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Abstract
We consider a time-stepping scheme of Crank–Nicolson type for the heat equation on a mov-
ing domain in Eulerian coordinates. As the spatial domain varies between subsequent time
steps, an extension of the solution from the previous time step is required. Following Lehren-
feld and Olskanskii (ESAIM: M2AN 53(2):585–614, 2019), we apply an implicit extension
based on so-called ghost-penalty terms. For spatial discretisation, a cut finite element method
is used.We derive a complete a priori error analysis in space and time, which shows in partic-
ular second-order convergence in time under a parabolic CFL condition. Finally, we present
numerical results in two and three space dimensions that confirm the analytical estimates,
even for much larger time steps.

Keywords Eulerian time-stepping scheme · Time-dependent domains · Heat equation ·
Crank–Nicolson scheme · A priori error analysis

1 Introduction

Partial differential equations (PDEs) posed on moving domains are significant in many areas
of science and engineering. They arise for example in flow problems around moving struc-
tures, such as pumps [4], wind or water turbines [55], within moving objects [15], or as
sub-problems in fluid–structure interactions or multiphase flows. Fluid–structure interac-
tions arise in aerodynamical applications like flow around airplanes or parachutes [59], in
biomedical problems such as blood flow through the cardiovascular system [25, 54, 61] or
the airflowwithin the respiratory system [63] and even in tribological applications [47]. Mul-
tiphase problems include for instance gas–liquid and particle-laden gas flows [19, 36, 45],
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rising bubbles [43], droplets in microfluidic devices [17] or the simulation of tumor growth
[34]. For further details and applications we refer to the textbooks [3, 35, 56], respectively.

In this article, we consider the time discretisation of a parabolic model problem (namely
the heat equation) which is posed on a moving domain �(t) ⊂ R

d (d = 2, 3) that evolves
smoothly in time for t ∈ I = [0, tmax ]:

ut − �u = f in �(t), u = 0 on ∂�(t), u(x, 0) = u0(x) in �(0). (1.1)

In literature, two major numerical approaches can be found for the simulation of partial
differential equations on moving domains: the Arbitrary Lagrangian–Eulerian (ALE) [21,
22] approach, where the equations are transformed to an arbitrary reference domain which
is independent of time, and Eulerian approaches, where the equations are solved in the time-
dependent Eulerian framework [23, 27, 49].

TheALE approach is a popular technique for the numerical simulation of PDEs onmoving
domains, in particular for flow problems [41, 42]. For details, we refer to the textbooks [3,
56] and reference cited therein. Convection-diffusion problems on moving domains were,
for example, solved in [33, 58] using a stabilised ALE method. The ALE approach is very
attractive in the case of moderate domain movements, but shows problems when the shape
of the domain changes significantly in time. In particular, topology changes of �(t), as
occurring for example in contact problems or considering the separation or union of bubbles
can not bemodelled bymeans of anALE approach [9, 10, 17, 56]. Other examples of extreme
variations of �(t) are so-called fingering phenomena, which can be frequently observed in
multi-phase flows or even for tumor growth [34].

In such cases, a numerical approach that discretises the equations directly in the moving
Eulerian coordinate framework is preferable. The Eulerian framework is also the coordinate
framework, which is typically used to model flow problems and consequently, in multi-phase
flows [35] and fluid–structure interactions with large displacements [11, 23, 27]. However, as
the domains �(t) to be discretised vary with time t , additional difficulties arise concerning
a proper and accurate discretisation, both in space and in time.

In recent decades, a great amount of work has been contributed concerning the spatial
discretisation of curved ormoving boundaries bymeans of finite elements. The techniques can
be categorised in fitted and unfitted finite element methods. In fitted methods, the boundary
∂�(t) is resolved in each time step by the finite element mesh [5, 24, 30]. If the domain is
time-dependent, this means that new meshes need to be created in each time step. Several
approaches have been proposed to alleviate this issue, such as the locally fitted finite element
method [29, 30], which is based on a fixed coarse and a variable finemesh. However, different
issues might arise, such as anisotropic fine cells that complicate the numerical discretisation
[28].

The idea in unfitted finite element methods, on the other hand, is to use the same finite
element mesh for all times t , independently of the position of the boundary ∂�(t). A popular
approach is the cut finite element method (CutFEM) [8, 14, 37, 38, 52, 65], where cells of
the finite element mesh are cut into parts that lie inside �(t) and parts outside for numerical
integration. Dirichlet or Robin boundary conditions are then incorporated weakly by means
of Nitsche’s method [46, 53]. The method shows similarities to the extended finite element
method [16, 20, 32] and the generalised finite element method [2], where the finite element
spaces are enriched by suitable functions to account for the position of the boundary.

Much less works can be found in literature concerning a proper time discretisation on
moving domains. In the case of moving domains, standard time discretisation based on the
method of lines is not directly applicable. The reason is that the domain of definition of the
variables changes from time step to time step. As an example consider the finite difference

123



Journal of Scientific Computing            (2024) 99:64 Page 3 of 29    64 

discretisation of the time derivative within a variational formulation (�t = tn − tn−1)

(∂t uh(tn), φ
n
h )�(tn) ≈ 1

�t
(uh(tn) − uh(tn−1), φ

n
h )�(tn).

The function uh(tn−1) is only well-defined on �(tn−1), but is needed on �(tn).
A possible remedy is to use characteristic-based approaches based on trajectories that

follow the motion of the domain, see e.g. [40]. Similar time-stepping schemes result when
applying theALEmethod only locallywithin one time step and projecting back to the original
reference frame after each step [18], or based on Galerkin time discretisations with modified
Galerkin spaces [31]. The disadvantage of these approaches is the necessity for a projection
that needs to be computed within each or after a certain number of steps.

A further alternative are space-time approaches [39, 48], where a d + 1-dimensional
domain is discretised. These are, however, computationally demanding, in particular within
complex three-dimensional applications. The implementation of higher-dimensional discreti-
sations and accurate quadrature formulas pose additional challenges. If a discontinuous
Galerkin approach is applied in time for the test functions, the formulation decouples in
certain time intervals and can be seen as an Eulerian time-stepping scheme [26, 39, 65].

In this work, we follow a slightly different approach first used by Schott [57] and later
analysed by Lehrenfeld & Olshanskii [49]. Here, the idea is to define extensions of the
solution u(tn−1) from previous time steps to a domain �δ(tn−1) that spans at least �(tn). On
the finite element level, these extensions can be incorporated implicitly in the time-stepping
scheme by so-called ghost penalty stabilisations [7] to a sufficiently large domain. These
techniques have originally been proposed to extend the coercivity of elliptic bilinear forms
from the physical to the computational domain in the context of CutFEM or fictitious domain
approaches [7].

Lehrenfeld & Olshanskii [49] analysed the so extended Backward Euler method in detail
for a convection-diffusion problem and gave hints on how to transfer the argumentation to the
second-order backward difference scheme (BDF2). Recently, the analysis has been extended
to higher order in space and time using an isoparametric finite element approach [50]. In [12,
62], extended BDF time-stepping schemes were applied and analysed for the non-stationary
Stokes equations on moving domains.

The reason why only BDF-type time-stepping schemes have been considered in pre-
vious works, is that in these schemes spatial derivatives appear only on the “new” time
step, i.e.∇u(tn). We will see below that the appearance of additional derivatives on u(tn−1)

will complicate the error analysis severely. This paper gives a first step towards the analy-
sis of time-stepping schemes that require derivatives at different time instants, such as the
Crank–Nicolsonmethod, the Fractional-step-θ -, implicit Runge–Kutta- or Adams–Bashforth
schemes.

As a first step,we focus in thiswork on the popularCrank–Nicolson time-stepping scheme.
Up to now, it has been largely open, if and under what conditions a Crank–Nicolson-type
scheme can be used within an Eulerian time discretisation on moving domains. We give a
detailed stability and convergence analysis. While the analysis requires a strong parabolic
CFL condition of type �t ≤ ch3/2, our numerical results indicate that the scheme is stable
also for much larger time steps.

The article is organised as follows: In Sect. 2, we introduce the discretisation of the model
problem (1.1) in time and space. Section3 presents a stability analysis for the fully discrete
scheme using a CFL condition. In Sect. 4, we show a detailed a priori convergence analysis.
Numerical experiments in two and three space dimensions are presented in Sect. 5. Section6
summarises this article with some concluding remarks.
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Fig. 1 Illustration of the domains
�n , �n+1 and the extension �n

δ

2 Discretisation

In this section, we present the numerical approximation of the model problem (1.1). We
start with discretisation in time and continue with the spatial discretisation of the resulting
time-discrete formulation.

2.1 Temporal Discretisation

For time discretisation, we divide the time interval of interest I = [0, tmax ] in intervals

In = (tn−1, tn]. For simplicity, we take a uniform time step �t = tmax

N
and define tn = n�t .

We define the domain �n := �(tn) with boundary �n := �(tn) and write un = u(tn) for the
exact solution of the continuous problem (1.1) at time tn .

A δ-neighborhood of�(t) at time step n is chosen large enough such that (�n ∪�n+1) ⊂
�n

δ , see Fig. 1. Therefore we choose

δ ≥ wmax�t, wmax = sup
t∈I , x∈∂�(0)

‖∂t T (x, t) · n‖.

The required regularity of the domain mapping T will be ensured in Assumption 1 below.
For the error analysis, we will also assume the upper bound

δ ≤ cδwmax�t (2.1)

with a constant cδ > 1. Finally, we introduce the following notations for some space-time
domains

Q := ∪
t∈I{t} × �(t), Qn := ∪

t∈In
{t} × �(t)

Qn
δ := ∪

t∈In
{t} × �δ(t), Q̂ = �(0) × [0, tmax ].

