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Abstract
Toward identifying the number of minimal surfaces sharing the same boundary from the
geometry of the boundary,we propose a numerical schemewith high speed and high accuracy.
Our numerical scheme is based on the method of fundamental solutions. We establish the
convergence analysis for Dirichlet energy and L∞-error analysis for mean curvature. Each
of the approximate solutions in our scheme is a smooth surface, a significant difference from
previous studies that required mesh generation.
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1 Introduction

In 1762, Lagrange proposed the problem of finding a surface with the least area spanned by
a given closed Jordan curve [20]. Because the first variation of the area of a surface gives the
mean curvature vector, the mean curvature of the surface with the least area is everywhere
zero. Thus, a surface whose mean curvature is everywhere zero is called a minimal surface.
In a more general sense, Lagrange’s problem can be rephrased as the problem of finding a
minimal surface spanned by a given closed Jordan curve. Later in 1873, Plateau investigated
the properties of minimal surfaces through an experiment on soap films and pointed out that
a single closed wire, regardless of its geometry, bounded at least one soap film. Nowadays,
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the problem of the existence of minimal surfaces bounded by a given closed Jordan curve is
called Plateau problem.

Although Douglas has established the existence of a solution to the Plateau problem [10],
it is difficult to determine whether the solution is unique or whether there are finitely many
solutions, even if the simple closed curve is smooth and if the solutions are homeomorphic to
the disk. The problem has not been completely solved. For example, the solution is unique if
a closed Jordan curve has a one-to-one parallel projection onto a convex closed curve in the
plane [26] or if the total curvature is less than or equal to 4π [22]. For the case where there is
more than one solution, it is known that there are two other minimal surfaces with the same
boundary as the Enneper surface, which is one of the exact solutions of the Plateau problem
[24]. The finite solvability is established for generic curves [6], stable solutions [19], and a
curve whose total curvature is less than 6π [23]. As seen from these results, the problem of
determining the number of solutions according to the geometry of a closed Jordan curve is
one of the most critical issues in the geometrical analysis of minimal surfaces.

To solve this problem, numerical analysis on minimal surfaces should help to find a
connection between the geometry of the curve and the number ofminimal surfaces sharing the
curve as the boundary. Sinceminimal surfaces are considered stationary points of functionals,
such as area and Dirichlet integrals, we can obtain minimal surfaces as the convergence limit
of some optimization problems. Therefore, one possible method to determine the number of
solutions corresponding to a given simple closed curve is to take a random initial guess for
the optimization problem and count the number of different minimal surfaces obtained as the
convergence limit of the optimization problem.

In order to make the above approach practical, it is necessary to establish a numerical
scheme, which is

1. So fast that many initial values can be handled in a reasonable time, and
2. So accurate that the numerical solutions obtained can be distinguished.

Therefore, this paper aims to establish a high-speed and high-accuracy numerical scheme to
achieve the above goals.

Numerical analysis of minimal surfaces has a long history, and since Douglas [9] proposed
a numerical scheme using the finite difference method, various methods have been proposed
up to the present day. Tsuchiya gave the first theoretical convergence analysis [31, 32]. He
considered the finite element method and proved the existence of discrete minimal surfaces
and convergence for the H1 norm. However, he did not derive the convergence order because
he used non-direct arguments. As in Tsuchiya’s papers, the finite element method was also
used in the Dziuk–Hutchinson paper [11, 12]. Although the target is somewhat limited to
nondegenerate minimal surfaces, the error for the H1 norm is proved to be O(h). Their result
is the first analytical one that includes the order of convergence. Following this work, Pozzi
[25] gave the L2-error estimate for finite element solutions. In Dziuk–Hutchinson [13], a
method for computing surfaces with a specified mean curvature is given with error analysis.
Numerical analysis ofminimal surfaceswhose boundaries are given as polygons is considered
by Hinze [16], who proves convergence for the H1 norm. Other than these, various numerical
methods have been proposed, for example, high-precision spatial discretization using B-
spline curves [15] and higher-order polynomials [30], computation of mean curvature flow
by finite volume method [29], improved performance by mesh refinement [14], and methods
based on algebraic topology [28] and differential forms [33]. However, to our knowledge, no
convergence analysis has been given for any of them.

As seen in Definition 1, numerical computation of minimal surfaces requires solving the
Dirichlet boundary value problem for the Laplace equation on the unit disk. Therefore, a
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fast and accurate solver for the Laplace equation can be used to compute minimal surfaces
more accurately than in previous studies. Thus, in this paper, we employ the method of
fundamental solutions (MFS for short), a numerical method for the potential problem. The
MFS is amesh-free numerical solver because it does not requiremeshing of the region, aswith
the finite element and finite difference methods. It is so named because a linear combination
of the fundamental solutions of the partial differential operator of interest constructs the
approximate solution. Under certain conditions, the approximate solution by the MFS has
the remarkable property of exponentially converging to the exact solution with an increasing
number of approximation points (Theorem 3 holds in the setting of this paper). Moreover,
since a linear combination of fundamental solutions constructs the approximate solution, the
approximate solution is smooth, and differential operations can be performed analytically,
resulting in a smooth approximation ofminimal surfaces.When the Jordan curve is embedded
into a two-dimensional plane, the problem of finding a minimal surface is reduced to the
problem of finding a conformal map from the unit disk onto the simply-connected region
bounded by the Jordan curve. Amano and his colleagues have been known to compute
conformalmappingswith high accuracyusing theMFS [1–4, 27].However, to our knowledge,
the MFS has no successful application to the numerical computation of minimal surfaces.

By utilizing the convergence theorem for the Dirichlet boundary value problem of the
Laplace equation in the disk region (Theorem 3), we succeed in giving the existence of
approximate minimal surfaces (Theorem 4) and the convergence of Dirichlet energy and
evaluation of mean curvature of approximate minimal surfaces (Theorem 5). Theorem 5
suggests criteria to determining whether the convergence limit of the obtained sequence
by the MFS provides a minimal surface irrespective of which an optimization method is
employed. These are the first results of the MFS numerical analysis of minimal surfaces.
As a result, the MFS can now obtain smooth approximations of minimal surfaces, with a
significant difference from previous studies that require mesh generation.

