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Abstract
We introduce a numerical scheme that approximates solutions to linear PDE’s by minimizing
a residual in theW−1,p′

(�) norm with exponents p > 2. The resulting problem is solved by
regularized Kačanov iterations, allowing to compute the solution to the non-linear minimiza-
tion problem even for large exponents p � 2. Such large exponents remedy instabilities of
finite element methods for problems like convection-dominated diffusion.

Keywords Minimization in W−1,p′ · Minimal residual method · Convection-dominated
diffusion · Relaxed Kačanov iteration
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1 Introduction

Starting with the work of Guermond [9], recent papers like [11, 12, 15, 16, 18] have approx-
imated linear PDE’s by minimal residual methods in Banach spaces. The reasons for using
Banach spaces like L p(�) orW 1,p

0 (�) rather than Hilbert spaces like L2(�) orW 1,2
0 (�) are

manyfold. For example, rough data might lead to solutions that are not in L2(�), see [11, 16].
Furthermore, minimizing in L1(�) seems to allow for computations of viscosity solutions,
see [9, Sec. 4.6]. Moreover, classical finite element methods lead for problems like singular
perturbed problems or convection-dominated diffusion to non-physical oscillations that can
be overcome by the use of minimal residual methods in spaces like L1(�), see for example
[12]. Unfortunately, the resulting numerical schemes are non-linear minimization problems
which are difficult to solve. We overcome this downside for a minimal residual method in
W−1,p′

(�) with p > 2 by introducing a regularized Kačanov scheme that converges even
for large exponents p � 2 towards the exact discrete minimizer. More precisely, we do the
following.
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Supposewe have some linear operator B : W 1,p′
0 (�) → W−1,p′

(�) thatmaps the Sobolev

space W 1,p
0 (�) equipped with homogeneous Dirichlet boundary data onto the dual space

W−1,p′
(�) := (W 1,p

0 (�))∗ with 1/p + 1/p′ = 1. Given a right-hand side F ∈ W−1,p′
(�)

and discrete subspaces Uh ⊂ W 1,p′
0 (�) and Vh ⊂ W 1,p

0 (�), we approximate the solution

u ∈ W 1,p′
0 (�) to Bu = F by a minimizer

uh ∈ argmin
uh∈Uh

‖Buh − F‖V ∗
h
with ‖Buh − F‖V ∗

h
= sup

vh∈Vh\{0}
Buh(vh) − F(vh)

‖∇vh‖L p(�)

. (1)

For p = 2 the computation of the minimizer in (1) has been discussed in [17, Sec. 3.2].
For p > 2 we modify the saddle point problem therein by introducing a computable weight
σ

ζ
n with values within some relaxation interval ζ = [ζ−, ζ+] ⊂ (0,∞) in the sense that

σ
ζ
n (x) ∈ ζ for almost all x ∈ �. The resulting scheme introduced in (19) seeks ψh,n+1 ∈ Vh

and uh,n+1 ∈ Uh with
∫

�

(σ ζ
n )2−p′∇ψh,n+1 · ∇vh dx + Buh,n+1(vh) = F(vh) for all vh ∈ Vh,

Buh(ψh,n+1) = 0 for all uh ∈ Uh .

(2)

Solving this problem allows us to update the weight and to proceed inductively.
To verify the convergence of the iterative scheme, we introduce in Sect. 2 equivalent for-

mulations of the problem in (1) using duality. Since the resulting problems share similarities
with the p-Laplace problem, we can exploit recent ideas for the p-Laplace operator from [1,
5]. In particular, we introduce a regularization of the dual problem via a relaxation interval
ζ = [ζ−, ζ+] and show convergence of the minimizers of the regularized problem towards
the exact minimizer as ζ− → 0 and ζ+ → ∞ in Sect. 3. We verify the convergence of the
Kačanov iterations towards the minimizers of the regularized dual problems in Sect. 4. Addi-
tionally, we use duality again to rewrite the Kačanov iterations as a primal problem, leading
to the scheme in (2). We conclude our analysis with a study of a priori and a posteriori error
estimates in Sect. 5 and suggest an adaptive scheme in Sect. 6. Finally, we study numerically
the beneficial properties of the scheme and discuss strategies to solve challenging problems
like convection-dominated diffusion with vanishing viscosity in Sect. 7.

2 Primal and Dual Formulation

Before we discuss the problem in (1), let us introduce some notation:

• The operator B : W 1,p′
0 (�) → W−1,p′

(�) with exponent p > 2 is a bounded linear

mapping, defining a bilinear form b(u, v) := Bu(v) for all u ∈ W 1,p′
0 (�) and v ∈

W 1,p
0 (�). Moreover, let F ∈ W−1,p′

(�) be some given data.
• Given a regular triangulation T of the bounded Lipschitz domain � ⊂ R

d , set for all
� ∈ N0 the space of piece-wise polynomialsL0

�(T ) := {w ∈ L2(�) : w|T is a polynomial
of maximal degree � for all T ∈ T } and set for some fixed degrees k, δ ∈ N the Lagrange
finite element spaces

Uh := L1
k,0(T ) := L0

k(T ) ∩ W 1,p′
0 (�),

Vh := L1
k+δ,0(T ) := L0

k+δ(T ) ∩ W 1,p
0 (�).
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• Set for all G ∈ W−1,p′
(�) the discrete dual seminorm

‖G‖V ∗
h

:= sup
vh∈Vh\{0}

G(vh)

‖∇vh‖L p(�)

.

• Set the subspace (BUh)
⊥ := {vh ∈ Vh : b(uh, vh) = 0 for all uh ∈ Uh} ⊂ Vh .

We can characterize the solution uh ∈ Uh to (1) via the saddle point problem: Seek ψh ∈ Vh
and uh ∈ Uh such that∫

�

|∇ψh |p−2∇ψh · ∇vh dx + b(uh, vh) = F(vh) for all vh ∈ Vh,

b(uh, ψh) = 0 for all uh ∈ Uh .

