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Abstract

We investigate a second-order accurate time-stepping scheme for solving a time-fractional
diffusion equation with a Caputo derivative of order « € (0, 1). The basic idea of our scheme
is based on local integration followed by linear interpolation. It reduces to the standard Crank—
Nicolson scheme in the classical diffusion case, that is, as @ — 1. Using a novel approach,
we show that the proposed scheme is a-robust and second-order accurate in the L?(L?)-
norm, assuming a suitable time-graded mesh. For completeness, we use the Galerkin finite
element method for the spatial discretization and discuss the error analysis under reasonable
regularity assumptions on the given data. Some numerical results are presented at the end.

Keywords Fractional diffusion equation - Second-order scheme - Graded meshes - Uniform
convergence - Error analysis

1 Introduction

We shall approximate the solution of the time-fractional diffusion equation
u(x,t) + Au(x,t) = f(x,t) for (x,1) € 2 x (0, T1, (1.1)

subject to homogeneous Dirichlet boundary conditions, that is, u(x, ) = 0on 02 x (0, T],
with u(x, 0) = ug(x) at the initial time level t = 0. The spatial domain Q2 C R? (withd = 1,
2, 3) is a convex polyhedron, 0 < o < 1, the time fractional Caputo derivative

l—O(

t
B u(r) = T/ (1) = /0 Wi—at — )V (s)ds, with wj_g(t) == i —a)
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where v/ = dv/9dt and I denotes the gamma function. We use the notation Zv(¢) for the
standard time integral of v from Oto ¢.In (1.1), Ais an elliptic operator in the spatial variables,
defined by Aw(x) = —V - (k(x)Vw)(x). The diffusivity x € L*° () satisfies 0 < kmin < k&
on 2, for some constant k. For the error analysis, we also require that « € whoo(Q).

The presence of the nonlocal time fractional (Caputo) derivative in (1.1) and the fact that
the solution u suffers from a weak singularity near r = 0 have a direct impact on the accuracy,
and consequently the convergence rates, of numerical methods. To overcome this difficulty,
different approaches have been applied including corrections, graded meshes, and convolu-
tion quadrature [6, 9, 15, 24, 29, 30]. Indeed, the numerical solutions for model problems of
the form (1.1), including a priori and a posteriori error analyses and fast algorithms, were
studied by various authors over the past fifteen years using multiple approaches [1, 3, 5, 8,
10, 11, 13, 14, 18], see also [27, 31-33, 35, 36]. For more references and details, see the
recent monograph by Jin and Zhou [12].

In this work, we investigate rigorously the error from approximating the solution of the
initial-boundary value problem (1.1) using a uniform second-order accurate time-stepping
method. The latter is defined via a local time-integration of problem (1.1) on each subinter-
val of the time mesh combined with continuous piecewise linear interpolation. The proposed
scheme is identical to the piecewise-linear case of a discontinuous Petrov—Galerkin method
proposed in [21]. Therein, with T being the maximum time mesh step size, a suboptimal
convergence rate of order O (1 G~%/2) was proved. A time-graded mesh (2.1) was employed
to compensate for the singular behaviour of the continuous solution at = 0. In the limit-
ing case as ¢ — 1, the problem (1.1) reduces to the classical diffusion equation, and the
considered numerical scheme reduces to the classical Crank—Nicolson method. In this case,
0 (xB~9/2) reduces to O () which is far from the optimal O (72) rate achieved in practice.

By using an innovative approach that relies on interesting implicit polynomial interpola-
tions and duality arguments, we show O (z2) convergence, whilst at the same time relaxing
the imposed regularity assumptions from the earlier analysis [21]. This convergence rate
is a-robust in the sense that the constant in the error bound remains bounded as ¢« — 1.
Implementation wise, although the proposed scheme is uniformly second-order accurate,
the computational cost is comparable to the well-known backward Euler or L1 [16, 24, 28]
methods, which are not even first-order accurate.

For completeness, we discretize the problem (1.1) over the spatial domain €2 using the stan-
dard Galerkin finite element method (FEM), thereby defining a fully discrete approximation
to . An additional error of order O (h?) is anticipated under certain regularity assumptions
on the continuous solution, where  is the maximum spatial finite element mesh size. This is
proved via a concise approach that relies on the discrete version of the earlier error analysis.
To make this feasible, the solution of the semidiscrete Galerkin finite element solution of
problem (1.1) plays the role of the comparison function.

Outline of the paper. In the next section, we define our time-stepping scheme, introduce
some notations and technical lemmas, and summarize the convergence results in Theorem 1.
The required regularity properties are also highlighted. Section 3 proves some error bounds
for the implicit piecewise-linear interpolant  defined in (2.6). Section 4 is devoted to showing
the second-order of accuracy of the proposed time-stepping scheme via a duality argument.
In Sect. 5, we discretize in space via the Galerkin finite element method and discuss the
convergence of the fully discrete solution. To support our theoretical findings, we present
some numerical results in Sect. 6. Finally, a short technical appendix derives an «-robust
interpolation estimate.
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2 Time-Stepping Scheme

This section is devoted to discretizing the model problem (1.1) over the time interval [0, T]
through a second-order accurate method, and stating our main convergence results. We begin
by introducing some notations that will be used throughout the paper.