Now, the Crank–Nicolson method applied to (1.1) writes formally

un − un−1

�t
− 1

2
(�un + �un−1) = 1

2
( f n + f n−1), x ∈ �n . (2.2)
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The main issue of this formulation is that un−1 is needed on �n , while it is defined on �n−1.
Thus, we will add implicit extension operators below to define un on�n

δ ⊃ �n+1, where it is
needed in the following time step. Similarly, f n−1 might be undefined on�n \�n−1. If f n−1

is given analytically, it can typically be extended in a canonical way to�n . To cover different
scenarios, we do not want to restrict the analysis in this work to a particular extension, but
assume only that f n−1 is smoothly extended to �n .

In this article, we will use the abbreviation c to refer to a generic positive constant, which
is independent of discretisation parameters (�t, h) and the relative positions of the boundary
with respect to the mesh.

2.1.1 Extension Operator

In this part, we introduce an extension operator to extend variables, for example the exact
solutionu, to larger domains as the spatial domain evolves.Wemake the following assumption
(see also [12, Assumption 3.2]) for the analysis of this article.

Assumption 1 The boundary of the initial domain �(0) is assumed to be piecewise smooth
and Lipschitz, and the domain motion T (t) is aW 1,∞-diffeomorphism for each t, that fulfills
T ∈ Wr ,∞(Q̂), where r = max{3,m + 1} and m is the polynomial degree of the finite
element space defined in the following subsection.

By using Assumption 1, there exist Wr ,∞-stable extension operators En from �n to �n
δ

that satisfy the following analytical properties:

‖Enu − u‖Wm+1,p(�n) = 0, ‖Enu‖Wm+1,p(�n
δ ) ≤ c‖u‖Wm+1,p(�n), (2.3)

‖∂t Enu‖Hm (�n
δ ) ≤ c

(‖u‖Hm+1(�n) + ‖∂t u‖Hm (�n)

)
, (2.4)

‖∂3t Enu‖L∞(Qn
δ ) ≤ c‖u‖W 3,∞(Q). (2.5)

The properties (2.3) and (2.4) are discussed in [12]. In an analogous way, one can derive the
estimate for the third-order time derivative in (2.5). These extension operators will be used
throughout the article, whenever functions would be undefined on parts of the domain where
they are needed.

2.2 Spatial Discretisation

For spatial discretisation, we introduce a polygonal domain D, which is chosen large enough,
such that�n

δ ⊂ D for all n.We introduce a quasi-uniform (i.e., shape- and size-regular) family
of triangulations (Th)h>0 of D with maximum cell size h (see, e.g., [6, Section 4.4]), which
will serve as background meshes.

In each time step, we extract from Th all cells of non-empty intersection with �n
δ and

define

T n
h,δ := {K ∈ Th : K ∩ �n

δ = ∅}.
We write �n

h,δ for the domain spanned by all cells K ∈ T n
h,δ and define the following finite

element space:

V n,m
h := {v ∈ C(�n

h,δ), v|K ∈ Pm(K ) ∀K ∈ T n
h,δ}, m ≥ 1.
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Fig. 2 Left: Illustration of the triangulations T n
h and T n

h,δ
and the sets of facets Fn

h,δ
= Fn,int

h,δ
∪ Fn,cut

h,δ
∪

Fn,ext
h,δ

. Right: Set of boundary cells Sn,n−1
h

The set of elements that lie (at least partially) outside of �n−1, but in �n , will be of
particular interest in the analysis. The domain spanned by them will be denoted by

Sn,n−1
h := ∪

K∈T n,n−1
h

K , where T n,n−1
h := {

K ∈ T n
h,δ, K ∩ (�n \ �n−1) = ∅}

.

Moreover, we introduce the following notations for the facets of T n
h,δ , see Fig. 2 for an

illustration:

• Fn
h,δ: the set of interior facets of T

n
h,δ .

• Fn,int
h,δ : the set of facets that belong exclusively to elements K ∈ T n

h,δ that lie completely
in the interior of �n .

• Fn,cut
h,δ : the set of facets that belong to some element K ∈ T n

h,δ with K ∩ ∂�n = ∅.
• Fn,ext

h,δ : the set of remaining facets of Fn
h,δ , i.e. F

n,ext
h,δ := Fn

h,δ\
(
Fn,int
h,δ ∪ Fn,cut

h,δ

)

• Fn,g
h,δ := Fn,cut

h,δ ∪ Fn,ext
h,δ .

Assumption 2 (CFL condition) We assume the CFL condition �t ≤ cCFLh3/2 for a suffi-
ciently small constant cCFL .

The inequality (2.1) and the CFL condition (Assumption 2) lead to

δ ≤ cδwmax�t ≤ cwmaxh
3/2. (2.6)

Remark 2.1 The inequality (2.6) implies that the distance between ∂�n and ∂�n−1 is bounded
byO(h3/2). This implies the following property, which will be needed in the analysis below:
For each cell K ∈ Sn,n−1

h , there exists a path of cells Ki , i = 1, . . . , M , such that K i ∩K i+1

is a facet in Fn,g
h,δ ∩Fn−1,g

h,δ and the final cell KM lies fully in the interior of �n . Furthermore,
the number of cases, in which an element KM ⊂ �n is utilised as a final element among all
paths, can be bounded independently of h and �t .

2.2.1 Discrete Variational Formulation

In the numerical approximation, the boundary condition of the discrete problem (2.7) is
implemented weakly by means of Nitsche’s method. Moreover, the function unh is extended
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by means of a ghost penalty term gnh (·, ·). In each time step n = 1, 2, . . . , N , we consider
the following discrete variational formulation: Find unh ∈ V n,m

h such that

A(unh, u
n−1
h ; vh) = ( f

n− 1
2

h , vh), ∀vh ∈ V n,m
h , (2.7)

where

A(unh, u
n−1
h ; vh) := (

D−
�t u

n
h, vh

)
�n + 1

2
anh (u

n
h, vh) + 1

2
anh (u

n−1
h , vh) + γD

h
(unh, vh)∂�n

+ γgg
n
h (u

n
h, vh) (2.8)

and

D−
�t u

n
h = unh − un−1

h

�t
, anh (u

k
h, vh) = (∇ukh,∇vh)�n − (∂nu

k
h, vh)∂�n ,

f n− 1
2 = f n + f n−1

2
.

We assume that all integrals in (2.8) are evaluated exactly. For a consideration of additional
quadrature errors, that result when cut cells are approximated linearly in the computation of
the integrals, we refer to [49].

We would like to stress that the Nitsche penalty term
γD

h
(unh, vh)∂�n is evaluated only at

the new time step (superscript n). Moreover, we consider here a non-symmetric version of
Nitsche’s method, i.e., without the symmetry term -(ukh, ∂nvh)∂�n in anh (u

k
h, vh). This form of

theNitsche penalty termwill be necessary for the following stability analysis, seeRemark 3.7.
The symmetry term is left out, as it would lead to a significantly larger consistency error,
which would dominate the overall error, see Remark 4.3.

The ghost penalty stabilization is defined by

gnh (wh, vh) =
∑

e∈Fn,g
h,δ

m∑

k=1

h2k−1

k!2
∫

e
[[∂knwh]] · [[∂knvh]] ds, (2.9)

where [[·]] is the jump operator and ∂n the exterior normal derivative. For further possibil-
ities for the extension gnh , we refer to [49]. The variant chosen here based on the jump of
derivatives over edges has the advantage that it is fully consistent, in the sense that gnh (u, v)

vanishes for u ∈ Hm+1(�n
δ ). The purpose of the ghost penalty is twofold: First, it serves to

extend the solution unh implicitly to �n
h,δ . Secondly, it ensures the discrete coercivity of the

formulation (2.7) on T n
h,δ .

To incorporate the initial condition, we set u0h := E1u0 in (2.8) for n = 1, where E1u0 is
a smooth, e.g. a canonical extension, of the initial value u0. This corresponds to the following
Ritz projection of the initial value u0

�t−1(u0h, vh)�1 + a1(u0h, vh) = �t−1(E1u0, vh)�1 + a1(E1u0, vh) ∀vh ∈ V 1
h ,

The following lemma is the key to extend the discrete coercivity to �n
δ :

Lemma 2.2 Given Assumption 2, any discrete function vnh ∈ V n,m
h satisfies

‖vnh‖2�n
h,δ

≤ c‖vnh‖2�n + ch2gnh (vh, vh), ‖∇vnh‖2�n
h,δ

≤ c‖∇vnh‖2�n + cgnh (vh, vh).

In addition, for v ∈ Hm+1(�n
δ ), m ≥ 1, it holds

gnh (v, v) ≤ ch2m‖v‖2Hm+1(�n
δ )

.
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Proof A proof of this lemma is given in [49]. ��

At the end of this section, we briefly show that the variational formulation (2.7) is well-
posed for each n. We define the discrete energy as

En(unh, u
n−1
h ) =

(
1

2
‖∇unh + ∇un−1

h ‖2�n + 1

�t
‖unh − un−1

h ‖2�n + γD

h
‖unh‖2∂�n + γgg

n
h (u

n
h, u

n
h)

)1/2

.

(2.10)
and the energy norm as

|||unh |||n := En(unh, 0).

We will show the coercivity relation

|||unh |||2n ≤ 1

4
A(unh, 0; unh), unh ∈ Vm,n

h . (2.11)

for sufficiently large γg, γD . Thewell-posedness of (2.7) follows then by standard arguments.
From the definition of the bilinear form A(unh, 0; unh), we have

A(unh, 0; unh) = 1

�t
‖unh‖2�n + 1

2
‖∇unh‖2�n − 1

2
(∂nu

n
h, u

n
h)∂�n + γD

h
‖unh‖2∂�n + γgg

n
h (u

n
h, u

n
h).