(3)

A further related problems seeks the minimizer

ψh = argmin
vh∈(BUh )

⊥

1

p

∫
�

|∇vh |p dx − F(vh). (4)

Lemma 1 (Existence and equivalent characterization)

(a) There exists a unique solution ψh ∈ (BUh)
⊥ to the minimization problem in (4).

(b) There exists a solution uh ∈ Uh to the minimization problem in (1). The solution uh is
unique up to the kernel ker B|Uh := {uh ∈ Uh : Buh = 0 in V ∗

h }.
(c) The pair (ψh, uh) ∈ Vh×Uh solves (3) if and only ifuh ∈ Uh solves (1) andψh ∈ (BUh)

⊥
solves (4).

This lemma is shown in [18, Thm. 4.1] within an abstract framework. We give a direct proof
utilizing the following statement.

Lemma 2 (Duality mapping) Let G ∈ V ∗
h .

(a) There exists a unique solution R(G) ∈ Vh to the problem∫
�

|∇R(G)|p−2∇R(G) · ∇vh dx = G(vh) for all vh ∈ Vh .

(b) If G 
= 0, the function ‖∇R(G)‖−1
L p(�)R(G) is the unique normed function that

attains the supremum in the definition of the V ∗
h norm of G in the sense that any

�h ∈ Vh with ‖∇�h‖L p(�) = 1 satisfies

G(�h) = ‖G‖V ∗
h

if and only if �h = ‖∇R(G)‖−1
L p(�)R(G).

Proof Let G ∈ V ∗
h . The direct method in calculus of variations yields the existence of unique

minimizers R(G) ∈ Vh with

R(G) = argmin
vh∈Vh

1

p

∫
�

|∇vh |p dx − G(vh).

Differentiation shows that this existence result is equivalent to the statement in (a).
Let G 
= 0. Hölder’s inequality and testing with vh = R(G) shows that

‖G‖V ∗
h

= sup
vh∈Vh\{0}

∫
�

|∇R(G)|p−2∇R(G) · ∇vh dx

‖∇vh‖L p(�)

= ‖∇R(G)‖p−1
L p(�).
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This yields G(‖∇R(G)‖−1
L p(�)R(G)) = ‖G‖V ∗

h
. Let �h ∈ Vh with ‖∇�h‖L p(�) = 1 be a

further function that attains the supremum in the sense that G(�h) = ‖G‖V ∗
h
. The linearity

of G implies

sup
vh∈Vh\{0}

G(vh)

‖∇vh‖L p(�)

= ‖G‖V ∗
h

= G
(
1
2‖∇R(G)‖−1

L p(�)R(G) + 1
2�h

)
,

which yields in particular that 1 ≤ ∥∥ 1
2‖∇R(G)‖−1

L p(�)∇R(G)+ 1
2∇�h

∥∥
L p(�)

. This estimate
and the triangle inequality shows that

2 ≤
∥∥∥‖∇R(G)‖−1

L p(�)∇R(G) + ∇�h

∥∥∥
L p(�)

≤
∥∥∥‖∇R(G)‖−1

L p(�)∇R(G)

∥∥∥
L p(�)

+ ‖∇�h‖L p(�) = 2.

Since W 1,p
0 (�) is a strictly convex space [10], this identity yields

�h = ‖∇R(G)‖−1
L p(�)R(G).

��
Proof of Lemma 1 Step 1 (Proof of (a) and (b)). The direct method in calculus of variations
yields the existence of unique minimizers ψh ∈ (BUh)

⊥ of the strictly convex energy in (4),
that is, it verifies (a). Similarly, we conclude the existence of a unique minimizer

Buh = argmin
{Buh : uh∈Uh}

‖Buh − F‖V ∗
h
.

This yields the existence of a minimizer uh ∈ Uh to the problem (1) and shows (b).
Step 2 (Proof of (c), trivial case). Let uh ∈ Uh and ψh ∈ (BUh)

⊥ satisfy (1) and (4). If
Buh = F in V ∗

h , the problem in (3) is satisfied with ψh = 0 and vice versa.
Step 3 (Proof of “⇐” in (c)). Let uh ∈ Uh satisfy (1) and let ψh ∈ (BUh)

⊥ satisfy (4)
with Buh 
= F in V ∗

h . Since {Buh : uh ∈ Uh} is a closed subspace of V ∗
h , a consequence of

the Hahn-Banach theorem (see for example [21, Prop. 3]) yields the existence of a function
�h ∈ Vh with ‖∇�h‖L p(�) = 1,

(F − Buh)(�h) = ‖Buh − F‖V ∗
h
, and Buh(�h) = 0 for all uh ∈ Uh . (5)

Lemma 2 characterizes the function �h ∈ Vh due to the first identity in (5) as �h =
‖φh‖−1

L p(�)φh , where φh ∈ Vh solves the problem
∫

�

|∇φh |p−2∇φh · ∇vh dx = (F − Buh)(vh) for all vh ∈ Vh . (6)

In particular, the function φh solves∫
�

|∇φh |p−2∇φh · ∇vh dx = F(vh) for all vh ∈ (BUh)
⊥.