For £ > 0, the norm on H%(S) is denoted by || - |le. The Sobolev spaces HY) and
H(; (€2) are defined as usual, and the norm | - || Q) in the (fractional-order) Sobolev space
H' (Q) is defined in the usual way via the Dirichlet eigenfunctions of the self-adjoint elliptic
operator A on 2. The inner product in L%() is denoted by (-, -), and the associated norm
by || - ||. The generic constant C remains bounded for 0 < o < 1, and is independent of
the time mesh and the finite element mesh, but may depend on 2, 7', and other quantities,
including «, ug and f.

Define the time meshO =1y <t <th <--- <ty =T by

th=(n1)7, withr:Tl/V/Nandyzl, forO0 <n <N, 2.1
and let 7, = t,, — f,—1. Such a time-graded mesh has the properties [19]
t, <2Vt,—1 and ytt;:;/y <1, < yrt,:_l/y, forn > 2. (2.2)

Integrating problem (1.1) over I, := (t,—1, t,) and then dividing by 7, yields

1 _

— [ 8fudt+ A, = f,, for 1 <n <N, (2.3)

Tn JI,
where f, = T, ! / I, f(¢) dt denotes the average value of a function f over the time interval /,,,
and similarly, u, 1s defined. Motivated by (2.3), for t € [, and for 1 < n < N, our
semidiscrete approximate solution U (t) ~ u(t) is defined by requiring that

t, —t t—t,—
Uy =""""yrt 4 " lyn yr.—u@,,
n r’l
with
1 _
— | U dr + AUV = f,, with U = U(0) = uo, 2.4)

Tn JI,

where U"™1/2 = U, = $(U" +U"™").Ifa — 1, then 3%u — u'and 9°U — U’, implying
that our scheme reduces to the Crank—Nicolson scheme for the classical diffusion equation.
Our convergence analysis relies on decomposing the error as

n=u—-U=v¢%—0 with vy =u—u and 0 =U —1, (2.5)
where % is a continuous piecewise-linear function in time satisfying
/ u(r)dt = / u(tydr forl <n <N, witha(0)=u’ = uo. (2.6)
I I

Alternatively, % can be defined via Zu(t,) = Zu(t,) for 1 <n < N, withw(0) = ug, and we
say that i interpolates u implicitly. The decomposition (2.5) of the error n follows a well-
known pattern, but the novel choice of the piecewise linear function # makes possible our
improved error analysis under reasonable regularity assumptions. The continuous average
of u equals both the continuous and the discrete average of # on each time subinterval I,.
For comparison, let u; denote the usual continuous piecewise-linear interpolant to u, that is,
fn tu(tnfl) 4 Ll

n n

ur(t) = u(ty) fortel,, 2.7)
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and observe that #; and u have the same discrete average %(u (ty) +u(t,—1)) oneach I, but
their continuous averages will differ unless u is linear on I,.
Subtracting (2.4) from (2.3) and using (2.6), we obtain

/8f(w—9)dt—/A0dt:O.
I In

Taking the L?($2)-inner product with a test function ¢ € HOl (£2), and applying the divergence
theorem, it follows that

/ (T'790', @) dt +/ (kVO, Vo) dt = / (T %y, @) dt. (2.8)
In In I"
Choosing ¢ = 0’ and summing over n yields
(T, 0"))(tn) + Z((k VO, VO (tn) = T(T' ™Y/, 0")) (1)
Since Z((k V6, VO') (tn) = 5 (/K VO@)II* — IV VOO) 3 = 31Iv/k VO (tn)]1%,
AT, 0")(tn) < T(T' Y, 0)) (1) (2.9)

To proceed in our analysis, we make use of the following technical lemma. For the proof,
we refer to Mustapha and Schotzau [22, Lemma 3.1 (iii)].

Lemmal ForO <o <lande > 0,
2

1 1/2 1/
Tz 0, w0 < — (TE 0, o) (T0E w, wh)
o
1
< €TI0 o)) + 5 TUT . w) ).

For later use, by expanding (Z'~% (v +w), v+ w)) then applying Lemma 1 with € = 1/(2c)
we deduce the inequality in the next lemma.

Lemma2 For0<a <1,
TUT W+ w), v+ w) (@) < (1 + a—l)(z(gl—%, (@) + (T w, w))(t)).

We now apply Lemma 1 to the right-hand side of (2.9) with € = 1/(2a%). Multiplying
through by 2, and then cancelling the similar terms, leads to the estimate below that will be
used later in our convergence analysis.

1
ZUZ'"0',0")(ty) < ;M“W, ) (tn), (2.10)

Under reasonable regularity assumptions, a novel error analysis involving implicit inter-
polations and a duality argument leads to the convergence results in the next theorem. With
J = (0,T), an optimal O(1%)-rate of convergence is achieved in the L2(J; L%())-norm.
Our numerical results illustrate this in the stronger L*°(J; L?%(2))-norm. Moreover, our
numerical results suggest that the condition on the graded mesh exponent can be further
relaxed. More precisely, instead of y > max{2/o, (3 — «)/(20 — @)} it suffices to impose
y >2/o.

The developed error analysis requires the following regularity property [11, Theorems
2.1 and 2.2], [26, Theorems 1 and 2], and: for some o > 0,

' O + 2”@ + Eu’” (0)|| < Ct° fort > 0. (2.11)

@ Springer
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For example, if f = 0andug € H" () with 1 <r < 2,then (2.11) holds true foro = ra/2.
For a given time interval Q, let

12
lwllg =supllw@® I and [wllz2) = (f ||w(t)||2a't>
teQ o]

denote the norms in L°°(Q; LZ(Q)) and LZ(Q; LZ(Q)), respectively.

