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Abstract
We develop newmultilevel Monte Carlo (MLMC)methods to estimate the expectation of the
smallest eigenvalue of a stochastic convection–diffusion operator with random coefficients.
The MLMC method is based on a sequence of finite element (FE) discretizations of the
eigenvalue problem on a hierarchy of increasingly finer meshes. For the discretized, algebraic
eigenproblems we use both the Rayleigh quotient (RQ) iteration and implicitly restarted
Arnoldi (IRA), providing an analysis of the cost in each case. By studying the variance
on each level and adapting classical FE error bounds to the stochastic setting, we are able
to bound the total error of our MLMC estimator and provide a complexity analysis. As
expected, the complexity bound for our MLMC estimator is superior to plain Monte Carlo.
To improve the efficiency of the MLMC further, we exploit the hierarchy of meshes and
use coarser approximations as starting values for the eigensolvers on finer ones. To improve
the stability of the MLMC method for convection-dominated problems, we employ two
additional strategies. First, we consider the streamline upwind Petrov–Galerkin formulation
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of the discrete eigenvalue problem, which allows us to start the MLMC method on coarser
meshes than is possible with standard FEs. Second, we apply a homotopy method to add
stability to the eigensolver for each sample. Finally, we present a multilevel quasi-Monte
Carlo method that replacesMonte Carlo with a quasi-Monte Carlo (QMC) rule on each level.
Due to the faster convergence of QMC, this improves the overall complexity. We provide
detailed numerical results comparing our different strategies to demonstrate the practical
feasibility of the MLMC method in different use cases. The results support our complexity
analysis and further demonstrate the superiority over plain Monte Carlo in all cases.

Keywords Convection–diffusion eigenvalue problems · Multilevel Monte Carlo ·
Uncertainty quantification · Homotopy

1 Introduction

We consider the following convection–diffusion eigenvalue problem with random coeffi-
cients: Find a non-trivial eigenpair (λ, u) ∈ C × H1

0 (D;C) such that

−∇ · (κ(x,ω)∇u(x,ω)
)+ a(x,ω) · ∇u(x,ω) = λ(ω)u(x,ω). (1)

ThePDE is considered for thephysical variablex in a boundedLipschitz domain D ∈ R
d with

d = 1, 2, or 3, and for the stochastic variable ω from a given probability space (Ω,F, π).
For π-almost all ω ∈ Ω , we assume Dirichlet conditions on the boundary Γ = ∂ D,

u(x,ω) = 0 for x ∈ Γ .

The conductivity κ(x,ω) : D × Ω → R is a log-uniform random field (as used in, e.g.,
[19]), defined using the process convolution approach in [37], such that

log κ(x,ω) = Z(x,ω) =
∑

i

ωi k(x − ci ), (2)

with k(x − ci ) a kernel centered at a certain number of points ci ∈ D and i.i.d. uniform
random variables ωi ∼ U[0, 1]. Similarly, the convection velocity a(x,ω) : D × Ω → R

d

can also be some bounded random variable, which also depends on uniform random variables
ωi ∼ U[0, 1] and is additionally assumed to be divergence-free, i.e.,

∇ · a(x,ω) = 0. (3)

The purpose of this paper is to compute the expectation of the smallest eigenvalue of (1),

E[λ] =
∫

Ω

λ(ω) dπ(ω), (4)

using multilevel Monte Carlo methods.
Stochastic eigenvalue problems arise in a variety of physical and scientific applications

and their numerical simulations. Factors such as measurement noise, limitations of mathe-
matical models, the existence of hidden variables, the randomness of input parameters, and
other factors contribute to uncertainties in the modelling and prediction of many phenomena.
Applications of uncertainty quantification (UQ) specifically related to eigenvalue problems
include: nuclear reactor criticality calculations [2, 3, 25], the derivation of the natural frequen-
cies of an aircraft or a naval vessel [41], band gap calculations in photonic crystals [22, 27, 55],
the computation of ultrasonic resonance frequencies to detect the presence of gas hydrates
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[51], the analysis of the elastic properties of crystals with the use of rapid measurements
[52, 61], or the calculation of acoustic vibrations [12, 66]. Stochastic convection–diffusion
equations are used to describe simple cases of turbulent [24, 44, 54, 63] or subsurface flows
[64, 67].

Monte Carlo sampling is one of the most popular methods for quantifying uncertainties
in quantities of interest coming from stochastic PDEs. Although simple and robust, Monte
Carlo methods can be severely inefficient when applied to UQ problems, because their slow
convergence rate often requires a large number of samples to meet the desired accuracy. To
improve the efficiency, the multilevel Monte Carlo (MLMC) method was developed, where
the key idea is to reduce the computational cost by spreading the samples over a hierarchy
of discretizations. The main idea was introduced by Heinrich [36] for path integration, then
generalized by Giles [30] for SDEs. More recently, MLMC methods have been applied with
great success to stochastic PDEs, see, e.g., [6, 7, 14, 28, 29, 53, 60, 65] specifically for
eigenproblems. A general overview of MLMC is presented by Giles [31].

In this paper, we present aMLMCmethod to approximate (4), which, motivated by the use
of MLMC for source problems described above, is based on a hierarchy of discretizations of
the eigenvalue problem (1) and which is much more efficient in practice than a Monte carlo
approximation. We consider two discretization methods, a standard Galerkin finite element
method (FEM)and a streamline upwindPetrov–Galerkin (SUPG)method.TheSUPGmethod
improves the stability of the approximation for cases with high convection and also allows
us to start the MLMCmethod from a coarser discretization. To further reduce the cost of our
MLMCmethod, we again exploit the hierarchy of discretizations by using approximations on
coarse levels as the starting values for the eigensolver on the fine level.We also present the two
extensions of MLMC that aim to improve different aspects of the method. First, to improve
the stability of the eigensolver for each sample we include a homotopy method for solving
convection–diffusion eigenvalue problems in the MLMC algorithm. The homotopy method
computes the eigenvalue of the convection–diffusion operator by following a continuous
path starting from the pure diffusion operator. Second, to improve the overall complexity
we present a multilevel quasi-Monte Carlo method that aims to speed up the convergence of
the variance on each level by replacing the Monte Carlo samples with a quasi-Monte Carlo
(QMC) quadrature rule.

The structure of the paper is as follows. Section2 introduces the variational formulation
of (1), along with necessary background material on stochastic convection–diffusion eigen-
value problems. Two discrete formulations of the eigenvalue problem are introduced: the
Galerkin FEM and the SUPG method. Section3 introduces the MLMC method and presents
the corresponding complexity analysis. In particular, this section details how to efficiently
use each eigensolver, the Rayleigh quotient and implicitly restarted Arnoldi iterations, within
the MLMC algorithm. In Sect. 4, we present the two extensions of our MLMC algorithm: a
homotopy MLMC and a multilevel quasi-Monte Carlo method. Section5 presents numerical
results for finding the smallest eigenvalue of the convection–diffusion operator in a variety
of settings. In particular, we present examples for difficult cases with high convection.

To ease notation, for the remainder of the paper we combine the random variables in
the convection and diffusion coefficients into a single uniform random vector of dimension
s < ∞, denoted by ω = (ωi )

s
i=1 with ωi ∼ U[0, 1]. In this case, π is the product uniform

measure on Ω:=[0, 1]s .
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2 Variational Formulation

The eigenvalue problem (1) needs to be discretized, because its solution is not analytically
tractable for arbitrary geometries and parameters. As such, we apply the standard finite
element method to (1) to obtain an approximation of the desired eigenpair (λ, u).

Before deriving the variational form of (1), we first establish certain assumptions about
the problem domain, the random field κ(ω) and the velocity field a(ω) for ω ∈ Ω , which, in
particular, ensure that the solution is in H2(D) [33] as well as incompressibility.

Assumption 1 Assume that D ⊂ R
d , for d = 1, 2, or 3, is a bounded, convex domain with

Lipschitz continuous boundary Γ .

Assumption 2 The diffusion coefficient is bounded from above and from below for almost all
ω ∈ Ω , i.e., there exist two constants κmin, κmax such that 0 < κmin ≤ κ(x,ω) ≤ κmax < ∞.
In addition, we assume that also ‖κ(·,ω)‖W 1,∞ ≤ κmax for almost all ω ∈ Ω .

Assumption 3 The convection coefficient is divergence free, ∇ · a(x,ω) = 0 for all x ∈ D,
and uniformly bounded, ‖a(·,ω)‖L∞ ≤ amax, for almost all ω.

A simple example of a random convection term is a homogeneous convection, a(x,ω) =
[a1ω1, . . . , adωd ]
 for a1, . . . , ad ∈ R, which are independent of x. Another example is the
curl of random vector field, e.g., a(x,ω) = ∇ × Z(x,ω) where Z is a vector-valued random
field similar to that defined in (2). Both of these examples satisfy Assumption 3.

Next we introduce the variational form of (1). Whenever it does not lead to confusion,
we drop the spatial coordinate of (stochastic) functions for brevity—for example, u(x,ω)

is also written as u(ω). Let V = H1
0 (Ω) be the first-order Sobolev space of complex-

valued functions with vanishing trace on the boundary with norm ‖v‖V = ‖∇v‖L2 . Then
let V ∗ denote the dual space of V . Multiplying (1) by a test function v ∈ V and then
performing integration by parts, noting that we have no Neumann boundary condition term
since u(x,ω) = 0 on Γ , we obtain

∫

D
a(x,ω) · ∇u(x,ω)v(x) dx +

∫

D
κ(x,ω)∇u(x,ω) · ∇v(x) dx

= λ(ω)

∫

D
u(x,ω)v(x) dx.