The term − 1
2 (∂nu

n
h, u

n
h)∂�n is estimated by means of Young’s inequality and an inverse

inequality as follows for sufficiently small ε > 0:

−1

2
(∂nu

n
h, u

n
h)∂�n ≥ −εh

4
‖∇unh‖2∂�n − 1

4εh
‖unh‖2∂�n

≥ −cε‖∇unh‖2�n
h
− 1

4εh
‖unh‖2∂�n .

For sufficiently large parameters γD, γg , we have using Lemma 2.2

−1

2
(∂nu

n
h, u

n
h)∂�n ≥ −1

4

(‖∇unh‖2�n + γgg
n
h (u

n
h, u

n
h)

) − γD

4h
‖unh‖2∂�n .

This proves the coercivity (2.11).

Remark 2.3 The analysis given in this article can be generalised to the non-stationary
convection-diffusion problem

∂t u + b · ∇u − �u = f in �

for a bounded function b ∈ L∞(Q). The corresponding bilinear form includes the additional
term 1

2 (b · ∇(un + un−1), v)�n . In the coercivity proof, as well as the stability analysis given
below, this term can be estimated by estimates of type

(b · ∇(un + un−1), un)�n ≤ ‖b‖L∞(Q)‖∇(un + un−1)‖�n‖un‖�n

≤ ε‖∇(un + un−1)‖2�n + cbε
−1‖un‖2�n

for cb := ‖b‖L∞(Q) and ε > 0. Control over the latter term can be obtained by means of the
discrete time derivative (namely 1

�t (u
n − un−1, un)). However, in order to keep the analysis

as simple and concise as possible, we will in the following not consider this additional
convective term.
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3 Stability Analysis

In this section, a detailed stability analysis of the discrete problem (2.7) is developed. One of
the main issues in the analysis is that the discrete functions un−1

h and ∇un−1
h appear on �n

in the n-th time step, whereas bounds are only available for ‖un−1
h ‖�n−1 and ‖∇un−1

h ‖�n−1

from the previous time step. We start with some technical lemmas that will enable us to deal
with this issue.

3.1 Auxiliary Estimates

We start with a lemma that uses the smallness of the mismatch �n \ �n−1 compared to the
set of cells Sn,n−1

h that contains this area, see Fig. 2.

Lemma 3.1 Any discrete functions vnh ∈ V n,m
h , vn−1

h ∈ V n−1,m
h satisfy the following inequal-

ity:

‖∇vnh − ∇vn−1
h ‖2

�n\�n−1 ≤ c
�t

h
‖∇vnh − ∇vn−1

h ‖2Sn,n−1
h

. (3.1)

Proof Let T ∈ T n,n−1
h and ST := T ∩ (�n\�n−1). Due to the quasi-uniformity of the

background mesh, we have |T | ≥ chd and from (2.1) |ST | = |T ∩ (�n\�n−1)| ≤ chd−1�t .
We show the estimate on the reference element (the unit simplex T̂ ) using the linear bijective
map ξT : T̂ → T . Let p := (∇vnh − ∇vn−1

h )|T , p̂ = p ◦ ξT and ŜT := ξ−1
T (ST ). As the map

ξT is linear, we have by integral transformation

|ŜT | =
∫

ŜT
1 dx̂ =

∫

ST
| det(∇ξ−1

T )| dx = |ST | |T̂ |
|T | ≤ c

�t

h
. (3.2)

Similarly, it holds that

‖p‖ST ≤ c|T |1/2‖ p̂‖ŜT and ‖ p̂‖T̂ ≤ c|T |−1/2‖p‖T . (3.3)

On the reference simplex, we use equivalence of norms for the polynomial p̂

‖ p̂‖ŜT ≤ |ŜT |1/2‖ p̂‖∞,T̂ ≤ c|ŜT |1/2‖ p̂‖T̂ . (3.4)

Combination of (3.3) and (3.4) yields ‖p‖ST ≤ c|ŜT |1/2‖p‖T . After using (3.2), summation
over all cells T ∈ T n,n−1

h completes the proof.

Lemma 3.2 Let Assumptions 2 be valid. Any discrete functions vnh ∈ V n,m
h , vn−1

h ∈ V n−1,m
h

satisfy the following inequality:

‖∇vnh − ∇vn−1
h ‖2

�n\�n−1 ≤ 2

�t
‖vnh − vn−1

h ‖2�n + cgnh (v
n
h , v

n
h ) + cgn−1

h (vn−1
h , vn−1

h ). (3.5)

Proof By Lemma 3.1 we have that

‖∇vnh − ∇vn−1
h ‖2

�n\�n−1 ≤ c
�t

h
‖∇vnh − ∇vn−1

h ‖2Sn,n−1
h

. (3.6)

Now let K1 ∈ Sn,n−1
h . By Remark 2.1, there is a set of neighbouring cells K2, ..., KM , such

that (K i ∩ K i+1) ∈ (Fn,g
h,δ ∩ Fn−1,g

h,δ ) and KM lies fully in the interior of �n . Let e1,2 be the
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edge that separates the cells K1 and K2, see Fig. 2. Then, using arguments from [51, Lemma
5.1] and [49, Lemma 5.2], we can deduce that

‖∇vnh − ∇vn−1
h ‖2K1

≤ c0‖∇vnh − ∇vn−1
h ‖2K2

+ c
m∑

k=1

∫

e1,2
h2k−1[[∂knvnh − ∂knvn−1

h ]]2ds

≤ c0‖∇vnh − ∇vn−1
h ‖2K2

+ c
m∑

k=1

∫

e1,2
h2k−1[[∂knvnh ]]2ds + c

∫

e1,2
h2k−1[[∂knvn−1

h ]]2ds,
(3.7)

with a constant c0 that depends solely on the polynomial degree m and the shape-regularity
of the triangulations [51, Lemma 5.1]. We follow this process from K2 to KM by crossing
edges e2,3 to eM−1,M to obtain

‖∇vnh − ∇vn−1
h ‖2K1

≤cM0 ‖∇vnh − ∇vn−1
h ‖2KM

+ c
m∑

k=1

M∑

j=2

(∫

e j−1, j

h2k−1[[∂knvnh ]]2ds +
∫

e j−1, j

h2k−1[[∂knvn−1
h ]]2ds

)

.

(3.8)

For the first term on the right-hand side of (3.8), we use an inverse inequality with constant
cinv

cM0
�t

h
‖∇vnh − ∇vn−1

h ‖2KM
≤ cM0 c2inv�t

h3
‖vnh − vn−1

h ‖2KM
(3.9)

As all edges e j−1, j belong to bothFn,g
h,δ andFn−1,g

h,δ , we obtain after summation over all cells

in Sn,n−1
h from (3.6), (3.8) and (3.9)

‖∇vnh − ∇vn−1
h ‖2

�n\�n−1 ≤ cM0 c2inv
�t

h3
‖vnh − vn−1

h ‖2�n

+ c
�t

h

(
gnh (v

n
h , v

n
h ) + gn−1

h (vn−1
h , vn−1

h )
)

.

Using the CFL condition�t ≤ cCFLh3/2 for sufficiently small cCFL ≤
√
2/cM0 c2inv, we obtain

cM0 c2inv
�t
h3

≤ 2
�t and �t/h ≤ c, which completes the proof. ��

We note that the CFL condition is required to estimate the “mismatch” ‖∇vn−1
h ‖2

�n\�n−1

by means of the discrete time derivative 1
�t ‖vnh − vn−1

h ‖2�n (see the following lemma). The
constant cCFL depends on constants c0 and cinv that depend on polynomial degree m and
shape-regularity of the triangulations.

Next, we discuss how the term ‖∇un−1
h ‖�n can be bounded by ‖∇un−1

h ‖�n−1 along with
additional terms that can be controlled in the following stability analysis.

Lemma 3.3 Under the assumptions of Lemma 3.2 it holds for vnh ∈ V n,m
h , vn−1

h ∈ V n−1,m
h

and l ∈ {n − 1, n} that
�t‖∇vlh‖2�n\�n−1 ≤ �t

2
‖∇vnh + ∇vn−1

h ‖2
�n\�n−1 + ‖vnh − vn−1

h ‖2�n

+c�tgnh (v
n
h , v

n
h ) + c�tgn−1

h (vn−1
h , vn−1

h ).
(3.10)

Proof By the triangle inequality, we have

‖∇vn−1
h ‖�n\�n−1 ≤ 1

2
‖∇vnh + ∇vn−1

h ‖�n\�n−1 + 1

2
‖∇vnh − ∇vn−1

h ‖�n\�n−1 .
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By means of the inequality (a + b)2 ≤ 2a2 + 2b2 this implies

�t‖∇vn−1
h ‖2

�n\�n−1 ≤ �t

2
‖∇vnh + ∇vn−1

h ‖2
�n\�n−1 + �t

2
‖∇vnh − ∇vn−1

h ‖2
�n\�n−1 . (3.11)

The statement follows by using Lemma 3.2 for the second term in (3.11)

�t

2
‖∇vnh − ∇vn−1

h ‖2
�n\�n−1 ≤ ‖vnh − vn−1

h ‖2�n + c�tgnh (v
n
h , v

n
h ) + c�tgn−1

h (vn−1
h , vn−1

h ).