Theorem 1 Let u and U be the solutions of (1.1) and (2.4), respectively. If the graded time
mesh exponent y > max{2/o, (3 — a)/(20 — «)} and if the regularity assumption (2.11)
holds true with o > a2, then we have

lu—Ull2yy < Ca 272, for 0 <a < 1.

Proof The desired estimate follows from Lemma 6 and Theorem 2 below. O

3 Errors from Implicit Interpolations

In preparation for our convergence analysis, we now study the error from approximating
u by %, and proceed to estimate ||| and Z((Z'~%v’, ¥’)). These estimates assume that
the regularity property (2.11) holds. For ease of reference, we here introduce the parameter
§=0-— % which will subsequently appear repeatedly. We start this section with the following
representation of the implicit interpolation error in the approximation u ~ u at r = f,,.

Lemma3 Forl<n <N, y" =3 (=1)""/T1A; where

2 1
Aj== (u—uI)dt:_i/ (t; — )t — tj_ ' (t) dt.
Tj Ij 'Ej Ij

Proof Since fln uydt = %r,, (u" 4+ u"~ "), we find using (2.6) that

1//’1:_1//!71—3 (u —uy)dr.

n JI,

The formula for y” then follows by induction on #, after noting that ° = 0. Recalling the
Peano kernel for the trapezoidal rule, we see that

1
/ (u—up@)dt = _5/ (tj — )t —tj—u (1) dt,
1j 1j

implying the second expression for A ;. O

Lemma4 For1 <n <N,
1 n
"l < / t" (@) dr + E(vfllu”(n)ll +2r7 () +3) 77 f | dt)
I P I;
j=2 J

and |1y O < lu(@) = ur @) + max ("I, 1"~ ) fort € L.

Proof Fort € I;, we have the identity

tj t
—u’(t) = l/ u"(s)ds — 1/ u”(s)ds — " (tj) +u"(tj-1))/2.
2, 2/

Jj—1
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Multiply both sides by (t; — ¢)(t — t;_1) and integrate to obtain

2
T
Aj= —sz[u”(z,-) +u”"(tji—)]+ Rj,

! Yo '
Rj:ztj/[j(tj—t)(t—ljl)(/t u (S)ds—/t‘.

Jj—1

where

Thus, by Lemma 3,

1
1

(D" = A+ = 3 (D ) (0] = Y (DR,
j=2

j=2
Shifting the summation index, so

n n—1
DD o) = ) = Y (=D 1))

= j=2

2
Since A = —rfl fI] (f1 — s)su” (s) ds and since || R;| < %/ fl,- luw” ()|l dt,
1
VA= / tllu” (1) dr+§(r§||u”<n>u+r,3||u”(rn>||
I

n—1 n

+Y @G =TIl +2> 77 / llu” @)1 dr).
- - I;
j:2 j:2 J

Using

n

n—1 n
Dol apll =Y "l < er(nu”(rj)u +/I ||u/”(r>||dr),
j=2 j=3 J

j=3

and the bound for ||"|| follows after canceling the common terms.

u” (s) ds) dt.

The interpolant /7, defined as in (2.7), satisfies ¥; = u; —u, leading to the representation

Y=u—-u=vy+u—uj,

(3.1)

which implies the desired bound for || (¢) || (as stated in the statement of this lemma) because

v @)1 < max (g1, 1y" ") for t € .

m}

Corollary 1 Under the regularity assumption in (2.11) and for a time mesh of the form (2.1)

with grading parameter y > 1 we have, forn > 1,

2 .
v log(t, /1), ify =2/o,
"< <C x .
Iy"l < ”1//”1;1 = {.L_mm(yg,z)l"gnax(o,é)7 ify #2/o.

Proof First we show that for y > 1,

min(yo,2) ;max(0,3)
lu —uplly, < CT™o2p) .

@ Springer
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Since the interpolation error ¥ — u; vanishes if u is a polynomial of degree 1, by computing
the Peano kernel one finds that for ¢ € I,,,

1

u(t) —uy(t) =

_ 173
= / (tn —$)u” (s)ds. (3.3)
Tn t

The right-side is bounded by

(S—tn 1)||u”(S)|IdS+/ (t—tu- 1)|IM”(S)|Ids</(S—tn Dllu” ()1 ds

In—1

and so, by using the time mesh properties in (2.2), we get

lu —urll;, < Crut, 1/ t||u”(t)||dt§Cr,,tn_1f °Vdr < Ct2°72, n> 1.
In

Since 7, < C rt,ifl/ Y, the proof of (3.2) is completed after noting that
o172 < CtPi) < Cv° max(r), 1f) < Cr™no2)max(0:9), (34)

Turning to the estimate for ¥", Lemma 4 and (2.11) imply that
n
|| < C/I 7 dt + Cr] P4 Crptd TP+ C Y 7/2/ 3 dt,
1 . i

forl <n < N.Sincetj =¥ and 1, <2V77, f t°- ldt—i—r 1‘(r 2<CrV" and we again

bound rzt" ~2 using (3.4). For the sum over j,

th
Z /”3dt<CZr222/y/ "‘3dt§Cr2/ =V,
./

n
and the estimate for ||4"|| follows. m]

The next target is to estimate Z((Z'~*vy’, ¥'))(t,). Preceding this, we need to bound ||||
in the next lemma.

Lemma5 We have ||/ (¢)|| < t°~! fort € I. Moreover, ||/ (t)|| < Ct?t; 't} fort € I,
withn > 2, and for § > 0.