Since this characterizes the minimizer in (4) and φh ∈ (BUh)
⊥ due to the second identity in

(5), we have φh = ψh . Hence, the functions (uh, ψh) ∈ Uh × Vh solve (3).
Step 4 (Proof of “⇒” in (c)). If there exists a solution (uh, ψh) ∈ Uh × Vh to (3), the

function ψh ∈ Vh is an element in (BUh)
⊥ and satisfies in particular∫

�

|∇ψh |p−2∇ψh · ∇vh dx = F(vh) for all vh ∈ (BUh)
⊥. (7)
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This identity characterizes the unique (Step 1) solution to (4), that is,ψh must be theminimizer
in (4). The solution uh ∈ Uh to (3) is characterized via the identity

b(uh, vh) = F(vh) −
∫

�

|∇ψh |p−2∇ψh · vh dx for all vh ∈ Vh . (8)

Since the right-hand side equals zero for all vh ∈ (BUh)
⊥ due to (7), it is in the range of the

operator B : Uh → V ∗
h , that is, there exist a unique solution uh ∈ Uh/ ker B|Uh to (8). We

know from Step 3 that the solution to (1) solves the problem in (8) as well. The uniqueness
of these solutions up to the kernel ker B|Uh (Step 1) implies that they must coincide. ��
The minimization problem in (4) shares similarities with the p-Laplace problem, which can
be solved by the regularized Kačanov scheme introduced in [5]. Unfortunately, this schemes
converges only for p ≤ 2. We remedy this downside as in [1] by the use of duality. The dual
problem of (4) involves the affine space


 :=
{
τ ∈ L p′

(�; R
d) :

∫
�

∇vh · τ dx = F(vh) for all vh ∈ (BUh)
⊥
}

. (9)

It seeks the minimizer to the problem

σ = argmin
τ∈


1

p′

∫
�

|τ |p′
dx . (10)

Let us show the equivalence of the problems in (4) and (10). The solution to (4) is characterized
via the Euler-Lagrange equation as unique solution ψh ∈ (BUh)

⊥ to
∫

�

|∇ψh |p−2∇ψh · ∇vh dx = F(vh) for all vh ∈ (BUh)
⊥. (11)

The solution σ ∈ L p′
(�; R

d) to (10) solves with unique function φh ∈ (BUh)
⊥ the saddle

point problem
∫

�

|σ |p′−2σ · τ dx −
∫

�

∇φh · τ dx = 0 for all τ ∈ L p′
(�; R

d),

−
∫

�

∇vh · σ dx = −F(vh) for all vh ∈ (BUh)
⊥.

(12)

Lemma 3 (Duality) The solutions to (11) and (12) are related via the identities

σ = |∇ψh |p−2∇ψh, ∇ψh = |σ |p′−2σ, and φh = ψh . (13)

Furthermore, the minimal energies satisfy

1

p

∫
�

|∇ψh |p dx − F(ψh) = − 1

p′

∫
�

|σ |p′
dx . (14)

Proof Let ψh ∈ (BUh)
⊥ solve (4) and define the functions

σ := |∇ψh |p−2∇ψh ∈ L p′
(�; R

d) and φh := ψh ∈ (BUh)
⊥.

Direct calculations show that these functions solve the saddle point problem in (12). Since
the solution to (12) is unique (due to the uniqueness of the minimizer σ and the fact that the
first line in (12) uniquely determines φh via the identity |σ |p′−2σ = ∇φh), we obtain the
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equivalence stated in (13). Since 1/p+ 1/p′ = 1 implies with (13) that |∇ψh |p = |σ |p′
, the

identity in (11) yields

1

p

∫
�

|∇ψh |p dx − F(ψh) =
(
1

p
− 1

) ∫
�

|∇ψh |p dx = − 1

p′

∫
|σ |p′

dx .

This shows (14) and concludes the proof. ��
We want to solve the non-linear problem in (12) via the iterative scheme∫

�

|σn |p′−2σn+1 · τ dx −
∫

�

∇φh,n+1 · τ dx = 0 for all τ ∈ L p′
(�; R

d),

−
∫

�

∇vh · σn+1 dx = −F(vh) for all vh ∈ (BUh)
⊥.

However, the resulting problems are in general not well posed since σn might degenerate.
We thus introduce the following regularization.

3 Regularization

Following [5] and [1], we define for any relaxation interval ζ = [ζ−, ζ+] ⊂ (0,∞) and all
t ≥ 0 the integrant

κ∗
ζ (t) :=

⎧⎪⎪⎨
⎪⎪⎩

1
2 ζ

p′−2
− t2 +

(
1
p′ − 1

2

)
ζ
p′
− for t ≤ ζ−,

1
p′ t p

′
for ζ− ≤ t ≤ ζ+,

1
2 ζ

p′−2
+ t2 +

(
1
p′ − 1

2

)
ζ
p′
+ for ζ+ ≤ t .

We furthermore define for all τ ∈ L p′
(�; R

d) the energies

J ∗
ζ (τ ) :=

∫
�

κ∗
ζ (|τ |) dx and J ∗(τ ) := 1

p′

∫
�

|τ |p′
dx .

Notice that the regularized energy J ∗
ζ (τh) equals infinity if τ ∈ L p′

(�; R
d)\L2(�; R

d).
Furthermore, the relaxed energy ismonotonewith respect to the relaxation interval in the sense
that all τ ∈ L p′

(�; R
d) and relaxation intervals ζ 2 = [ζ 2−, ζ 2+] ⊂ ζ 1 = [ζ 1−, ζ 1+] ⊂ (0,∞)

satisfy

J ∗(τ ) ≤ J ∗
ζ 1

(τ ) ≤ J ∗
ζ 2

(τ ).

The direct method in calculus of variations verifies the existence of a unique minimizer σζ

of J ∗
ζ in 
 in the sense that

σζ = argmin
τ∈


J ∗
ζ (τ ). (15)

In the following we investigate the convergence of σζ towards the minimizer σ ∈ 
 in (10).
Rather than investigating convergence in the L p(�) norm, we investigate the convergence
of the energies. This energy difference leads to the following bound.

Lemma 4 (Notion of distance) Let σ ∈ 
 be the minimizer in (10) and let τ ∈ 
. Then we
have

‖|σ | + |σ − τ |‖p′−2
L p′ (�)

‖σ − τ‖2
L p′ (�)

� J ∗(τ ) − J ∗(σ ) � ‖σ − τ‖p′
L p′ (�)

.
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Furthermore, we have the lower bound

‖|τ | + |σ − τ |‖p′−2
L p′ (�)

‖σ − τ‖2
L p′ (�)

� J ∗(τ ) − J ∗(σ ).