(3.12)

��
Next, we provide the following Poincaré-type estimate:

Lemma 3.4 Let u ∈ W 1,p(�) for 1 ≤ p < ∞ and let the CFL condition (Assumption 2) be
valid. It holds for l ∈ {n − 1, n}

‖u‖p
L p(�n\�n−1)

≤ c�t‖u‖p
L p(∂�l )

+ c�t2‖∇u‖p
L p(�n\�n−1)

. (3.13)

Proof Theproof follows the lines of [56,Lemma4.34] anduses the fact that dist(�n,�n−1) ≤
c�t . ��
Using this, we can derive bounds for ‖vn−1

h ‖2
�n\�n−1 and ‖vnh‖2�n\�n−1 :

Lemma 3.5 Under the assumptions of Lemma 3.2 it holds for vlh ∈ V l,m
h , l ∈ {n − 1, n}

‖vlh‖2�n\�n−1 ≤ c
(
�t‖vlh‖2∂�l + �t‖vnh − vn−1

h ‖2�n + �t2‖∇vnh + ∇vn−1
h ‖2�n

+�t2gn−1
h (vn−1

h , vn−1
h ) + �t2gnh (v

n
h , v

n
h )

)
(3.14)

Proof By means of Lemma 3.4 for p = 2 we have for l ∈ {n − 1, n}
‖vlh‖2�n\�n−1 ≤ c�t‖vlh‖2∂�l + c�t2‖∇vlh‖2�n\�n−1 (3.15)

The statement follows by applying Lemma 3.3 to the second term in (3.15). ��

3.2 Stability Result

Before discussing the stability result, we introduce some abbreviations for the space-time
Bochner norms to simplify the mathematical expressions

‖u‖∞,m,Ik := ‖u‖L∞(Ik ,Hm (�(t))), ‖u‖∞,m := ‖u‖∞,m,I , (3.16)

where m ∈ N ∪ {0} and H0(�(t)) := L2(�(t)). We prove the following stability result.

Theorem 3.6 (Stability) Let Assumptions 2 be valid and let f ∈ L∞(I , L2(�(t))), u0 ∈
H1(�0) and let the mapping T be a W 1,∞-diffeomorphism. For sufficiently large γg and γD

the solution {ukh}nk=1 of the discrete problem (2.7) fulfills

‖unh‖2�n + �t‖unh‖2�n + �t
n∑

k=1

Ek(ukh, u
k−1
h )

≤ c exp(c tn)
(‖u0‖2

�0 + �t‖∇u0‖2
�0 + tn‖ f ‖2∞,0

)
, (3.17)

with Ek(·, ·) defined in (2.10).
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Proof We test (2.7) with vh = 2�tunh to obtain

2
(
unh − un−1

h , unh

)

�n
+ �t

(
∇unh + ∇un−1

h ,∇unh

)

�n
+ 2γD�t

h
(unh, u

n
h)∂�n

−�t(∂nunh + ∂nu
n−1
h , unh)∂�n + 2�tγggnh (u

n
h, u

n
h) = 2�t( f n− 1

2 , unh).
(3.18)

We estimate the fourth term in (3.18) by means of Young’s inequality with a sufficiently
small ε > 0 followed by an inverse inequality

�t(∂nu
n
h + ∂nu

n−1
h , unh)∂�n ≤ �tεh

16
‖∂nunh + ∂nu

n−1
h ‖2∂�n + 4�t

εh
‖unh‖2∂�n

≤ �t

16
‖∇unh + ∇un−1

h ‖2�n + γD�t

2h
‖unh‖2∂�n ,

where γD ≥ 8/ε. By using the relation 2(a + b, a) = (a + b)2 + a2 − b2 for the first two
terms in (3.18), we obtain that

‖unh‖2�n + ‖unh−un−1
h ‖2�n + �t

2
‖∇unh‖2�n + 7�t

16
‖∇unh + ∇un−1

h ‖2�n + 3γD�t

2h
‖unh‖2∂�n

+ 2�tγgg
n
h (u

n
h, u

n
h) ≤ ‖un−1

h ‖2�n + �t

2
‖∇un−1

h ‖2�n + 2�t( f n−1/2, unh).

(3.19)

For n > 1, we bring the terms ‖un−1
h ‖�n and ‖∇un−1

h ‖�n to the domain�n−1. By employing
Lemmas 3.3 and 3.5, we have

‖un−1
h ‖2�n + �t

2
‖∇un−1

h ‖2�n ≤ ‖un−1
h ‖2

�n−1 + c�t‖un−1
h ‖2

∂�n−1 + �t

2
‖∇un−1

h ‖2
�n−1

+
(

�t

4
+ c�t2

)
‖∇unh + ∇un−1

h ‖2�n +
(
1

2
+ c�t

)
‖unh − un−1

h ‖2�n

+ c�tgnh (u
n
h, u

n
h) + c�tgn−1

h (un−1
h , un−1

h ).

(3.20)

Inserting (3.20) into (3.19) and using 2�t( f n−1/2, unh)�n ≤ �t
(‖ f n−1/2‖2�n + ‖unh‖2�n

)

gives for sufficiently large γg

(1 − �t)‖unh‖2�n + �t

2
‖∇unh‖2�n + 1

4
‖unh − un−1

h ‖2�n + �t

8
‖∇unh + ∇un−1

h ‖2�n

+ 3γD�t

2h
‖unh‖2∂�n + �tγgg

n
h (u

n
h, u

n
h)

≤ ‖un−1
h ‖2

�n−1 + �t

2
‖∇un−1

h ‖2
�n−1 + c�t‖un−1

h ‖2
∂�n−1

+ c�tgn−1
h (un−1

h , un−1
h ) + �t‖ f

n− 1
2

h ‖2�n .

(3.21)

For n = 1, we obtain from (3.19) and the stability of the extension E1

(1 − �t)‖u1h‖2�1 + ‖u1h − u0h‖2�1 + �t

2
‖∇u1h‖2�1 + 3�t

8
‖∇u1h + ∇u0h‖2�1

+ 3γD�t

2h
‖u1h‖2∂�1 + 2�tγgg

1
h(u

1
h, u

1
h)

≤ ‖E1u0‖2
�1 + �t

2
‖∇(E1u0)‖2

�1 + �t‖ f
1
2
h ‖2

�1

≤ c‖u0‖2
�0 + c�t‖∇u0‖2

�0 + �t‖ f
1
2
h ‖2

�1 .

(3.22)
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Taking the sum over k = 1, 2, . . . , n, this yields for sufficiently large γg and γD

‖unh‖2�n + �t‖∇unh‖2�n + �t

4

n∑

k=1

Ek(ukh, u
k−1
h )

≤ c‖u0h‖2�0 + c�t‖∇u0h‖2�0 + 2tn‖ f ‖2∞,0 + c�t
n∑

k=2

‖uk−1
h ‖2

�k−1 .

(3.23)

The statement follows by means of the discrete Gronwall lemma. ��

Remark 3.7 (Nitsche penalty term) The definition of the Nitsche penalty term
γD

h
(unh, vh)∂�n

is motivated by the stability analysis. On one hand it is required to control the term
c�t‖un−1

h ‖∂�n−1 (coming from the domain mismatch via Lemma 3.5) in (3.21). Moreover, if

wewould use themixedpenalty term
γD

2 h
(unh+un−1

h , vh)∂�n instead, testingwithvh = 2�tunh
would not be possible in Theorem 3.6, as

γD

2h
(unh + un−1

h , unh)∂�n = γD

4h

(
‖unh‖2∂�n + ‖unh + un−1

h ‖2∂�n − ‖un−1
h ‖2∂�n

)
,

and the domain mismatch in the last term
γD

4 h
‖un−1

h ‖∂�n can not be controlled by other terms

in the variational formulation.

4 A Priori Error Analysis

In this section, we show an a priori error estimate for the discrete problem (2.7). We define
the discretisation error as

en := Enun − unh, n ≥ 1, (4.1)

where un := u(tn) is assumed to be at least in H2(�n) and En is the extension operator
defined in Sect. 2.1.1. Within �n the error en is precisely the discretisation error un − unh .
We use the extension operator to be able to use en also in parts of �n

h,δ that lie outside of
�n . Further regularity assumptions on u will be made below. The error is decomposed into
an interpolation error ηn and a discrete error ξnh terms defined by

ηn := Enun − I nh E
nun, ξnh := I nh E

nun − unh, (4.2)

where I nh E
nun denotes the standard Lagrangian nodal interpolation of Enun on T n

h,δ . For

n = 0 we have, by definition of u0h , that e
0 = u0 − u0h = 0 in �0 and thus, we also set

η0 = ξ0h = 0. We will make use of the following standard interpolation estimates for n ≥ 1

‖ηn‖Hl (�) ≤ chk−l‖un‖Hk (�), for 0 ≤ l ≤ 1, 2 ≤ k ≤ m + 1, (4.3)

‖ηn‖Hl (∂�) ≤ chk−l−1/2‖un‖Hk (�), for 0 ≤ l ≤ 1, 2 ≤ k ≤ m + 1. (4.4)

4.1 Consistency Error

The exact solution u ∈ H1(�(t)) of the continuous problem (1.1) satisfies the following
weak formulation:

(ut , v)�(t) + a(u, v) = ( f , v)�(t), t ∈ In (4.5)
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for v ∈ H1(�(t)) and the bilinear form

a(u, v) = (∇u,∇v)�(t) − (∂nu, v)∂�(t).

At time tn−1, we have

(ut (tn−1), v)�n−1 + an−1(un−1, v) = ( f n−1, v)�n−1 (4.6)

where

an−1(un−1, v) = (∇un−1,∇v)�n−1 − (∂nu
n−1, v)∂�n−1 .