Proof Differentiating (3.1) and (3.3), we see for ¢ € I, that

t n
V(1) = i/ (s = ta—u" (s) ds — i/ (ty — )" (s)ds + 7, ' (y" — " ).
Tn Ji,_4 Tn Jt

n

Thus, if t € I7 then, by (2.11), Corollary 1, and the fact that lpo =0,
Iy’ () < ™! fotsff—l ds+Cr)! /” (t1 —s)s” 2ds+Cef 7 <ol
t
If 6 > 0,n > 2 and ¢ € I, then, recalling (3.4) and using again (2.11),
Ll @) < Cr,,/ 1°72dt 4+ Ct?t < Ct20 2 4+ e’ < C7?d

In

showing that ||y (1)|| < Ct?z, 1. .

@ Springer
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Lemma 6 Assume o > a/2. Then |I((Il’°‘1///, 1//))(1‘,1)| < Ct37% forn > 1, provided that
y > max{2/o, 3 —a)/20 —a)}.

Proof For n = 1, the Cauchy—Schwarz inequality, Lemma 5, and the assumption ¢ > /2
give

t t
‘I((Il_“lj/, 1//))(;1)‘ < cf 1 r"—lf (t— )" Vdsdt < CT . (3.5
0 0

To deal with the case n > 2, we make the splitting 7 l’o‘lp’ =T, + T where
tj—1 t
Ti(r) = / 01t — )Y/ ds and Ty(r) = / 1ot — )0 (s) ds
0 tj—1
fort € I; and j > 2. Using Lemma 5 and (2.2), we observe that
t 728 728
I @)1 < C/ W1-a(t =) ——ds < C——wya(t —1j-1) < CTr7; "
tji—1 Tj tj .

For estimating 77 (¢), integrate by parts recalling wo =0,
- tj-1
110 =or-at =097+ [ o= ws)ds
0

where w_q (1) = w|_, () = —at™® 1/ (1 — ). We apply Corollary 1 to conclude that
[IT1(z)|| is bounded by

co?d P —s)ds | <Ct? —t;
j—1 w1 —q(t t/—l) A w_o(t —5)ds) <Ct tja)l—ot(t tj—1).

Lemma 5 and above estimates for || 71| and || 72 || yield

||w’||1_,./ (Il + 1 T20l) dt < (21577 D% (r]7%) < €T, for j = 2.

1

By using this and (3.5), and noting that y (20 — o) > 3 — «, we reach

5]
\I«II*W, vne| = | [ @y +

Iy
/ 'y 'y dr
1

. “+Z||w ||zjf (T2l + 1 Tall) dr < €T~ °‘+CZT4 1o

J

for j > 2. By (2.2), if j > 2 then 711* < Cr}Jratj_(Ha)(l_]/y) )

In
rl+e Zt%‘[ @ CZtZB (I+a)(1— l/J/),L. < C/ [2o0—a=G-a)/y—1 g, <cC,
= j=2 n

and therefore the desired bound holds. O
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4 Errors from the Time Discretizations

This section is devoted to estimating the error n = u — U from the time discretization in
the norm of L2(J; L2(R)). To achieve an optimal convergence rate, we employ a duality
argument in addition to the usage of the time graded meshes. By reversing the order of
integration, we find that

T
TZ({Z%v, w)(T) = Z((v, Tpw))(T) where (J7rw)(t) = / Wy (s — Hw(s)ds.
t

Using Z({(8% v, w))(T) = Z({v/, jTlfaw))(T) and integrating by parts yield
Z((d v, w))(T) = —(v(0), (jTl_aw)(O» —Z({v, (jTl_aw)/))(T), 4.1
and since 3%v = Z' 7% = (Z!7%) — v(0)®| g,
ZUE ), w)(T) = —Z({v, (JTI_aw)/))(T)- “4.2)

We remark that Zhang et al. [34, Equation (89)] have recently exploited this dual
operator w > —(jTl “*w)’ in the error analysis of a discontinuous Galerkin scheme for (1.1).
Suppose that ¢ satisfies the final-value problem

—(T}7%0) + Ap =10 on Qx(0,T), withg(x,T)=0, (4.3)

subject to homogeneous Dirichlet boundary conditions, that is, ¢(x,¢) = 0on a2 x (0, T).
Let y(¢r) = ¢(0) + fot ¢(s) ds so that y solves the initial-value problem

y=¢ for0<t<T, withy()=¢(0), “4.4)

and with y; denotes the continuous piecewise-linear function that interpolates y at the time
levels ¢;, put

Y=y—y5. 4.5)
Lemma 7 With the notation above, ||n||izu) <I(Y’, Ilf"‘n’ + An)(T).

Proof Using (4.1), (4.3), n(0) = 0 and (4.4),
Il = ZU=(Tp“0) + Ap, m)(T) = Z((', T0" + Am)(T).
At the same time, (2.3) and (2.4) imply that

1
T—/(&f‘n—f—An)dt:O ) /(y},&f‘n+An)dt:0,
n JI,

In

because yj is constant on I,. Since Y’ =y’ — y}, the inequality follows at once. O

We will show below in Theorem 3 that the interpolation error Y satisfies

I(Y, YT + TGAY, T AY)(T) < C2* i3, - (4.6)

Assuming this fact for now, we can derive an estimate for 7 in terms of . We use the
following notations: for a given time-dependent function g,

F(g) = (Z(7%, e(T)"? and G(g) = (Z(T' "¢, gN(T))">.

