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Abstract
A novel optimization procedure for the generation of stability polynomials of stabilized
explicit Runge–Kutta methods is devised. Intended for semidiscretizations of hyperbolic
partial differential equations, the herein developed approach allows the optimization of sta-
bility polynomialswithmore than hundred stages.Apotential application of these high degree
stability polynomials are problems with locally varying characteristic speeds as found for
non-uniformly refinedmeshes and spatially varyingwave speeds. To demonstrate the applica-
bility of the stability polynomialswe construct 2N -storagemany-stageRunge–Kuttamethods
that match their designed second order of accuracy when applied to a range of linear and non-
linear hyperbolic PDEs with smooth solutions. These methods are constructed to reduce the
amplification of round off errors which becomes a significant concern for these many-stage
methods.

Keywords Runge–Kutta methods · Absolute stability · Method of lines · Initial value
problems

Mathematics Subject Classification 65L06 · 65M20

1 Stabilized Explicit Runge–Kutta Methods

Explicit Runge–Kutta methods are commonly considered the default choice for the inte-
gration of hyperbolic partial differential equations (PDEs). In contrast to implicit methods,
explicit methods require only evaluations of the right-hand side instead of solving a poten-
tially nonlinear system of equations. In fact, in the context of hyperbolic PDEs typically
nonlinear fluxes are of interest. Explicit methods come with the drawback that the maximum
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stable timestep needs to be significantly reduced which is in the context of (hyperbolic) PDEs
commonly referred to as the CFL condition [1].

To increase computational efficiency, stabilized explicit Runge–Kutta methods have been
introduced already in the 1960s [2–4] targeting semidiscretizations

U(t0) = U0 (1.1a)

U ′(t) = F
(
U(t)

)
(1.1b)

of parabolic PDEs. The approach of discretizing the spatial derivatives and leaving time
continuous at first is commonly referred to as the Method of Lines approach. Although
originally termed for finite difference based spatial discretizations [5] the name persisted and
is used nowadays to comprise different discretization techniques like finite elements, finite
volumes, and discontinuous Galerkin.

The central idea of stabilized explicit Runge–Kutta methods is to use additional stages
primarily to improve the stability properties of the scheme, i.e., allow for larger timesteps.
In particular, one usually settles for a moderate order of accuracy and uses the additional
degrees of freedom to improve the stability properties of the scheme for a certain spectrum
[6–8]. The fact that the eigenvalues of the Jacobian

J (U) := ∂F
∂U

(1.2)

are for parabolic PDES distributed on the negative real axis enables a successful construction
of stabilized explicit Runge–Kutta methods optimized for this special case, see for instance
the reviews [9, 10]. The fact that the optimal stability polynomial PS,1(z) of first order
accurate methods with S stages is given by the shifted Chebyshev polynomial of first kind
TS(z) [2, 3, 11, 12] serves as a valuable guidance to construct higher order approximately
optimal stability polynomials [13–18] which stand on solid ground due to proven existence
and uniqueness of optimal stability polynomials with maximum (negative) real axis inclusion
[19].

For the purely hyperbolic case, i.e., for eigenvalues λ ∈ σ(J ) exclusively on the imaginary
axis also results for first order accurate methods in terms of Chebyshev polynomials of first
kind are known [16, 20–22]. Approximations to higher order accurate stability polynomials
can be found in [23].

For the more general case, i.e., where not only either the real or complex line are of
interest, but rather a two-dimensional part of the complex plane, concrete results for stability
polynomials are rare. To the best of our knowledge, only for disks results for first [24] and
second [25, 26] order accurate optimal stability polynomials of variable degree S are available.
In contrast, one usually has to resort to numerical optimization of the stability polynomials.
A nonextensive list includes optimized methods for certain geometrically defined spectra
[27, 28], particular equations [29–32] and spatial discretization techniques [33–35].

