδ−1 dt,

and the estimate for ‖ψn‖ follows. ��
The next target is to estimate I(〈I1−αψ ′, ψ ′〉)(tn). Preceding this, we need to bound ‖ψ ′‖

in the next lemma.

Lemma 5 We have ‖ψ ′(t)‖ ≤ tσ−1 for t ∈ I1. Moreover, ‖ψ ′(t)‖ ≤ Cτ 2τ−1
n tδn for t ∈ In

with n ≥ 2, and for δ > 0.

Proof Differentiating (3.1) and (3.3), we see for t ∈ In that

ψ ′(t) = 1

τn

∫ t

tn−1

(s − tn−1)u
′′(s) ds − 1

τn

∫ tn

t
(tn − s)u′′(s) ds + τ−1

n (ψn − ψn−1).

Thus, if t ∈ I1 then, by (2.11), Corollary 1, and the fact that ψ0 = 0,

‖ψ ′(t)‖ ≤ Cτ−1
∫ t

0
sσ−1 ds + Cτ−1

1

∫ t1

t
(t1 − s)sσ−2 ds + Cτσ−1

1 ≤ Ctσ−1.

If δ > 0, n ≥ 2 and t ∈ In then, recalling (3.4) and using again (2.11),

τn‖ψ ′(t)‖ ≤ Cτn

∫
In
tσ−2 dt + Cτ 2tδn ≤ Cτ 2n t

σ−2
n + Cτ 2tδn ≤ Cτ 2tδn ,

showing that ‖ψ ′(t)‖ ≤ Cτ 2τ−1
n tδn . ��
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Lemma 6 Assume σ > α/2. Then
∣∣I(〈I1−αψ ′, ψ ′〉)(tn)

∣∣ ≤ Cτ 3−α for n ≥ 1, provided that
γ > max{2/σ, (3 − α)/(2σ − α)}.

Proof For n = 1, the Cauchy–Schwarz inequality, Lemma 5, and the assumption σ > α/2
give

∣∣∣I(〈I1−αψ ′, ψ ′〉)(t1)
∣∣∣ ≤ C

∫ t1

0
tσ−1

∫ t

0
(t − s)−αsσ−1 ds dt ≤ Cτ 2σ−α

1 . (3.5)

To deal with the case n ≥ 2, we make the splitting I1−αψ ′ = T1 + T2 where

T1(t) =
∫ t j−1

0
ω1−α(t − s)ψ ′(s) ds and T2(t) =

∫ t

t j−1

ω1−α(t − s)ψ ′(s) ds

for t ∈ I j and j ≥ 2. Using Lemma 5 and (2.2), we observe that

‖T2(t)‖ ≤ C
∫ t

t j−1

ω1−α(t − s)
τ 2sδ

τ j
ds ≤ C

τ 2tδ

τ j
ω2−α(t − t j−1) ≤ Cτ 2tδτ−α

j .

For estimating T1(t), integrate by parts recalling ψ0 = 0,

T1(t) = ω1−α(t − t j−1)ψ
j−1 +

∫ t j−1

0
ω−α(t − s)ψ(s) ds,

where ω−α(t) = ω′
1−α(t) = −αt−α−1/�(1 − α). We apply Corollary 1 to conclude that

‖T1(t)‖ is bounded by

Cτ 2tδj−1

(
ω1−α(t − t j−1) −

∫ t j−1

0
ω−α(t − s) ds

)
≤ Cτ 2tδjω1−α(t − t j−1).

Lemma 5 and above estimates for ‖T1‖ and ‖T2‖ yield

‖ψ ′‖I j
∫
I j

(‖T1‖ + ‖T2‖
)
dt ≤ C(τ 2tδj τ

−1
j )τ 2tδj (τ

1−α
j ) ≤ Cτ 4t2δj τ−α

j , for j ≥ 2.

By using this and (3.5), and noting that γ (2σ − α) > 3 − α, we reach

∣∣∣I(〈I1−αψ ′, ψ ′〉)(tn)
∣∣∣ ≤

∣∣∣∣
∫ t1

0
〈I1−αψ ′, ψ ′〉 dt

∣∣∣∣ +
∣∣∣∣
∫ tn

t1
〈I1−αψ ′, ψ ′〉 dt

∣∣∣∣

≤ Cτ 3−α +
n∑
j=2

‖ψ ′‖I j
∫
I j

(‖T1‖ + ‖T2‖
)
dt ≤ Cτ 3−α + C

n∑
j=2

τ 4t2δj τ−α
j ,

for j ≥ 2. By (2.2), if j ≥ 2 then τ 1+α ≤ Cτ 1+α
j t−(1+α)(1−1/γ )

j so

τ 1+α
n∑
j=2

t2δj τ−α
j ≤ C

n∑
j=2

t2δ−(1+α)(1−1/γ )

j τ j ≤ C
∫ tn

t1
t2σ−α−(3−α)/γ−1 dt ≤ C,

and therefore the desired bound holds. ��
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4 Errors from the Time Discretizations

This section is devoted to estimating the error η = u − U from the time discretization in
the norm of L2(J ; L2(�)). To achieve an optimal convergence rate, we employ a duality
argument in addition to the usage of the time graded meshes. By reversing the order of
integration, we find that

I(〈Iαv,w〉)(T ) = I(〈v,J α
T w〉)(T ) where (J α

T w)(t) =
∫ T

t
ωα(s − t)w(s) ds.