Theorem 2 We have 012||n||iz(]) < CroHzz! =y’ ).
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Proof 1t suffices to estimate the right-hand side of the inequality in Lemma 7. By Lemma 1,
«Z({(Y, Iy )(T) < GY)G(Y) and «Z((Y', T'7“6')(T) < G(Y)G(H).
After using (2.10) and n' = ¢’ — 6/, we conclude that
IWY T )(T) < 26()G ). @7

Since Y(t;) = 0 for 0 < j < N, integrating by parts, using AY = ZAY' =
T'=%(7% AY"), and applying Lemma 1,

aZ((Y', AO)(T) = —aZ((0', T'"*(Z* AY))(T) < G(O) F(AY).

The same estimate holds with 6 replaced by v, so because n = ¢ — 6, and using (2.10)
again,

PT(Y', Am)(T) < 2F(AY)G (). (4.8)

Adding (4.7) and (4.8), we see o2 n 12 <2G(W)(G(Y)+F(AY))byLemma 7. Squaring
both sides, we have

anllfag, < 4G (GY) + FAY)? < 8GN (G(Y))* + (FAY)?).

LX) —

Since (G (Y))2 + (F(AY))? is just the left-hand side of (4.6), the desired inequality followed

after cancelling the common factor ||n 12 20" ]

It remains to prove (4.6). We start by showing preliminary bounds for
|Z(Y', T'"7*Y"))(T)| and |Z((AY,T'~®AY"))(T)| in the next two lemmas. The regular-
ity properties outlined in (2.11) are sufficient to ensure that the assumptions imposed on y in
these lemmas hold true.

Lemma8 Assume that y,y' € L2(J; Lz(Q)), then for 0 < o < 1, we have
N-2
T, TN = - VIR 4 CT Y,
j=1

Proof Fort € I; with j > 2, we write 'Y/ (r) = S1(t) + S»(t) where

t i
S1(t) = / w]_o(t —$)Y'(s)ds and Sy(t) = / 12 w1_o(t —8)Y'(s)ds.
t 0

=)
Applying the Cauchy—Schwarz inequality, integrating, changing the order of integration, and
integrating again, yields

t t
||Sl||Lz(,)_f (f o O,(t—s)ds)(/ wl_a<z—s)||Y’<s)||2ds)dt
-2
< Cj 41" (f/ / />w1 ot = ) dr Y/ ds

<C(; +r,-_1)2“*°‘>/

ti—2

1Y ()2 ds < ;) / 1Y ()] ds.
t./‘,z
Fort € Iy, let S§1(t) = fot w1—o(t — s)Y'(s)ds and Sp(¢) = 0. Following the steps above,

we find that [|S1(|2,,, . < Ctp" " Y'||2,, . Thus,

L2(1) = L2(I)

1511725y < CTNY 132,
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and consequently
T, SODT) < 1Y 2 18120y < CT 7Y 17, - 4.9)

Turning to the second term S, we integrate by parts (noting that Y/~ = 0 = ¥?) and
obtain

tj—2
1201 = ”/0 w_o(t —$)Y(s)ds

Jj—2

< E |IY||1,-/ lw—a(t —s)|ds.
. I;
i=1 !

Since |w_q(t — 5)| < |w_(tj—1 — )| fort € I},

j—2
[ s < 3 [ wonmiydn [ o-at;- - s
1]' i=1 Ij I;
with
YONYIde < (1712 + 2172
g 1Y "OIIY N, dt < > 1Yy + <l ||L2(1].) ,
J
and, remembering that w_o () = —a t~'w|_¢ (1),
/ lw—g(tj—1 —$)|ds = w1-(tj—1 — ;) — 1 (tj—1 — ti—1).
I;

Since tj —t; > tj_1 —ti—1, W1—(tj—1 — ti—1) = w1_o(t; —t;), and thus,
122
f KY', $»)|dr < 5 Z ||Y||,~2[w1—a(lj—1 — 1) —w1—(tj — 1)]
1 i=1

Tjvr2 li-2
+E”Y ||L2([j) 0 |w—0l(tj—1 —S)|dS,
and in the second term, noting that 1/ I'(1 —a) = (1 —)/T'2 — @),
t./,z _
/ lo—o(tj—1 = $)lds = w1-a(tj-1 —tj-2) — ®1-a(t;)) < C(1 — )T, .
0

By interchanging the order of the double sum,

N
Z(KY', Sz)l)(T)ZZ/I (Y', So)ldt < C(1 — @)
j=271i

N-2 N
2 — — —a 2
1=

J=i+2
N-2
<C- a)(Z T 3V + rlf“nY’niz(n)
i=1
which, combined with (4.9), yields the desired estimate. O
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Lemma9 Assume that Ay € L®(J; L>(2)) and Ay € L'(J; L*()). Then for 0 < o <
L,

N 2
I((AY,I"‘AY’))(T)’5C21}"|:</ ||AY’||dt> +|IAY|I%/}.
j=1 i '

Proof Integrating by parts,
T T
T((AY, T AY")(T) = —f (AY', S3)dr — / (AY', 84)dt, (4.10)
0 0
where we used the splitting Z* AY = S3 + S4 with
t tji—1
S3(t) = / wot — $)AY(s)ds and Si(r) = /j wu(t — $)AY (s) ds
ti—q 0

J

for ¢ € 1. Since S50l < IAY I, [}, | @ult —s)ds < CT¥|AY |1,

T
‘/ (AY', 83) dt
0

N
<C Y warly, [ 1aronar (@.11)
j=1 j

For the estimate involving S4, we reverse the order of integration and then integrate by parts,
to obtain