A general framework for maximizing the region of absolute stability of an explicit
Runge–Kutta methods for a particular spectrum has been developed in [36] which has been
extensively used [33, 34, 37–44]. The approach presented in [36] optimizes the coefficients
α ∈ R of the stability polynomial

P(z;α) =
S∑

j=0

α j q j (z) (1.3)
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where {q j (z)} j=0,...,S forms abasis for the complex-valuedpolynomialswith real coefficients.
In the simplest case, q j are given by the monomials z j which lead for higher degrees S to an
increasingly ill-conditioned optimization problem. This choice of basis and optimization in
monomial coefficients is also employed in [27, 30, 31]where polynomials are optimized up to
maximumdegrees 14, 7, and 8, respectively. If a suitable basis {q j (z)} j=0,...,S for the spectrum
of interest can be found, stability polynomials of high degrees (up to S = 80 are reported
in [36]) can be constructed. In [36], suitable bases are proposed for parabolic (negative real-
line), purely hyperbolic (imaginary axis) and disk-spectra. In general, however, finding such
a basis for a complicated real-world spectrum is a challenging task. Consequently, the works
[33, 34, 37–44] employ the monomial basis which limits the maximum degree of the stability
polynomials to 16-20.

In this work, we develop a formulation that avoids the search of a suitable basis. In
particular, instead of parametrizing the polynomial in terms of the basis-coefficients, the
stability polynomial P(z) is characterized by the roots of

(
P(z) − 1

)
/z. This can be seen

as a generalization of the approach employed in [28] wherein the stability polynomial is
described by its extrema. Although this approach leads to a highly nonlinear formulation, it
will be shown that for a relevant class of spectra an excellent initial guess can be supplied
allowing the successful optimization of the highly nonlinear problem. By doing so, we are
able to optimize stability polynomials of degrees larger than 100, which to the best of our
knowledge is an unprecedented success for spectra of hyperbolic semidiscretizations. We
emphasize that our approach involves for an efficient optimization the application of the
coefficient-based method developed in [36] which forms thus an integral building block of
our algorithm.

A potential application of these high degree stability polynomials are the recently pub-
lished Paired-Explicit Runge–Kutta (P-ERK) methods [39, 40, 45] which achieve local time
stepping effects by combining a set of stabilized methods. In particular, due to their con-
struction as partitioned Runge–Kutta methods [46] they ensure consistency and conservation
which are not trivially satisfied by other classical multirate methods [47]. Being based on
the optimization approach developed in [36], the stability polynomials and corresponding
P-ERK methods are currently limited to 16 stages. The availability of higher degree poly-
nomials allows for a potentially even more efficient treatment of e.g. locally refined meshes
or varying characteristic speeds. In this work, however, we focus on the optimization of
high degree stability polynomials and methods that can be directly constructed thereof. The
application to P-ERK methods is left for future work.

The paper is organized as follows. The motivation for the new optimization approach is
presented in Sects. 2 and 3, based on findings for the proven optimal stability polynomials for
disk-like spectra. The necessary details required for successful optimization of the problem
are discussed in Sect. 4 which is followed by a discussion of the implementation in Sect. 5.
In Sect. 6 a couple of high degree optimized stability polynomials are presented. Extensions
of the original approach to non-convex spectra are covered in Sect. 7 and applied in Sect. 8.
The construction of actual Runge–Kutta methods from the high-degree stability polynomials
follows in Sect. 9 with a special focus on internal stability. Section10 presents the application
of the many-stage methods to linear and nonlinear problems. Section11 concludes the paper.
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Note on Terminology

For the sake of readability, we will refer to the shifted Chebyshev polynomials of first kind
simply as Chebyshev polynomials. As the extreme points of the (shifted) Chebyshev poly-
nomials (of first kind) play a crucial role in this work, we will call them in the interest of
brevity simply Chebyshev extreme points. Furthermore, we will refer to the the Chebyshev
extreme points with extremal value +1 as positive Chebyshev extreme points.