The variational eigenvalue problem corresponding to (1) is then: Find a non-trivial eigenpair
(λ(ω), u(ω)) ∈ C × V with ‖u(ω)‖L2 = 1 such that

A(ω; u(ω), v) + B(ω; u(ω), v) = λ(ω)〈u(ω), v〉 ∀v ∈ V , (5)

where

A(ω; u(ω), v) :=
∫

D
κ(x,ω)∇u(x,ω) · ∇v(x) dx,

B(ω; u(ω), v) :=
∫

D
a(x,ω) · ∇u(x,ω)v(x) dx,

and 〈·, ·〉 denotes the L2(D) inner product

〈u(ω), v〉 :=
∫

D
u(x,ω)v(x) dx.
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Since the velocity a is divergence free,∇ ·a = 0, the sesquilinear form in (5) is uniformly
coercive, i.e.,

A(ω; v, v) + B(ω; v, v) ≥ amin‖v‖2V , ∀v ∈ V , (6)

with amin > 0 independent of ω. It is also uniformly bounded, i.e.,

A(ω; v, z) + B(ω; v, z) ≤ amax‖v‖V ‖z‖V , ∀v, z ∈ V , (7)

with amax < ∞ independent of ω.
For each ω ∈ Ω , the eigenvalue problem (5) admits a countable sequence of eigenvalues

(λk(ω))∞k=1 ⊂ C, which has no finite accumulation points, and the smallest eigenvalue,
λ1(ω), is real and simple, see, e.g., [4]. The eigenvalues are enumerated in order of increasing
magnitude, counting multiplicity, such that

0 < λ1(ω) < |λ2(ω)| ≤ |λ3(ω)| ≤ · · ·
with corresponding eigenfunctions (uk(·,ω))∞k=1, enumerated accordingly.

In addition to the primal form (5), to facilitate our analysis later on we also consider
the dual eigenproblem: Find a non-trivial dual eigenpair (λ∗(ω), u∗(ω)) ∈ C × V with
‖u∗(ω)‖L2 = 1 such that

A(ω; v, u∗(ω)) + B(ω; v, u∗(ω)) = λ∗(ω)〈v, u∗(ω)〉 ∀v ∈ V . (8)

The primal and dual eigenvalues are related to each other via λ(ω) = λ∗(ω).

Proposition 1 For all ω ∈ Ω , the smallest eigenvalue λ1(ω) of (5) is simple and the gap is
uniformly bounded, i.e., there exists ρ > 0, independent of ω, such that

|λ2(ω) − λ1(ω)| ≥ ρ. (9)

Proof For each ω ∈ Ω , the Krein–Rutman Theorem implies that λ1(ω) is simple. It remains
to show that the gap is uniformly bounded for ω ∈ Ω . Since the eigenvalues are continuous
inω, it follows that the gap is also continuous. Hence, there exists a strictly positive minimum
on the compact domain Ω and we can take

ρ := min
ω∈Ω

|λ2(ω) − λ1(ω)| > 0.

��
Theorem 1 Suppose Assumptions 1–3 hold. For ω ∈ Ω , let (λ(ω), u(·,ω)) be an eigen-
pair of the EVP (5) and let (λ∗(ω), u∗(·,ω)) be the corresponding dual eigenpair of the
adjoint EVP (8), i.e., λ(ω) = λ∗(ω). Then, the primal and the dual eigenfunctions satisfy
u(·,ω), u∗(·,ω) ∈ V ∩ H2(D) with

‖u(ω)‖H2 ≤ Cλ,2|λ(ω)| and ‖u∗(ω)‖H2 ≤ Cλ∗,2|λ∗(ω)|, (10)

for Cλ,2 < ∞ and Cλ∗,2 < ∞ independent of ω.

Proof Rearranging (1), we can write the Laplacian of u(·,ω) as

−Δu(x,ω) = 1

κ(x,ω)

(∇κ(x,ω) · ∇u(x,ω) − a(x,ω) · ∇u(x,ω) + λ(ω)u(x,ω)
)

=: fω(x),
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which holds for almost all x ∈ D. Since κ(·,ω) ∈ W 1,∞(D), a(·,ω) ∈ L∞(D)d , u(·,ω) ∈ V
and 1/κ(x,ω) ≤ 1/κmin < ∞ it follows that fω ∈ L2(D) with

‖ fω‖L2 ≤ 1

κmin

(‖κ(ω)‖W 1,∞‖u(ω)‖V + ‖a(ω)‖L∞‖u(ω)‖V + |λ(ω)|)

≤ 1

κmin

((
κmax + amax

) ‖u(ω)‖V + |λ(ω)|
)
,

where in the last step we have used that ‖u(ω)‖L2 = 1, as well as Assumptions 2 and 3.
Since λ(ω), u(·,ω) satisfy (5) with ‖u(ω)‖L2 = 1 and the sesquilinear form is coercive, it
follows from (6) that

|λ(ω)| = |A(ω; u(ω), u(ω)) + B(ω; u(ω), u(ω))| ≥ amin‖u(ω)‖2V ≥ aminC2
Poin,

where in the last inequality we have used Poincaré’s inequality, as well as ‖u(ω)‖L2 = 1
again. The first inequality also implies ‖u(ω)‖V ≤ √|λ(ω)|/amin. Thus, substituting these
two bounds, the L2-norm of fω is bounded by

‖ fω‖L2 ≤ 1

κmin

(
κmax + amax

aminCPoin
+ 1

)
|λ(ω)|, (11)

where the constant is independent of λ.
Finally, using classical results in Grisvard [33] it follows that

‖u(ω)‖H2 ≤ CD‖Δu(ω)‖L2 = CD‖ fω‖L2 ,

where CD depends only on the domain D. Finally, substituting in the bound on ‖ fω‖L2 (11)
gives the desired upper bound (10).

The result for the dual eigenfunction follows analogously. ��

2.1 Finite Element Formulation

Let {Th}h>0 be a family of (quasi-)uniform, shape-regular, conforming meshes on the spatial
domain D, where each Th is parameterised by its mesh width h > 0. For h > 0, we
approximate the infinite-dimensional space V by a finite-dimensional subspace Vh . In this
paper, we consider piecewise linear finite element (FE) spaces, but the method will work also
for more general spaces.

The resulting discrete variational problem is to find non-trivial primal and dual eigenpairs
(λ(ω), uh(ω)) ∈ C × Vh and (λ∗(ω), u∗

h(ω)) ∈ C × Vh such that

A(ω; uh(ω), vh) + B(ω; uh(ω), vh) = λh(ω)〈uh(ω), vh〉, ∀vh ∈ Vh, (12)

and

A(ω; vh, u∗
h(ω)) + B(ω; vh, u∗

h(ω)) = λ∗
h(ω)〈vh, u∗

h(ω)〉, ∀vh ∈ Vh . (13)

For each ω, it is well-known that for h sufficiently small the FE eigenvalue problem (12)
admits Mh := dim(Vh) eigenpairs, denoted by

(
λh,1(ω), uh,1(ω)

)
,
(
λh,2(ω), uh,2(ω)

)
, . . . ,

(
λh,Mh (ω), uh,Mh (ω)

) ∈ C × Vh, (14)

which approximate the first Mh eigenpairs of (5). This approach is also called the Galerkin
method.
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In convection-dominated regions, the Galerkin method has well-known stability issues for
standard (Lagrange-type) FEs, if the element size h does not capture all necessary information
about the flow. The Peclet number (sometimes called the mesh Peclet number) [68]

Pe(x,ω) = |a(x,ω)|h
2κ(x,ω)

(15)

governs how small the mesh size h should be in order to have a stable solution using basic
(Lagrange-type) FE methods.

The error in the FE approximations (14) can be analysed using theBabuška–Osborn theory
[4]. We state the error bounds for a simple eigenpair.

Theorem 2 Let (λ(ω), u(ω)) be an eigenpair of (5) that is simple for all ω ∈ Ω , where Ω is
a compact domain. Then there exist constants Cλ, Cu, independent of h and ω, such that

|λ(ω) − λh(ω)| ≤ Cλh2 (16)

and uh(ω) can be normalized such that

‖u(ω) − uh(ω)‖V ≤ Cuh. (17)

Proof See Babuška and Osborn [4] and the appendix, where we show explicitly that the
constants are bounded uniformly in ω. ��

2.2 Streamline-Upwind Petrov–Galerkin Formulation

A sufficiently small Peclet number (15) guarantees numerical stability of the standard
Galerkin method. One can either choose a small overall mesh size h or locally adapt the
mesh size to satisfy the stability condition. However, globally reducing the mesh size may
lead to a high computational cost, while local adaptations may need to be performed path-
wise for each realisation of ω, which in turn leads to complications in the algorithmic design.
In this section, we consider using the streamline-upwind Petrov–Galerkin (SUPG) method
to improve numerical stability.

The SUPG method was introduced by Brooks and Hughes [10] to stabilize the finite
element solution. Since then, themethod has been extensively investigated and used in various
applications [8, 15, 35, 39, 40, 43]. The SUPG method can be derived in several ways. Here,
we introduce its formulation by adding a stabilization term to the bilinear form. An equivalent
weak formulation can be obtained by defining a test space with additional test functions in
the form v̂(x) = v(x) + p(x), where v(x) is a standard test function in the finite element
method and p(x) is an additional discontinuous function.

We define the residual operator R as

R(ω, σ )v = a(ω) · ∇v − ∇ · κ(ω)∇v − σv, (18)

which gives the residual of the convection–diffusion equation (1) for a pair (σ, v) ∈ C× V .
Then, stabilization techniques can be derived from the general formulation

A(ω; u(ω), v) + B(ω; u(ω), v)

+
|Th |∑

m=1

∫

Dm

τm(x,ω) (R(ω, λ(ω))u(x,ω)) (P(ω)v(x)) dx

= λ(ω)〈u(ω), v〉,

(19)
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where |Th | is the number of elements of the mesh Th , P(ω) is some stabilization operator
and τm(ω) is the stabilization parameter acting in the mth finite element. The stabilization
strategy will be determined by P(ω) and τm(ω).

Various definitions exist for the operator P(v,ω), such as the Galerkin Least Square
method [38], the SUPG method [9, 10, 23], the Unusual Stabilized Finite Element method
[5], etc. For the SUPG method, the stablization operator P(ω) is defined as

P(ω)v = a(ω) · ∇v. (20)

Substituting Eqs. (18) and (20) into (19) gives the SUPG weighted residual formulation

A(ω; u(ω), v) + B(ω; u(ω), v) +
|Th |∑

m=1

∫

Dm

(
τm(x,ω)

(
a(x,ω) · ∇u(x,ω)

− ∇ · κ(x,ω)∇u(x,ω) − λ(ω)u(x,ω)
)
(a(x,ω) · ∇v(x))

)
dx

= λ(ω)〈u(ω), v〉,
which is equivalent to

A(ω; u(ω), v) + B(ω; u(ω), v) +
|Th |∑

m=1

∫

Dm

(
τm(x,ω)

(
a(x,ω) · ∇u(x,ω)

− ∇ · κ(x,ω)∇u(x,ω)
)
(a(x,ω) · ∇v(x))

)
dx

= λ(ω)

(
〈u(ω), v〉 +

|Th |∑

m=1

∫

Dm

τm(x,ω)u(x,ω)a(x,ω) · ∇v(x)dx
)

.