Using I(〈∂α
t v,w〉)(T ) = I(〈v′,J 1−α

T w〉)(T ) and integrating by parts yield

I(〈∂α
t v,w〉)(T ) = −〈v(0), (J 1−α

T w)(0)〉 − I(〈v, (J 1−α
T w)′〉)(T ), (4.1)

and since ∂α
t v = I1−αv′ = (I1−αv)′ − v(0)ω1−α ,

I(〈(I1−αv)′, w〉)(T ) = −I(〈v, (J 1−α
T w)′〉)(T ). (4.2)

We remark that Zhang et al. [34, Equation (89)] have recently exploited this dual
operatorw �→ −(J 1−α

T w)′ in the error analysis of a discontinuousGalerkin scheme for (1.1).
Suppose that ϕ satisfies the final-value problem

−(J 1−α
T ϕ)′ + Aϕ = η on � × (0, T ), with ϕ(x, T ) = 0, (4.3)

subject to homogeneous Dirichlet boundary conditions, that is, ϕ(x, t) = 0 on ∂� × (0, T ).
Let y(t) = ϕ(0) + ∫ t

0 ϕ(s) ds so that y solves the initial-value problem

y′ = ϕ for 0 < t < T , with y(0) = ϕ(0), (4.4)

and with yI denotes the continuous piecewise-linear function that interpolates y at the time
levels t j , put

Y = y − yI . (4.5)

Lemma 7 With the notation above, ‖η‖2
L2(J )

≤ I(〈Y ′, I1−αη′ + Aη〉)(T ).

Proof Using (4.1), (4.3), η(0) = 0 and (4.4),

‖η‖2L2(J )
= I(〈−(J 1−α

T ϕ)′ + Aϕ, η〉)(T ) = I(〈y′, I1−αη′ + Aη〉)(T ).

At the same time, (2.3) and (2.4) imply that

1

τn

∫
In

(
∂α
t η + Aη

)
dt = 0 so

∫
In

〈y′
I , ∂

α
t η + Aη〉 dt = 0,

because y′
I is constant on In . Since Y ′ = y′ − y′

I , the inequality follows at once. ��
We will show below in Theorem 3 that the interpolation error Y satisfies

I(〈Y ′, I1−αY ′〉)(T ) + I(〈AY , IαAY ′〉)(T ) ≤ Cτ 1+α‖η‖2L2(J )
. (4.6)

Assuming this fact for now, we can derive an estimate for η in terms of ψ ′. We use the
following notations: for a given time-dependent function g,

F(g) = (
I(〈Iαg′, g〉)(T )

)1/2 and G(g) = (
I(〈I1−αg′, g′〉)(T )

)1/2
.

Theorem 2 We have α2‖η‖2
L2(J )

≤ C τα+1I(〈I1−αψ ′, ψ ′〉)(T ).
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Proof It suffices to estimate the right-hand side of the inequality in Lemma 7. By Lemma 1,

αI(〈Y ′, I1−αψ ′〉)(T ) ≤ G(Y )G(ψ) and αI(〈Y ′, I1−αθ ′〉)(T ) ≤ G(Y )G(θ).

After using (2.10) and η′ = ψ ′ − θ ′, we conclude that

α2I(〈Y ′, I1−αη′〉)(T ) ≤ 2G(Y )G(ψ). (4.7)

Since Y (t j ) = 0 for 0 ≤ j ≤ N , integrating by parts, using AY = IAY ′ =
I1−α(IαAY ′), and applying Lemma 1,

αI(〈Y ′,Aθ〉)(T ) = −αI(〈θ ′, I1−α(IαAY ′)〉)(T ) ≤ G(θ)F(AY ).

The same estimate holds with θ replaced by ψ , so because η = ψ − θ , and using (2.10)
again,

α2I(〈Y ′,Aη〉)(T ) ≤ 2F(AY )G(ψ). (4.8)

Adding (4.7) and (4.8), we seeα2‖η‖2
L2(J )

≤ 2G(ψ)(G(Y )+F(AY )) byLemma7. Squaring
both sides, we have

α4‖η‖4L2(J )
≤ 4(G(ψ))2(G(Y ) + F(AY ))2 ≤ 8(G(ψ))2((G(Y ))2 + (F(AY ))2).

Since (G(Y ))2 + (F(AY ))2 is just the left-hand side of (4.6), the desired inequality followed
after cancelling the common factor ‖η‖2

L2(J )
. ��

It remains to prove (4.6). We start by showing preliminary bounds for∣∣I(〈Y ′, I1−αY ′〉)(T )
∣∣ and ∣∣I(〈AY , I1−αAY ′〉)(T )

∣∣ in the next two lemmas. The regular-
ity properties outlined in (2.11) are sufficient to ensure that the assumptions imposed on y in
these lemmas hold true.

Lemma 8 Assume that y, y′ ∈ L2(J ; L2(�)), then for 0 < α < 1, we have

∣∣∣I(〈Y ′, I1−αY ′〉)(T )

∣∣∣ ≤ C(1 − α)

N−2∑
j=1

τ−α
j ‖Y‖2I j + Cτ 1−α‖Y ′‖2L2(J )

.