/(AY’, Sy)dt = —fH (Ay(s),/ o1t — $)AY (1) dt)ds
1j

and thus, applying the Cauchy-Schwarz inequality and using || AY ||, [AY|l7; < IIAYII%, +
||AY||2j, we get

N j-1
/0 (AY', S4) dt ZZ(||AY||%_+||AY||§/,)[/ |wg—1(t — 5)| dt ds
j=1li=1 1; Ij
N-1

M

||AY||,// wur(t — 5| di ds

||AY||,,// (a1 (i — )\ ds s

Il
—_

i

™=

+
1

J

2

< ||AY||,/wa<tl—s>ds+2||AY||, [ antt =t ar
1; 1

1 j=1 J

i
N

=C YT IAYI,.
j=1

The proof is concluded by inserting this and (4.11) into the splitting (4.10). O

By using the achieved estimates in the previous two lemmas, we are now able in the next
theorem to provide the missing part in the proof of Theorem 2.

Theorem 3 The inequality (4.6) is satisfied by the function Y defined via (4.3)—(4.5).
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Proof Recall that Y = y — y; where yy is the piecewise linear polynomial that interpolates
y at the time nodes, and y’ = ¢. Thus, if # € I; then

tj—t ! t—tj—1 1
Y(©) =y@) —yi(t) = " / p(s)ds — 17/ @(s)ds (4.12)
ti— t

J -1 j
so [Y@I = [, llgllds. Similarly, replacing u with y in (3.3), we have [Y(D)] <
Tj fI,. ll¢|l ds, and therefore

Y117, < 7jll9l7ag, and IYIG, < 7l¢' 152, (4.13)

Consider the linear operator B defined by (By)(t) = rj_a/zllYllll. fort e Ijand1 < j < N.
The estimates (4.13) give

IBel7ay < CT'l0l7ay, and [1Bolja,, < CTN¢ 172,

and, since ¢(T) = 0 and (t!=9)1=*(¢3-9) = 149 we may apply Corollary 2 from the
Appendix to deduce that

N

— 1—
DTN, = 1Belga g < CT T 0 132 (4.14)
j=1

Furthermore, by differentiating (4.12) and (3.3),

J

1 I 1[4
Y1) = o@t) - */ p(s)ds = 7/ (s —tj—D¢'(s)ds — 7/ (tj —5)¢'(s)ds
T I Tj tj-1 Tj Jt
fort € I}, so
1
1Y) < ||¢(t)||+;/1 lps)lds and [[Y'(0)]] 5/1 g’ ()l ds,
J I J

implying that
Y1727, < 4l@l7aq,y and 1Y 1720 < 7710 172, (4.15)
After summing over j and once again applying Corollary 2, we arrive at

Y1725y < CTN(T7 90 172,y (4.16)

Now take the inner product of (4.3) with —(jTl_“q))/ in L,(€2), and then integrate in time to
obtain

1T =) 1725y — WA, (T7 @) N(T) = =T ((n, (T7~“ @) N(T)
1 2 1 l—a /2
=< EHHHLZ(‘I)_'—E”(JT (P) ”LZ(.I)'
By (4.2),
— T((Ag, (T @) )N(T) = T(Z' ™A P) , AV2o))(T) = 0 (4.17)
and therefore

1T @) 1725y < IMl72)-
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Combining this with (4.14), (4.16), we conclude that
N
Do YN < CT M nlGa, and Y13, < €TI0,
j=1

and so, applying Lemma 8§,

IQY, Ty )(T) < Cr' T nli3, (4.18)

)’
By taking the inner product of (4.3) with .Ag and proceeding as above, we deduce that

ANy < Inl720))- (4.19)

Repeating the arguments leading to the first estimate in (4.15) but with Y’ replaced by

AY’, we see that ||AY’||iz(J) < IIAgolliz(J) and so

N 2 N
>t (/1 lAY'] dz) < D T IAY I, < CT Al )
j=1 j j=1

Likewise, ||AY||2j <71 ||A¢||2Lz(lj) by the arguments leading to (4.12), so

N N

2 1 2 1 2
DoAY < DAl ) < CT AR .
j=1 j=1 '

Hence, by Lemma 9 and (4.19),

T(AY, T AY)(T) < Ct"*|nll7, (4.20)

(@A)
Together, (4.18) and (4.20) imply the desired estimate (4.6). O

5 A Fully Discrete Scheme and Error Analysis

In this section, we discretize the time-stepping scheme (2.4) in space using the continu-
ous piecewise-linear Galerkin FEM and hence define a fully-discrete method. Thus, we
introduce a family of regular (conforming) triangulations 7;, of the domain Q indexed by
h = maxge7;, (hg), where hg denotes the diameter of the element K. Let V), denote the
space of continuous, piecewise-linear functions with respect to 7, that vanish on 9. Let
W(Vy) C C([0, T]; Vi) denote the space of linear polynomials on I,forl <nmn <N,
with coefficients in V;,. Motivated by the weak formulation of (2.4), our fully-discrete
solution Uj, € W(V},) is defined by requiring
n—1/2

<f 3% Uy dt, vh>+tn(KVUh Vo) = Tl fo, va) forallv, € Vi, (5.1)
I"

and for 1 < n < N, where U;} := Uy(t,) and U,;lil/z = %(U{: + U}?_])- For the discrete

initial data, we choose U ,(l) = Ruug € Vy, where Ry, : HO1 (2) — Vj, is the Ritz projection
defined by (¢ V(R,w — w), Vuy) = 0 for all v, € V},.