(21)

After approximating the weak form (21) by the usual finite-dimensional subspaces, we
obtain the discrete variational problem: Find non-trivial (primal) eigenpairs (λh(ω), uh(ω)) ∈
C × Vh such that

A(ω; uh(ω), vh) + B(ω; uh(ω), vh) +
|Th |∑

m=1

∫

Dm

(
τm(x,ω)

(
a(x,ω) · ∇uh(x,ω)

− ∇ · κ(x,ω)∇uh(x,ω)
)
(a(x,ω) · ∇vh(x))

)
dx

= λh(ω)

(
M(uh(ω), vh) +

|Th |∑

m=1

∫

Dm

τm(x,ω)uh(x,ω)a(x,ω) · ∇vh(x)dx
)

, (22)

and dual eigenpairs (λ∗
h(ω), u∗

h(ω)) ∈ C × Vh such that

A(ω; vh, u∗
h(ω)) + B(ω; vh, u∗

h(ω)) +
|Th |∑

m=1

∫

Dm

(
τm(x,ω)

(
a(x,ω) · ∇vh(x)

− ∇ · κ(x,ω)∇vh(x)
)
(a(x,ω) · ∇u∗

h(x,ω))
)
dx

= λ∗
h(ω)

(
M(vh, u∗

h(ω)) +
|Th |∑

m=1

∫

Dm

τm(x,ω)vh(x)a(x,ω) · ∇u∗
h(x,ω)dx

)
. (23)

It follows that the right-hand side matrix is no longer symmetric and is stochastic compared
to the mass matrix in the standard Galerkin method.
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Fig. 1 The first 20 computed eigenvalues of the SUPG (left) and FEM (right) discretizations of the convection–
diffusion problem for κ(x) = 1 and a = [50, 0]T using mesh sizes h = 2−3, 2−4, 2−5

In general, finding the optimal stabilization parameter τm(x,ω) is an open problem, and
thus it is defined heuristically [43]. We employ the following stabilization parameter [8, 35]

τm(x,ω) = hm

2|a(x,ω)|
(
coth Pe(x,ω) − 1

Pe(x,ω)

)
. (24)

However, in practical implementations the following asymptotic expressions of τm(x,ω) are
used

τ̂m(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

max
x∈Dm

hm

2|a(x,ω)| , if max
x∈Dm

Pe(x,ω) ≥ 1,

max
x∈Dm

h2
m

12κ(x,ω)
, if max

x∈Dm
Pe(x,ω) < 1.

(25)

Figure 1 shows the 20 smallest eigenvalues for a single realization of random field κ(x,ω)

with velocity a(x,ω) = [50, 0]T on meshes with size h = 2−3, 2−4, 2−5. The standard
Galerkin method has non-physical oscillations in the discretized eigenfunction for such a
coarse mesh and its two smallest eigenvalues form a complex conjugate pair; this contradicts
the fact that the smallest eigenvalue should be real and simple. The SUPG method, on the
other hand, has a real smallest eigenvalue, indicating a stable solution.

3 Multilevel Monte Carlo Methods

To compute E[λ], we first approximate the eigenproblem (5) for each ω ∈ Ω and then use a
samplingmethod to estimate the expected value of the approximate eigenvalue. There are two
layers of approximation: First the eigenvalue problem is discretized by a numerical method,
e.g., FEM or SUPG as in Sect. 2.1, then the resulting discrete eigenproblem is solved by an
iterative eigenvalue solver, e.g., the Rayleigh quotient method, such that λ(ω) ≈ λh(ω) ≈
λh,K (ω), where h denotes the meshwidth of the spatial discretization and K denotes the
number of iterations used by the eigenvalue solver.
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Applying the Monte Carlo method to λh,K , the expected eigenvalue can be approximated
by the estimator

E[λ(ω)] ≈ Yh,K ,N := 1

N

N∑

n=1

λh,K (ωn), (26)

where the samples {ωn}N
n=1 ⊂ Ω are i.i.d. uniformly onΩ . This introduces a third factor that

influences the accuracy of the estimator in (26) in addition to h and K , namely the number
of samples N . Note that we assume that the number of iterations K is uniformly bounded in
ω.

The standard Monte Carlo estimator in (26) is computationally expensive. To measure its
accuracy we use the mean squared error (MSE)

MSE(E[λ(ω)], Yh,K ,N ) = E

[∣
∣E[λ(ω)] − Yh,K ,N

∣
∣2
]
,

where the outer expectation is with respect to the samples in the estimator Yh,K ,N . Under
mild conditions, the MSE can be decomposed as

MSE(E[λ], Yh,K ,N ) = ∣∣E[λ(ω)] − E[λh,K (ω)]∣∣2 + 1

N
var(λh,K (ω)).

In this decomposition, the bias
∣∣E[λ(ω)] − E[λh,K (ω)]∣∣ is controlled by h and K , whereas

the variance term decreases linearly with 1/N . To guarantee that the MSE remains below a
threshold ε2, h and K need to be chosen such that the bias is O(ε2), while the sample size
needs to satisfy N = O(ε−2). Suppose K = K (h) is sufficiently large so that the bias is solely
controlled by h and satisfies

∣∣E[λ(ω)] − E[λh,K (ω)]∣∣ = O(hα) for some α > 0. Suppose
further that the computational cost to compute λh,K (ω) for each ω is O(h−γ ) for some
γ > 0. Then the total computational complexity to achieve an MSE of ε2 is O(ε−2−γ /α).
Note that in the best-case scenario, we have γ = d , i.e., when the computational cost of an
eigensolver iteration is linear in the degrees of freedomof the discretization and the number of
iterations can be bounded independently of h. Due to the quadratic convergence of algebraic
eigensolvers, K is usually controlled very easily.

The multilevel Monte Carlo (MLMC) method offers a natural way to reduce the com-
plexity of the standard Monte Carlo method by spreading the samples over a hierarchy of
discretizations. In our setting, we define a sequence of meshes corresponding to mesh sizes
h0 > h1 > · · · > hL > 0. This in turn defines a sequence of discretized eigenvalues
λh0,K0(ω), λh1,K1(ω), . . . , λhL ,KL (ω) that approximate λ(ω) with increasing accuracy and
increasing computational cost. The MLMC method approximates E[λ(ω)] using the tele-
scoping sum

E[λ(ω)] ≈ E[λL (ω)] = E[λ0(ω)] +
L∑

�=1

E[λ�(ω) − λ�−1(ω)], (27)

where λ�(ω) := λh�,K�
(ω) is the shorthand notation for the discretized eigenvalues. Each

expected value of differences in (27) can be estimated by an independent Monte Carlo
approximation, leading to the multilevel estimator

Y =
L∑

�=0

Y�, Y� = 1

N�

N�∑

n=1

(λ�(ω�,n) − λ�−1(ω�,n)). (28)
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Suppose independent samples are used to compute each Y�, then

E[Y ] = E[λL (ω)], var[Y ] =
L∑

�=0

1

N�

var[λ�(ω) − λ�−1(ω)], (29)

and the MSE of (28) can also be split into a bias and a variance term, i.e.,

MSE(E[λ(ω)], Y ) = |E[λ(ω)] − E[λL(ω)]|2 + var(Y ).

Thus, to ensure again a MSE of O(ε2), it is sufficient to ensure that the bias,

∣
∣
∣
∣E[λ(ω)]

−E[λL (ω)]
∣
∣
∣
∣

2

, and the variance, var[Y ], are both less than 1
2ε

2. The following theorem from

[14] (see also [31]) provides bounds on the computational cost of a general MLMC estimator
and applies in particular to (28).

Theorem 3 Let Q denote a random variable and Q� its numerical approximation on level
�, and suppose C� is the computational cost of evaluating one realization of the difference
Q� − Q�−1. Consider the multilevel estimator

Y =
L∑

�=0

Y�, Y� = 1

N�

N�∑

n=1

Q�,n − Q�−1,n, (30)

where Q�,n is a sample of Q� and Q−1,n = 0, for all n.
If there exist positive constants α, β, γ such that α ≥ 1

2 min(β, γ ) and

I |E[Q� − Q]| = O(hα
� ) (convergence of bias),

II var[Y�] = O(hβ
� ) (convergence of variance),

III C� = O(h−γ

� ) (cost per sample),

then for any 0 < ε < e−1 there exist a constant c, a stopping level L, and sample sizes
{N�}L

�=0 such that the MSE of Y satisfies MSE(E[Q], Y ) ≤ ε2 with a total computational
complexity, denoted by C(ε), satisfying

C(ε) ≤
⎧
⎨

⎩

cε−2, β > γ ;
cε−2(log ε)2, β = γ ;
cε−2−(γ−β)/α, β < γ,

(31)

where the constant c is independent of α, β and γ .

For a given ε, from [14] the maximum level L in Theorem 3 is given by

L = ⌈
α−1 log2(

√
2 cI ε−1)

⌉
, (32)

where cI is the implicit constant from Assumption I (convergence of bias) above. The opti-
mal sample sizes, {N�}, that minimize the computational cost of the multilevel estimator in
Theorem 3 are obtained using a standard Lagrange multipliers argument as in [14] and are
given by

N� =
⌈

2ε−2

√
var[Q� − Q�−1]

C�

L∑

i=0

√
var[Qi − Qi−1]Ci

⌉

, � = 0, . . . , L. (33)

Since β > 0, Theorem 3 shows that for all cases in (31), theMLMC complexity is superior
to that of Monte Carlo. When β > γ , the variance reduction rate is larger than the rate of
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increase of the computational cost, and thus most of the work is spent on the coarsest level.
In this case, the multilevel estimator has the best computational complexity. When β < γ the
total computational work of the multilevel estimator may only have a marginal improvement
compared to that of the classic Monte Carlo method.

Corollary 1 (Order of convergence) For ω ∈ Ω , let h > 0 be sufficiently small and consider
two finite element approximations, cf. (12), of the smallest eigenvalue λ(ω) of the eigenvalue
problem (5) with h�−1 = h and h� = h/2. The expectation of their difference is bounded by

∣
∣E[λ�(ω) − λ�−1(ω)]∣∣ ≤ c1h2

�, (34)

while the variance of the difference is bounded by

var[λ�(ω) − λ�−1(ω)] ≤ c2h4
�, (35)

for two constants c1, c2 that are independent of ω, h and �.