Proof For t ∈ I j with j ≥ 2, we write I1−αY ′(t) = S1(t) + S2(t) where

S1(t) =
∫ t

t j−2

ω1−α(t − s)Y ′(s) ds and S2(t) =
∫ t j−2

0
ω1−α(t − s)Y ′(s) ds.

Applying the Cauchy–Schwarz inequality, integrating, changing the order of integration, and
integrating again, yields

‖S1‖2L2(I j )
≤

∫
I j

(∫ t

t j−2

ω1−α(t − s) ds

)(∫ t

t j−2

ω1−α(t − s)‖Y ′(s)‖2 ds
)
dt

≤ C(τ j + τ j−1)
1−α

(∫
I j

∫ t j

s
+

∫
I j−1

∫
I j

)
ω1−α(t − s) dt ‖Y ′(s)‖2 ds

≤ C(τ j + τ j−1)
2(1−α)

∫ t j

t j−2

‖Y ′(s)‖2 ds ≤ Cτ
2(1−α)
j

∫ t j

t j−2

‖Y ′(s)‖2 ds.

For t ∈ I1, let S1(t) = ∫ t
0 ω1−α(t − s)Y ′(s) ds and S2(t) = 0. Following the steps above,

we find that ‖S1‖2L2(I1)
≤ Cτ

2(1−α)
1 ‖Y ′‖2

L2(I1)
. Thus,

‖S1‖2L2(J )
≤ Cτ 2(1−α)‖Y ′‖2L2(J )

,
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and consequently

I(|〈Y ′, S1〉|)(T ) ≤ ‖Y ′‖L2(J )‖S1‖L2(J ) ≤ Cτ 1−α‖Y ′‖2L2(J )
. (4.9)

Turning to the second term S2, we integrate by parts (noting that Y j−2 = 0 = Y 0) and
obtain

‖S2(t)‖ =
∥∥∥∥
∫ t j−2

0
ω−α(t − s)Y (s) ds

∥∥∥∥ ≤
j−2∑
i=1

‖Y‖Ii
∫
Ii

|ω−α(t − s)| ds.

Since |ω−α(t − s)| ≤ |ω−α(t j−1 − s)| for t ∈ I j ,

∫
I j

|〈Y ′, S2〉| dt ≤
j−2∑
i=1

∫
I j

‖Y ′(t)‖‖Y‖Ii dt
∫
Ii

|ω−α(t j−1 − s)| ds,

with
∫
I j

‖Y ′(t)‖‖Y‖Ii dt ≤ 1

2

(
‖Y‖2Ii + τ j‖Y ′‖2L2(I j )

)
,

and, remembering that ω−α(t) = −α t−1ω1−α(t),
∫
Ii

|ω−α(t j−1 − s)| ds = ω1−α(t j−1 − ti ) − ω1−α(t j−1 − ti−1).

Since t j − ti ≥ t j−1 − ti−1, ω1−α(t j−1 − ti−1) ≥ ω1−α(t j − ti ), and thus,

∫
I j

|〈Y ′, S2〉| dt ≤ 1

2

j−2∑
i=1

‖Y‖2i [ω1−α(t j−1 − ti ) − ω1−α(t j − ti )]

+τ j

2
‖Y ′‖2L2(I j )

∫ t j−2

0
|ω−α(t j−1 − s)| ds,

and in the second term, noting that 1/�(1 − α) = (1 − α)/�(2 − α),

∫ t j−2

0
|ω−α(t j−1 − s)| ds = ω1−α(t j−1 − t j−2) − ω1−α(t j ) ≤ C(1 − α)τ−α

j−1.

By interchanging the order of the double sum,

I(|〈Y ′, S2〉|)(T ) =
N∑
j=2

∫
I j

|〈Y ′, S2〉| dt ≤ C(1 − α)

×
( N−2∑

i=1

‖Y‖2Ii
N∑

j=i+2

[(t j−1 − ti )
−α − (t j − ti )

−α] +
(
max

2≤ j≤N
τ jτ

−α
j−1

)
‖Y ′‖2L2(J )

)

≤ C(1 − α)

(N−2∑
i=1

τ−α
i+1‖Y‖2Ii + τ 1−α‖Y ′‖2L2(J )

)
,

which, combined with (4.9), yields the desired estimate. ��
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Lemma 9 Assume that Ay ∈ L∞(J ; L2(�)) and Ay′ ∈ L1(J ; L2(�)). Then for 0 < α <

1,

∣∣∣I(〈AY , IαAY ′〉)(T )

∣∣∣ ≤ C
N∑
j=1

τα
j

[(∫
I j

‖AY ′‖ dt
)2

+ ‖AY‖2I j
]
.