The hidden constants depend on p but are independent of the solution σ .

Proof Since this result is well-known in the context of the p-Laplacian, let us briefly sum-
marize its derivation. Let σ and τ be as in the lemma. Since (J ∗)′(σ )(τ − σ) = 0 due to the
minimization property of σ , the convexity of J ∗ yields

J ∗(τ ) − J ∗(σ ) ≤ (J ∗)′(τ )(τ − σ) = (
(J ∗)′(τ ) − (J ∗)′(σ )

)
(τ − σ)

=
∫

�

(|τ |p′−2τ − |σ |p′−2σ) · (τ − σ) dx .

Further arguments for the integrand as for example shown in [5, Lem. 42] lead to the lower
bound ∫

�

(|τ |p′−2τ − |σ |p′−2σ) · (τ − σ) dx � J ∗(τ ) − J ∗(σ ).

Additionally, the equivalence (|P|p′−2P−|Q|p′−2Q) ·(P−Q) � (|Q|+|P−Q|)p′−2|P−
Q|2 for all P, Q ∈ R

d as shown in [5, Lem. 39] implies∫
�

(|τ |p′−2τ − |σ |p′−2σ) · (τ − σ) dx �

∫
�

(|σ | + |σ − τ |)p′−2|σ − τ |2 dx . (16)

These observations lead to the upper bound in the lemma. The lower bound follows from
Hölder’s reverse inequality

(∫
�

(
(|σ | + |σ − τ |)p′−2) 1

1−q dx

)1−q (∫
�

(|σ − τ |2) 1q dx

)q

≤
∫

�

(|σ | + |σ − τ |)p′−2|σ − τ |2 dx with q := 2

p′ .

Exchanging the role of σ and τ in (16) leads to the alternative lower bound. ��
We have the following convergence result for the energy differences.

Proposition 5 (Convergence in ζ ) Let ψh ∈ Vh denote the solution to (4) and let σ and σζ

denote the minimizers in (10) and (15), respectively. Their energy difference is bounded for
all relaxation intervals ζ = [ζ−, ζ+] ⊂ (0,∞) and r > 2 by

J ∗(σζ ) − J ∗(σ ) ≤ J ∗
ζ (σζ ) − J ∗(σ ) ≤ |�|

p′ ζ
p′
− + 1

p′ ζ
−(r−p′)
+ ‖σ‖rLr (�)

= |�|
p′ ζ

p′
− + 1

p′ ζ
−(r−p′)
+ ‖∇ψh‖r(p−1)

Lr(p−1)(�)
.

Proof This first two inequalities follow as in [1, Thm. 3.1]. Since |∇ψh |p = |σ |p′
due to

Lemma 3, the equality then follows from the identity
∫

�

|σ |r dx =
∫

�

|σ |p′ r
p′ =

∫
�

|∇ψ |r
p
p′ dx =

∫
�

|∇ψh |r(p−1) dx .

��
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Remark 6 (Regularity) The convergence result in Proposition 5 assumes the regularity prop-
erty ψh ∈ W 1,r(p−1)

0 (�). Such a result is indeed true for all r ≤ ∞, since ψh ∈ Vh =
L1
k+δ,0(T ) is a function in a finite dimensional space. However, the norm might increase as

the mesh is refined. In practical computations this issue does not seem to cause problems,
since we can control the impact of the regularization by comparing the energies J ∗

ζ (τ ) and
J ∗(τ ), cf. Sect. 6, and our numerical experiments in Sect. 7 do not indicate a significantly
decreased rate of convergence.

4 Relaxed Kačanov Scheme

In this section we introduce our iterative scheme that converges towards the minimizer σζ in
(15) with relaxation interval ζ = [ζ−, ζ+] ⊂ (0,∞). Set b ∨ c := max{b, c} and b ∧ c :=
min{b, c} for all b, c ∈ R. Given some initial value σ0 ∈ L p′

(�; R
d), we compute iteratively

for any n ∈ N0 the solution σn+1 ∈ L p′
(�; R

d) and ψh,n+1 ∈ (BUh)
⊥ satisfying for all

τ ∈ L p′
(�; R

d) and vh ∈ (BUh)
⊥

∫
�

(ζ− ∨ |σn | ∧ ζ+)p
′−2σn+1 · τ dx −

∫
�

∇ψh,n+1 · τ dx = 0,

−
∫

�

∇vh · σn+1 dx = −F(vh).

(17)

The following proposition shows convergence of the solutions σn towards the minimizer σζ

in (15).

Proposition 7 (Convergence) We have with constant ρ � (ζ−/ζ+)2−p′
the linear conver-

gence result

J ∗
ζ (σn+1) − J ∗

ζ (σζ ) ≤ (1 − ρ)n
(
J ∗

ζ (σ0) − J ∗
ζ (σζ )

)
for all n ∈ N.

Proof This result follows as in [1, Sec. 4]. ��
To solve the problem in (17), we utilize duality to obtain a primal problem which seeks
ψh,n+1 ∈ (BUh)

⊥ such that for all vh ∈ (BUh)
⊥

∫
�

(ζ− ∨ |σn | ∧ ζ+)2−p′∇ψh,n+1 · ∇vh dx = F(vh). (18)

The corresponding saddle point problem seeks ψh,n+1 ∈ Vh and uh,n+1 ∈ Uh with∫
�

(ζ− ∨ |σn | ∧ ζ+)2−p′∇ψh,n+1 · ∇vh dx + b(uh,n+1, vh) = F(vh) for all vh ∈ Vh,

b(uh, ψh,n+1) = 0 for all uh ∈ Uh .