This paper is organized as follows. In Sect. 2, we first briefly summarize the geometry of
surfaces, then formulate the Plateau problem and present known results on the existence of
minimal surfaces. Here, the MFS is explained in detail., and the results of the convergence
analysis used in this paper are presented. In Sect. 3, we propose an algorithm for solving the
Plateau problem based on the MFS. Section4 shows that an approximate surface exists and
it converges to one of minimal surfaces in H1 topology. In particular, we show the Dirichlet
energy’s convergence and the mean curvature’s L∞-error. In Sect. 5, we develop a practical
algorithm based on the Nesterov’s accelerated gradient descent, and demonstrate the useful-
ness of the algorithm proposed in this paper by giving various numerical examples. In Sect. 6,
we propose an algorithm for computing multiple minimal surfaces based on the numerical
scheme proposed in this paper and verify its usefulness through numerical experiments.
Finally, Sect. 7 summarizes the paper and provides directions for future research.

2 Preliminaries

2.1 Geometry of Surfaces

This section briefly describes some basic notions from differential geometry closely related
to this work. See Dierkes, Hildebrandt, and Sauvigny [8] for details.
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Let Bρ be the disk with the radius ρ in the complex plane z = x1 + ix2 ∈ C, and ∂Bρ be
its boundary:

Bρ := {z ∈ C| |z| < ρ}, ∂Bρ := {z ∈ C| |z| = ρ}.
For notational simplicity, we write B = B1. Let us denote the differentiation by ∂ = ∂/∂z,
∂ = ∂/∂z, ∂1 = ∂/∂x1, and ∂2 = ∂/∂x2, respectively. For each f ∈ C1(C), we now have

∂ = (∂1 − i∂2)/2, ∂̄ = (∂1 + i∂2)/2, � = 4∂∂̄ = ∂21 + ∂22 ,

4|∂ f |2 = (∂1 f )
2 + (∂2 f )

2, 4(∂ f )2 = (∂1 f )
2 − (∂2 f )

2 − 2i(∂1 f )(∂2 f ).

Given a vector-valued function X : B � z �→ (Xi (z))3i=1 ∈ R
3,wewrite ∂ j X = (∂ j Xi )

3
i=1 ∈

R
3 and �X = (�Xi )

3
i=1 ∈ R

3.
A surface (M, g) is a Riemann surface equippedwith a Riemannianmetric g, which yields

complex analysis, and Riemannian geometry can be utilized as the surface. We now focus
on some geometric structures defined on the surface. Remember that a complex function
f : C → C is said to be holomorphic if it satisfies the Cauchy-Riemann equation

∂̄ f = 0.

Moreover, if f is bijective and its inverse is also holomorphic, then f is called a biholomor-
phism.

The Riemann surface M is equipped with complex charts {(Uα, φα)}α such that for each
(Uα, φα) and (Uβ, φβ), φα ◦φ−1

β : φβ(Uα ∩Uβ) → φα(Uα ∩Uβ) ⊂ C is a biholomorphism,
and M = ⋃

α Uα holds. The union of all compatible complex charts defines the complex
structure on the surface, and a smooth 2-manifold with a complex structure is called a Rie-
mann surface. Given two Riemann surfaces, M and N , a diffeomorphism f : M → N is a
biholomorphism if f is a biholomorphism in each complex chart. In addition, if a biholo-
morphism exists between two Riemann surfaces, M and N , then the Riemann surface M is
said to be biholomorphic to N .

The Riemannian metric g induces a conformal structure. A chart (U , φ) is isothermal if
the metric has the following local representation in the chart:

g = λ2|dz|2,
where λ > 0 and λ is called the conformal factor. A geometric structure defined by the union
of all compatible isothermal charts is called a conformal structure, and a smooth 2-manifold
equipped with a conformal structure is called a conformal surface. Given two conformal
surfaces M and N , a diffeomorphism f : M → N is a conformal mapping if f is conformal
in each isothermal chart. Moreover, if a conformal mapping exists between two Riemann
surfaces, M and N , then the Riemann surface M is said to be conformal to N . It is easy
to see that every isothermal chart becomes a complex one, and the converse holds using
conventional identification z = x1 + ix2. Hence, given two Riemann surfaces, M and N , a
diffeomorphism f : M → N is a conformal mapping if and only if f is a biholomorphism.

For instance, let a vector-valued function X : B → R
3 be aC1 immersion; that is, the rank

of the matrix (∂i X j )i, j is 2. Then the, disk B may have two different Riemannian metrics:
first, the standard two-dimensional Euclidean metric gs = (dx1)2 + (dx2)2, and second, the
inducedmetric gX = ∑

i, j 〈∂i X , ∂ j X〉dxidx j , where 〈·, ·〉 is the three-dimensional Euclidean
metric. For the identity map id : (B, gs) → (B, gX ) to be conformal, the immersion X must
satisfy

〈∂1X , ∂1X〉 = 〈∂2X , ∂2X〉, 〈∂1X , ∂2X〉 = 0.
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By using the complex coordinate, it is rewritten as

	X (z) :=
3∑

i=1

(∂Xi (z))
2 = 1

4
(〈∂1X , ∂1X〉z − 〈∂2X , ∂2X〉z − 2i〈∂1X , ∂2X〉z) = 0.

The function	X : B → C is called the complex dilatation. If and only if the complex dilata-
tion 	X vanishes, the induced metric gX satisfies gX = λ2gs , where λ2 = 〈∂1X , ∂1X〉 =
〈∂2X , ∂2X〉. Moreover, if �X = 0, then 	X is a holomorphic function since

∂̄	X =
3∑

i=1

2∂Xi ∂̄∂Xi = 1

2

3∑

i=1

∂Xi�Xi = 0.