Proof Integrating by parts,

I(〈AY , IαAY ′〉)(T ) = −
∫ T

0
〈AY ′, S3〉 dt −

∫ T

0
〈AY ′, S4〉 dt, (4.10)

where we used the splitting IαAY = S3 + S4 with

S3(t) =
∫ t

t j−1

ωα(t − s)AY (s) ds and S4(t) =
∫ t j−1

0
ωα(t − s)AY (s) ds

for t ∈ I j . Since ‖S3(t)‖ ≤ ‖AY‖I j
∫ t
t j−1

ωα(t − s) ds ≤ Cτα
j ‖AY‖I j ,

∣∣∣∣
∫ T

0
〈AY ′, S3〉 dt

∣∣∣∣ ≤ C
N∑
j=1

τα
j ‖AY‖I j

∫
I j

‖AY ′(t)‖ dt . (4.11)

For the estimate involving S4, we reverse the order of integration and then integrate by parts,
to obtain ∫

I j
〈AY ′, S4〉 dt = −

∫ t j−1

0

〈
AY (s),

∫
I j

ωα−1(t − s)AY (t) dt
〉
ds,

and thus, applying the Cauchy–Schwarz inequality and using ‖AY‖Ii ‖AY‖I j ≤ ‖AY‖2Ii +
‖AY‖2I j , we get

∣∣∣∣
∫ T

0
〈AY ′, S4〉 dt

∣∣∣∣ ≤
N∑
j=1

j−1∑
i=1

(‖AY‖2Ii + ‖AY‖2I j
) ∫

Ii

∫
I j

|ωα−1(t − s)| dt ds

=
N−1∑
i=1

‖AY‖2Ii
∫
Ii

∫ tn

ti
|ωα−1(t − s)| dt ds

+
N∑
j=1

‖AY‖2I j
∫
I j

∫ t j−1

0
|ωα−1(t − s)| ds dt

≤
N−1∑
i=1

‖AY‖2Ii
∫
Ii

ωα(ti − s) ds +
N∑
j=1

‖AY‖2I j
∫
I j

ωα(t − t j−1) dt

≤ C
N∑
j=1

τα
j ‖AY‖2I j .

The proof is concluded by inserting this and (4.11) into the splitting (4.10). ��
By using the achieved estimates in the previous two lemmas, we are now able in the next

theorem to provide the missing part in the proof of Theorem 2.

Theorem 3 The inequality (4.6) is satisfied by the function Y defined via (4.3)–(4.5).
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Proof Recall that Y = y − yI where yI is the piecewise linear polynomial that interpolates
y at the time nodes, and y′ = ϕ. Thus, if t ∈ I j then

Y (t) = y(t) − yI (t) = t j − t

τ j

∫ t

t j−1

ϕ(s) ds − t − t j−1

τ j

∫ t j

t
ϕ(s) ds (4.12)

so ‖Y (t)‖ ≤ ∫
I j

‖ϕ‖ ds. Similarly, replacing u with y in (3.3), we have ‖Y (t)‖ ≤
τ j

∫
I j

‖ϕ′‖ ds, and therefore

‖Y‖2I j ≤ τ j‖ϕ‖2L2(I j )
and ‖Y‖2I j ≤ τ 3j ‖ϕ′‖2L2(I j )

. (4.13)

Consider the linear operator B defined by (Bϕ)(t) = τ
−α/2
j ‖Y‖I j for t ∈ I j and 1 ≤ j ≤ N .

The estimates (4.13) give

‖Bϕ‖2L2(J )
≤ Cτ 1−α‖ϕ‖2L2(J )

and ‖Bϕ‖2L2(J )
≤ Cτ 3−α‖ϕ′‖2L2(J )

,

and, since ϕ(T ) = 0 and (τ 1−α)1−α(τ 3−α)α = τ 1+α , we may apply Corollary 2 from the
Appendix to deduce that

N∑
j=1

τ−α
j ‖Y‖2I j = ‖Bϕ‖2L2(J )

≤ Cτ 1+α‖(J 1−α
T ϕ)′‖2L2(J )

. (4.14)

Furthermore, by differentiating (4.12) and (3.3),

Y ′(t) = ϕ(t) − 1

τ j

∫
I j

ϕ(s) ds = 1

τ j

∫ t

t j−1

(s − t j−1)ϕ
′(s) ds − 1

τ j

∫ t j

t
(t j − s)ϕ′(s) ds

for t ∈ I j , so

‖Y ′(t)‖ ≤ ‖ϕ(t)‖ + 1

τ j

∫
I j

‖ϕ(s)‖ ds and ‖Y ′(t)‖ ≤
∫
I j

‖ϕ′(s)‖ ds,

implying that

‖Y ′‖2L2(I j )
≤ 4‖ϕ‖2L2(I j )

and ‖Y ′‖2L2(I j )
≤ τ 2j ‖ϕ′‖2L2(I j )

. (4.15)

After summing over j and once again applying Corollary 2, we arrive at

‖Y ′‖2L2(J )
≤ Cτ 2α‖(J 1−α

T ϕ)′‖2L2(J )
. (4.16)

Now take the inner product of (4.3) with −(J 1−α
T ϕ)′ in L2(�), and then integrate in time to

obtain

‖(J 1−α
T ϕ)′‖2L2(J )

− I(〈Aϕ, (J 1−α
T ϕ)′〉)(T ) = −I(〈η, (J 1−α

T ϕ)′〉)(T )

≤ 1

2
‖η‖2L2(J )

+ 1

2
‖(J 1−α

T ϕ)′‖2L2(J )
.