To estimate the consistency error, we will need an analogous equality for un−1 on �n

instead of �n−1. Therefore, we define ũ as a smooth extension of the exact solution u to
Qn

δ which fulfills the properties given in (2.3)–(2.5). In the same way, we define a smooth
extension of the source term f as follows:

f̃ (tn−1) = ũt (tn−1) − �ũ(tn−1), on �n
δ . (4.7)

It holds

f̃ (tn−1) = f (tn−1) on �n−1

However, as we have allowed an arbitrary smooth extension of f to�n−1
δ in Sect. 2, this does

not necessarily hold in �n−1
δ \ �n−1. By using a test function vh ∈ V n,m

h , we get

(ũn−1
t , vh)�n + (∇ũn−1,∇vh)�n − (∂nũ

n−1, vh)∂�n = ( f̃ n−1, vh)�n . (4.8)

By adding the equations (4.5) and (4.8), we obtain

(unt +ũn−1
t , vh)�n+(∇un+∇ũn−1,∇vh)�n−(∂nu

n + ∂nũ
n−1, vh)∂�n = ( f n+ f̃ n−1, vh)�n .

(4.9)
We note that the right-hand side in (4.9) differs from the discrete formulation (2.7) by ( f̃ n−1−
f n−1, vh)�n\�n−1 . Hence, (4.9) can be rewritten as
(
unt + ũn−1

t

2
, vh

)

�n

+ 1

2
anh (u

n, vh) + 1

2
an−1
h (ũn−1, vh) = 1

2
( f n + f n−1, vh)�n + 1

2
En−1
f (vh),

(4.10)
where En−1

f (vh) is given by

En−1
f (vh) = ( f̃ n−1 − f n−1, vh)�n\�n−1 . (4.11)

In the next lines, we will discuss a bound for the term En−1
f .

Lemma 4.1 Under the assumptions of Lemma 3.2, the error term En−1
f defined in (4.11)

satisfies the following estimate for vnh ∈ V n,m
h and u ∈ L∞(I , H3(�)) ∩ W 1,∞(I , H1(�)):

�t
∣∣En−1

f (vnh )
∣∣ ≤ c�t5RC (u)2 + 1

32

(
�t‖∇vnh + ∇vn−1

h ‖2�n + ‖vnh − vn−1
h ‖2�n

+ �t2‖vnh‖2∂�n + �tgnh (v
n
h , v

n
h ) + �tgn−1

h (vn−1
h , vn−1

h )
)
, (4.12)

where RC (u) = ‖u‖∞,3,I + ‖∂t u‖∞,1,I .
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Proof We apply Lemma 3.4 to u = ( f n−1 − f̃ n−1)vnh for p = 1

�t
∣
∣( f n−1 − f̃ n−1, vnh )�n\�n−1

∣
∣ ≤ �t‖( f n−1 − f̃ n−1)vnh‖L1(�n\�n−1)

≤ c�t2‖( f n−1 − f̃ n−1)vnh‖L1(∂�n−1)

+c�t3
∥
∥
∥∇[

( f n−1 − f̃ n−1)vnh

]∥∥
∥
L1(�n\�n−1)

.

(4.13)

As f n−1 = f̃ n−1 on ∂�n−1, the first term in (4.13) vanishes. By definition of f̃ in (4.7) we
can estimate further

�t
∣
∣( f n−1 − f̃ n−1, vnh )�n\�n−1

∣
∣ ≤ c�t3

[
‖( f n−1 − f̃ n−1)‖�n\�n−1‖∇vnh‖�n\�n−1

]

+c�t3
[
‖∇( f n−1 − f̃ n−1)‖�n\�n−1‖vnh‖�n\�n−1

]

≤ c�t3RC (u)
[‖∇vnh‖�n\�n−1 + ‖vnh‖�n\�n−1

]
.

(4.14)
Now, by employing Lemmas 3.3 and 3.5, we obtain

‖∇vnh‖2�n\�n−1 + ‖vnh‖2�n\�n−1 ≤
(
1

2
+ c�t2

)
‖∇vnh + ∇vn−1

h ‖2
�n\�n−1

+
(

1

�t
+ c�t

)
‖vnh − vn−1

h ‖2�n + c�t‖vnh‖2∂�n + cgnh (v
n
h , v

n
h ) + cgn−1

h (vn−1
h , vn−1

h ).

(4.15)
Inserting these estimates into (4.14) and using Young’s inequality, we obtain

�t
∣∣( f n−1 − f̃ n−1, vnh )�n\�n−1

∣∣ ≤ c�t3RC (u)
[‖∇vnh‖�n\�n−1 + ‖vnh‖�n\�n−1

]

≤ c�t5RC (u)2 + 1

32

(
�t‖∇vnh + ∇vn−1

h ‖2�n + ‖vnh − vn−1
h ‖2�n + �t2‖vnh‖2∂�n

+�tγggnh (v
n
h , v

n
h ) + �tγgg

n−1
h (vn−1

h , vn−1
h )

)
.

(4.16)
��

Now we are ready to estimate the consistency error related to the discrete problem (2.7).
By subtracting (2.7) from (4.10), the global error term en satisfies the equality

(
D−

�t e
n, vh

)
�n + 1

2
anh (e

n, vh) + 1

2
an−1
h (en−1, vh) + γD

h
(en, vh)∂�n + γgg

n
h (e

n, vh)

= 1

2
En−1
f (vh) + En

c (vh), (4.17)

where the consistency error En
c (vh) is given by

En
c (vh) = (

D−
�t u

n − ∂t (E
nu(tn−1/2)), vh

)
�n

︸ ︷︷ ︸
I1

−
(
ut (tn) + ∂t (Enu(tn−1))

2
− ∂t (E

nu(tn−1/2)), vh

)

�n
︸ ︷︷ ︸

I2

+ γD

h
(Enun, vh)∂�n

︸ ︷︷ ︸
I3

+ γgg
n
h (E

nun, vh)︸ ︷︷ ︸
I4

.

(4.18)

The terms I3 and I4 vanish due to the homogeneous boundary condition and the regularity
assumption on the exact solution un ∈ H2(�n) and its extension Enun ∈ H2(�n

δ ). The
remaining terms are estimated in the following lemma.

123



   64 Page 16 of 29 Journal of Scientific Computing            (2024) 99:64 

Lemma 4.2 Let u ∈ W 3,∞(Qn). Under Assumption 1, the consistency error for vh ∈ V n,m
h

is bounded by

|En
c (vnh )| ≤ c�t4‖u‖2W 3,∞(Qn)

+ 1

16
‖vnh‖2�n . (4.19)

Proof First, we will show a bound for the term I1. By following the argumentation in [60,
Chapter 1], we have

∣
∣
∣
∣

(
un − Enun−1

�t
− ∂t Enu(tn−1/2)

)∣
∣
∣
∣ ≤ 1

�t

∣
∣
∣
∣
∣

∫ tn

tn−1/2

(tn − s)2

3! ∂3t E
nu(s)ds

∣
∣
∣
∣
∣

+ 1

�t

∣
∣
∣
∣

∫ tn−1/2

tn−1

(s − tn−1)
2

3! ∂3t E
nu(s)ds

∣
∣
∣
∣

≤ c�t2 sup
t∈[tn−1,tn ]

|∂3t Enu(t)|.

Using the stability of the extension operator En given in (2.5) and the Cauchy-Schwarz
inequality, we have

∣
∣
∣
∣

(
un − Enun−1

�t
− ∂t E

nu(tn−1/2), v
n
h

)

�n

∣
∣
∣
∣ ≤ c�t2‖∂3t Enun‖L∞(Qn

δ )‖vnh‖�n

≤ c�t2‖u‖W 3,∞(Qn)‖vnh‖�n .

(4.20)

A bound for the second term I2 follows in a similar way, see also [60, Chapter 1]. The
statement follows using Young’s inequality. ��
Remark 4.3 (Symmetric Nitsche formulation) If we would use a symmetric Nitsche formula-
tion, i.e. including the term −1/2(unh + un−1

h , ∂nvh)∂�n in the discrete formulation (2.8), the
term −1/2(ũn−1, ∂nvh)∂�n would appear additionally on the right-hand side of (4.18). As
ũn−1 is non-zero on the boundary ∂�n in general, this term would dominate the consistency
error, resulting in a significantly reduced order of convergence.

4.2 Interpolation Error

To derive an interpolation error estimate, we devise a discrete problem associated with the
discrete error ξnh . By definition of ξnh (4.2) and using (4.17), we have for vh ∈ V n,m

h

(
D−

�tξ
n
h , vh

)
�n + 1

2
anh (ξ

n
h , vh) + 1

2
anh (ξ

n−1
h , vh) + γD

h
(ξnh , vh)∂�n

+γggnh (ξ
n
h , vh) = 1

2
En−1
f (vh) + En

c (vh) − En
I (vh),

(4.21)

where the interpolation error En
I (vh) is given by

En
I (vh) = (

D−
�tη

n, vh
)
�n + 1

2
anh (η

n, vh)+ 1

2
anh (η

n−1, vh)+ γD

h
(ηn, vh)∂�n +γgg

n
h (η

n, vh).

(4.22)

Lemma 4.4 (Interpolation error) Let u ∈ L∞(In, Hm+1(�(t)), ut ∈ L∞(In, Hm(�(t))
and vh ∈ V n,m

h . Under Assumption 1, the interpolation error is bounded by

|En
I (v

n
h )| ≤ c

(
h2m+�t2 h2m−2

)
RI (u)2 + 1

8
‖vnh‖2�n + 1

32
‖∇vnh + ∇vn−1

h ‖2�n

+ 1

32�t
‖vnh − vn−1

h ‖2�n + 1

16h
‖vnh‖2∂�n + 1

8
gnh (v

n
h , v

n
h ),

(4.23)
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where RI (u) = ‖ut‖∞,m + ‖u‖∞,m+1 with the Bochner norms defined in (3.16).