2.2 Plateau Problem

We review the Plateau problem in terms of the construction of solutions. The Plateau problem
is formulated as finding an immersed surface spanned by a given closed Jordan curve that
minimizes the area. A variational argument yields that the minimizer of the area has zero
mean curvature. The mean curvature HX of a parametrized surface X : B → R

3 satisfies

HXn = �X X ,

where n = ∂1X×∂2X/|∂1X×∂2X | is the unit normal vector, and�X is the Laplace-Beltrami
operator associated with the metric gX if |∂1X × ∂2X | = 0. In particular, if the complex
dilatation 	X vanishes, we can deduce

�X = λ−2�,

where � is the Laplacian � = ∂21 + ∂22 . Hence, the minimal surface is formulated to solve
the following problem.

Definition 1 Given a closed Jordan curve 
 ⊂ R
3, X : B̄ → R

3 is called a minimal surface
spanned by 
 if the following three conditions are satisfied:

1. X ∈ C0(B̄,R3) ∩ C2(B,R3);
2. �X = 0, 	X = 0 in B;
3. the restriction X |∂B : ∂B → 
 is a homeomorphism.

Courant [7] established the existence of a minimal surface spanned by a given closed
Jordan curve by minimizing the Dirichlet energy

D(X) := 1

2

∫

B
(|∂1X |2 + |∂2X |2)dx1dx2

in the Sobolev class X ∈ H1(B,R3).More precisely, theminimizing problemof theDirichlet
integral is performed in the following space of admissible functions.

Definition 2 Given a closed Jordan curve 
 in R
3, a mapping X ∈ H1(B,R3) is said to be

of class C (
) for a fixed orientation if its Sobolev trace X |∂B can be represented by a weakly
monotonic, continuous mapping ϕ : ∂B → 
 onto 
(i.e., every L2(∂B)-representative of
X |∂B coincides with ϕ except for a subset of zero 1-dimensional Hausdorff measure).

Unless otherwise stated, hereafter, C (
) is always defined for a fixed orientation. Conse-
quently, the minimizing problem of the Dirichlet integral is formulated as follows:

P(
) : D(X) → min in the class C (
).
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The existence of a solution to the problem P(
) is obtained when C (
) is nonempty. In
particular, it is satisfied if 
 is a rectifiable closed Jordan curve.

Theorem 1 ( [8, Chapter 4.3, Theorem 1]) IfC (
) is nonempty, then the minimizing problem
P(
) has at least one solution, continuous on B̄ and harmonic in B. In particular, P(
)

has such a solution for every rectifiable closed Jordan curve 
.

It follows from Weyl’s lemma that all minimizers X ∈ C (
) are harmonic, i.e., �X = 0.
However, changing the coordinate, the minimizer is not in general harmonic again in the new
coordinate since the Laplacian �, and the Dirichlet energy D(X) change as the coordinates
are changed. Courant [7] showed that a minimal surface is obtained by taking the variation
of the Dirichlet energy by changing variables.

Theorem 2 ( [8, Chapter 4.5, Theorem 2])Every solution X of the variational problemP(
)

is a minimal surface.

2.3 Method of Fundamental Solutions

The method of fundamental solutions (MFS for short) is a mesh-free numerical solver for
linear partial differential equations such as the Laplace equation, the Helmholtz equation,
and the biharmonic equation. Its idea is quite simple, and the algorithm is described for the
Laplace equation, which is the subject of this paper.

Let � be a bounded region in C with smooth boundary ∂�, and consider the Dirichlet
boundary value problem for the Laplace equation in�with a given boundary data f : ∂� →
R:

{�u = 0 in �,

u = f on ∂�.

The MFS constructs an approximate solution for this problem by the following procedure.

1. Take N ∈ N and fix it. Moreover, arrange N points ζk (k = 1, 2, . . . , N ) “suitably” in
C \ �, which we call the singular points.

2. Seek an approximate solution u(N ) in the following form:

u(N )(z) =
N∑

k=1

QkG(z − ζk),

where G(z) = (2π)−1 log |z| is the fundamental solution of the Laplace operator. u(N )

satisfies the Laplace equation exactly in � since the singular points {ζk}Nk=1 are outside
�.

3. Determine coefficients {Qk}Nk=1 by the collocation method. Namely, choose N points z j
( j = 1, 2, . . . , N ) “suitably” on ∂�, and impose the following conditions:

u(N )(z j ) = f (z j ), j = 1, 2, . . . , N . (1)

Equation (1) can be rewritten as a linear system called the collocation equations,

GQ = f , (2)

where

G = (G(z j − ζk)) j,k ∈ R
N×N , Q = (Qk)k ∈ R

N , f = ( f (z j )) j ∈ R
N .
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As seen from the algorithm, theMFS does not require meshing the region, and the approx-
imate solution is constructed by choosing appropriate points on the boundary and outside
the region. However, what constitutes appropriate point placement is still mathematically
unsolved.

In this paper, it is only necessary to consider the case where the problem region is the
unit disk. In this case, it is natural to place the collocation points {z j }Nj=1 and singular points

{ζk}Nk=1 uniformly on concentric circles as follows:

zk = ωk, ζk = Rωk, k = 1, 2, . . . , N , (3)

where R > 1 and ω = exp(2π i/N ). Then, we can solve the collocation equations (2)
explicitly. Indeed, since the coefficient matrixG is now circulant, its inverseG−1 = (G−1

k j )k j
is presented by

G−1
k j := 1

N

N∑

l=1

ω(k− j)(l−1)

ϕ
(N )
l−1(1)

,

where

ϕ(N )
p (z) :=

N∑

k=1

ωp(k−1)G(z − ζk), p ∈ Z.

As a result, the coefficients Qk are explicitly given by

Qk =
N∑

j=1

G−1
k j f (z j ) = 1

N

N∑

j=1

N∑

l=1

ω(k− j)(l−1)

ϕ
(N )
l−1

f (z j )

for each k = 1, 2, . . . , N . Hence, we find that an approximate solution exists and that it can
be concretely constructed.