Proof Applying Theorem 2, since Cλ is independent of ω we have

∣
∣E[λ(ω) − λ�(ω)]∣∣ ≤ E[|λ(ω) − λ�(ω)|] ≤ Cλ

(h

2

)2
, (36)

and
∣∣E[λ(ω) − λ�−1(ω)]∣∣ ≤ E[|λ(ω) − λ�−1(ω)|] ≤ Cλh2. (37)

Therefore, by the triangle inequality, we have
∣∣E[λ�(ω) − λ�−1(ω)]∣∣ = ∣∣E[λ�(ω) − λ(ω) + λ(ω) − λ�−1(ω)]∣∣

≤ E[|λ(ω) − λ�(ω)|] + E[|λ(ω) − λ�−1(ω)|]

≤ Cλ

(
h2 + h2

4

)
= 5Cλh2

�.

(38)

The variance reduction rate comes from the following relation

var[λ(ω) − λ�(ω)] ≤ E[(λ(ω) − λ�(ω))2] ≤ C2
λ

(h

2

)4
, (39)

and, similarly, by the Cauchy-Schwarz inequality

var[λ�(ω) − λ�−1(ω)] ≤ E[(λ�(ω) − λ�−1(ω))2]
= E[(λ�(ω) − λ(ω) + λ(ω) − λ�−1(ω))2]
≤ 2

(
E[(λ(ω) − λ�(ω))2] + E[(λ(ω) − λ�−1(ω))2])

≤ 2
(

C2
λ

(h

2

)4 + C2
λh4

)
= 34C2

λh4
�.

��
Remark 1 In our numerical experiments, we observed that the SUPG approximation of the
eigenvalue problem, cf. (22), has similar rates of convergence α and β in MLMC compared
to the standard finite element approximation.

An important physical property of the smallest eigenvalue of (5) is that it is real and strictly
positive. Clearly, E[λ] > 0 as well, and so we would like our multilevel approximation (28)
to preserve this property. Below we show that a multilevel approximation based on Galerkin
FEM with a geometrically-decreasing sequence of meshwidths is strictly positive provided
that h0 is sufficiently small.
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Proposition 2 Suppose that h� = h02−� for � ∈ N with h0 > 0 sufficiently small and let
λh�

(·) be the approximation of the smallest eigenvalue using the Galerkin FEM as in (12).
Then, for any L ∈ N, the multilevel approximation of the smallest eigenvalue is strictly
positive, i.e.,

Ỹ :=
L∑

�=0

Ỹ� =
L∑

�=0

1

N�

N�∑

n=1

(
λh�

(ω�,n) − λh�−1(ω�,n)
)

> 0.

Proof First, since λ is continuous and strictly positive on Ω it can be bounded uniformly
from below, i.e., there exists qλ > 0 such that

λ(ω) ≥ qλ > 0 for all ω ∈ Ω. (40)

For � = 0, using (16) and (40) we can bound λh0(ω) uniformly from below by

λh0(ω) = λ(ω) − (
λ(ω) − λh0(ω)

) ≥ qλ − Cλh2
0 .

Since this bound is independent of ω, it follows that

Ỹ0 := 1

N0

N0∑

n=1

λh0(ω0,n) ≥ 1

N0

N0∑

n=1

(
qλ − Cλh2

0

) = qλ − Cλh2
0. (41)

Similarly, for � ≥ 1 using (16) we obtain

λh�
(ω) − λh�−1(ω) = λ(ω) − λh�−1 − (

λ(ω) − λh�
(ω)

)

≥ −∣∣λ(ω) − λh�−1

∣∣− ∣∣λ(ω) − λh�
(ω)

∣∣

≥ −Cλ

(
h2

�−1 + h2
�

) = −9Cλh2
0 2

−2� .

Again, this bound is independent of ω and so

Ỹ� := 1

N�

N�∑

n=1

(
λh�

(ω�,n) − λh�−1(ω�,n)
) ≥ −9Cλh2

0 2
−2�. (42)

Finally, we bound the multilevel approximation Ỹ from below using (41) and (42) as
follows,

Ỹ = Ỹ0 +
L∑

�=1

Ỹ� ≥ qλ − Cλh2
0 −

L∑

�=1

9Cλh2
0 2

−2�

> qλ − 9Cλh2
0

L∑

�=0

2−2� > qλ − 9Cλh2
0

∞∑

�=0

2−2� = qλ − 12Cλh2
0 > 0,

where we have used the property that h0 is sufficiently small, i.e., h0 ≤
√
qλ/(12Cλ), to

ensure Ỹ > 0, as required. ��
The result above can be extended beyond the geometric sequence of FE meshwidths to a

general sequence of FE meshwidths, provided that
∑L

�=0 h2
� is sufficiently small. Similarly,

as in Remark 1, we observe that the MLMC approximations based on SUPG are also strictly
positive.

Choosing the number of iterations K� such that the error of the eigensolver is of the same
order as the FE error on each level, i.e., |λh�

(ω) − λh�,K�
(ω)| � h2

� for all � = 0, 1, . . . , L
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and ω ∈ Ω , it can similarly be shown that the multilevel approximation (28) also satisfies
Y > 0.

To obtain the eigenvalue approximation on level �, choosing a basis for the FE space
V�:=Vh�

in (12) leads to a generalized (algebraic) eigenproblem in matrix form for each
sample ω, i.e.,

A�(ω)u�(ω) = λ�(ω)M�(ω)u�(ω), (43)

where u�(ω) is the coefficient vector (with respect to the basis) and A�(ω), M�(ω) are the
associated FE matrices corresponding to the mesh T� := Th�

. The number of iterations K
in the computational cost per sample, as well as the rate of the cost per iteration depend on
the choice of the algebraic eigensolver. A variety of solvers can be applied here to solve the
generalized eigenvalue problem (43), including power iteration, the QR algorithm, subspace
iterations, etc. For our purposes, we only need an eigensolver that is able to compute the
smallest eigenvalue, which is real and simple. As such, we consider here two eigenvalue
solvers, the Rayleigh quotient iteration and the implicitly restarted Arnoldi method.

Algorithm 1 The Rayleigh quotient iteration (RQI).
1: Input: (A,M, η0, ξ0, λ0, ε,M), where η0, ξ0, λ0, ε and M are initial left and right eigenvectors, the initial

eigenvalue, the error tolerance, and the maximum number of iterations, respectively
2: Set i ← 0
3: while ‖Aηi − λMηi ‖ > ε and i ≤ M do
4: Normalize ηi ← ηi ‖ηi ‖−1

2
5: Normalize ξ i ← ξ i ‖ξ i ‖−1

2
6: Solve (λiM − A)ηi+1 = ηi
7: Solve (λiM − A)H ξ i+1 = ξ i
8: Compute λi+1 ← (ξ H

i+1Aηi+1)(ξ
H
i+1Mηi+1)

−1

9: i ← i + 1
10: end while
11: Output: (η, ξ , λ)

We first consider the Rayleigh quotient iteration (Algorithm 1), introduced first by Lord
Rayleigh in 1894 for a quadratic eigenproblem of oscillations of a mechanical system [57]
and then extended in the 1950s and 1960s to non-symmetric generalized eigenproblems [17,
56]. The following lemma, whose proof can be found in Crandall [17] and Ostrowski [56],
establishes the error reduction rate of the Rayleigh quotient iteration, which will in turn help
to bound the computational cost on each level.

Lemma 1 Suppose we have an initial guess λ�,0(ω) to the eigenvalue λ�(ω) at the level �

and |λ�,0(ω) − λ�(ω)| is sufficiently small. Then the sequence λ�,i (ω) converges to λ�(ω)

quadratically, i.e., there exists a constant Ĉ(ω) such that

|λ�,i+1(ω) − λ�(ω)| ≤ Ĉ(ω)|λ�,i (ω) − λ�(ω)|2. (44)

The computational cost of Rayleigh quotient iteration (RQI) is dominated by the cost
of solving two linear systems in each iteration (cf. Lines 6 and 7 of Algorithm 1). For
direct solvers, such as LU decomposition, the computational cost depends on the sparsity
and bandwidth of the matrices, e.g., for piecewise linear FE applied to (5) and d = 2, the
cost for solving these linear systems on level � is O(h−3

� ) [26]. However, optimal iterative
solvers, such as geometric multigrid methods, are able to achieve the optimal computational
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complexity of (or close to) O(h−d
� ). All other steps in Algorithm 1 are linear in the degree of

freedoms, and thus O(h−d
� ). Hence, typically the cost per iteration grows with rate γ ≥ d ,

but it can be as big as γ = 3 for d = 2. The remaining factor in the computational cost is
the number of iterations K for the Rayleigh quotient iteration within the MLMC estimator,
but this is independent of h�.

Algorithm 2 Three-grid Rayleigh Quotient iteration (tgRQI).
1: Input: (A�,A�−1,A0,M�,M�−1,M0, η0, ξ0, λ0, �), where η′

0, ξ
′
0, λ

′
0 are the initial left and right eigen-

vectors at level 0, and the initial eigenvalue.
2: ε ← 10−10, M ← 1000
3: (η0, ξ0, λ0) ← RQI (A0,M0, η

′
0, ξ

′
0, λ

′
0, ε, M)

4: Interpolate the eigenfunctions from V0 on T0 onto V�−1 on T�−1:
(η′

�−1, ξ
′
�−1) ← (η0, ξ0)

5: (η�−1, ξ�−1, λ�−1) ← RQI (A�−1,M�−1η
′
�−1, ξ

′
�−1, λ0, ε, M)

6: if � − 1 = 0 then
7: Output: λ1 − λ0
8: else
9: Interpolate the eigenfunctions from V�−1 on T�−1 onto V� on T�: (η

′
�
, ξ ′

�) ← (η�−1, ξ�−1)

10: (η�, ξ�, λ�) ← RQI (A�,M�, η
′
�
, ξ ′

�, λ�−1, ε, M)
11: Output: λ� − λ�−1
12: end if

Recall the MLMC estimator (28), where at each level � we compute the differences
λ�(ωn) − λ�−1(ωn) for the same sample ωn . The number of RQI iterations needed for a
sufficiently accurate approximation of λ�(ωn)—the more costly level � computation—can
be significantly reduced by using the computed approximation of the eigenvalue λ�−1(ωn)

on the coarser level as the initial guess, thus also reducing the total computational cost. In
fact, we design a three-grid method, similar to the one used in [29] to implement this strategy,
which uses the approximate eigenvalue λ0(ωn) on level zero with mesh size h0 as the initial
guess for computing eigenvalue λ�−1(ωn) on level �−1. Then, λ�−1(ωn) is used as the initial
guess for computing λ�(ωn); see Algorithm 2 for details.