Proposition 8 (Equivalence) The solution ψh,n+1 ∈ (BUh)
⊥ to (18) and σn+1 ∈ 
 to (17)

are related via the identity

σn+1 = (ζ− ∨ |σn | ∧ ζ+)2−p′∇ψh,n+1.

Proof The same arguments as in the proof of Lemma 3 yield the proposition. ��
The problem in (18) can be solved iteratively. More precisely, we compute with given initial
value σ0 ∈ L p′

(�; R
d) for all n ∈ N0 iteratively the solution ψh,n+1 ∈ (BUh)

⊥ to the

123
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problem in (18) and define σn+1 := (ζ− ∨ |σn | ∧ ζ+)2−p′∇ψh,n+1. Notice that the problem
in (18) can be equivalently reformulated as the saddle point problem in (2), that is, we seek
ψh,n+1 ∈ Vh and uh,n+1 ∈ Uh such that∫

�

(ζ− ∨ |σn | ∧ ζ+)2−p′∇ψh,n+1 · ∇vh dx + b(uh,n+1, vh) = F(vh) for all vh ∈ Vh,

b(uh, ψh,n+1) = 0 for all uh ∈ Uh .

(19)

Due to Proposition 8 the resulting functions σn+1 are the same as the functions obtained by
(17) and thus the sequence converges according to Proposition 7 towards the exact discrete
minimizer σζ .

Remark 9 (Finer mesh) The contribution σn+1 = (ζ− ∨ |σn | ∧ ζ+)2−p′∇ψh,n+1 is in general
not a polynomial. In the experiments shown below we thus simplified our computations by
using the L2(�) orthogonal projection�k+δ−1σn+1 onto the space of piece-wise polynomials
of maximal degree k+δ−1. Alternatively, it is possible to use instead of a higher polynomial
degree k + δ the space Vh = L1

1,0(T +) with a sufficiently fine refinement of T + of T . In this

case the contribution (ζ− ∨ |σn |∧ ζ+)2−p′∇ψh,n+1 is a piece-wise constant polynomial with
respect to the underlying triangulation T + which allows for the exact evaluation of σn+1.

5 Error Control

The a priori and a posteriori error control for minimal residual methods is well established,
see for example [3, 4, 17–19]. Let us briefly adapt the proofs therein to our situation. We
assume that

(a) there exists a unique solution u ∈ W 1,p′
0 (�) with Bu = F in W−1,p′

(�) and

(b) there exist a Fortin operator � : W 1,p
0 (�) → Vh with continuity constant ‖�‖ < ∞ in

the sense that for all uh ∈ Uh and v ∈ W 1,p
0 (�)

b(uh, v − �v) = 0 and ‖∇�v‖L p(�) ≤ ‖�‖ ‖∇v‖L p(�). (20)

Proposition 10 (Error control) Suppose that the assumptions in (a) and (b) are true. Then
the solution u to Bu = F in W−1,p′

(�) and uh ∈ Uh to (1) satisfy

‖Bu − Buh‖W−1,p′ (�)
≤ (1 + 2 ‖�‖) min

uh∈Uh
‖Bu − Buh‖W−1,p′ (�)

. (21)

Moreover, with oscillation osc(F) := supv∈W 1,p(�)\{0} F(v − �v)/‖∇v‖L p(�) we have for
any uh ∈ Uh the a posteriori error estimate

‖Bu − Buh‖W−1,p′ (�)
≤ ‖�‖ ‖Bu − Buh‖V ∗

h
+ osc(F). (22)

Proof Let uh ∈ Uh . Any v ∈ W 1,p
0 (�) with ‖∇v‖L p(�) = 1 satisfies

b(u − uh, v) = b(u − uh,�v) + b(u − uh, v − �v) ≤ ‖�‖ ‖Bu − Buh‖V ∗
h

+ osc(F).

This proves the a posteriori estimate in (22). To obtain the a priori estimate in (21), we use
the minimization property in (1), that is,

‖Bu − Buh‖V ∗
h

= min
uh∈Uh

‖Bu − Buh‖V ∗
h

≤ min
uh∈Uh

‖Bu − Buh‖W−1,p′ (�)
.
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Moreover, the oscillation satisfies

osc(F) = sup
v∈W 1,p(�)\{0}

F(v − �v)

‖∇v‖L p(�)

= min
uh∈Uh

sup
v∈W 1,p(�)\{0}

(Bu − Buh)(v − �v)

‖∇v‖L p(�)

≤ (1 + ‖�‖) ‖Bu − Buh‖W−1,p′ (�)
.

Combining these estimates with (22) concludes the proof of (21). ��

Corollary 11 (A posteriori for exact solution) Let (ψh, uh) ∈ Vh ×Uh solve (3) and assume
that the assumptions in (a) and (b) are satisfied. Moreover, let σ ∈ 
 denote the solution to
(10). Then we have the a posteriori error estimate

‖Bu − Buh‖W−1,p′ (�)
� ‖∇ψh‖p−1

L p(�) + osc(F) = ‖σ‖L p′ (�)
+ osc(F). (23)

Proof Hölder’s inequality, the first equation in (3), and the identity in (13) show

‖Bu − Buh‖V ∗
h

= sup
vh∈Vh\{0}

∫
�

|∇ψh |p−2∇ψh · ∇vh dx

‖∇vh‖L p(�)

= ‖∇ψh‖p−1
L p(�) = ‖σ‖L p′ (�)

.

Using this identity in the a posteriori estimate in (22) leads to the upper bound in (23).
Equivalence follows from the upper bound for the oscillation

osc(F) = sup
v∈W 1,p

0 (�)

F(v − �v)

‖∇v‖L p(�)

= sup
v∈W 1,p

0 (�)

b(u − uh, v − �v)

‖∇v‖L p(�)

≤ (1 + ‖�‖) ‖Bu − Buh‖W−1,p′ (�)
.