Under the above setting, the following theorem holds. See [18, Theorem 2 and Section 4]
and [17, Theorem 2.3 and Remark 4.1] for details.

Theorem 3 1. Suppose that the boundary data f is real analytic. Then, for any m ∈ Z≥0,
there are constants C > 0 and τ ∈ (0, 1), independent of N , such that the following
estimate holds:

‖∂mu − ∂mu(N )‖L∞(B) ≤ Cτ N .

2. Let { fn} be the Fourier coefficients of f and l ∈ Z≥0.

(a) If the l-th derivative of the Fourier series of f is absolutely convergent, then ∂mu(N )

uniformly converges to ∂mu in B as N → ∞ for each m ∈ {0, 1, . . . , l}.
(b) If fn = O(|n|−(l+1+α)) for some α ∈ (0, 1) as |n| → ∞, then for each m ∈

{0, 1, . . . , l}, we have
‖∂mu − ∂mu(N )‖L∞(B) = O(Nm−l−α) (N → ∞).

Theorem 3 implies that the Wm,∞-error ‖u − u(N )‖Wm,∞(B) tends to 0 as N → ∞
depending on the regularity of f . The compactness of the domain B implies that

‖∂mu − ∂mu(N )‖L p(B) ≤ π1/p‖∂mu − ∂mu(N )‖L∞(B)

for p ∈ [1,∞). Repeating the same procedure, we find that, for m ∈ N and p ∈ [1,∞], the
Wm,p-error ‖u − u(N )‖Wm,p(B) tends to 0 as N → ∞, depending on the regularity of the
solution.
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3 Numerical Scheme Solving Plateau Problem

In what follows, we construct a minimal surface X ∈ C0(B̄,R3) ∩ C2(B,R3) spanned by
a given rectifiable closed Jordan curve 
 ⊂ R

3. Let us fix a homeomorphism b : ∂B →

. Then, since X |∂B : ∂B → 
 is also homeomorphism, we deduce that there exists a
homeomorphism ϕ : ∂B → ∂B such that

{�X = 0, 	X = 0 in B,

X = b ◦ ϕ on ∂B.

Indeed, ϕ = b−1 ◦X |∂B satisfies the above conditions. Note that for a given ϕ X = X(·;ϕ) is
obtained using the Poisson kernel of the Dirichlet boundary value problem. From this point
of view, we can say ϕ is chosen to attain 	X(·;ϕ) = 0.

Namely, we consider the following minimization problem:

argmin
{‖	X(·;ϕ)‖L∞(B) | ϕ ∈ Homeo(∂B)

}
, (4)

where Homeo(∂B) is the space of all orientation-preserving homeomorphisms on ∂B.
In order to construct a numerical scheme, in this section, we perform a finite-dimensional

approximation of the minimization problem (4). Let N ∈ N and R > 1 be given, and
arrange the collocation points {z j }Nj=1 and the singular points {ζk}Nk=1 by (3). Let ϕ

(N ) : ∂B ⊃
{z j }Nj=1 → {ϕ(N )

j }Nj=1 ⊂ ∂B, where ϕ
(N )
j := ϕ(N )(z j ) for j = 1, . . . , N , and associate it

with a configuration vector ϕ(N ) = (ϕ
(N )
j )Nj=1 ∈ T

N , where TN is the N -dimensional torus.

Then, an approximate solution X (N )(z;ϕ) = (X (N )
1 , X (N )

2 , X (N )
3 )(z;ϕ) is given by the

MFS

X (N )
i (z;ϕ) =

N∑

k=1

Qik(ϕ)G(z − ζk), (5)

whose coefficients are determined by the collocation equations

X (N )
i (z j ;ϕ) = bi (ϕ j ), j = 1, 2, . . . , N . (6)

We will write 	X (N )(·;ϕ)(z) by 	(N )(z;ϕ) shortly.
Then, we consider the following minimization problem

argmin{‖	(N )(·;ϕ(N ))‖L∞(B) | ϕ(N ) ∈ T
(N )}. (7)

It is quite natural to consider whether the minimization problem (7) is an approximation
of (4). In the next section, we develop a mathematical theory of approximation properties.
Hereafter, the superscript (N ) will be omitted in the symbol ϕ(N ).

Remark 3 We derive the N -dimensional torus from Homeo(∂B) as follows. For each N ,
define the following quotient space in Homeo(∂B) by

�N : = Homeo(∂B)/ ∼,

f ∼ g ⇐⇒ ∀n ∈ {1, . . . , N }, f (zn) = g(zn).

Thequotient space is embedded inTN by its values: for eachφ ∈ �N ,φ = (φ(zn))Nn=1 ∈ T
N .
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4 Convergence and Error Analysis

We first show the existence of an approximate solution for the minimization problem with a
given precision ε > 0.

Theorem 4 Let
 ⊂ R
3 be a rectifiable closed Jordan curve. Let X ∈ C0(B̄,R3)∩C2(B,R3)

be a minimal surface spanned by 
. Suppose that the derivative of the Fourier series of Xi

is absolutely convergent for each i = 1, 2, 3. Let X (N )(·;ϕ) : B̄ → R
3 be the approximate

surface for a given N ∈ N and ϕ ∈ T
N . Let 	(N )(·;ϕ) : B̄ → C be the complex dilatation

of X (N )(·;ϕ). Then, the following hold.

1. For any ε > 0 and sufficiently large N ∈ N, there exists ϕ = ϕ(ε, N ) ∈ T
N such that

‖	(N )(·;ϕ)‖L∞(B) < ε.

We call ϕ ε-conformal configuration.
2. If the n-th Fourier coefficient Xi,n of Xi |∂B satisfies Xi,n = O(|n|−α) for each i = 1, 2, 3

and some α > 2, then for any sufficiently large N ∈ N, there exists ϕ = ϕ(N ) ∈ T
N

such that

‖	(N )(·;ϕ)‖L∞(B) = O(N−α+2) (N → ∞).