Proof The first term in the interpolation error En
I (vh) from (4.22) is estimated as follows:

1
�t

∣
∣(ηn − ηn−1, vnh

)
�n

∣
∣ ≤ 1

�t ‖ηn − ηn−1‖�n‖vnh‖�n

= 1
�t

∥
∥
∥
∥

∫ tn

tn−1

ηt (s)ds

∥
∥
∥
∥

�n

‖vnh‖�n ≤ hm‖∂t Enu‖∞,m,In‖vnh‖�n .

(4.24)
Using the stability of the extension (2.4), we obtain

1

�t

∣
∣(ηn − ηn−1, vnh

)
�n

∣
∣ ≤ c hm

(‖ut‖∞,m + ‖u‖∞,m+1
) ‖vnh‖�n . (4.25)

Next, we use interpolation estimates (4.3) and (4.4) in combination with (2.3) to deduce for
k ∈ {n − 1, n} that

1

2

∣
∣anh (η

k, vnh )
∣
∣ ≤ 1

2
‖∇ηk‖�n‖∇vnh‖�n + ‖∂nηk‖∂�n‖vnh‖∂�n

≤ chm‖uk‖Hm+1(�k )‖∇vnh‖�n + chm−1/2‖uk‖Hm+1(�k )‖vnh‖∂�n .
(4.26)

Using that, by an inverse inequality

‖∇vnh‖�n ≤ 1

2
‖∇vnh + ∇vn−1

h ‖�n + 1

2
‖∇vnh − ∇vn−1

h ‖�n

≤ 1

2
‖∇vnh + ∇vn−1

h ‖�n + c

h
‖vnh − vn−1

h ‖�n

we obtain further

1

2

∣∣anh (η
k, vnh )

∣∣ ≤ c hm‖uk‖Hm+1(�k )

(
1

2
‖∇vnh + ∇vn−1

h ‖�n+ 1

h1/2
‖vnh‖∂�n

)

+chm−1‖uk‖Hm+1�k )‖vnh − vn−1
h ‖�n .

(4.27)

For the Nitsche penalty term, we have
∣∣∣
γD

h
(ηn, vnh )∂�n

∣∣∣ ≤ c
γD

h
‖ηn‖∂�n‖vnh‖∂�n ≤ chm‖un‖Hm+1(�n)

1

h1/2
‖vnh‖∂�n . (4.28)

Finally, the ghost-penalty term is approximated by using gnh (η
n, vnh ) ≤ gnh (η

n, ηn)1/2

gnh (v
n
h , v

n
h )

1/2 and an interpolation estimate
∣∣γggnh (η

n, vnh )
∣∣ ≤ chm‖un‖Hm+1(�n)g

n
h (v

n
h , v

n
h )

1/2. (4.29)

The statement (4.23) follows by combining estimates (4.25)–(4.29) and using Young’s
inequality. ��

4.3 Convergence Estimate

Lemma 4.5 (Discrete error) Let u ∈ L∞(In, Hm+1(�(t))) ∩ W 1,∞(In, Hm(�(t)) ∩
W 3,∞(Q) be the solution of (1.1) and {ukh}nk=1 the discrete solution of (2.7), respectively.
Under Assumptions 1 and 2, the discrete error term ξnh satisfies for γg, γD sufficiently large

‖ξnh ‖2�n + �t‖∇ξnh ‖2�n + �t
n∑

k=1

Ek(ξ kh , ξ k−1
h ) ≤ exp(cT 4.5tn)

(
�t4+�t h2m−2 + h2m

)
R(u)2,

(4.30)
where R(u) = RC (u) + RI (u) + ‖u‖W 3,∞(Q), with RC and RI specified in Lemma 4.1
and 4.4, respectively.
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Proof By taking vh = 2�tξ kh in (4.21) and using the argumentation from the stability proof
(Theorem 3.6), see (3.21), we obtain that

‖ξ kh ‖2
�k + 1

4
‖ξ kh − ξ k−1

h ‖2
�k + �t

2
‖∇ξ kh ‖2

�k + �t

8
‖∇ξ kh + ∇ξ k−1

h ‖2
�k + 3γD�t

2h
‖ξ kh ‖2

∂�k

+2�tγggh(ξ kh , ξ kh ) ≤ ‖ξ k−1
h ‖2

�k−1 + �t

2
‖∇ξ k−1

h ‖2
�k−1 + c�t‖ξ k−1

h ‖2
∂�k−1

+c�tgk−1
h (ξ k−1

h , ξ k−1
h ) + 2�t

(
|Ek−1

f (ξ kh )| + |Ek
c (ξ kh )| + |Ek

I (ξ
k
h )|

)
.

(4.31)
By combining results from Lemmas 4.1, 4.2 and 4.4 we have

2�t
(
|Ek−1

f (ξ kh )| + |Ek
c (ξ kh )| + |Ek

I (ξ
k
h )|

)
≤ c�t

(
�t4+�t h2m−2 + h2m

)
R(u)

+ �t

4
‖ξ kh ‖2

�k + �t

16
‖∇ξ kh + ∇ξ k−1

h ‖2
�k

+ 1

16
‖ξ kh − ξ k−1

h ‖2
�k + �t

8h
‖ξ kh ‖2

∂�k

+ c�tgkh(ξ
k
h , ξ kh ) + c�tgk−1

h (ξ k−1
h , ξ k−1

h ).

(4.32)

Inserting (4.32) into (4.31) and absorbing terms into the left-hand side yields for k > 1 and
γD, γg sufficiently large

(
1 − �t

4

)
‖ξ kh ‖2

�k + 3

16
‖ξ kh − ξ k−1

h ‖2
�k + �t

4
‖∇ξ kh ‖2

�k + �t

16
‖∇ξ kh + ∇ξ k−1

h ‖2
�k

+ γD�t

h
‖ξ kh ‖2

∂�k + �tγggh(ξ
k
h , ξ kh ) ≤ ‖ξ k−1

h ‖2
�k−1 + �t

2
‖∇ξ k−1

h ‖2
�k−1 + c�t‖ξ k−1

h ‖2
∂�k−1

+ c�tgk−1
h (ξ k−1

h , ξ k−1
h ) + c�t

(
�t4+�t h2m−2 + h2m

)
R(u).

(4.33)

As ξ0h = 0, we obtain for k = 1
(
1 − �t

4

)
‖ξ1h ‖2

�1 + 3

16
‖ξ1h − ξ0h ‖2

�1 + �t

2
‖∇ξ1h ‖2

�1 + �t

16
‖∇ξ1h + ∇ξ0h ‖2

�1

+ γD�t

h
‖ξ1h ‖2

∂�1 + �tγgg
1
h(ξ

1
h , ξ1h ) ≤ c�t

(
�t4 + h2m

)
R(u).

Now, summing over k = 1, 2, . . . , n, we deduce that

‖ξnh ‖2�n + �t‖∇ξnh ‖2�n +�t
∑n

k=1 E
k(ξ kh , ξ k−1

h )

≤ c tn
(
�t4+�t h2m−2 + h2m

)
R(u) + c�t

∑n
k=2 ‖ξ k−1

h ‖2
�k−1 .

(4.34)
Finally, we use the discrete Gronwall lemma to conclude the result. This completes the proof.

��
Theorem 4.6 (Global error) Under the assumptions made in Lemma 4.5, the global error
ek = Ekuk − ukh, k = 1, ..., n satisfies

‖en‖2�n + �t‖∇en‖2�n + �t
n∑

k=1

Ek(ek , ek−1) ≤ exp(cT 4.6tn)
(
�t4+�t h2m−2 + h2m

)
R(u)2,

(4.35)
where R(u) is defined in Lemma 4.5.
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Proof Using the interpolation error estimates (4.3), (4.4) and (4.25), we deduce that

‖ηnh‖2�n + �t‖∇ηnh‖2�n + �t
n∑

k=1

Ek(ηkh, η
k−1
h ) ≤ c h2mRI (u)2. (4.36)

In combination with Lemma 4.5, this proves (4.35). ��
Remark 4.7 Under the CFL condition �t ≤ cCFLh3/2 assumed in the stability estimate, we
obtain an error estimate of order O(�t2 + hm−1/4) (after taking the square root in (4.35)).
This is suboptimal byO(h1/4) compared to the estimate on a stationary domain. The optimal
error estimate O(�t2 + hm) results under the stronger condition �t ≤ ch2.

5 Numerical Results

In this section, we show numerical results in two and three space dimensions to verify the
theoretical findings and the practical behaviour of the numerical method. All the numerical
experiments have been obtained using the CutFEM library [8], which is based on FEniCS
[1].

To verify the theoretical results, we will analyse the error terms ek = uk −ukh, k = 1, ..., n
in the following norms

‖en‖L2(�n), ‖e‖L2(L2) =
(

�t
n∑

k=1

‖ek‖2L2(�k )

)1/2

, ‖e‖L2(H1
av)

=
(

�t
n∑

k=1

‖∇ek + ∇ek−1‖2
�k

)1/2

.

Given the stronger CFL condition �t ≤ ch2, Theorem 4.6 guarantees second-order conver-
gence in time and convergence of orderm in space in the L2-norm at the end time ‖en‖L2(�n)

and in the averaged L2(H1)-norm ‖e‖L2(H1
av).

5.1 2D Example with Exponential Decay

Example 5.1 We consider a circle travelling with constant velocity w = (1, 0) towards the
right. The domain is given by

�(t) = {(x, y) : (x − 0.5 − t)2 + (y − 0.5)2 ≤ 0.9}
in the time interval I = [0, 0.1]. The data of the model example is chosen in such a way that
the exact solution is

u(x, y, t) = exp(−4π2t) cos(2πx) cos(2π y).