To estimate the computational cost of this three-grid method, we choose again h�−1 =
h = 2h� and denote the exact discrete eigenvalues on level � − 1 and level � by λh(ωn)

and λh/2(ωn), respectively. The goal is to control the errors of the eigenvalues λ�−1(ωn) and
λ�(ωn) actually computed using Algorithm 2 to be within the respective discretization errors.
Due to the quadratic convergence rate of the RQI (cf. Lemma 1), often only two or three
iterations are sufficient to compute a sufficiently accurate approximation λ0(ωn) on Level 0
in Line 3 of Algorithm 2. Similarly, in Line 5 of Algorithm 2, two to three iterations of RQI
are again sufficient to ensure that the error of the estimated eigenvalue λ�−1(ωn) satisfies

|λ�−1(ωn) − λh(ωn)| ≤ Cλh2
�−1,

which is the bound on the discretization error on level � − 1 in Theorem 2. When λ�−1(ωn)

is then used as the initial guess for estimating λh/2(ωn), the initial error satisfies

|λ�−1(ωn) − λh/2(ωn)| ≤ |λ�−1(ωn) − λh(ωn)| + |λh(ωn) − λh/2(ωn)| ≤ 9

4
Cλh2,

using triangle inequality and Theorem 2 again. Therefore, using Lemma 1 for sufficiently
small mesh size h such that h ≤ 2

9

(
Ĉ(ωn)Cλ

)−1/2, one single iteration of RQI on level �

suffices such that
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|λ�(ωn) − λh/2(ωn)| ≤ Cλh2
�.

In practice, two iterations of RQI are typically used to achieve the target accuracy for
λ�(ωn) in Line 10 of Algorithm 2. These two calls to RQI dominate the computational
cost of Algorithm 2 with their four linear solves. Hence, for sparse direct solvers and d =
2, the overall computational cost of Algorithm 2 is O(h−3

� ) and γ = 3 in Theorem 3.
The computational complexity of Algorithm 2 can be further reduced using multigrid-based
methods to efficiently solve the Rayleigh quotient iterations [11] that potentially offer a rate
of γ = d (or close to) even in three dimensions. However, it is unclear if the same rate
of convergence as for self-adjoint operators can be retained for the convection-dominated
problems we are considering here.

Algorithm 3Multilevel Monte Carlo algorithm.
1: for i = 1 . . . N0 do
2: Draw a sample ωi
3: Compute λ0(ωi ) using either Algorithm 1 or ARPACK
4: end for
5: for � = 1 . . . L do
6: for i = 1 . . . N� do
7: Draw a sample ωi
8: Compute λ�(ωi ) − λ�−1(ωi ) using either Algorithm 2 or ARPACK
9: end for
10: end for

We also consider the implicitly restarted Arnoldi method [1, 48, 58, 59, 62] and its imple-
mentation in the library ARPACK [49] to solve the eigenvalue problem. Compared to the
Rayleigh quotient iteration, the Arnoldi method calculates a specified number of eigenpairs
that depend on the dimension of the Krylov subspace. The performance of the implicitly
restartedArnoldi method is determined by several factors such as the dimension of theKrylov
subspace and the initial vector. To the best of the authors’ knowledge, for the eigenvalue prob-
lem (12) we are considering here, the convergence rate, and therefore the computational cost,
of the implicitly restarted Arnoldi method is not yet known. As such, we numerically estimate
the rate variable γ and the computational cost C� for determining the optimal sample sizes
in MLMC. It appears that the number of iterations grows slightly faster than O(h−1

� ) leading
to a similar total complexity as RQI for d = 2 of γ ≈ 3.5.

4 Extensions of MLMCMethod

In this section, we introduce two extensions of the MLMC method for convection–diffusion
eigenvalue problems. First, we employ a homotopy method to add stability to the eigensolve
for each sample. Second, we replace the Monte Carlo approximation of the expected value
on each level in (27) with a quasi-Monte Carlo (QMC) method, which, due to the faster
convergence of QMC, allows us to use less samples on each level and improves the overall
complexity.
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4.1 HomotopyMultilevel Monte Carlo Method

In Carstensen et al. [13], a homotopy method is employed to solve convection–diffusion
eigenvalue problems with deterministic coefficients, using the homotopy method to derive
adaptation strategies for FEmethods. The authors also provided estimates on the convergence
rate of the smallest eigenvalue with respect to the homotopy parameter. We aim to investigate
the application of this homotopy method in the MLMC method, particularly in designing
multilevel models for alleviating numerical instability (due to the high advection velocity)
on coarser meshes.

For eigenvalue problems, the homotopy method [50] uses an initial operator L0—for
which the target eigenvalue is easier to compute than that of the original operatorL—to form
a continuation

Lt = (1 − f (t))L0 + f (t)L for 0 ≤ t ≤ 1, (45)

with a function f : [0; 1] → [0; 1] and f (0) = 0, f (1) = 1. For the convection–diffusion
operator in (1), it is natural to set the diffusion operator as the initial operator. Here we
consider a simple linear function f (t) = t to design the sequence of operators used for the
homotopy. Given a sequence of homotopy parameters, 0 = t0 < t1 < · · · < tL = 1, the
homotopy operators with stochastic coefficients define a sequence of eigenvalue problems
of the form

H(ω, t�)u(ω, t�) = −∇ · (κ(ω)∇u(ω, t�)
)+ t�

(
a(ω) · ∇u(ω, t�)

)

= λ(ω, t�)u(ω, t�), (46)

for � = 0, . . . , L . The following lemma [13, Lemma 4.1] establishes the homotopy error on
the smallest eigenvalue in (46) for fixed ω.

Lemma 2 Suppose the velocity field a is divergence-free and ω is fixed. The homotopy error—
which is defined as the difference between the smallest eigenvalue λ(ω, t = 1) of the original
operator and that of the homotopy operator in (46) satisfies for any t ∈ [0, 1]

|λ(ω, 1) − λ(ω, t)| ≤ Ct,ω(1 − t), (47)

where

Ct,ω := ‖a(·,ω)‖L∞
(‖u(ω, 1)‖V + ‖u∗(ω, 1)‖V

)

〈u(ω, 1), u∗(ω, t)〉 + 〈u(ω, t), u∗(ω, 1)〉 , (48)

and u∗(ω, t) is the dual homotopy solution. For t sufficiently close to 1 and almost all ω ∈ Ω ,
Ct,ω < Ct for some Ct < ∞ independent of ω.

Proof First, the primal and dual homotopy eigenvalue problems are

A(ω; u(ω, t), v) + tB(u(ω, t), v) = λ(ω, t)〈u(ω, t), v〉 for all v ∈ V ,

A(ω;w, u∗(ω, t)) + tB(w, u∗(ω, t)) = λ∗(ω, t)〈w, u∗(ω, t)〉 for all w ∈ V ,

where we again normalise the homotopy eigenfunctions such that ‖u(ω, t)‖L2 = 1 =
‖u∗(ω, t)‖L2 .

Following the proof of [13, Lemma 4.1], using the homotopy eigenvalue problems we can
write the homotopy error as

[
λ(ω, 1) − λ(ω, t)

][〈u(ω, 1), u∗(ω, t)〉 + 〈u(ω, t), u∗(ω, 1)〉]
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= λ(ω, 1)〈u(ω, 1), u∗(ω, t)〉 + λ∗(ω, 1)〈u(ω, t), u∗(ω, 1)〉
− λ∗(ω, t)〈u(ω, 1), u∗(ω, t)〉 − λ(ω, t)〈u(ω, t), u∗(ω, 1)〉

= (1 − t)
[
B(ω; u(ω, 1), u∗(ω, t)) + B(ω; u(ω, t), u∗(ω, 1))

]
, (49)

where we have also used the property λ(ω, t) = λ∗(ω, t).
Since a(ω) is divergence free, we have

B(ω; u(ω, t), u∗(ω, 1)) = −B(ω; u∗(ω, 1), u(ω, t)).

Then by the triangle inequality, followed by the Cauchy–Schwarz inequality

B(ω; u(ω, 1), u∗(ω, t)) + B(ω; u(ω, t), u∗(ω, 1))

= B(ω; u(ω, 1), u∗(ω, t)) − B(ω; u∗(ω, 1), u(ω, t))

≤ |B(ω; u(ω, 1), u∗(ω, t))| + |B(ω; u∗(ω, 1), u(ω, t))|
≤ ‖a(ω)‖L∞‖∇u(ω, 1)‖L2‖u∗(ω, t)‖L2 + ‖a(ω)‖L∞‖∇u∗(ω, 1)‖L2‖u(ω, t)‖L2

= amax
(‖u(ω, 1)‖V + ‖u∗(ω, 1)‖V

)
, (50)

where we have used the property that the homotopy eigenfunctions are normalized and
Assumption 3. Substituting (50) into (49) then rearranging gives the result (47) with Ct,ω as
in (48).

Next, we bound Ct,ω independently of ω. Clearly, the numerator is bounded for all t
and almost all ω. Next, we show that the denominator is strictly positive. Suppose for a
contradiction that 〈u(ω, 1), u∗(ω, t)〉 = 0, then this implies that

〈u(ω, 1), u∗(ω, 1) − u∗(ω, t)〉 = 〈u(ω, 1), u∗(ω, 1)〉 > 0,

since the eigenfunction and dual eigenfunction are not orthogonal if the corresponding eigen-
values satisfy λ(ω, 1) = λ∗(ω, 1). However, since u∗(ω, t) → u∗(ω, 1) as t → 1, the left
hand side tends to zero whereas the right hand side is strictly positive and independent of t ,
leading to a contradiction. Hence, for t sufficiently small 〈u(ω, 1), u∗(ω, t)〉 > 0 and simi-
larly 〈u(ω, t), u∗(ω, 1)〉 > 0. Thus, for t sufficiently small Ct,ω < ∞. Since a(ω) along with
the primal and dual eigenfunctions are continuous inω, it follows thatCt,ω is also continuous
in ω and thus, can be bounded by the maximum over the compact domain Ω ,

Ct,ω ≤ max
ω∈Ω

Ct,ω=:Ct < ∞.