3. If Xi |∂B is real analytic for each i = 1, 2, 3, then there exist ϕ = ϕ(N ) ∈ T
N and

constants C > 0 and τ ∈ (0, 1), independent of N , such that

‖	(N )(·;ϕ)‖L∞(B) ≤ Cτ N .

Proof We show the equidistant configuration ϕ = (z j )Nj=1 becomes the desired object when
an exact solution for the Plateau problem is given. In particular, we now have 	X = 0. Since
the MFS constructs X (N )(·;ϕ), we deduce from Theorem 3 that for any i = 1, 2, 3,

‖∂Xi − ∂X (N )
i (·;ϕ)‖L∞(B) < 1

for sufficiently large N . Hence, we see that for each z ∈ B,

|	(N )(z;ϕ)| = |	X (z) − 	(N )(z;ϕ)| ≤
3∑

i=1

|∂Xi (z)
2 − ∂X (N )

i (z;ϕ)2|

≤
3∑

i=1

|∂Xi (z) − ∂X (N )
i (z;ϕ)|(2|∂Xi (z)| + |∂Xi (z) − ∂X (N )

i (z;ϕ)|)

≤
3∑

i=1

‖∂Xi − ∂X (N )
i (·;ϕ)‖L∞(B)(2‖∂Xi‖L∞(B) + ‖∂Xi − ∂X (N )

i (·;ϕ)‖L∞(B))

≤ C
3∑

i=1

‖∂Xi − ∂X (N )
i (·;ϕ)‖L∞(B).

Hence, the decay of ‖	(N )(·;ϕ)‖L∞(B) follows directly from that of ‖∂Xi − ∂X (N )
i

(·;ϕ)‖L∞(B) given in Theorem 3. ��
Theorem 4 guarantees the existence of a sequence of approximate surfaces

{X (Nn)(·;ϕ(Nn))}n≥1 for some ϕ(Nn) ∈ T
Nn with a monotonically increasing sequence

{Nn}n≥1 ⊂ N such that

lim
n→∞ ||	X (Nn ) ||L∞(B) = 0.
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We next see that this sequence of approximate surfaces gives a minimal surface.

Theorem 5 Let 
 ⊂ R
3 be a rectifiable closed Jordan curve with a fixed homeomorphism

b : ∂B → 
. Let {X (Nn)(·;ϕ(Nn))}n≥1 be a sequence of approximate surfaces for some
ϕ(Nn) ∈ T

Nn with a monotonically increasing sequence {Nn}n≥1 ⊂ N such that

lim
n→∞ ||	X (Nn ) ||L∞(B) = 0.

Moreover, suppose that

X (Nn)|∂B → c in H1/2(∂B,R3)

for some c ∈ H1/2(∂B,R3) such that its Fourier series is absolutely convergent. Then, there
exists a minimal surface X ∈ C0(B̄,R3) ∩ C2(B,R3) spanned by 
 such that

lim
n→∞ ||X (Nn) − X ||H1(B) = 0.

In particular,

lim
n→∞ D(X (Nn)) = D(X).

Moreover, if the second derivative of the Fourier series of Xi |∂B is absolutely convergent for
each i = 1, 2, 3 and X is non-singular, i.e., ∂1X × ∂2X = 0, then

lim
n→∞ ‖HX (Nn )‖L∞(B) = 0.

Proof It is easy to see that owing to the Poisson integral, X ∈ H1(B,R3) satisfying�X = 0
is presented as

X(z) = X̂(0) +
∑

m≥1

(
X̂(m)zm + X̂(−m)z̄m

)
on B,

where X̂(m) is them-th Fourier coefficient of X |∂B . Moreover, a straightforward calculation
yields

D(X) = π

2

∑

m≥1

m|X̂(m)|2.

Using m-th Fourier coefficient ĉ(m) of c|∂B and X̂ (Nn)(m) of X (Nn), we can rewrite the
assumption on the convergence of X (Nn)|∂B to c by

|X̂ (Nn)(0) − ĉ(0)|2 +
∑

m≥1

m|X̂ (Nn)(m) − ĉ(m)|2 → 0 as n → ∞.

Based on the above facts, let us define X : B → R
3 by

X(z) = ĉ(0) +
∑

m≥1

(ĉ(m)zm + ĉ(−m)z̄m)

and show X is the desired minimal surface. X is absolutely convergent for each z ∈ B, since
∣
∣
∣
∣
∣
∣
ĉ(0) +

∑

m≥1

(
ĉ(m)zm + ĉ(−m)z−m)

∣
∣
∣
∣
∣
∣
≤

∑

m∈Z
|ĉ(m)||z|m ≤

∑

m∈Z
|ĉ(m)| < +∞
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holds. Therefore, X is smoothly defined on B; in particular, X ∈ C0(B,R3) ∩ C2(B,R3).
Moreover, we obtain

�X(z) =
∑

m≥1

ĉ(m)�zm + ĉ(−m)�z̄m = 0.

In addition,

||X − X (Nn)||2H1(B)
≤ C(|ĉ(0) − X̂ (Nn)(0)|2 + ||c − X (Nn)|∂B ||H1/2(∂B)) → 0,

which, in particular, gives D(X (Nn)) → D(X). We see that X |∂B ∈ C (
) since for each
z ∈ ∂B and each ε > 0, there exists sufficiently large Nn ∈ N and sufficiently close z j ∈ ∂B
to z and ϕ j corresponding to z j such that

|X(z) − X(z j )| < ε, |X(z j ) − X (Nn)(z j ;ϕ(Nn))| < ε,

which yields that

|X(z) − b(ϕ j )|
≤ |X(z) − X(z j )| + |X(z j ) − X (Nn)(z j ;ϕ(Nn))| + |X (Nn)(z j ;ϕ(Nn)) − b(ϕ j )|
< 2ε.