By (4.2),

− I(〈Aϕ, (J 1−α
T ϕ)′〉)(T ) = I(〈(I1−αA1/2ϕ)′,A1/2ϕ〉)(T ) ≥ 0 (4.17)

and therefore

‖(J 1−α
T ϕ)′‖2L2(J )

≤ ‖η‖2L2(J )
.
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Combining this with (4.14), (4.16), we conclude that

N∑
j=1

τ−α
j ‖Y‖2I j ≤ Cτ 1+α‖η‖2L2(J )

and ‖Y ′‖2L2(J )
≤ Cτ 2α‖η‖2L2(J )

and so, applying Lemma 8,

I(〈Y ′, I1−αY ′〉)(T ) ≤ Cτ 1+α‖η‖2L2(J )
. (4.18)

By taking the inner product of (4.3) with Aϕ and proceeding as above, we deduce that

‖Aϕ‖2L2(J )
≤ ‖η‖2L2(J )

. (4.19)

Repeating the arguments leading to the first estimate in (4.15) but with Y ′ replaced by
AY ′, we see that ‖AY ′‖2

L2(J )
≤ ‖Aϕ‖2

L2(J )
and so

N∑
j=1

τα
j

(∫
I j

‖AY ′‖ dt
)2

≤
N∑
j=1

τ 1+α
j ‖AY ′‖2L2(I j )

≤ Cτ 1+α‖Aϕ‖2L2(J )
.

Likewise, ‖AY‖2I j ≤ τ j‖Aϕ‖2
L2(I j )

by the arguments leading to (4.12), so

N∑
j=1

τα
j ‖AY‖2I j ≤

N∑
j=1

τ 1+α
j ‖Aϕ‖2L2(I j )

≤ Cτ 1+α‖Aϕ‖2L2(J )
.

Hence, by Lemma 9 and (4.19),

I(〈AY , IαAY ′〉)(T ) ≤ Cτ 1+α‖η‖2L2(J )
. (4.20)

Together, (4.18) and (4.20) imply the desired estimate (4.6). ��

5 A Fully Discrete Scheme and Error Analysis

In this section, we discretize the time-stepping scheme (2.4) in space using the continu-
ous piecewise-linear Galerkin FEM and hence define a fully-discrete method. Thus, we
introduce a family of regular (conforming) triangulations Th of the domain � indexed by
h = maxK∈Th (hK ), where hK denotes the diameter of the element K . Let Vh denote the
space of continuous, piecewise-linear functions with respect to Th that vanish on ∂�. Let
W(Vh) ⊂ C([0, T ]; Vh) denote the space of linear polynomials on I n for 1 ≤ n ≤ N ,
with coefficients in Vh . Motivated by the weak formulation of (2.4), our fully-discrete
solution Uh ∈ W(Vh) is defined by requiring

〈 ∫
In

∂α
t Uh dt, vh

〉
+ τn〈κ∇Un−1/2

h ,∇vh〉 = τn〈 f̄n, vh〉 for all vh ∈ Vh, (5.1)

and for 1 ≤ n ≤ N , where Un
h := Uh(tn) and Un−1/2

h = 1
2 (U

n
h + Un−1

h ). For the discrete
initial data, we choose U 0

h = Rhu0 ∈ Vh , where Rh : H1
0 (�) �→ Vh is the Ritz projection

defined by 〈κ∇(Rhw − w),∇vh〉 = 0 for all vh ∈ Vh .
In the next theorem, we prove that the numerical solution defined by (5.1) is second-order

accurate in both time and space, provided that the time mesh exponent γ is chosen appro-
priately. In comparison, under heavier regularity assumptions and stronger graded meshes,
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convergence of order h2 + τ (3−α)/2 was proved by Mustapha et al. [21]. Furthermore, the
proof therein is more technical and lengthy. Use of the piecewise-linear polynomial func-
tion û, see (2.6), and a duality argument allowed us to improve the convergence rate, simplify
the proof and also relax the regularity assumptions. In addition to the regularity assumption
in (2.11), for t > 0, we impose

‖u′(t)‖2 + t‖u′′(t)‖2 ≤ C tυ−1, for some υ > 0. (5.2)

Theorem 4 Let u be the solution of (1.1) and let Un
h be the approximate solution defined

by (5.1). Assume that the regularity assumptions in (2.11) and (5.2) are satisfied for σ, υ >

α/2, and choose the mesh grading exponent γ > max{2/σ, 1/υ, (3 − α)/(2σ − α)}. Then,
‖u −Uh‖L2(J ) ≤ C(τ 2 + h2).

Proof Decompose the error as u − Uh = (u − uh) + (uh − Uh), where uh is the Galerkin
finite element solution of (1.1) defined by

〈∂α
t uh, vh〉 + 〈κ∇uh,∇vh〉 = 〈 f , vh〉 for all vh ∈ Vh, (5.3)

for each fixed t > 0, with uh(0) = U 0
h = Rhu0. From this, the weak formulation of (1.1),

and the orthogonality property of the Ritz projection, we have

〈∂α
t (uh − Rhu), vh〉 + 〈κ∇(uh − Rhu),∇vh〉 = 〈∂α

t (u − Rhu), vh〉 for vh ∈ Vh .

Choose vh = (uh − Rhu)′, integrate over (0, t) and apply Lemma 1 to the right-hand side
with ε = 1/(4α2). After canceling the common terms,

4α2‖√κ∇(uh − Rhu)(t)‖2 ≤ I(〈∂α
t eh, e

′
h〉)(t), with eh = u − Rhu.