��

We conclude this section with a discussion of the following additional assumption:

(c) The operator B : W 1,p′
0 (�) → W−1,p′

(�) is bounded from above and below in the sense
that

‖∇u‖L p′ (�)
� ‖Bu‖W−1,p′ (�)

for all u ∈ W 1,p′
0 (�).

Under this additional assumption the error estimates in Proposition 10 and Corollary 11 allow
for any estimate of the more natural error quantity ‖∇u−∇uh‖L p′ (�)

due to the equivalence

‖∇u − ∇uh‖L p′ (�)
� ‖Bu − Buh‖W−1,p′ (�)

.

The assumption in (a) seems to be natural. The assumption in (b) can in many situations
be achieved by choosing sufficiently large polynomial degrees k + δ for the test space
Vh = L1

k+δ(T ) as for example investigated in [17, Sec. 4]. The assumption in (c) has been
investigated in [11] but seems to be rather restrictive. Indeed, there exist counterexamples for
the Laplace problem Bu = ∫

�
∇u · ∇· dx for exponents p > 4 and non-smooth non-convex

domains � as shown in [13]. Notice that even in cases where (c) is satisfied, the Galerkin
scheme investigated in [11] requires stability of the W 1,2

0 (�)-projection in W 1,p
0 (�). Such

stability results are known for uniform andmildly gradedmeshes [6, 7], but are an open prob-
lem for adaptively refined meshes. Our minimal residual method circumvents this problem
by suitable designs of Fortin operators in (b).

123



Journal of Scientific Computing            (2024) 99:35 Page 11 of 18    35 

6 Adaptive Scheme

As pointed out in Corollary 11, the minimizer σ with (10) allows us to drive an adaptive
mesh refinement scheme. However, our iterative scheme does not compute the exact solution
σ . We thus introduce an adaptive scheme that additionally takes the distance of the current
iterate σn to σ into account. The error indicator that indicate errors caused by

(a) the upper interval bound ζ+ reads η2ζ+(σn) := J ∗
ζ (σn) − J ∗

[ζ−,∞)(σn),

(b) the lower interval bound ζ− reads η2ζ−(σn) := J ∗
ζ (σn) − J ∗[0,ζ+](σn),

(c) the error due to the fixed-point iteration reads

η2Kač,ζ (σn) :=
(

ζ+
ζ−

)2−p′ (
J ∗

ζ (σn) − J ∗
ζ (σn+1)

)
,

(d) the error due to the discretization reads

η
p′
h :=

∑
T∈T

η
p′
h (T ) with η

p′
h (T ) := ‖σn‖p′

L p′ (T )
.

The indicators in (a) and (b) provide some information on the impact of the relaxation
interval ζ on the current iterate. The indicator in (c) is motivated by the convergence result
in Proposition 7. The error indicator in (d) is motivated by the a posteriori error estimate for
σ in Corollary 11. Notice that σn is indeed a good approximation of σ if ‖σ − σn‖L p′ (�)

�
‖σ‖L p′ (�)

, which can be seen by the triangle inequality

|‖σn‖L p′ (�)
− ‖σ − σn‖L p′ (�)

| ≤ ‖σ‖L p′ (�)
≤ ‖σn‖L p′ (�)

+ ‖σ − σn‖L p′ (�)
.

Lemma 4 states that

‖σ − σn‖2L p′ (�)
� ‖|σn | + |σ − σn |‖2−p′

L p′ (�)

(
J (σn) − J (σ )

)
.

Hence, the estimate ‖σ − σn‖L p′ (�)
� ‖σ‖L p′ (�)

follows from an estimate like

J (σn) − J (σ ) � ‖|σn | + |σ − σn |‖p′−2
L p′ (�)

‖σn‖2L p′ (�)
≤ ‖σn‖p′

L p′ (�)
= η

p′
h .

This motivates the following refinement strategy with some small weight w > 0:

(a) If η2ζ+(σn) + η2ζ−(σn) + η2Kač,ζ (σn) ≤ w η
p′
h , refine the mesh adaptively with the local

error contributions η
p′
h (T ) as refinement indicator.

(b) Otherwise, if max{η2ζ−(σn), η
2
Kač,ζ (σn)} ≤ η2ζ+(σn), increase ζ+.

(c) Otherwise, if max{η2ζ+(σn), η
2
Kač,ζ (σn)} ≤ η2ζ−(σn), decrease ζ−.

Then we perform another Kačanov iteration and continue with the evaluation of the resulting
error indicators. This leads to an adaptive loop which solves (19) and then might refine the
mesh or adapt ζ according to (a)–(c). Then the loop resets and proceeds with solving (19)
again.

Remark 12 (Primal-dual error estimator) In [1, Sec. 6.2]we use the dual problemwith energy
Jζ of the minimization problem in (10) to define the estimator

η2Kač,ζ,Dual(σn) := Jζ (ψh,n) + J ∗
ζ (σn). (24)

This error estimator is a guaranteed upper bound for the error

J ∗
ζ (σn) − J ∗

ζ (σζ ) ≤ η2Kač,ζ,Dual(σn).
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However, in [1] we focused on a lowest-order scheme in the sense that Vh = L1
1,0(�),

which allows for accurate evaluations of σn+1 = (ζ− ∨ |σn | ∧ ζ+)2−p′∇ψh,n+1 with piece-
wise constant function σn . Since in this paper’s minimal residual method the space Vh is
of higher polynomial degree, the evaluation of σn+1 becomes more intricate, cf. Remark 9.
Our numerical experiments indicate that this challenge does not impact the convergence of
the Kačanov scheme, but it causes difficulties when evaluating the duality gap in (24). We
thus use the alternative indicator in (c). Replacing the test space Vh of higher polynomial
degree by a test space Vh = L1

1,0(T +) with finer mesh T + ≥ T as discussed in Remark 9
circumvents these issues and thus allows us to use of the primal-dual error estimator in (24).