Since a significant part of the paper centers around stability polynomials from which
Runge–Kutta methods of certain order may be constructed, we will say that a polynomial of
degree S is of order/accuracy p whenever the first i = 0, . . . , p coefficients match the first
i = 0, . . . , p coefficients of the Taylor series of the exponential.

2 Preliminaries

Runge–Kutta methods are single step methods, i.e., when applied to the constant coefficient
linear initial value problem (IVP)

u(t0 = 0) = u0 (2.1a)

u′(t) = Au(t) (2.1b)

the new approximation un+1 can be computed from the previous iterate un as

un+1 = R(�t A)un . (2.2)

Here, R(z) denotes the stability function [6] of the Runge–Kutta method. For implicit
methods R(z) is a rational function, while for explicit methods R(z) is a polynomial with
real coefficients

PS(z;α) =
S∑

j=0

α j z
j , α ∈ R

S+1. (2.3)

By comparing (2.2) to the solution u(tn+1) = exp(A�t)u(tn) of (2.1b) it follows from
the definition of the exponential that for a p′th order (linearly) consistent approximation the
coefficients α j need to satisfy

α j
!= 1

j ! , j = 0, . . . , p. (2.4)

It is customary to define the family of polynomials with real coefficients over the complex
numbers of degree S and corresponding order of accuracy p as PS,p .

Due to the fact that the stability function R(z) is a polynomial P(z) for explicit methods
it follows that the region of absolute stability

S := {z ∈ C : |R(z)| ≤ 1} (2.5)

is necessarily bounded. We further define the boundary of the region of absolute stability as

∂S := {z ∈ C : |R(z)| = 1} (2.6)

which will also be called in brief stability boundary.

123



Journal of Scientific Computing (2024) 99 :28 Page 5 of 40 28

2.1 Optimization Objective

The optimization objective is now to find the maximum possible timestep �t�S,p for a poly-
nomial of degree S corresponding to a method with order of accuracy p:

max
PS,p∈PS,p

�t such that
∣
∣PS,p(�tλ(m))

∣
∣ ≤ 1, m = 1, . . . , M . (2.7)

Here, {λ(m)}m=1,...,M = σ(J ) are the eigenvalues of the Jacobian (1.2) where the ordinary
differential equation (ODE) system (1.1) corresponds in this work to the semidiscretization
of PDEs describing typically physical processes. As a consequence, we assume that there are
no amplifiying modes among the eigenvalues λ(m) corresponding to generation of energy,
thus all eigenvalues should have non-positive real part:

Re
(
λ
) ≤ 0 ∀ λ ∈ σ(J ). (2.8)

It should be stressed that the maximum possible timestep �t� is the single optimization
target in this work. In particular, we do not focus on the reduction of dispersion or dissipation
errors as done for instance in [48–50] or other objectives like maximum strong stability
preserving (SSP) coefficients [34, 51, 52].

2.1.1 Convex Problem Formulation

As noted in [36] (2.7) is for fixed timestep �t a convex optimization problem when
parametrizing the stability polynomial PS,p in terms of the coefficients α:

max
α∈RS−p

�t such that
∣∣PS,p(�tλ(m);α)

∣∣ ≤ 1, m = 1, . . . , M . (2.9)

Paired with an outer bisection to determine the timestep, (2.9) leads to an efficient opti-
mization routine that can be solved with standard software such as SeDuMi [53] or ECOS
[54] for second order cone programs. The downside of formulation (2.9) is that, unless a suit-
able basis {q j (z)} j=0,...,S for the stability polynomial can be found, one has to resort to simple
choices such as the monomials. For these, the problem becomes increasingly ill-conditioned
for higher degrees since the monomial coefficients scale essentially as α ∼ 1/( j !), i.e., they
become diminishingly small. Rescaling the coefficients as α̃ j := α j/ j ! improves this issue
slightly, but ultimately cannot solve this difficulty fundamentally. This is due to the limited
precision of floating point numbers which cannot meet the high sensitivity of higher degree
polynomials with respect to the coefficients. This limits the monomial-based version of (2.9)
in standard double precision to about 16 to 20 stages for general spectra. We remark that the
usage of higher precision datatypes can mitigate this issue.