The error bound for the Ritz projection and the regularity assumption in (5.2) yield
‖e′

h(t)‖ ≤ Ch2‖u′(t)‖2 ≤ Ch2tυ−1. Hence, ‖∂α
t eh(t)‖ ≤ Ch2tυ−α and consequently,

I(〈∂α
t eh, e

′
h〉)(t) ≤ Ch4 for υ > α/2. Inserting this estimate in the above equation, we

obtain ‖∇(uh − Rhu)(t)‖ ≤ Ch2 for υ > α/2, and thus, by applying the Poincaré and
triangle inequalities, we get ‖u(t) − uh(t)‖ ≤ Ch2.

The remaining target now is to estimateUh−uh .By analogywith our earlier splitting (2.5),
we let

ηh = uh −Uh, ψh = u − Rhû and θh = Uh − Rhû.

From (5.1) and (5.3), and with χh = uh − Rhû, we have∫
In

[〈∂α
t θh(t), vh〉 + 〈κ∇θh(t),∇vh〉] dt =

∫
In

[〈∂α
t χh(t), vh〉 + 〈κ∇χh(t),∇vh〉] dt,

for vh ∈ Vh . Using the orthogonality property of the Ritz projection and the definition of û,
in addition to (5.3),∫

In
〈κ∇χh(t),∇vh〉 dt =

∫
In

〈κ∇(uh − u)(t),∇vh〉 dt =
∫
In

〈∂α
t (u − uh)(t), vh〉 dt,

and hence∫
In

[〈∂α
t θh(t), vh〉 + 〈κ∇θh(t),∇vh〉] dt =

∫
In

〈∂α
t ψh(t), vh〉 dt, for vh ∈ Vh .

By repeating the steps from (2.8) to (2.10), we deduce that

α2I(〈∂α
t θh, θ

′
h〉)(T ) ≤ I(〈∂α

t ψh, ψ
′
h〉)(T ). (5.4)
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Applying Lemma 2 with v = ê′
h := (̂u − Rhû)′ and w = ψ ′ so that ψ ′

h = v + w,

I(〈∂α
t ψh, ψ

′
h〉)(T ) ≤ (1 + α−1)

(
I(〈∂α

t êh, ê
′
h〉)(T ) + I(〈∂α

t ψ,ψ ′〉)(T )
)
.

For t ∈ I j , since û′(t) = τ−1
j (̂u j − û j−1), the Ritz projection error bound gives

‖̂e′
h(t)‖ ≤ Ch2‖û′(t)‖2 ≤ Ch2τ−1

j ‖ψ j − ψ j−1‖2 + Ch2τ−1
j

∫
I j

‖u′(s)‖2 ds.

From Lemma 3, (5.2) and the time mesh property (2.2), we have

‖ψ j − ψ j−1‖2 ≤ ‖ψ j‖2 + ‖ψ j−1‖2 ≤ 2
j∑

i=1

∫
I j

(t − t j−1)‖u′′(t)‖2 dt

≤ Cτυ
1 + Cτ

∫ t j

t1
tυ−1/γ−1 dt ≤ Cτυ

1 + Cτ tυ−1/γ
j ≤ Cτ tυ−1/γ

j ≤ Cτ j t
υ−1
j ,

for γ > 1/υ with j ≥ 1. Combining the above two estimates, we conclude that ‖̂e′
h(t)‖ ≤

Ch2tυ−1
j ≤ Ch2tυ−1 for t ∈ I j . This leads to ‖̂e′

h(t)‖ ≤ Ch2ωυ(t) and ‖∂α
t êh(t)‖ ≤

Ch2ω1−α+υ(t). Thence,

I(〈∂α
t êh, ê

′
h〉)(T ) ≤ Ch4

∫ T

0
ω1−α+υ ωυ dt ≤ Ch4

∫ T

0
t2υ−α−1 dt ≤ Ch4,

for υ > α/2, so by Lemma 6,

I(〈∂α
t ψh, ψ

′
h〉)(T ) ≤ C

(
h4 + I(〈∂α

t ψ,ψ ′〉)(T )
)

≤ C(h4 + τ 3−α). (5.5)

Adapting (4.3), suppose that ϕh(t) ∈ Vh satisfies the discrete final-value problem

− (J 1−α
T ϕh)

′(t) + Ahϕh(t) = ηh(t) for 0 < t < T , with ϕh(T ) = 0, (5.6)

where the discrete elliptic operatorAh : Vh → Vh is defined by 〈Ahvh, qh〉 = 〈κ∇vh,∇qh〉
for all vh, qh ∈ Vh . We now repeat the step in the error analysis of Sect. 4, with ηh, θh , ψh

and Ah playing the roles of η, θ ψ and A, respectively, and using (5.1) and (5.4) instead
of (2.4) and (2.10), and (5.5) instead of Lemma 6. We notice for γ > max{2/σ, 1/υ, (3 −
α)/(2σ − α)} and for σ, υ > α/2, that

‖uh −Uh‖2L2(J )
≤ Cτ 1+α(h4 + τ 3−α).

The proof of this theorem is completed. ��

6 Numerical Results

In this section, we illustrate numerically the theoretical finding in Theorem 1. An O(h2)
convergence of the finite element solution was confirmed for various choices of the given
data [9, 11, 23]. In time, some numerical convergence results (piecewise linear discontin-
uous Petrov–Galerkin method) were also delivered [21]. However, we illustrate the errors
and convergence rates in the stronger L∞(J ; L2(�))-norm on more realistic examples. We
choose κ = 1, � = (0, 1) and a uniform spatial grid Th . In both examples, we choose h so
that the error from the time discretization dominates.