Note that the last term in the second line of the above inequalities vanishes since
X (Nn)(z j ;ϕ(Nn)) = b(ϕ j ) holds. The monotonicity of X |∂B also follows from the same
argument.

Since

	X =
3∑

i=1

[
(∂(Xi − X (Nn)

i ))2 + 2∂(Xi − X (Nn)
i )∂X (Nn)

i + (∂X (Nn)
i )2

]
,

we deduce

‖	X‖L1(B)

≤ ‖X − X (Nn)‖2H1(B)
+ 2‖X − X (Nn)‖2H1(B)

‖X (Nn)‖2H1(B)
+ ‖	X (Nn )‖L1(B)

→ 0,

which yields 	X = 0, and X is a minimal surface.
Lastly, we examine the convergence of the mean curvature. Define the first fundamental

forms g(Nn)
i j as

g(Nn)
i j := 〈∂i X (Nn), ∂ j X

(Nn)〉, i, j = 1, 2.

Since ‖	X (Nn )‖L∞(B) < ε holds for any sufficiently small ε > 0, we have

‖g(Nn)
11 − g(Nn)

22 ‖L∞(B) ≤ Cε, ‖g(Nn)
12 ‖L∞(B) ≤ Cε

for sufficiently large Nn . Here and hereafter, C is a positive constant that can change with
each appearance and does not depend on Nn . Since g = (gi j ) is non-singular, for sufficiently
large Nn , we have

det g(Nn) ≥ C .
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A pointwise error of the mean curvature is given by

|HX (Nn ) | = |HX − HX (Nn ) |

=
∣
∣
∣
∣
∣

g11h22 + g22h11 − 2g12h12
2 det g

− g(Nn)
11 h(Nn)

22 + g(Nn)
22 h(Nn)

11 − 2g(Nn)
12 h(Nn)

12

2 det g(Nn)

∣
∣
∣
∣
∣
,

where

h(Nn)
i j = 〈∂i∂ j X

(Nn), e(Nn)〉, e(Nn) = ∂1X (Nn) × ∂2X (Nn)

‖∂1X (Nn) × ∂2X (Nn)‖ .

By repeatedly applying the simple equation

ac − bd = 1

2
[(a + b)(c − d) + (a − b)(c + d)] , (8)

the error in the mean curvature can be estimated by evaluating ‖gi j − g(Nn)
i j ‖L∞(B) and

‖hi j − h(Nn)
i j ‖L∞(B). Since the estimates of ‖gi j − g(Nn)

i j ‖L∞(B) have already been obtained,

we will consider ‖hi j − h(Nn)
i j ‖. By applying the product read as inner product in equation

(8) and the Cauchy–Schwarz inequality, we have

|hi j − h(Nn)
i j |

≤ 1

2

[
|〈∂i∂ j X − ∂i∂ j X

(Nn), e + e(Nn)〉| + |〈∂i∂ j X + ∂i∂ j X
(Nn), e − e(Nn)〉|

]

≤ 1

2

[
|∂i∂ j X − ∂i∂ j X

(Nn)||e + e(Nn)| + |∂i∂ j X + ∂i∂ j X
(Nn)||e − e(Nn)|

]

≤ 1

2

[
‖∂i∂ j X − ∂i∂ j X

(Nn)‖L∞(B)‖e + e(Nn)‖L∞(B)

+‖∂i∂ j X + ∂i∂ j X
(Nn)‖L∞(B)‖e − e(Nn)‖L∞(B)

]
,

where ‖F‖L∞(B) for an R
3-valued function F = (F1, F2, F3) is defined as

‖F‖L∞(B) = ‖F1‖L∞(B) + ‖F2‖L∞(B) + ‖F3‖L∞(B).

Since ‖∂i∂ j X − ∂i∂ j X (Nn)‖L∞(B) and ‖e − e(Nn)‖L∞(B) converge to 0 as n → ∞, we see
that

‖hi j − h(Nn)
i j ‖L∞(B) ≤ Cε

for sufficiently large Nn . Combining these estimates, we conclude that

‖HX (Nn )‖L∞(B) ≤ Cε

holds for sufficiently large Nn . ��
Remark 4 Theorems 4 and 5 demonstrate that in discretizing minimal surfaces with the MFS
they generally hold true regardless of the choice of a specific optimization method. Notably,
Theorem 5 suggests criteria to determining whether the convergence limit of the obtained
sequence by the MFS provides a minimal surface irrespective of which optimization method
is employed. Accordingly, it is necessary to separately verify whether the approximation
sequences producedby individual specificoptimizationmethods satisfy the scenarios outlined
in Theorems 4 and 5, according to the optimization method used.

123



Journal of Scientific Computing            (2024) 100:2 Page 13 of 20     2 

5 Numerical Examples

In this section, we show several results of numerical experiments, which exemplify the
effectiveness of our method. We briefly explain how we obtain an ε-conformal configuration
ϕ ∈ T

N . In what follows, for several rectifiable closed Jordan curves b : ∂B → 
 ⊂ R
3,

we perform numerical experiments to describe the behavior of the proposed optimization
method.

5.1 Practical Algorithm

In order to find an ε-conformal configuration ϕ whose existence is assured in Theorem 4,
choose sufficiently close ρ ∈ (0, 1] to 1, and define the energy E by

E = E(ϕ) =
N∑

j=1

∣
∣
∣	(N )(ρz j ;ϕ)

∣
∣
∣
2
.

We minimize this energy using Nesterov’s accelerated gradient descent (see, for instance,
Nesterov [21] and Assran–Rabbat [5]). More precisely, we use the following algorithm.