Avoiding the difficulty of finding a suitable basis that leads to a well-conditioned problem
is the key achievement of our approach motivated in the next subsection.

2.2 Central Observation

The linear consistency requirement (2.4) implies that every at least first order linearly con-
sistent stability polynomial PS,1(z) can be written as

PS,1(z; r̃) = 1 + z
S−1∏

j=1

(
1 − z

r̃ j

)
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=: 1 + z P̃S−1(z; r̃) (2.10)

where the lower degree polynomial P̃S−1 is parametrized by its complex-conjugated roots
r̃ ∈ C

S−1. Clearly, the roots of the lower-degree polynomial (called from now on pseudo-
extrema of the original polynomial) form a subset of the stability boundary ∂S:

|PS,1(̃r j ; r̃)| = |1 + r̃ j P̃S−1(̃r j ; r̃)︸ ︷︷ ︸
=0

| = 1 ⇒ {
r̃ j
}
j=1,...,S−1 ⊂ ∂S. (2.11)

This observation is particularly useful when the shape of the stability boundary ∂S can
be a-priori roughly estimated. For optimized polynomials of higher degrees, ∂S will follow
the spectrum closely, thus one can use an envelope of the spectrum itself as a reasonable
approximation to ∂S. This is discussed in Sects. 3.2 and 7 in more detail.

We remark that the formulation (2.10) bears some similarity to the basis q j = (1+ z/S) j

used in [36] for generating stability polynomials for circular spectra.

3 Motivating the Optimization in Pseudo-Extrema

The optimization problem (2.7) for stability polynomials in terms of complex-conjugated
pseudo-extrema reads

max
r̃∈CS−1

�t such that
∣∣PS,p(�tλ(m); r̃)∣∣ ≤ 1, m = 1, . . . , M . (3.1)

This is a highly nonlinear optimization problem for which we need an excellent initial
guess in order to have a reasonable chance to reach the global optimum. In the next section,
we will thoroughly motivate a suitable assumption on the distribution of the pseudo-extrema
based on results of proven optimal stability polynomials.

3.1 Pseudo-Extrema of Proven Optimal Stability Polynomials for Disks

We direct our attention to examining the pseudo-extrema of known optimal stability poly-
nomials PS,p(z) for circular spectra. For the sake of completeness, the case for parabolic
spectra, i.e., eigenvalues on the negative real line, is provided in “Appendix A.1”.

3.1.1 First Order Consistent Stability Polynomial

As shown in [24], the optimal first order stability polynomial with largest disk inclusion is
given by a sequence of Forward Euler steps:

PDisk
S,1 (z) =

(
1 + z

S

)S

. (3.2)

For this stability polynomial it holds that the disk with radius S

DS := {z ∈ C : |z + S| ≤ S} (3.3)

is contained in the region of absolute stability S. Consider the positive Chebyshev extreme
points x j ∈ R : TS(x j ) = 1 of the S degree polynomial on the here relevant [−2S, 0] interval
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which are given by

x j = S

(
cos

(
2 jπ

S

)
− 1

)
, j = 0, . . . ,

{
S/2 S even

(S − 1)/2 S odd
. (3.4)

We give two motivations for considering the Chebyshev extreme points in connection
with the pseudo-extrema. First, as outlined in “Appendix A” the pseudo-extrema of (shifted)
Chebyshevpolynomials are trivially givenby the (shifted) positiveChebyshev extremepoints.
This is of significance since the first order optimal stability polynomial for parabolic spectra
is precisely given by the shifted Chebyshev polynomial of first kind. Second, we recall that
the Chebyshev extreme points x j can be perceived as the real part of the set of points z j which
partition the circle into segments with equal arc length [55]. In that case, the imaginary part
y j of z j can be computed as

y j = ±
√
S2 − (x j + S)2 = ±S

√

1 − cos2
(
2 jπ

S

)
= ±S sin

(
2 jπ

S

)
, (3.5)

since sin
(
2 jπ
S

)
≥ 0, j = 0, . . . , S/2. Consequently, the points z j = x j ± iy j with x j , y j

defined as above lie on the stability boundary ∂S and are thus a valid candidate for the pseudo-
extrema. In fact, one can readily show that these points are indeed the pseudo-extrema of
PDisk
S,1 (z), as stated in the following theorem.