An illustration of the numerical solution is given in Fig. 3. As background domain D,
we use the unit square, i.e.D = [0, 1]2. The background triangulations Th are created by
a uniform subdivision of the unit square into triangles and successive refinement. For each
time step n, the active triangulation T n

h,δ is then extracted from Th , as described in Sect. 2.
We use δ = 4�t .
Estimated orders of convergence We will show results for different time-step sizes �ti =
1/50 · 2−i , i = 0, ..., 4 and mesh sizes h j = 1/32 · 2− j , j = 0, ..., 3. From the computed
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Fig. 3 Illustration of the numerical solution u of Example 5.1 at t = 0 (left), t = 0.05 (center) and t = 0.1
(right)

errors, we will estimate the temporal and spatial order of convergence. Therefore, we assume
that the total error can be decomposed into a temporal and a spatial component as follows

g(�t, h) = g�t (�t) + gh(h) = c�t�teoc�t + chh
eoch

with constants c�t , ch and estimated orders of convergence eoc�t , eoch . For a fixed mesh
size h j , this relation becomes

g(�t, ·) = gh j + c�t�teoc�t (5.1)

with a fixed spatial error part gh j . We will use (5.1) to estimate the order of convergence
in time eoc�t by means of a least-squares fit of all available error values for a fixed h j to
find the three parameters gh j , c�t and eoc�t . Analogously, we estimate the spatial order of
convergence eoch by a least-squares fit of the function

g(·, h) = g�ti + chh
eoch (5.2)

against all available error values for a fixed time-step size �ti .
Moreover,wewill also compute estimated orders of convergence for the “diagonal values”,

which correspond to fixing �t = c̄h for c̄ ∈ {32/50, 32/100, 32/200}. Here we fit the two
parameters c�t,h and eoc�t,h of the function

g(c̄h, h) = c�t,hh
eoc�t,h . (5.3)

against the computed error values. Finally, we will also use (5.3) to estimate eoc�t,h by
means of two values for �t = c̄h and �t

2 = c̄ h2

˜eoc�t,h := log2

(
g(c̄h, h)

g(c̄h/2, h/2)

)
. (5.4)

5.1.1 P1 Finite Elements

Firstly, we consider P1 finite elements. We choose the numerical parameters as γD = 1
and γg = 10−3. The errors in the L2-norm at the end time, the L2(L2)-norm and the
L2(H1

av)-norm are shown in Table 1 (a)–(c) for different �t and h. The estimated orders
of convergence are shown, if the asymptotic standard error (computed by gnuplot [64]) was
below 20%; otherwise we draw a ‘-’.

We observe estimated spatial convergence orders close to two in the L2-norms and close
to one in the L2(H1

av)-norm. Note that Theorem 4.6 guarantees only first-order convergence
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Table 1 (a)–(c): L2(T ), L2(L2) and L2(H1
av)-norm errors for P1 finite elements applied to Example 5.1

(a) End-time error ‖en‖L2(�n)

h ↓ /�t → 1/50 1/100 1/200 1/400 1/800 eoc�t

1/32 1.93e–03 5.40e–04 3.14e–04 2.78e–04 2.68e–04 2.62

1/64 1.21e–03 2.77e–04 1.08e–04 7.84e–05 7.17e–05 2.46

1/128 8.88e–04 1.96e–04 4.95e–05 2.54e–05 1.96e–05 2.29

1/256 7.78e–04 1.57e–04 3.18e–05 1.15e–05 6.18e–06 2.35

eoch 1.26 1.55 1.80 1.91 1.92

eoc�t,h 2.79 2.30

(b) Error ‖e‖L2(L2)
h ↓ /�t → 1/50 1/100 1/200 1/400 1/800 eoc�t

1/32 1.44e–03 8.42e–04 7.12e–04 6.87e–04 6.83e–04 2.25

1/64 9.69e–04 3.62e–04 2.21e–04 1.89e–04 1.82e–04 2.11

1/128 8.35e–04 2.37e–04 9.13e–05 5.72e–05 4.89e–05 2.04

1/256 7.97e–04 2.01e–04 5.75e–05 2.30e–05 1.45e–05 2.05

eoch 1.81 1.91 1.92 1.92 1.92

eoc�t,h 1.99 1.93

(c) Error ‖e‖L2(H1
av)

h ↓ /�t → 1/50 1/100 1/200 1/400 1/800 eoc�t

1/32 4.77e–02 4.53e–02 4.50e–02 4.49e–02 4.49e–02 2.83

1/64 2.64e–02 2.36e–02 2.33e–02 2.33e–02 2.33e–02 3.33

1/128 1.65e–02 1.23e–02 1.19e–02 1.19e–02 1.19e–02 3.32

1/256 1.26e–02 6.72e–03 6.06e–03 6.01e–03 6.00e–03 3.21

eoch 1.17 0.96 0.93 0.93 0.93

eoc�t,h 1.00 0.96

(d) Diagonal errors for h = c̄�t
h = c̄�t ↓ ‖en‖L2(�n ) ˜eoch,�t ‖e‖L2(L2) ˜eoch,�t ‖e‖L2(H1

av)
˜eoch,�t

1/100 5.40e–04 – 8.42e–04 – 4.53e–02 –

1/200 1.08e–04 2.32 2.21e–04 1.93 2.33e–02 0.96

1/400 2.54e–05 2.09 5.72e–05 1.95 1.19e–02 0.97

1/800 6.18e–06 2.04 1.45e–05 1.98 6.00e–03 0.99

The estimated orders of convergence are computed according to (5.1)–(5.3). The diagonal orders are computed
from the underlined error values. (d): Estimated order of convergence ˜eoch,�t for �t = c̄h → 0 obtained
by (5.4) by comparing two consecutive error values

in space (under the stronger CFL condition �t ≤ ch2). We expect, however, that using a
duality argument second-order convergence in space could be shown in the L2(L2)-norm,
as in [12].

The estimated temporal orders of convergence are close to two or larger in the L2-norms.
This is in agreement with Theorem 4.6. In the L2(H1

av)-norm the estimated eoc�t seems to
be even larger than three. This has to be read carefully, however, as the spatial error part
clearly dominates the overall error in this case.
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Finally, the diagonal orders are around two in the L2(L2)-norm and even slightly higher
in the L2-norm at the end time. In the L2(Hav)-norm the spatial part is dominant and we
obtain eoc�t,h close the one, in agreement with Theorem 4.6. In Table 1(d), we show the
diagonal orders obtained by formula (5.4) by comparing two consecutive values. The results
are similar, with the orders for smaller �t = c̄h being even closer to 2 resp. 1.

We remark that the CFL condition �t ≤ cCFLh3/2 is by far violated for the finer meshes
and coarser time steps. In the present setting with perfectly uniform grids and P1-finite
elements, we expect that both constants c0 and cinv entering cCFL are (relatively) close to
one. For the largest�t and the smallest h considered, we have, e.g.,�t = 1/50 � 1/4096 =
(1/256)3/2 = h3/2. Nevertheless, we did not observe any instabilities in the computations
and optimal convergence orders are obtained.

5.1.2 P2 Finite Elements

Next, we consider Example 5.1 with P2 finite elements. We increase the Nitsche parameter
to γD = 10, as for polynomials of higher degree a larger Nitsche parameter is required, see
e.g. [44]. The ghost-penalty parameter γg is still chosen as 10−3, but now, according to (2.9),
second derivatives are included in the ghost-penalty term. The L2-norm errors at the end
time, the L2(L2)- and the L2(H1

av)-norm errors are shown in Table 2 (a)–(c).
Firstly, we observe that the absolute values of the errors are significantly smaller compared

to P1 finite elements. The spatial orders of convergence are close to two in all norms for
smaller �t . We note that in Theorem 4.6 second order in space has been shown for the end-
time L2-norm and the L2(H1

av)-norm (under the stronger CFL condition �t ≤ ch2). Using
a duality argument, one could even hope for convergence order three in the L2(L2)-norm.
We need to consider, however, that for these results the quadrature error related to a curved
boundary has not been taken into account. In the CutFEM library used here, the geometry is
approximated linearly in the set-up of the quadrature rule, see [8]. This can lead to a reduced
order of convergence, namely order 1.5 in the H1-norms and 2 in the L2-norms, see [13]
for results for a CutFEM approach applied to an elliptic problem on curved domains. This
reduction can also be observed in the L2-norm errors in the example considered here.

The estimated temporal orders of convergence are again close to two in the L2-norms,
which confirm the estimates in Theorem 4.6. In the L2(H1

av)-norm the error is still clearly
dominated by the spatial part for h ≥ 1

64 . This changes, however, on the finer levels, where
the temporal part gets dominant and the eoc�t is very close to two, in agreement with
Theorem 4.6.

The spatial and temporal convergence orders are confirmed by the “diagonal” orders,
which are close to two for the L2-norms and slightly below2 in the L2(H1

av)-norm. In all cases,
the orders are equal to or larger than the expected orders for a linear interface approximation.
The observations are confirmed in Table 2 (d), where the order of convergence is estimated
by means of two consecutive error values by (5.4).