Remark 13 (Cheaper approaches) The adaptive loop suggested in this section is much more
costly than the adaptive scheme with linear minimal residual methods for p = 2. This might
be a price we have to pay the solve challenging PDE’s. On the other hand, for less challenging
problems, we might use cheaper versions of the suggested scheme. For example, the scheme
performed well in our experiments with fixed relaxation interval and a fixed small number of
Kačanov iterations after eachmesh refinement as for example done in Sect. 7.3. Alternatively,
one might use our scheme only in the last step of an adaptive finite element loop to smoothen
oscillations.

7 Applications

Weconclude this paperwith an application of our algorithm to convection-diffusion problems.
Given a bounded Lipschitz domain� ⊂ R

d , a diffusion coefficient ε > 0, an incompressible
advection field β ∈ L∞(�; R

d), a function c ∈ L∞(�), and a right-hand side f ∈ L2(�),
this problems seeks u ∈ W 1,2

0 (�) with

−div(ε∇u − βu) + cu = f . (25)

Set for all u, v ∈ W 1,2
0 (�) the functional F(v) := ∫

�
f v dx and the bilinear form

b(u, v) :=
∫

�

ε∇u · ∇v dx −
∫

�

uβ · ∇v dx +
∫

�

cuv dx .

The variational formulation of (25) seeks the solution u ∈ W 1,2
0 (�) to

b(u, v) = F(v) for all v ∈ W 1,2
0 (�). (26)

This formulation allows for the application of our minimal residual method. We therefore

discretize the spaces W 1,p′
0 (�) and W 1,p

0 (�) with p := 100 by

Uh := L1
1,0(T ) and Vh := L1

2,0(T ).

Suitable Fortin operators (20), which might in fact require higher polynomial degrees in
Vh , are discussed in [17, Sec. 4]. To compare the results, we apply the following alternative
schemes:

(a) Our first alternative numerical scheme is the classical Galerkin FEM. It seeks the solution
uGh ∈ Uh to the problem

b(uGh , wh) = F(wh) for all wh ∈ Uh .

Adaptivemesh refinements are driven by the standard residual error estimator investigated
for example in [20, Sec. 1.2].
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Fig. 1 Approximations of the viscosity solution u to (27)

(b) The second alternative is the classical first-order system least squares method [2] with
Raviart-Thomas space RT0(T ) := {q ∈ H(div,�) : for all T ∈ T exist A ∈ R

d and
b ∈ R with q(x)|T = A + bx for all x ∈ T }. It seeks the minimizer (uLSh , σLS

h ) ∈
Uh × RT0(T ) that minimizes over all (uh, τh) ∈ Uh × RT0(T ) the functional

‖τh − ε∇uh + βuh‖2L2(�)
+ ‖div τh − cuh + f ‖2L2(�)

.

Adaptive mesh refinements are driven by the local contributions

‖σLS
h − ε∇uLSh + βuLSh ‖2L2(T )

+ ‖div σLS
h − cuLSh + f ‖2L2(T )

for all T ∈ T .

(c) The third alternative is the minimal residual method introduced in [17, Example 2.2 (i)],
which seeks the solution to the minimization problem

uMin
h = argmin

uh∈Uh

sup
vh∈Vh\{0}

b(uh, vh) − F(vh)

‖∇vh‖L2(�)

.

Adaptive mesh refinements are driven by the local contributions ‖ηh‖2L2(T )
for all T ∈ T

of the Riesz representative ηh ∈ Vh with∫
�

∇ηh · ∇vh dx = b(uh, vh) − F(vh) for all vh ∈ Vh .

The adaptive schemes use the Dörfler marking strategy with bulk parameter 0.5.

7.1 Experiment 1 (Viscosity Solution 1D)

Our first experiment considers the one dimensional problem

u′ + u = 1 in � := (0, 1) with u(0) = u(1) = 0. (27)

In other words, we solve the problem in (25) with ε = 0 and β = c = 1. This overdetermined
ODE has no classical solution, but can be seen as the limiting case ε → 0 of the problem

−εu′′
ε + u′

ε + uε = 1 in � with uε(0) = uε(1) = 0.

These functions uε converge towards the viscosity solution u(x) = 1 − exp(−x), cf. [14,
Chap. 1] and [9, Sec. 4.6]. Figure1 displays the resulting approximations on a partition of
the unit interval into 25 equidistant intervals. The solution uh to (1) yields, apart from a tiny
oscillation on the last intervals, a very accurate approximation of the viscosity solution. In
contrast, the Galerkin FEM results in a highly oscillating function that does not resemble any
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Fig. 2 Approximations with about 1000 degrees of freedom of the viscosity solution u with (28) evaluated
at (x, 1/2) (top left) and (3/4, y) (top right) with uniform mesh refinements and at (x, 1/2) (bottom) with
adaptive mesh refinement

of the solutions characteristics at all. The solution to the minimization methods in (b) and (c)
experiences some fast decay on the first interval. Thereafter, the approximation increase
and experience a similar (but stronger) oscillation at the last two intervals. The accuracy of
the solutions to (a)–(c) does not improve under uniform mesh refinement. Adaptive mesh
refinements, driven by the local residuals of these methods, overcome this problem partially
for the methods in (b)–(c). Apart from an oscillation near x = 1, the adaptive LSFEM shows
some small oscillation near the origin x = 0 and the adaptive minimal residual method (c)
shows an oscillation near x = 1/2. This indicates severe difficulties of the methods in (a)–(c)
for problems with small viscosity parameter ε � 1, that can be overcome by the minimal
residual method (1) in this paper.