123



Journal of Scientific Computing (2024) 99 :87 Page 17 of 22 87

Table 1 Errors and empirical convergence rates for Example 1 with α = 0.5, using different choices of the
time mesh-grading exponent γ

N γ = 1 γ = 2 γ = 3 γ = 4
Eτ CR Eτ CR Eτ CR Eτ CR

8 1.011e−01 5.001e−02 1.861e−02 7.478e−03

16 8.337e−02 0.279 2.633e−02 0.926 6.464e−03 1.526 2.090e−03 1.839

32 6.588e−02 0.340 1.309e−02 1.008 2.259e−03 1.517 5.497e−04 1.927

64 5.001e−02 0.397 6.464e−03 1.018 7.932e−04 1.501 1.449e−04 1.923

128 3.672e−02 0.446 3.205e−03 1.012 2.817e−04 1.494 3.801e−05 1.931
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Fig. 1 Errors for Example 1 as functions of t for different choices of N when α = 0.5, taking γ = 1 in the
left figure and γ = 4 in the right figure

Example 1 We choose u0(x) = x(1 − x) and f ≡ 0. Thus, by separating variables, the
continuous solution has a series representation in terms of the Mittag–Leffler function Eα ,

u(x, t) = 8
∞∑

m=0

λ−3
m Eα(−λ2mt

α) sin(λmx), where λm = (2m + 1)π.

Since u0 ∈ Ḣ2.5−
(�), the regularity estimate (2.11) is satisfied for σ = α. Thus, we expect

from Theorem 1 that eτ := ‖u − Uh‖L2(J ) ≤ Cτ 2 provided that the mesh exponent γ >

max{2/α, (3 − α)/α} = (3 − α)/α. The numerical results in Table 1 indicate order τ 2

convergence in the stronger L∞(J ; L2(�))-norm for γ > 2/α. Rates of order τσγ for
1 ≤ γ ≤ 2/σ = 2/α are observed. Thence, our imposed assumption on γ is not sharp.

To measure the L∞(J ; L2(�)) error Eτ := max0≤t≤T ‖u − Uh‖, we approximated Eτ

by max1≤ j≤N max1≤i≤3 ‖u(ti, j )−Uh(ti, j )‖ where ti, j := t j−1 + iτ j/3. In our calculations,
the L2(�) norm, ‖ ·‖, is approximated using the two-point composite Gauss quadrature rule.

In all tables and figures, we evaluated the series solution by truncating the infinite series
after 60 terms. The empirical convergence rate CR is calculated by halving τ , that is, CR =
log2(Eτ /Eτ/2). Figure 1 plots the nodal errors ‖Un

h − u(tn)‖ against tn ∈ [0, 1] for different
values of N in the cases γ = 1 and γ = 4. The practical benefit of the mesh grading is
evident.
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Table 2 Errors and empirical convergence rates for Example 2 using different values of N and different
choices of the time mesh exponent γ, with α = 0.7

N γ = 1 γ = 2 γ = 3 γ = 4
Eτ CR Eτ CR Eτ CR Eτ CR

8 9.958e−02 2.771e−02 9.365e−03 6.670e−03

16 6.501e−02 0.615 1.345e−02 1.042 3.144e−03 1.575 1.710e−03 1.963

32 4.158e−02 0.644 6.509e−03 1.048 1.056e−03 1.574 4.300e−04 1.992

64 2.771e−02 0.586 3.144e−03 1.050 3.555e−04 1.571 1.095e−04 1.973

128 1.924e−02 0.526 1.519e−03 1.049 1.193e−04 1.576
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Fig. 2 Error at tn for 1 ≤ n ≤ N in Example 2, for a fixed N = 80 and different choices of the mesh exponent
γ with α = 0.7

Example 2 We again take f ≡ 0 but now choose less regular initial data, namely, the hat
function on the unit interval, u0(x) = 1 − 2|x − 1

2 |. So,

u(x, t) = 4
∞∑

m=0

(−1)mλ−2
m Eα(−λ2mt

α) sin(λmx).

Since u0 ∈ Ḣ1.5−
(�), the regularity property (2.11) is satisfied for σ = 3

4α. As in Example
1, the numerical results in Table 2 exhibit convergence of order τσγ for 1 ≤ γ ≤ 2/σ in
the stronger ‖ · ‖J -norm. For a graphical illustration of the impact of the graded mesh on the
pointwise error, we fixed N = 80 in Fig. 2 and plotted the error at the time nodal points for
different choices of γ .

7 Appendix: An˛-Robust Interpolation Estimate

The purpose of this appendix is to prove Corollary 2, which was used in the proof of Theo-
rem 3. Suppose that Y is a complex Hilbert space with inner product (·, ·)Y and norm ‖ · ‖Y .
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Put

X0 = L2((0, T ); Y ) and X1 = { u ∈ X0 : u′ ∈ X0 and u(0) = 0 }, (7.1)

equipped with the inner products

(u, v)X0 =
∫ T

0

(
u(t), v(t)

)
Y dt and (u, v)X1 =

∫ T

0

(
u′(t), v′(t)

)
Y dt .