��
With the homotopymethod, the approximation error nowcomes from three sources: the FE

discretization, the iterative eigensolver, and the value of the homotopy parameter.We suppose
again that the error due to the eigensolver is bounded from above by the other two sources
of error and design multilevel sequences such that the homotopy error and the discretization
error are non-increasing with increasing level. Denoting the homotopy parameter and the
mesh size at level � by t� and h�, respectively, the multilevel sequence

{(t0, h0), (t1, h1), . . . , (tL , hL)},
is designed such that t�−1 ≤ t�, h�−1 ≥ h�, and tL = 1. The multilevel parameters are
required to be non-repetitive, i.e., (t�−1, h�−1) �= (t�, h�) for all � = 1, . . . , L , to ensure
an asymptotically decreasing total approximation error in the sequence. However, one of
these two parameters is allowed to be the same on two adjacent levels, i.e., either h�−1 =
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h� or t�−1 = t� is possible. This setting allows for adapting the homotopy parameter to
discretisations on different meshes to satisfy the stability condition of the FE approximation.

The resulting MLMC estimator can be derived from the telescoping sum

E[λ(ω)] = E[λh0(ω, t0)] +
L∑

i=1

E[λhi (ω, ti ) − λhi −1(ω, ti−1)].

Following a similar derivation as that of Corollary 1 and based on the error bound in Lemma 2,
we conjecture that the expectation and the variance of the multilevel difference with the
homotopy method are bounded by

|E[λh�
(ω, t�) − λh�−1(ω, t�−1)]| ≤ c1h2

�−1 + c2(1 − t�−1),

var[λh�
(ω, t�) − λh�−1(ω, t�−1)] ≤ c3h4

�−1 + c4(1 − t�−1)
2,

(51)

respectively. This will be used as the guideline for choosing the multilevel sequences in our
numerical experiments. We will also demonstrate that the above conjecture is valid in our
numerical experiments.

4.2 Multilevel QMCMethods

QMCmethods are a class of equal-weight quadrature rules originally designed to approximate
high-dimensional integrals on the unit hypercube. A QMC approximation of the expected
value of f is given by

E[ f ] =
∫

[0,1]s
f (ω) dω ≈ 1

N

N−1∑

k=1

f (τ k), (52)

where, in contrast to Monte Carlo methods, the quadrature points {τ k}N−1
k=1 ⊂ [0, 1]s are

chosen deterministically to be well-distributed and have good approximation properties in
high dimensions. There are several types of QMC methods, including lattice rules, digital
nets and randomised rules. The main benefit of QMC methods is that for sufficiently smooth
integrands the quadrature error converges at a rate of O(N−1+δ), δ > 0, or faster, which is
better than the Monte Carlo convergence rate ofO(N−1/2). For further details see, e.g., [20,
21].

In this paper, we consider randomly shifted lattice rules, which are generated by a single
integer vector z ∈ N

s and a single random shift Δ ∼ Uni[0, 1]s . The points are given by

τ k =
{

kz
N

+ Δ

}
for k = 0, 1, . . . , N − 1, (53)

where {·} denotes taking the fractional part of each component. The benefits of random
shifting are that the resulting approximation (52) is unbiased and that performing multiple
QMC with i.i.d. random shifts provides a practical estimate for the mean-square error using
the sample variance of the multiple approximations.

If f is sufficiently smooth (i.e., has square-integrable mixed first derivatives) then a gener-
ating vector can be constructed such that the mean-square error (MSE) of a randomly shifted
lattice rule approximation satisfies

E

[∣∣∣∣

∫

[0,1]s
f (ω) dω − 1

N

N−1∑

k=0

f (τ k)

∣∣∣∣

2]
� N−1/η for η ∈ ( 12 , 1], (54)
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see, e.g., Theorem 5.10 in [20]. I.e., for η ≈ 1/2 the convergence of the MSE is close to
1/N 2.

Starting again with the telescoping sum (27), a multilevel QMC (MLQMC) method
approximates the expectation of the smallest eigenvalue by using a QMC rule to compute
the expectation on each level. MLQMC methods were first introduced in [32] for SDEs,
then applied to parametric PDEs in [46, 47] and elliptic eigenvalue problems in [28, 29]. For
L ∈ N and {N�}L

�=0, the MLQMC approximation is given by

YMLQMC:=
L∑

�=0

YQMC
� , YQMC

� := 1

N�

N�−1∑

�=0

[
λ�(τ �,k) − λ�−1(τ �,k)

]
, (55)

where we apply a different QMC rule with points {τ �,k}N�−1
k=0 on each level, e.g., an N�-point

randomly shifted lattice rule (53) generated by z� and an i.i.d. Δ�.
The faster convergence of QMC rules leads to an improved complexity of MLQMC

methods compared to MLMC, where in the best case the cost is reduced to close to ε−1

for a MSE of ε2. Following [46], under the same assumptions as in Theorem 3, but with
Assumption II replaced by

II(b) MSE[YQMC
� ] = O(N−1/η

� hβ
� ) with η ∈ ( 12 , 1],

the MSE of the MLQMC estimator (55) is bounded above by ε2 and the cost satisfies

CMLQMC(ε) �

⎧
⎪⎨

⎪⎩

ε−2η if βη > γ,

ε−2η log2(ε
−1)η+1 if βη = γ,

ε−2η−(γ−βη)/α if βη < γ.

The maximum level L is again given by (32) and {N�} are given by

N� =
⌈

N0

(
hβ

�

C�

)η/(η+1)

C0

]1/(η+1))η⌉
, (56)

where C� is the cost per sample as in assumption III in Theorem 3 and N0 is chosen as

N0 � ε−2η
( L∑

�=0

(
hβη

� C�

)1/(η+1)
)η

.

Verifying Assumption II(b) for the convection–diffusion EVP (1) requires performing a
technical analysis similar to [28] and in particular, requires bounding the derivatives of the
eigenvalue λ(ω) and its eigenfunction u(ω) with respect to ω. Such analysis is left for future
work. In the numerical results, section we study the convergence of QMC and observe that
II(b) holds with η ≈ 0.61.

In practice, one should perform multiple, say R ∈ N0, QMC approximations correspond-
ing to i.i.d. random shifts, then take the average as the final estimate. In this way, we can also
estimate the MSE by the sample variance over the different realisations.

5 Numerical Results

In this section, we present numerical results for three test cases. The quantity of interest in all
cases is the smallest eigenvalue of the stochastic convection–diffusion problem (1) in the unit
domain D = [0, 1]2. The first two test cases use constant convection velocities at different
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magnitudes to benchmark the performance of eigenvalue solvers and finite element discreti-
sation methods in the multilevel setting. In these two test cases, the random conductivity
κ(x;ω) is modelled as a log-uniform random field constructed through the convolution of sκ

i.i.d. uniform random variables

log κ(x;ω) =
sκ∑

i=1

ωi k(x − ci ),

with exponential kernels k(x − ci ) = exp[− 25
2 ‖x − ci‖2], where ci are the kernel centers

placed uniformly on a 5 × 5 grid in the domain D. In the third test case, we also make the
convection velocity a random field. Specifically, we first construct a log-uniform random
field

S(ω, x) = exp

[ sa∑

i=1

ωi+sκ k(x − ci )

]

, (57)

similar to that of the conductivity field using additional sa i.i.d. uniform random variables.
Then, a divergence-free velocity field can be obtained by

a(ω) =
[

∂S(ω, x)
∂x2

,−∂S(ω, x)
∂x1

]

. (58)

We employ the Eigen [34] library for Rayleigh quotient iteration and solve the linear
systems using sparse LU decomposition with permutation from the SuiteSparse [18] library.
For the implicitly restarted Arnoldi method, we use the ARPACK [49] library with the SM
mode for finding the smallest eigenvalue. Random variables are generated using the standard
C++ library and the pseudo-random seeds are the same across all experiments.

Numerical experiments are organized as follows. For a relatively low convection veloc-
ity a = [20; 0]T , we demonstrate the multilevel Monte Carlo (MLMC) method using the
Galerkin FEM discretization. In this case, we also consider applying the homotopy method
together with a geometrically refined mesh hierarchy. Then, on a test case with relatively
high convection velocity a = [50; 0]T , we demonstrate the extra efficiency gain offered by
the numerically more stable SUPG method, compared with the Galerkin discretization. For
the third test case with a random velocity field, we apply SUPG to demonstrate the efficacy
and efficiency of our multilevel method. Here we also demonstrate that quasi-Monte Carlo
(QMC) samples can be used to replaceMonte Carlo samples to further enhance the efficiency
of multilevel methods.For all multilevel methods, we consider a sequence of geometrically
refined meshes with h� = h0 × 2−�, � = 0, 1, . . . , 4, and h0 = 2−3. At the finest level, this
gives 16129 degrees of freedom in the discretised linear system.We use 104 samples on each
level � to compute the estimates of rate variables α, β, γ in the MLMC complexity theorem
(cf. Theorem 3).

5.1 Test Case I

In the first experiment, we set a = [20; 0]T and use the Galerkin FEM to discretize the
convection–diffusion equation. The stopping criteria for the Rayleigh quotient iteration and
for the implicitly restarted Arnoldi method are set to be 10−12. In addition, for the implicitly
restarted Arnoldi method, the Krylov subspace dimensions (the ncv values of ARPACK)
are chosen empirically for each mesh size to optimize the number of Arnoldi iterations. They
are m = 20, 40, 70, 70, 100 for h = 2−3, 2−4, 2−5, 2−6, 2−7, respectively.
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Fig. 2 MLMC method using tgRQI for Test Case I with a = [20; 0]T and Galerkin FEM: a mean (blue) and
variance (red) of the eigenvalue λ� (dashed) and of λ� −λ�−1 (solid); b computational times for one multilevel
difference (blue) and average number of Rayleigh quotient iterations (red) on each level. Where shown, the
error bars represent ± one standard deviation (Color figure online)

We demonstrate the efficiency of four variants of the MLMC method: (i) the three-grid
Rayleigh quotient iteration (tgRQI) with a model sequence defined by grid refinement; (ii)
tgRQI with a model sequence defined by grid refinement and homotopy; (iii) the implicitly
restarted Arnoldi method (IRAr) with a model sequence defined by grid refinement; and (iv)
IRAr with a model sequence defined by grid refinement and homotopy.