Theorem 1 The S−1pseudo-extremaof PDisk
S,1 (z)are given by the positiveChebyshev extreme

points with x j 
= 0 of TS(1 + z/S) with projection onto the circle with radius S centered at
(−S, 0).

Proof We compute

PDisk
S,1 (̃r j ) =

(
1 + r̃ j

S

)S

=
(
1 + x j ± iy j

S

)S

(3.6)

=
⎛

⎝1 +
S
(
cos

(
2 jπ
S

)
− 1

)
± i S sin

(
2 jπ
S

)

S

⎞

⎠

S

(3.7)

=
(
cos

(
2 jπ

S

)
± i sin

(
2 jπ

S

))S

(3.8)

= exp(± i 2 j π)
j∈N= 1. (3.9)

As a consequence, we have that

P̃S−1(̃r j ; r̃) = PDisk
S,1 (̃r j ; r̃) − 1

r̃ j
= 0 j = 1, . . .

{
S/2 S even

(S − 1)/2 S odd
(3.10)

where we use the fact that PS,1(0, r̃) = 1 which excludes j = 0 from the set of pseudo-
extrema.

Remark 1 Note that for even stability polynomials we have one purely real pseudo extremum
r̃0 = −S and S − 2 complex conjugated pseudo-extrema. For odd stability polynomials, all
pseudo-extrema are complex conjugated. This is in accordance with the motivating observa-
tion (2.11) where we established that the pseudo-extrema lie on the boundary of the region of
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absolute stability ∂S. We also note that the complex-conjugated pseudo-extrema of PDisk
S,1 (z)

correspond to the real pseudo-extrema with root-multiplicity two of the Chebyshev polyno-
mials TS(1 + z/S2), see “Appendix A”.

3.1.2 Second Order Consistent Stability Polynomial

For disks/circular spectra there is also an explicit formula for the optimal second order
accurate polynomial known [25]. The polynomial

PDisk
S,2 (z) = S − 1

S

(
1 + z

S − 1

)S

+ 1

S
(3.11)

contains the maximum disk DS−1 in its region of absolute stability [25, 26]. As a side note,
we realize that PS,2(z) is identical to the second order accurate Runge–Kutta Chebyshev
method [56, 57] with infinite damping [58]. Furthermore, as mentioned in [58] PS,2(z) can
be written as a sequence of forward Euler steps and belongs consequently to the family of
total varitation diminishing (TVD)/SSP integrators [59, 60] with optimal SSP coefficient
[61].

Theorem 2 The S − 1 pseudo-extrema of PDisk
S,2 are given by the positive Chebyshev extreme

points x j 
= 0 of TS
(
1+ z/(S−1)

)
when projected onto the circle with radius S−1 centered

at
(− (S − 1), 0

)
.

Proof Analogous to proof of Theorem 1.

Remark 2 As for the first order accurate stability polynomial, we have for even S one real
pseudo-extremum r̃0 = −(S − 1) and S − 2 complex conjugated pseudo-extrema and for
odd S a set of (S − 1)/2 exclusively complex conjugated pseudo-extrema.

The significance of these results is that the pseudo-extrema are distributedwith exact equal
arc length on the hull of the spectrum, and consequently with approximately equal arc length
on the stability boundary for a finite number of stages S. In fact, in the limit S → ∞ the
stability boundaries converge to the circle and thus the pseudo-extrema are asymptotically
distributed with exact equal arc length on the stability boundary.