In the next theorem, we prove that the numerical solution defined by (5.1) is second-order
accurate in both time and space, provided that the time mesh exponent y is chosen appro-
priately. In comparison, under heavier regularity assumptions and stronger graded meshes,
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convergence of order 22 4+ t3~*)/2 was proved by Mustapha et al. [21]. Furthermore, the
proof therein is more technical and lengthy. Use of the piecewise-linear polynomial func-
tion 7, see (2.6), and a duality argument allowed us to improve the convergence rate, simplify
the proof and also relax the regularity assumptions. In addition to the regularity assumption
in (2.11), for t > 0, we impose

e’ Oz + tlu” )2 < CtV~',  for some v > 0. (5.2)

Theorem 4 Let u be the solution of (1.1) and let U;} be the approximate solution defined
by (5.1). Assume that the regularity assumptions in (2.11) and (5.2) are satisfied for o, v >
o/2, and choose the mesh grading exponent y > max{2/o, 1/v, 3 —a@)/(2c — «)}. Then,
lu = Unllp2y < C(x? + h?).

Proof Decompose the error as u — Uy = (u — uy) + (uj, — Uy), where uy, is the Galerkin
finite element solution of (1.1) defined by

(87 up, vi) + (&kVup, Vop) = (f, vp) forall v, € Vj, (5.3)

for each fixed r > 0, with u;(0) = U,? = Rjug. From this, the weak formulation of (1.1),
and the orthogonality property of the Ritz projection, we have

(07 (up — Ryu), vp) + (K V(up, — Rpu), Vi) = (8] (u — Rpu), vy) for vy, € Vj.

Choose v, = (u;, — Rpu)’, integrate over (0, ) and apply Lemma 1 to the right-hand side
with € = 1/(4a?). After canceling the common terms,

4% |V V (up — Rp)O1* < T((%en, €,))(t), with e = u — Ryu.

The error bound for the Ritz projection and the regularity assumption in (5.2) yield
lej, ()| < Ch*|lu'(t)]2 < Ch?tV~!. Hence, [|d%e;(t)]l < Ch?tV™* and consequently,
Z((dfen, e}l))(t) < Ch* forv > a/2. Inserting this estimate in the above equation, we
obtain ||V (u, — Ruu)(t)|| < Ch? for v > /2, and thus, by applying the Poincaré and
triangle inequalities, we get |lu(t) — uy, (t)|| < Ch?.

The remaining target now is to estimate Uy —uy, . By analogy with our earlier splitting (2.5),
we let

np=up—Up, Yp=u—Ru and 0, = U, — RyU.

From (5.1) and (5.3), and with xj, = u; — R,u, we have

/ (07 On (1), vn) + (K VOR(2), Vup)]ldt =/; (07 Xn (), vn) + (kK Vxn (1), Vop)ldt,

In

for v, € Vj,. Using the orthogonality property of the Ritz projection and the definition of 7,
in addition to (5.3),

/1 (kV xn(t), Vup) dt :/ (k¥ (up —u)(), Vup) dt 2/ (07 (u — up)(¥), vn) dt,

n In I,

and hence

/ [{8%0n (1), vp) + (K VOL(1), Vup)ldt = / (0F Y (1), vp) dt, for vy € V.

I In

By repeating the steps from (2.8) to (2.10), we deduce that
LD On, O5)(T) < TUOF Y, Yy)(T). G4
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Applying Lemma 2 with v =€), := (& — R,u1)’ and w = ¥’ so that ¢, = v + w,
ZUB Y, Yp)I(T) < (1 +a*1)<I((8,"‘?h,’e7,))(T) + Z((0]' ¥, W))(T))~

Fort € I}, since 0'(t) = ‘L'j_l @@/ — w/=1, the Ritz projection error bound gives
12,01l < CR? @ @)ll2 < CR Y — 9/~ o + ChPe ! / ' ()12 ds.
1j
From Lemma 3, (5.2) and the time mesh property (2.2), we have
I/ =y < 1l + 1y M2 < 22/ t —ti-Dlu" @)z dt
i=171

1j
<Ct’ + Cr/ TV =lar < o + Crt}”l/y < Crt}”w < ert}’_l,

1

for y > 1/v with j > 1. Combining the above two estimates, we conclude that ||?;l M =<
Ch2z;*1 < Ch*tv~! for t € I;. This leads to [[€} (1) < Ch?w,(t) and 3%, ()|l <
Chza)l,aﬂ, (t). Thence,
T T
I((0%31,, 2))(T) < Ch* / 1o 0y di < Ch* / vl gy < Ci?,
0 0

for v > «/2, so by Lemma 6,

T Yn () = C(h* + T, Y D)) < CO* + 77, (5.5)