7.2 Experiment 2 (Viscosity Solution 2D)

In our second experiment we extend the first experiment to two dimensions: We seek the
viscosity solution to

d

dx
u + u = 1 in � := (0, 1)2 with u(0, ·) = u(1, ·) = 0. (28)

In otherwords,we solve the problem in (25)with ε = 0,β = (1, 0)�, and c = 1withmodified
boundary conditions. The viscosity solution reads u(x, y) = 1 − exp(−x). The resulting
approximations are displayed in Fig. 2. All methods fail on uniform meshes: While the
Galerkin FEM leads to strong oscillations along the x-axis, theminimal residualmethod in (c)
and our suggested methods in (1) lead to strong oscillations along the y-axis. The LSFEM
seems to be more robust, but does not provide a good approximation as well. Uniform mesh
refinements do not seem to overcome these difficulties. However, adaptive mesh refinement
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Fig. 3 Approximations of the solution to (29) with ε = 10−3, uniform mesh, and dimUh = 4225 evaluated
at (x, 1/2)

overcomes this problem for the minimal residual methods. The adaptive LSFEM solution
seems to converge to the exact solution but is still much worse than the adaptively computed
solutions to the method in (c) and our approach in (1). Indeed, the solution to (c) shows
only some tiny oscillation near x = 1, the solution to our scheme in (1) does not show
any oscillation at all and provides a very accurate approximation, cf. Fig. 2. This shows that
adaptivity might be a key in the convergence of our approximation.

7.3 Experiment 3 (Eriksson and Johnson)

Our third experiment has been introduced by Eriksson and Johnson in [8]. We seek the
solution to (26) with β = (1, 0)�, right-hand side f = 0, and initial data u(0, y) = sin(π y)
and u(x, y) = 0 for x = 1 or y ∈ {0, 1} with unit square domain � = (0, 1)2. In other
words, we seek the solution to

−ε�u + d

dx
u = 0 in �,

u(x, y) = 0 if y ∈ 0, 1 or x = 1,

u(x, y) = sin(π y) if x = 0.

(29)

Let s1 := (1+√
1 + 4π2ε2)(2ε)−1 and s2 := (1−√

1 + 4π2ε2)(2ε)−1. The exact solution
reads

u(x, y) = exp(s1(x − 1)) − exp(s2(x − 1))

exp(−s1) − exp(−s2)
sin(π y).

In our first computation we set ε := 10−3 and use uniformly refined meshes. In contrast to
the previous calculations all methods converge as the mesh is uniformly refined. On coarse
grids our minimization schemes leads to superior results as depicted in Fig. 3.

The situation changes drastically when we solve the problem with very small diffusion
coefficient ε := 10−6. For uniform mesh refinements the solutions to the minimal residual
method in (1) and the minimal residual method in (c) show as in Experiment 2 strong oscil-
lations along the y-axis. The direct solver in FEniCS (MUMPS) was not able to solve the
resulting system for the Galerkin FEM solution with more than 80 degrees of freedom. The
LSFEM solution seems to converge towards a function u ≈ γ sin(π y) with some constant
γ slight larger than 1/2 as the mesh is uniformly refined. Unfortunately, adaptivity does not
overcome this problem: The direct solver in FEniCS (MUMPS) was not able to compute a
solution to the Galerkin FEM and the LSFEM with adaptive mesh refinements for meshes
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Fig. 4 The left-hand side shows approximations evaluated at (x, 1/2) with adaptive mesh refinements and
fixed parameter ε = 10−6 with dimUh ≈ 5000 and the right-hand side shows the convergence history plot
of the L2(�) error for ε = 10−6 with adapted diffusion parameter in (30)

with more than about 300 and 1000 degrees of freedom, respectively. The adaptive scheme
for our method in (1) refines strongly near x = 0 and the approximation seems to converge
point-wise to zero, cf. Fig. 4. The adaptive minimal residual method in (c) refines strongly
near x = 0 and x = 1 and the approximations look roughly like u ≈ γ sin(π y) with some
constant γ slightly larger than 1/2. All in all, non of the schemes converges towards the exact
solution. We overcome this challenge by slowly adapting the diffusion parameter ε in our
computations in the sense that we set

ε :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

10−2 it dimUh ∈ [0, 1000),
10−3 if dimUh ∈ [1000, 5000),
10−4 if dimUh ∈ [5000, 10000),
10−5 if dimUh ∈ [10000, 50000),
10−6 else.

(30)

Fig. 4 shows the resulting convergence history plot of the error measured in the L2(�) norm.
Initially adapting ε helps all methods, but as dimUh exceeds 103 (and so ε is set to 10−3),
the LSFEM starts to struggle. The same happens for the Galerkin and minimal residual
method in (a) and (c) as dimUh exceed 104 (and so ε is set to 10−5). In contrast, our method
in (1) still converges as the number of degrees of freedom is increased. In order to save
computational power, we did not use the adaptive scheme suggested in Sect. 6. Instead, we
fixed the relaxation interval ζ := [10−2, 102] and computed only two Kačanov iterations
on each mesh. An alternative calculation, using the adaptive strategy in Sect. 6 with the
large weight w = 100 causing about five Kačanov iterations on each mesh, led to similar
convergence results.

8 Conclusion

We have introduced a novel numerical scheme that solves minimal residual methods in
W−1,p′

(�). Additionally, we suggested an iterative scheme that converges towards the dis-
crete solution of the resulting non-linear minimization problem. The scheme converges even
for large exponents like p = 100. The resulting approximations are beneficial for solv-
ing challenging PDE’s like convection-dominated diffusion problems compared to other
schemes like the Galerkin FEM or minimal residual methods in Hilbert spaces. However, in
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these challenging situations the convergence of our scheme seems to require some suitable
mesh design. This can be done adaptively with some suitable designed initial mesh. We thus
suggest a scheme where we increase the diffusion parameter depending on the degrees of
freedom. This allowed for the approximation of convection-dominated diffusion problems
with tiny diffusion parameters like ε = 10−6.
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