(i) MLMC with tgRQI: Fig. 2 illustrates the mean, the variance and the computational
cost of multilevel differences λ�(ω)−λ�−1(ω) of the smallest eigenvalue using tgRQI as the
eigenvalue solver (without homotopy). Figure2a also shows Monte Carlo estimates of the
expected mean and variance of the smallest eigenvalue λ�(ω) for each of the discretization
levels. In addition to the computational cost, Fig. 2b also shows the number of Rayleigh
quotient iterations used at each level. We observe that the average number of iterations
follows our analysis of the computational cost of tgRQI (cf. Algorithm 2). From these plots,
we estimate that the rate variables in the MLMC complexity theorem are α ≈ 2.0, β ≈ 4.0
and γ ≈ 2.41. Since the variance reduction rate β is larger than the cost increase rate γ , the
MLMCestimator is in the best case scenario,with O(ε−2) complexity, as stated inTheorem3.

(ii) MLMC with homotopy and tgRQI: Next, we consider the homotopy method in
the MLMC setting together with tgRQI. We use the conjecture in (51) to set the homotopy
parameters such that 1 − t� = O(h2

�), t0 = 0 and tL = 1. For L = 5, this results in
t� = {0, 3/4, 15/16, 63/64, 1}.With this choice the eigenproblemon the zeroth level contains
no convection term and is thus self-adjoint. Figure3a shows again themeans and the variances
of the multilevel differences λ� − λ�−1 in this setting, together with MC estimates of the
expected means and variances of the eigenvalues for each level. The hierarchy of homotopy
parameters is chosen to guarantee good variance reduction for MLMC. Indeed, the variance
of the multilevel difference decays smoothly with a rate β ≈ 3.65. The expected mean
of the difference, on the other hand, stagnates between � = 1 and � = 2. However, this
initial stagnation is irrelevant for the MLMC complexity theorem; eventually for � ≥ 2, the
estimated means of the multilevel differences decrease again with a rate of α ≈ 2. Figure3b
shows the number of Rayleigh quotient iterations used at each level and the computational
cost, which grows with a rate of γ ≈ 2.56 here. This leads to the same asymptotic complexity
forMLMC, since the regime is the same, i.e.,β > γ ,which is the optimal regime inTheorem3
with a complexity of O(ε−2).
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Fig. 3 MLMC method using homotopy and tgRQI for Test Case I with a = [20; 0]T and Galerkin FEM: a
mean (blue) and variance (red) of the eigenvalue λ� (dashed) and of λ� −λ�−1 (solid); b computational times
for one multilevel difference (blue) and average number of RQIs (red) on each level. Where shown, the error
bars represent ± one standard deviation (Color figure online)

Fig. 4 MLMCmethod using IRAr for Test Case I with a = [20; 0]T and Galerkin FEM, both without (a) and
with (b) homotopy: average computational cost (blue) and average number of matrix–vector products (red)
per sample of λ� − λ�−1. The error bars represent ± one standard deviation (Color figure online)

(iii) MLMC with IRAr: Similar results are obtained by using the implicitly restarted
Arnoldi eigenvalue solver (without homotopy). Since the mean and the variance of the mul-
tilevel differences in this setting are almost identical to those of the Rayleigh quotient solver,
we omit the plots here and only report the computational cost. Figure4a shows the average
number of matrix–vector products and the estimated CPU time for computing each of the
multilevel differences, which grows with a rate of γ ≈ 3.5. Here, the increasing dimension of
Krylov subspaces with grid refinement likely causes the higher growth rate of computational
time compared to the experiment using tgRQI. Nonetheless, the MLMC estimator has again
the optimal O(ε−2) complexity.

(iv) MLMCwith homotopy and IRAr: Finally, we consider the behaviour of IRAr with
homotopy, using the same sequence for the homotopy parameter t� as in (ii). Again, we only
focus on computational cost, showing the average number of matrix–vector products and
the CPU time for computing each of the multilevel differences in Fig. 4b. As in (ii), the cost
grows at a rate of γ ≈ 3 leading again to the optimal O(ε−2) complexity for MLMC.
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Fig. 5 CPU time versus root mean square error of all estimators in Test Case I

5.1.1 Overall Comparison

In Fig. 5, we show the CPU time versus the root mean square error for all four presented
MLMC estimators together, as well as for standardMonte Carlo estimators using tgRQI (red)
and IRAr (blue). The estimated complexity of standard Monte Carlo methods are O(ε−2.92)

and O(ε−3.35) for tgRQI and IRAr, respectively. Overall, MLMC using tgRQI (without
homotopy) outperforms all other methods, despite that all four MLMC methods achieve the
optimal O(ε−2) complexity.

5.2 Test Case II

For the second experiment, we increase the velocity to a = [50; 0]T and focus on the
comparison between Galerkin and SUPG discretizations. Thus, we only consider the three-
grid Rayleigh quotient iteration (tgRQI) with a multilevel sequence based on geometrically
refined grids without homotopy. Note that for such a strong convection, five steps in the
homotopy approach are insufficient: the eigenvalues for consecutive homotopy parameters
are too different to achieve variance reduction in the homotopy-based MLMC method. Its
computational complexity is almost the same as the complexity of standard Monte Carlo,
namely almost O(ε−3.5). The performance of MLMC with implicitly restarted Arnoldi on
the other hand is similar to MLMC with tgRQI.

5.2.1 Galerkin

Due to the higher convection velocity the first two levels are unstable for most of the realiza-
tions ofω as the FEMsolutionmay exhibit non-physical oscillations. Thus,we set the coarsest
level for the MLMCmethod to h0 = 2−5 here. Keeping the same finest grid level hL = 2−7,
this means that we only use a total of three levels (L = 2) compared to the sequence in Test
Case I, which had a total of five levels (L = 4). Figure6a shows the expectation and variance
of the multilevel differences. Here, we only have a couple of data points for estimating the
rate variables of the MLMC complexity theorem, but the estimates are α ≈ 2 and β ≈ 4
as expected theoretically. The average number of Rayleigh quotient iterations in Fig. 6b also
behaves as in Test Case I with 5 iterations on the coarsest level and 2 iterations on the subse-
quent levels as expected for the three-grid Rayleigh quotient iteration (Algorithm 2)—recall
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Fig. 6 MLMC method using tgRQI for Test Case II with a = [50; 0]T and Galerkin FEM: a mean (blue) and
variance (red) of the eigenvalue λ� (dashed) and of λ� −λ�−1 (solid); b computational time for one multilevel
difference (blue) and average number of Rayleigh quotient iterations (red) on each level. Where shown, the
error bars represent ± one standard deviation (Color figure online)

that Levels 1 and 2 here correspond to Levels 3 and 4 in Figs. 2b and 3b. The estimated value
for γ ≈ 1.88, and thus the MLMC complexity is still O(ε−2). However, we cannot use
as many levels due the numerical stability issues caused by the higher convection velocity,
which substantially increases the prefactor in the O(ε−2) cost of the algorithm.

5.2.2 SUPG

By using the SUPG discretization, we overcome the numerical stability issue and can use all
five levels in MLMC, starting with h0 = 2−3. As can be seen in Fig. 7a, the expectation and
the variance of the multilevel differences converge with the same rates as for the Galerkin
FEM, namely α ≈ 2 and β ≈ 4 respectively. Also, clearly the use of SUPG leads to sta-
ble estimates even on the coarser levels. Figure7b reports the average number of Rayleigh
quotient iterations used at each level and the computational cost. We estimate that the com-
putational cost increases at a rate of γ ≈ 2.33 here. In any case, the use of SUPG in the
MLMC also results in the optimal O(ε−2) complexity.

5.2.3 Overall Comparison

Figure8 shows CPU times versus root mean square errors for the MLMC methods (with
tgRQI and without homotopy) using Galerkin FEM and SUPG discretizations. They are
compared to a standard Monte Carlo method with Galerkin FEM. Although both MLMC
estimates have the optimal O(ε−2) complexity, the stability offered by SUPG enables us to
use more, coarser levels, thus leading to a smaller prefactor and a significant computational
gain of a factor 10–20 over the Galerkin FEM based method.

5.3 Test Case III

In this experiment, the convection velocity becomes a divergence-free randomfield generated
using (57) and (58). We discretise the eigenvalue problem using SUPG and apply the three-
grid Rayleigh quotient iteration (tgRQI) without homotopy to solve multilevel eigenvalue
problems. The stopping criteria for tgRQI is set to be 10−12. The same sequence of grid
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Fig. 7 MLMCmethod using tgRQI for Test Case I with a = [20; 0]T and SUPG discretization: amean (blue)
and variance (red) of the eigenvalue λ� (dashed) and of λ� − λ�−1 (solid); b computational time for one
multilevel difference (blue) and average number of Rayleigh quotient iterations (red) on each level. Where
shown, the error bars represent ± one standard deviation (Color figure online)

Fig. 8 CPU time versus root mean square error of the estimators in Test Case II

refinements, h = 2−3, 2−4, 2−5, 2−6, 2−7, as in previous test cases is used to construct
multilevel estimators.

5.3.1 MLMC

Figure9 illustrates themean, the variance and the computational cost ofmultilevel differences
λ�(ω) − λ�−1(ω) of the smallest eigenvalue using tgRQI as the eigenvalue solver. Figure9a
also shows Monte Carlo estimates of the expected mean and variance of the smallest eigen-
value λ�(ω) for each of the discretization levels. In addition to the computational cost, Fig. 9b
also shows the number of Rayleigh quotient iterations used at each level. We observe that
the average number of iterations follows our analysis of the computational cost of tgRQI (cf.
Algorithm 2). From these plots, we estimate that the rate variables in the MLMC complexity
theorem are α ≈ 2.0, β ≈ 4 and γ ≈ 2.23. Since the variance reduction rate β is larger
than the cost increase rate γ , the MLMC estimator is in the best case scenario, with O(ε−2)

complexity, as stated in Theorem 3. In Fig. 11, we compare the computational complexity
of MLMC to that of the standard Monte Carlo. Numerically, we observe that the CPU time
of MLMC is approximately O(ε−2.06), which is close to the theoretically predicted rate. In
comparison, the CPU time of the standard MC is approximately O(ε−3.2) in this test case.
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Fig. 9 MLMCmethod using tgRQI and SUPG for Test Case IIIwith randomvelocity and randomconductivity:
a mean (blue) and variance (red) of the eigenvalue λ� (dashed) and of λ� − λ�−1 (solid); b computational
times for one multilevel difference (blue) and average number of RQIs (red) on each level. Where shown, the
error bars represent ± one standard deviation (Color figure online)