Adapting (4.3), suppose that ¢, (t) € V}, satisfies the discrete final-value problem
- (J}’“(ph)/(t) + Anon(t) = np(@) for0 <t < T, withe,(T) =0, (5.6)

where the discrete elliptic operator Ay, : Vj, — V}, is defined by (Ap v, gn) = (k Vi, Van)
for all vy, gn € V. We now repeat the step in the error analysis of Sect. 4, with ny,, 6y, ¥y,
and A, playing the roles of n, 8 v and A, respectively, and using (5.1) and (5.4) instead
of (2.4) and (2.10), and (5.5) instead of Lemma 6. We notice for y > max{2/o0, 1/v, 3 —
a)/(20 — a)} and for o, v > «/2, that

lun = Unllgayy < CTH¥0* + 0579,

The proof of this theorem is completed. O

6 Numerical Results

In this section, we illustrate numerically the theoretical finding in Theorem 1. An o (h?)
convergence of the finite element solution was confirmed for various choices of the given
data [9, 11, 23]. In time, some numerical convergence results (piecewise linear discontin-
uous Petrov—Galerkin method) were also delivered [21]. However, we illustrate the errors
and convergence rates in the stronger L°°(J; L2(£2))-norm on more realistic examples. We
choose k = 1, Q = (0, 1) and a uniform spatial grid 7;. In both examples, we choose & so
that the error from the time discretization dominates.
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Table 1 Errors and empirical convergence rates for Example 1 with & = 0.5, using different choices of the
time mesh-grading exponent y

N y = 1 y = 2 y = 3 y = 4
E;: CR E; CR E; CR E;: CR
8 1.011e—01 5.001e—02 1.861e—02 7.478e—03

16 8.337e—02 0.279 2.633e—02 0.926 6.464e—03 1.526 2.090e—03 1.839
32 6.588e—02 0.340 1.309e—02 1.008 2.259e—-03 1.517 5.497e—04 1.927
64 5.001e—-02 0.397 6.464e—03 1.018 7.932e—04 1.501 1.449e—04 1.923
128 3.672e—02 0.446 3.205e—03 1.012 2.817e—04 1.494 3.801e—05 1.931

—+—N=32

10'5 b

Errors
Errors

Fig. 1 Errors for Example 1 as functions of ¢ for different choices of N when o = 0.5, taking y = 1 in the
left figure and y = 4 in the right figure

Example 1 We choose ug(x) = x(1 — x) and f = 0. Thus, by separating variables, the
continuous solution has a series representation in terms of the Mittag—Leffler function E,,

o0
u(x, 1) =8 1, Ea(—Apyt®) sin(Anx), where Ay = (2m + D).

m=0

Since ug € H2S (2), the regularity estimate (2.11) is satisfied for 0 = «. Thus, we expect
from Theorem 1 that e; := |lu — Upllp2;y < Ct? provided that the mesh exponent y >
max{2/a, (3 — @)/a} = (3 — a)/a. The numerical results in Table 1 indicate order 72
convergence in the stronger L*(J; L?(2))-norm for y > 2/a. Rates of order t°7 for
1 <y <2/o =2/a are observed. Thence, our imposed assumption on y is not sharp.

To measure the L>®°(J; L%(Q)) error E; := maxo<;<7 ||u — Upl|, we approximated E.
by max<;<y maxi<;<3 |u(t,;) — Un(, ;)| wheret; ; :=t; 1 +it;/3. In our calculations,
the LZ(£2) norm, || - |, is approximated using the two-point composite Gauss quadrature rule.

In all tables and figures, we evaluated the series solution by truncating the infinite series
after 60 terms. The empirical convergence rate CR is calculated by halving 7, that is, CR =
logy(E+/E</2). Figure 1 plots the nodal errors ||U;} — u(t,) || against t,, € [0, 1] for different
values of N in the cases y = 1 and y = 4. The practical benefit of the mesh grading is
evident.
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Table 2 Errors and empirical convergence rates for Example 2 using different values of N and different
choices of the time mesh exponent y, with @ = 0.7

N y = 1 y = 2 y = 3 y = 4
E;: CR E; CR E; CR E;: CR
8 9.958e—02 2.771e—02 9.365e—03 6.670e—03

16 6.501e—02 0.615 1.345e—02 1.042 3.144e—03 1.575 1.710e—03 1.963
32 4.158e—02 0.644 6.509¢—03 1.048 1.056e—03 1.574 4.300e—04 1.992
64 2.771e—02 0.586 3.144e—03 1.050 3.555e—04 1.571 1.095e—04 1.973
128 1.924e—02 0.526 1.519e—03 1.049 1.193e—04 1.576

— =1

Errors

1 0-5 L 1 ! L

Fig.2 Erroratt, for1 <n < N in Example 2, for a fixed N = 80 and different choices of the mesh exponent
y witha = 0.7

Example 2 We again take f = 0 but now choose less regular initial data, namely, the hat
function on the unit interval, ug(x) = 1 — 2|x — %I. So,

w(e, 1) =4 (=10, 2 Eq (=2 t") sin(Ayx).

m=0

Since ug € H'> (Q), the regularity property (2.11) is satisfied for o = %a. As in Example
1, the numerical results in Table 2 exhibit convergence of order t°Y for 1 < y < 2/0 in
the stronger || - || ;-norm. For a graphical illustration of the impact of the graded mesh on the
pointwise error, we fixed N = 80 in Fig.2 and plotted the error at the time nodal points for
different choices of y.

7 Appendix: An a-Robust Interpolation Estimate

The purpose of this appendix is to prove Corollary 2, which was used in the proof of Theo-
rem 3. Suppose that Y is a complex Hilbert space with inner product (-, -)y and norm || - ||y.
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Put
Xo=1Ly((0,T);Y) and X; ={uec Xop:u' € Xgandu(0) =0}, (7.1)

equipped with the inner products
T

T
(u,v)x0=/(; (u(z),v(t))ydt and (u,v)x, =/0 (u’(z),v’(t))ydt.

We define an unbounded operat