We define an unbounded operator D0 on X0 with domain X1, by setting D0u = u′ on the
interval (0, T ). Let�z denote the real part of a complex number z. Since�(

u(t), D0u(t)
)
Y =

1
2 (d/dt)‖u(t)‖2Y , we have �(u, D0u)X0 = 1

2‖u(T )‖2Y ≥ 0 for all u ∈ X1. In addition, one
easily verifies that

(λ + D0)
−1u(t) =

∫ t

0
e−λ(t−s)u(s) ds for 0 ≤ t ≤ T and λ ∈ C, (7.2)

so D0 is m-accretive [17, p. 9], and therefore a positive operator [17, pp. 1, 11] with
supλ>0 ‖λ(λ + D0)

−1‖X0→X0 = 1, where ‖ · ‖X0→X0 denotes the operator norm induced by
the norm of X0.

Assume that 0 < �β < 1. The operator D−β
0 is defined via the integral [2, Equation (1.3)]

D−β
0 u = sin πβ

π

∫ ∞

0
λ−β(λ + D0)

−1u dλ for u ∈ X0.

A short calculation using (7.2) shows [2, Theorem 2.2] that D−β
0 u = Iβu. One may then

define [2, Equation 1.4], [17, Equation (3.1)]

Dβ
0 u = Dβ−1

0 D0u = sin πβ

π

∫ ∞

0
λβ−1(λ + D0)

−1D0u dλ for u ∈ X1.

The operator Dβ
0 coincides with I1−βu′ = (I1−βu)′, or in other words, with both the Caputo

and Riemann–Liouville fractional derivatives of order β.
For 0 ≤ α ≤ 1, let Xα denote the complex interpolation space [4, Chap. 4] arising

from X0 and X1. The next result is known [17, Theorem 11.6.1], but we sketch the proof in
order to verify that the constant does not depend on α.

Theorem 5 Let 0 < α < 1. For the spaces (7.1) and any complex Hilbert space Z, if the
linear operator B satisfies ‖Bu‖Z ≤ Mj‖u‖X j for u ∈ X j and j ∈ {0, 1}, then ‖Bu‖Z ≤
e1+(π/4)2M1−α

0 Mα
1 ‖Dα

0 u‖X0 for D
α
0 u ∈ X0.

Proof If we set Z0 = Z1 = Z , then Zα = Z with equal norms [4, Theorem 4.2.1], so
‖Bu‖Z ≤ M1−α

0 Mα
1 ‖u‖Xα , and our task is to estimate the interpolation norm ‖u‖Xα in

terms of the fractional derivative Dα
0 u. Define the closed strip S = { z ∈ C : 0 ≤ �z ≤ 1 }

in the complex plane, and let F denote the space of functions f : S → X0 + X1 that are
bounded and continuous on S, analytic in the interior of S, and such that f (iy) and f (1+ iy)
tend to zero as |y| → ∞. It can be shown [4, Lemma 4.1.1] that F is a Banach space with
respect to the norm

‖ f ‖F = max
(
sup
y∈R

‖ f (iy)‖X0 , sup
y∈R

‖ f (1 + iy)‖X1

)
.

The space Xα then consists of those u ∈ X0 + X1 such that u = f (α) for some f ∈ F , with
the interpolation norm defined by

‖u‖Xα = inf{ ‖ f ‖F : u = f (α) and f ∈ F }.
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If we define f (z) = e(z−α)2Dα−z
0 u, then f (α) = u with

‖ f (iy)‖X0 = eα2−y2‖D−iy
0 Dα

0 u‖X0

and

‖ f (1 + iy)‖X1 = e(1−α)2−y2‖D0(D
α−1−iy
0 u)‖X0 = e(1−α)2−y2‖D−iy

0 Dα
0 u‖X0 .

If�ζ ≥ 0 then |ζ iy | ≤ eπ |y|/2 for y ∈ R. Therefore, because D0 is m-accretive, ‖Diy
0 u‖X0 ≤

eπ |y|/2‖u‖X0 for u ∈ X0 ( [25, Example 2], [7, Theorem 7.1.7]). Thus

‖u‖Xα ≤ ‖ f ‖F ≤ max
(
sup
y∈R

eα2−y2+π |y|/2, sup
y∈R

e(1−α)2−y2+π |y|/2)‖Dα
0 u‖X0 ,

and since −y2 + 1
2π |y| = ( 14π)2 − (|y| − 1

4π)2 ≤ ( 14π)2, the proof is completed. ��
The interpolation estimate used in the proof of Theorem 3 now follows by repeating the

preceding arguments with D0 and X1 replaced by their time-reversed equivalents

DT u(t) = −u′(t) and XT ,1 = { u ∈ X0 : u′ ∈ X0 and u(T ) = 0 }.
In fact, �(u, DT u)X0 = 1

2‖u(0)‖2Y ≥ 0 for all u ∈ XT ,1, and

(λ + DT )−1u(t) =
∫ T

t
e−λ(s−t)u(s) ds for 0 ≤ t ≤ T and λ ∈ C,

so DT is m-accretive, and we find that if 0 < �β < 1 then D−β
T u = J β

T u for u ∈ X0, with

Dβ
T u = DT D

β−1
T u = (J 1−β

T u)′ for u ∈ XT ,1.

Corollary 2 In the statement of Theorem 5, we may replace D0 and X1 with DT and XT ,1,
respectively.
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