5.3.2 MLQMC

All QMC computations were implemented using Dirk Nuyens’ code accompanying [45]
and use a randomly shifted embedded lattice rule in base 2, as outlined in [16], with 32
i.i.d. random shifts. In Fig. 10, we plot convergence of the MSE for both MC and QMC for
three different cases: for λ0 in plot (a), for the difference λ1 − λ0 in plot (b), and for the
difference λ2 − λ1 in plot (c). Here the meshwidths are given by h0 = 2−3, h1 = 2−4 and
h2 = 2−5. In all cases, QMC outperforms MC, where for λ0 the MSE for QMC converges at
an observed rate of −1.78, whereas MC converges with the rate −1. For the other two cases,
which are MSEs of multilevel differences, the QMC converges with an approximate rate of
−1.63, which is again clearly faster than the MC convergence rate of −1. This observed
MSE convergence for the QMC approximations of the differences implies that II(b) holds
with η ≈ 0.61. For MLQMC, to choose N� we use (56) with η ≈ 0.61 and with N0 scaled
such that the overall MSE is less than ε2/

√
2 for each tolerance ε. Since we use a base-2

lattice rule, we round up N� to the next power of 2.
TheMLQMCcomplexity, in terms of CPU time, is plotted in Fig. 11, alongwith the results

for MC and MLMC. Comparing the three methods in Fig. 11, clearly MLQMC provides the
best complexity, followed byMLMC then standardMC. In this case, we have the approximate
rates βη ≈ 4 × 0.61 = 2.44 > γ ≈ 2.23, which implies that for MLQMC we are in the
optimal regime for the cost with CMLQMC(ε) � ε−2η. Numerically, we observe that the rate
is given by 1.28, which is very close to the theoretically predicted rate of 2η ≈ 1.22.

6 Conclusion

In this paper we have considered and developed various MLMC methods for stochastic
convection–diffusion eigenvalue problems in 2D. First, we established certain error bounds
on the variational formulation of the eigenvalue problem under assumptions such as eigen-
value gap, boundedness, and other approximation properties. Then we presented the MLMC
method based on a hierarchy of geometrically refined meshes with and without homotopy.
We also discussed how to improve the computational complexity of MLMC by replacing
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Fig. 10 Convergence of QMC and MC methods using tgRQI and SUPG for Test Case III with random
velocity and conductivity. Plots a–c give the MSE of estimators versus sample sizes for grid sizes h =
2−3, 2−4, 2−5, respectively. Blue lines with circles and black lines with squares indicate theMSE for MC and
QMC, respectively. Dashed lines and solid lines correspond to theMSE of the estimated multilevel differences
and the MSE of the estimated eigenvalues, respectively (Color figure online)

Fig. 11 CPU time versus root mean square error of the estimators in Test Case III
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Monte Carlo samples with QMC samples. At last, we provided numerical results for three
test cases with different convection velocities.

Test Case I shows that, for low convection velocity, all variants of the MLMC method
(based on a Galerkin FEM discretization of the PDE) achieve optimal O(ε−2) complex-
ity, including the one with homotopy. In Test Case II with a high convection velocity, the
homotopy-based MLMC does not work anymore—at least without increasing the number of
levels—and MLMC based on Galerkin FEM has severe stability restrictions, preventing the
use of a large number of levels. This restriction can be circumvented easily by using stable
SUPG discretizations. Numerical experiments suggest that MLMC with SUPG achieves the
optimal O(ε−2) complexity and is 10–20 times faster than the Galerkin FEM-based ver-
sions for the same level of accuracy. In Test Case III, we considered both the conductivity
and the convection velocity as random fields and compared the performance of MLMC and
MLQMC. In this example, both MLMC and MLQMC deliver computational complexities
that are close to the optimal complexities predicted by the theory, while the rate of the
computational complexity of MLQMC outperforms that of MLMC.

Appendix: Bounding the Constants in the FE Error

The results in Theorem 2 follow from the Babuška–Osborn theory [4]. In this appendix we
show that the constants can be bounded independently of the stochastic parameter.

The Babuška–Osborn theory studies how the continuous solution operators Tω, T ∗
ω : V →

V , which for f , g ∈ V are defined by

A(ω; Tω f , v) = 〈 f , v〉 for all v ∈ V ,

A(ω;w, T ∗
ω g) = 〈w, g〉 for all w ∈ V ,

are approximated by the discrete operators Tω,h, T ∗
ω,h : Vh → Vh ,

A(ω; Tω,h f , vh) = 〈 f , vh〉 for all vh ∈ Vh,

A(ω;wh, T ∗
ω,h g) = 〈wh, g〉 for all wh ∈ Vh .

We summarize the pertinent details here. First, we introduce:

ηh(λ(ω)) := sup
u∈E(λ(ω))

inf
χ∈Vh

‖u − χ‖V ,

η∗
h(λ(ω)) := sup

v∈E∗(λ(ω))

inf
χ∈Vh

‖v − χ‖V ,

where the eigenspaces are defined by

E(λ(ω)) := {u : u is an eigenfunction of (5) corresponding to λ(ω), ‖u‖L2 = 1},
E∗(λ(ω)) := {u∗ : u∗ is an eigenfunction of (8) corresponding to λ(ω), ‖u∗‖L2 = 1}.
The result for the eigenfunction (17) is given by [4, Thm. 8.1], which gives

‖u(ω) − uh(ω)‖V ≤ Cu(ω)ηh(λ(ω)), (59)

for a constant C(ω) defined below. Since λ(ω) is simple, the best approximation property of
Vh in H2(D) followed by Theorem 1 gives

ηh(λ(ω)) ≤ CBAP‖u(·,ω)‖H2 h ≤ CBAPC2,λ|λ(ω)| h ≤ CBAPC2,λ̂λ h, (60)
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where the best approximation constant CBAP is independent of ω. In the last inequality we
have also used that λ(ω) is continuous on the compact domain Ω , thus can be bounded
uniformly by

λ̂ := max
ω∈Ω

|λ(ω)| < ∞. (61)

Hence, all that remains is to bound Cu(ω), uniformly in ω. This constant is given by

Cu(ω) = ‖Tω‖ ‖u(ω)‖V

(
1 + 1

amin

)
length(Γ (ω))

π

× sup
z∈Γ
h>0

‖Rz(Tω,h)‖ sup
z∈Γ (ω)

‖Rz(Tω)‖,

where Γ (ω) is a circle in the complex plane enclosing the eigenvalue μ(ω) = 1/λ(ω) of Tω,
but no other points in the spectrum σ(Tω), and for an operator A and z ∈ ρ(A) = C \ σ(A),
the resolvent set of A, we define the resolvent operator Rz(A):=(z − A)−1. Hence, all that
remains is to show that Cu(ω) is bounded from above uniformly in ω.

First, by the Lax–MilgramLemma and the Poincaré inequality Tω is boundedwith ‖Tω‖ ≤
CPoin/amin. Also, sinceA is coercive (6) and u(ω) satisfies (5), using (61) we have the bound

‖u(ω)‖V ≤
√

λ̂

amin
.

Consider next the norm of the resolvent ‖Rz(Tω)‖ for ω ∈ Ω . Note that care must be
taken here since the domain for z, namely the resolvent set, changes with ω.

Let Γ (ω) = {z ∈ C : |z − μ(ω)| = γ /2}, where γ is a lower bound on the spectral gap
for μ

γ := inf
ω∈Ω

dist(μ(ω), σ (Tω) \ {μ(ω)}) > 0.

So that for each ω ∈ Ω the circle Γ (ω) encloses only μ(ω) and no other eigenvalues of Tω.
Then z ∈ Γ (ω) can be parametrised by both ω ∈ Ω and θ ∈ [0, 2π],

z = z(ω, θ) = μ(ω) + γ

2
eiθ ∈ Γ (ω).

Clearly z(·, ·) is continuous in bothω and θ and belongs to the resolvent set, z(ω, θ) ∈ ρ(Tω),
for all ω ∈ Ω and θ ∈ [0, 2π ]. Thus, Rz(ω,θ)(Tω) is bounded for all ω ∈ Ω and θ ∈ [0, 2π].

For all ω ∈ Ω we have the bound

sup
z∈Γ (ω)

‖Rz(Tω)‖ = sup
θ∈[0,2π ]

‖Rz(ω,θ)(Tω)‖ ≤ sup
θ∈[0,2π ]

ω∈Ω

‖Rz(ω,θ)(Tω)‖.

Now, in general the resolvent Rz(A) is continuous in both arguments, z and the (compact)
operator A (in fact it is holomorphic, see [42, Theorem IV−3.11]). Since z is continuous
in both θ and ω and Tω is continuous in ω, it follows that Rz(ω,θ)(Tω) is continuous in θ

and ω. In turn, the norm ‖Rz(ω,θ)(Tω)‖ is also continuous in θ and ω. Thus, ‖Rz(ω,θ)(Tω)‖
is bounded and continuous on the compact domain [0, 2π] × Ω , and so the maximum is
attained for some (θ∗,ω∗) ∈ [0, 2π ] × Ω , i.e., for all ω ∈ Ω

sup
z∈Γ (ω)

‖Rz(ω,θ)(Tω)‖ ≤ max
θ∈[0,2π ]

ω∈Ω

‖Rz(ω,θ)(Tω)‖ = ‖Rz(ω∗,θ∗)(Tω∗)‖ < ∞.

For h sufficiently small ‖Rz(Tω,h)‖ can be bounded in a similar way.
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For Γ (ω) deined above length(Γ (ω)) = πγ , which is obviously independent of ω. Thus,
Cu(ω) ≤ Cu < ∞ for all ω ∈ Ω , where

Cu := γ
CPoin

amin

√
λ̂

amin

(
1 + 1

amin

)
max

θ∈[0,2π ]
ω∈Ω

‖Rz(ω,θ)(Tω)‖ sup
θ∈[0,2π ]

ω∈Ω
h>0

‖Rz(ω,θ)(Tω,h)‖

is independent of ω.
For the eigenvalue error (16) we follow the proof of [4, Theorem 8.2]. Since λ(ω) is

simple, from Theorem 7.2 in [4], the eigenvalue error is bounded by

|λ(ω) − λh(ω)| ≤ Cλ(ω)ηh(λ(ω))η∗
h(λ(ω)) ≤ Cλ(ω)Cηh2,

where in the second inequality we have used (60) and the equivalent bound for the dual
eigenvalue, combining the two constants into Cη. By following [4], the constant Cλ(ω) can
be bounded independently of ω in a similar way to Cu(ω).
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