As in the case of P1 finite elements the CFL condition is severely violated for the finer
meshes and coarser time steps. Again, we did not observe any stability issues or reduced
convergence orders.
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Table 2 (a)–(c): L2(T ), L2(L2) and L2(H1
av)-norm errors for P2 finite elements applied to Example 5.1. (d):

Estimated order of convergence ˜eoch,�t for �t = c̄h → 0 obtained by (5.4) by comparing two consecutive
error values

(a) End-time error ‖en‖L2(�n)

h ↓ /�t → 1/100 1/200 1/400 1/800 1/1600 eoc�t

1/32 1.16e–04 3.09e–05 1.08e–05 5.80e–06 4.66e–06 2.06

1/64 1.17e–04 2.66e–05 7.33e–06 2.78e–06 1.44e–06 2.18

1/128 1.11e–04 2.43e–05 6.23e–06 1.76e–06 6.78e–07 2.22

1/256 1.12e–04 2.31e–05 5.78e–06 1.54e–06 4.36e–07 2.29

eoch – 0.91 1.60 1.68 2.01

eoc�t,h 2.12 2.08

(b) Error ‖e‖L2(L2)
h ↓ /�t → 1/100 1/200 1/400 1/800 1/1 600 eoc�t

1/32 1.89e–04 5.35e–05 2.13e–05 1.27e–05 1.10e–05 2.04

1/64 1.84e–04 4.66e–05 1.36e–05 5.09e–06 3.16e–06 2.03

1/128 1.82e–04 4.50e–05 1.16e–05 3.32e–06 1.28e–06 2.03

1/256 1.82e–04 4.45e–05 1.12e–05 2.88e–06 8.32e–07 2.03

eoch 1.72 2.00 1.99 2.09 2.05

eoc�t,h 2.02 1.98

(c) Error ‖e‖L2(H1
av)

h ↓ /�t → 1/100 1/200 1/400 1/800 1/1 600 eoc�t

1/32 3.42e–03 2.25e–03 2.17e–03 2.17e–03 2.17e–03 3.88

1/64 2.81e–03 9.11e–04 6.22e–04 6.03e–04 6.03e–04 2.82

1/128 2.80e–03 7.26e–04 2.45e–04 1.77e–04 1.72e–04 2.22

1/256 2.81e–03 7.14e–04 1.87e–04 6.84e–05 5.30e–05 2.03

eoch – 2.91 2.11 1.89 1.86

eoc�t,h 1.90 1.85

(d) Diagonal errors for h = c̄�t
h = c̄�t ↓ ‖en‖L2(�n ) ˜eoch,�t ‖e‖L2(L2) ˜eoch,�t ‖e‖L2(H1

av)
˜eoch,�t

1/200 3.09e–05 – 5.35e–05 – 2.25e–03 –

1/400 7.33e–06 2.06 1.36e–05 1.98 6.22e–04 1.85

1/800 1.76e–06 2.06 3.32e–06 2.03 1.77e–04 1.81

1/1600 4.36e–07 2.01 8.32e–07 2.00 5.30e–05 1.74

5.2 2D Example with Monotonically Increasing Solution

In order to show that the numerical convergence orders obtained in the previous example do
not depend on the fact that the solution decays exponentially in time, we consider a second
example with a monotonically increasing solution u.

Example 5.2 We consider themoving domain�(t) fromExample 5.1 and again I = [0, 0.1].
However, the data is now chosen in such a way that the exact solution is

u(x, y, t) = sin(π t) cos(2πx) cos(2π y),
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Table 3 Estimated order of convergence ˜eoch,�t in Example 5.2 for �t = c̄h → 0 for P1 and P2 finite
elements. The values have been obtained by (5.4) by comparing two consecutive error values

(a) Diagonal errors for h = c̄�t and P1 finite elements
h = c̄�t ↓ ‖en‖L2(�n ) ˜eoch,�t ‖e‖L2(L2) ˜eoch,�t ‖e‖L2(H1

av)
˜eoch,�t

1/100 5.21e−03 – 9.96e−04 – 2.73e−02 –

1/200 1.53e−03 1.78 2.88e−04 1.79 1.20e−02 1.18

1/400 4.07e−04 1.91 7.73e−05 1.90 5.56e−03 1.11

1/800 1.07e−04 1.93 2.06e−05 1.91 2.66e−03 1.06

(b) Diagonal errors for h = c̄�t and P2 finite elements
h = c̄�t ↓ ‖en‖L2(�n ) ˜eoch,�t ‖e‖L2(L2) ˜eoch,�t ‖e‖L2(H1

av)
˜eoch,�t

1/200 3.71e−05 – 6.45e−06 – 1.09e−03 –

1/400 9.46e−06 1.97 1.61e−06 2.00 3.06e−04 1.83

1/800 2.46e−06 1.96 4.12e−07 1.97 8.84e−05 1.79

1/1600 6.04e−07 2.02 1.03e−07 2.00 2.68e−05 1.72

i.e. it is monotonically increasing in time within I .

As in the previous example, we consider P1 and P2 finite elements. In both cases, all
numerical parameters are chosen exactly as in Sect. 5.1.1.

In Table 3, we show errors obtained for a fixed ratio �t = c̄h (c̄ = 32/100 for m = 1
and c̄ = 32/200 for m = 2), and corresponding estimates for the ”diagonal” orders of
convergence eoc�t,h obtained by formula (5.4). In both cases the results are very similar
to the previous example: For P1 finite elements, we observe quadratic convergence in the
L2-norms and linear convergence in the L2(H1

av) norm, as expected. For P2 elements, we
obtain second-order convergence in the L2-norms and slightly reduced orders in [1.72, 1.83]
in the L2(H1

av) norm. The latter can again be explained by the fact that the interface is only
approximated linearly in our computations, which can reduce the spatial order of convergence
down to 1.5. As in the previous example, we did not observe any stability issues, although
the CFL condition is severely violated on the finer meshes for coarser time steps.

5.3 3D Example

Example 5.3 We consider a 3-dimensional rectangular channel with a moving upper and
lower wall in the time interval I = [0, 1], inspired by a pump. The moving domain is given
by

�(t) = (0, 4) × (−1 + 0.1 sin t, 1 − 0.1 sin t) × (−1, 1).

The source term and boundary data are chosen in such a way that the exact solution of the
model problem (1.1) is

u(x, y, z, t) = exp(−t)
(
(1 − 0.1 sin t)2 − y2

)
.

As background domain D, we use the box [0, 4]×[−1.1, 1.1]×[−1, 1]. The background
triangulations Th are created by uniform subdivisions of D into tetrahedra and successive
refinement. We use again δ = 4�t and choose γg = 0.1 for P1 and γg = 1 for P2 finite
elements, respectively and γD = 10 in both cases.We note that in this example the quadrature
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Fig. 4 Errors for example 5.2 (3d) for P1 finite elements under simultaneous refinement in space and time
(�t = h/10) for P1 finite elements. Top left: L2-norm at the end time. Top right: L2(L2)-norm. Bottom left:
L2(H1

av)-norm. Bottom right: Illustration of the numerical solution at time t = 1

error is zero, as the boundary ∂�k consists of plane surfaces for all k. An illustration of the
numerical solution at time t = 1 is given in the bottom right part of Fig. 5.

5.3.1 P1 Finite Elements

As the numerical experiments in three space dimensions are much more time-consuming
compared to two dimensions, we focus on simultaneous refinement in space and time by
choosing hi = 10�ti = 2−i−1 for i = 0, ..., 3. The resulting errors in the three norms
introduced above are plotted in Fig. 4 over the mesh size (blue curves) and compared to
linear (red) and quadratic convergence (pink). We observe second-order convergence in
the L2-norms and first-order convergence in the L2(H1

av)-norm. We note that first-order
convergence in space has been shown in Theorem 4.6 in the L2-norm at the end time and
in the L2(H1

av)-norm (under the stronger CFL condition �t ≤ ch2). The numerical results
indicate again that second-order convergence in space could be shown in the L2(L2)-norm
using a duality argument. The first-order convergence in the L2(H1

av)-norm is optimal, as the
spatial error part dominates the overall error.

5.3.2 P2 Finite Elements

In Fig. 5, we illustrate the errors under simultaneous refinement (hi = 10�ti ) for P2 finite
elements. We observe again (at least) second-order convergence in the L2-norms, in agree-
ment with Theorem 4.6. The convergence in the L2(H1

av)-norm lies between linear and
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Fig. 5 Errors for example 5.2 (3d) for P2 finite elements under simultaneous refinement in space and time
(�t = h/10) for P1 finite elements. Top left: L2-norm at the end time. Top right: L2(L2)-norm. Bottom:
L2(H1

av)-norm

quadratic convergence and decreases slightly for finer mesh sizes. On the finest level, we
have h23 = (1/16)2 = 1

256 and �t3 = 1
10h3 = 1

160 . The stronger CFL condition �t ≤ ch2,
which is needed to show optimal order of convergence, might thus be violated on this (and
possibly the next coarser) level. On the other hand, we did again not observe any stability
issues in our computations.

6 Concluding Remarks

Wehave analysed aCrank–Nicolson variant of the implicitly extendedEulerian time-stepping
scheme for the heat equation on time-dependent domains. Theoretically, stability estimates
were derived in the energy norm under the assumption of the CFL condition �t ≤ cCFLh3/2

for a sufficiently small constant cCFL . Under the same condition, we obtain error estimates
in the energy norm of order O(�t2 + hm−1/4), which are sub-optimal by a power of 1/4
in space. Assuming the stronger condition �t ≤ ch2 optimal-order error estimates in time
and space have been shown. In the numerical results, on the other hand, we did not observe
any stability issue related to a violated CFL condition. The three-dimensional results for
second-order polynomials indicate that a violated CFL condition could result in a slightly
reduced convergence order in the L2(H1

av)-norm.
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To our knowledge this is the first work, in which an implicitly extended Eulerian time-
stepping scheme is appliedwith a scheme that requires derivative information at different time
steps. As mentioned in the introduction, this could be the basis for an analysis of a whole zoo
of time-stepping schemes, such as the Fractional-step-θ method, implicit Runge–Kutta- or
Adams–Bashforth schemes.Moreover, we plan to apply the developed time-stepping scheme
to flow problems on time-dependent domains and to fluid–structure interactions with large
displacements, see e.g. [9, 27].
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