Algorithm 6 (Compute a minimizer of E) Define N ∈ N, R > 1, η > 0, ρ,μ ∈ (0, 1], and
nmax ∈ N

Arrange the collocation points {z j }Nj=1 and the singular points {ζk}Nk=1 by equation (3)

Set n := 0 and the initial value ϕ0 ∈ T
N , and define ψ0 := φ0

while n ≤ nmax do
Increment by n := n + 1
MFS part: Compute X (N )(·;ϕn−1) by (5) and (6)
Nesterov part: Compute ϕn and ψn by

ϕn = ψn−1 − η∇E(ϕn−1), ψn = ϕn + μ(ϕn − ϕn−1)

end while
return ϕnmax

All numerical experiments were performed using Julia 1.8.0 on a machine with 3.2 GHz
Apple M1 Ultra 20 cores, 128 GBmemory, and OS X 12.5.1. We choose N = 100, R = 1.1,
η = 10−3, μ = 0.9, ρ = 0.8, and nmax = 104.

5.2 Jordan Domain in the Plane

As a first example, consider the case where the curve 
 is embedded in the plane. In this
case, the problem of finding the minimal surface is finding a conformal map from the unit
disk onto the Jordan domain bounded by 
.

We compute conformal mappings for the ellipse b(θ) = (2 cos θ, sin θ, 0) and the Cassini
oval b(θ) = (r(θ) cos θ, r(θ) sin θ, 0), where

r(θ) =
√

cos 2θ +
√
1.14 − sin2 2θ.

For both cases, we choose equidistant points as initial data. It takes 4.91 s for the ellipse
and 6.58 s for the oval to complete the computation. The ellipse and Cassini oval results are
summarized in Figs. 1 and 2, respectively. Since the complex dilatation is now a holomorphic
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Fig. 1 Results for the ellipse. From left to right: ε-conformal configuration, graph of ε-conformal configuration,
conformal map, complex dilatation

Fig. 2 Results for the Cassini oval. From left to right: ε-conformal configuration, graph of ε-conformal
configuration, conformal map, complex dilatation

function, it should obey the maximum principle. In Figs. 1 and 2, we observe a concentrated
area in blue bounded by focussing nodes, and the inner side of the focussing nodes is more
accurate than 8-digit precision. Hence, the structure of the focusing nodes yields the discrete
version of the maximum principle.

5.3 Crown and Knots

Computations not included in the planar domain are as accurate and fast as those included.
We choose a crown-shaped curve b(θ) = (cos θ, sin θ, 0.3 sin nθ) and the torus knot b(θ) =
((2+cos qθ) cos pθ, (2+cos qθ) sin pθ,− sin qθ)with n = 5, p = 3 and q = 2 as examples
to see this. Our computation costs 6.68 s for the crown-shaped curve and 8.04 s for the torus
knot when we choose equidistant points as initial data. In both Figs. 3 and 4, we can see the
structure of the focusing nodes that yields the discrete maximal principle. Hence, even if a
given boundary curve is knotting and the resulting minimal surfaces can not be embedded
but immersed, we can compute them with the same accuracy and speed.

6 SearchingMethods for Multiple Solutions

We finally propose two methods to search for multiple solutions to the Plateau problem for
a given boundary curve. We demonstrate these methods by taking the Enneper wire as an
example, and the Enneper wire is a closed Jordan curve given by

b1(θ) = r cos θ − r3

3
cos 3θ,

b2(θ) = −r sin θ − r3

3
sin 3θ,

b3(θ) = r2 cos 2θ
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Fig. 3 Results for the crown-shaped curve. From left to right: ε-conformal configuration, graph of ε-conformal
configuration, minimal surface, complex dilatation

Fig. 4 Results for the torus knot. From left to right: ε-conformal configuration, graph of ε-conformal config-
uration, minimal surface, complex dilatation

Fig. 5 Enneper surface: (left) minimal surface, (right) complex dilatation

for r ∈ (0,
√
3). The Enneper wire comes from the boundary of the Enneper surface, which

is an exact solution to the Plateau problem. The homeomorphism φ : ∂B → ∂B is then
the identity map on ∂B. Hence, the equidistant point set is the ε-conformal configuration
corresponding to the exact solution.

Figure5 shows the numerical solution for the equidistant points corresponding to the
Enneper surface. We see no focusing nodes in the contour plot of the dilatation, which
implies that focusing nodes cannot be formed without optimization. It is known that the
Enneper wire bounds two distinct minimal surfaces other than the Enneper surface.

Our goals in this section are to find solutions and to confirm that there is no other solution
than what we have found. First, let us search for solutions in a unified manner as follows. We
take a one-parameter family of initial configurations φ(N ) : (S1, S2) � s �→ φ(N )(s) ∈ T

N

with

φ
(N )
j (s) = 2π( j − 1)

N
+ s sin

2πm( j − 1)

N

for s > 0 and m ∈ Z, and φ(N ) is regarded as an associated configuration of a perturbed
identity map on ∂B by a Fourier mode s sinmx .
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Fig. 6 One-parameter family of configurations: (left) initial configuration, (center) ε-conformal configuration,
(right) Dirichlet energy

Fig. 7 Results for the case s = −1

The first two figures in Fig. 6 indicates that each initial configuration converges to either
of the three minimizers for s ∈ {−2.95,−2.9, . . . , 2} and m = 2.

Since φ(N )(s) varies continuously for s, the value of the Dirichlet energy also varies
continuously. Hence, we can distinguish the minimizers from connected components of the
value of the Dirichlet energy as s varies. The last figure in Fig. 6 shows the value of Dirichlet
energy for each s. The color of the points is painted according to the accuracy of E . We
see that the distribution of the values is well-organized if E is more accurate than 5-digit
precision; otherwise, it is scattered. Therefore, it is suggested that the numerical solutions
must be more accurate than at least 5-digit precision to distinguish minimizers.

We pick out three representatives of the connected components with 5-digit precision,
choosing s = −1, 0, 1. The left figures in Figs. 7, 8, and 9 shows their initial and ε-conformal
configurations. Indeed, it is worth noting that these representatives give three distinctminimal
surfaces, as depicted in central figures in Figs. 7, 8, and 9. They attain 8-digit precision in
7.85 sec (s = −1), 9.05 sec (s = 0) and 7.98 sec (s = 1), and form focusing nodes, as in
right figures in Figs. 7, 8, and 9.

Second, let us choose initial configurations at random, thereby check there is no other
solution than what we found above. We pick up points randomly and interpolate them by
B-spline interpolation as initial data. If a sample does not attain 5-digit accuracy after 10,000
iterations, the sample is discarded, and a new sample is taken. Each sample needs about 7 s
for the optimization. In order to obtain 10,000 randomly selected 5-digit precision samples in
this way, 30,059 initial values were needed. As a result, it took 3 days, 5h, 22min, and 28s to
complete all calculations. Almost all of the 10,000 samples correspond to the case of s = 0.
To be more precise, 74 and 12 examples correspond to s = −1 and s = 1, respectively, with
5-digit precision, while all others correspond to s = 0.

Figures 10 and 11 show the distribution and its rearrangement of the Dirichlet energy
according to the accuracy with 5-digit (left), 6-digit (center), and 7-digit (right) precision.
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Fig. 8 Results for the case s = 0

Fig. 9 Results for the case s = 1

Fig. 10 Distribution of the Dirichlet energy. From left to right: 5-digit precision, 6-digit precision, 7-digit
precision

Weobserve that there are at least two solutions by distinguishing these samples bywhether the
value of the Dirichlet energy is greater than 12 or not. When the Dirichlet energy of a sample
is greater than 12, the sample corresponds to the case s = 0. Otherwise, they correspond to
either the case s = 1 or s = −1. Note that the Dirichlet energy cannot distinguish the case
for s = 1, −1 since the minimal surfaces for s = 1,−1 coincide by certain rigid rotation.

In summary, three different minimal surfaces can be obtained for the Enneper wire, and
none other than these seem to exist. Note, however, that our proposed algorithm can compute
more than one minimal surface, and may not be able to compute all minimal surfaces.

7 Concluding Remarks

We proposed a numerical scheme with such a high speed and high accuracy to find multiple
minimal surfaces spanned by a closed Jordan curve. The numerical scheme was based on
the method of fundamental solutions (MFS) and Nesterov’s accelerated gradient descent.
We could compute an approximate solution for the Dirichlet boundary value problem by the
MFS, and the error of the approximate solution to an exact solution decayed exponentially
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Fig. 11 Rearrangement of the Distribution. From left to right: 5-digit precision, 6-digit precision, 7-digit
precision

for sufficiently smooth boundary data. In the computation of a minimal surface, the Dirichlet
boundary value problem arose to compute the coordinate function of the minimal surface.
However, not all surfaces obtained as the solution for the boundary value problem were
minimal because the solution varied as a change of variable of the boundary that gave a
different boundary data. Hence, it was necessary to compute minimal surfaces via theMFS to
find a suitable change of variable that yielded minimal surfaces. We proposed a minimization
problem for a discrete energy of the complex dilatation around the boundary. The significant
characteristic was that every MFS approximate solution is smooth and harmonic on the
whole domain, eliminating the need for the integration on the whole space of the functional.
Nesterov’s accelerated gradient descent solved this minimization problem.

For the proposed numerical method, we proved the existence of a solution for the mini-
mization problem for the complex dilatation in Theorem 4. We obtained the error estimate
of the complex dilatation according to the regularity of the boundary of a given minimal
surface. We next showed the existence of a subsequence of a given sequence of approximate
surfaces and the limit. In particular, the limit became a minimal surface, and the value of the
Dirichlet energy converged to the one for theminimal surface.We also obtained the L∞-error
estimate for the mean curvature. We assumed the restriction of the approximate surfaces to
the boundary converges a boundary map in H1/2(∂B,R3). It may be not so difficult to check
numerically that this assumption is satisfied.

However, it is a significant challenge in mathematical analysis to remove this assumption
by proposing an alternative scheme. Especially, selecting a specific optimization method
and thereby establishing the existence of a minimizing solution X (N ) with N fixed, and
demonstrating the convergence of its subsequences {X (Nn)}n≥1 to an exact solution (i.e.,
local convergence) is a task that will be accomplished by fully leveraging the unique features
of the chosen optimization method, grounded on theMFS framework. For instance, verifying
whether the sequence of approximate solutions {X (N )

nesterov}N≥1 generated by using the objec-
tive function E and the Nesterov accelerated gradient method as the optimization technique
meets the criteria set forth in Theorem 5, is a research that remains as a future work. If those
requirements are met, Theorem 5 guarantees the existence of a subsequence converging to
the exact solution of the Plateau problem, thereby achieving the desired local convergence.
In a similar vein, for boundaries that yield a unique solution, the full convergence of the
minimizing solution X (N ) with N fixed, discretized by the MFS and obtained through a
specific optimization method, is a challenge that should be demonstrated according to the
optimization method.

We investigated the performance of numerical computation through several numerical
experiments. We saw from the computation for some boundaries that the complex dilatation
satisfied a discrete version of the maximum principle. The errors of the complex dilatation
were with 8-digit precision for at most 8 s for each of the boundaries in our computation.
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Lastly, we proposed two methods of finding multiple minimal surfaces spanned by a given
closed Jordan curve. We chose a one-parameter family of initial configurations in the first
method based on a perturbed identitymap on the boundary by a Fouriermode. Since the initial
configurations changed continuously, we could find distinct minimal surfaces as a minimizer
of boundary mapping or connected components of the value of the Dirichlet energy. In the
second method, we selected the initial configuration at random.

Looking at the distribution of the Dirichlet energy, it seems that there are no other minimal
surfaces than the one we found. However, the present algorithm only finds multiple minimal
surfaces, and it would be extremely challenging and interesting to construct an algorithm that
can truly find all minimal surfaces. Future work will determine whether the above methods
cannot find some minimal surfaces or how many samples must be calculated to ensure that
all minimal surfaces have been obtained.
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