Especially higher degree stability polynomials have enough flexibility to fully adapt the
stability boundary to the envelope of the spectrum. This is the case for even and odd polyno-
mial degrees S as well as first and second order accurate polynomials. To illustrate this, we
present Fig. 1 where the pseudo-extrema of second order accurate polynomials PDisk

S,2 with
degrees S = 12 and S = 13 are shown.

3.2 Central Assumption

Based on the findings for the circle we make a central assumption regarding the pseudo-
extrema of strictly convex spectra, i.e., where the eigenvalues define a strictly convex set of
points in the complex plane. To establish an intuition for this type of spectra we present four
exemplarily representatives falling into this category in Fig. 2. We assume that the pseudo-
extrema of optimal stability polynomials are distributed with approximately equal arc length
on the convex hull of strictly convex spectra.
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Fig. 1 Optimal second order accurate stability polynomials PS,2(z) given by (3.11) for even (a) and odd
degree (b) polynomial. The spectrum corresponds to the canonical first order Finite Volume Upwind/Godunov
discretization [62] of the advection equation ut +ux = 0 on the periodic [−1, 1] domain discretized with 500
cells. In the even-degree case (a), the lower degree polynomial is odd and thus there is one pure real pseudo
extremum at the left end of the spectrum. For odd polynomial degrees (b), the lower degree polynomial is of
even-degree and we have only complex-conjugated pseudo-extrema. Note also that the segment crossing 0 is
twice the length of the others, which follows from the fact that PS,p(0) ≡ 1 ∀ S, p ≥ 1, cf. (2.10)

3.2.1 Strictly Convex Spectra

To motivate this assumption extending the findings for proven optimal spectra of the circle,
we display the pseudo-extrema of optimized P16,2(z) polynomials for different spectra in
Fig. 2. The optimal stability polynomials and optimal timesteps �t16,2 have been computed
using the approach developed in [36] and the pseudo-extrema are computed numerically.

We present the spectra of four nonlinear hyperbolic PDEs

1. Burgers’ equation
2. 1D Shallow Water equations
3. 1D Ideal Compressible Magnetohydrodynamics (MHD) equations
4. 2D Compressible Euler equations

when discretized with the discontinuous Galerkin spectral element method (DGSEM) [63,
64] using Trixi.jl [65–67]. We use local polynomials of degrees 1, 2, 3 and a range
of numerical fluxes and initial conditions, corresponding to both smooth and discontinuous
solutions. For the sake of reproducibility we give the precise setups of the semidiscretizations
corresponding to the displayed spectra in “Appendix B”.

As seen from Fig. 2 the pseudo-extrema are distributed with approximately equal arc
length on the spectrum enclosing curve. Based on this observation we will initialize the
pseudo-extrema such that they are distributedwith equal arc length on the spectrum enclosing
curve, which is assumed to be very close to the optimal stability boundary of higher degree
polynomials. The deviations from the equal arc-length initialization are then courtesy of the
optimizer.
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Fig. 2 Collection of strictly convex spectra of nonlinear hyperbolic PDEs and optimized pseudo-extrema r̃ j .
The spectra are scaled with the optimal timestep �t16,2 in each case

The significance of the strictly convex spectra stems from the observation that the optimal
stability boundary ∂S� can be, for a sufficiently high polynomial degree S, reasonably well
approximated with the convex hull of the eigenvalues.

This implies, in turn, that we can use the convex hull of the spectrum as an Ansatz for the
initial placement of the pseudo-extrema r̃ . Generalizing the proven results for the circle, the
pseudo-extrema are then placed with equal arc length on the convex hull of the spectrum.

4 Detailed Formulation of the Optimization Problem

In this section we discuss the required details to successfully optimize a stability polynomial
when parametrized by pseudo-extrema (3.1).

4.1 Constructing Complex-Conjugated Pseudo-Extrema

Since the lower-degree polynomial P̃S−1 has real coefficients, one has to ensure that the
pseudo-extrema r̃ are complex-conjugated. In principle, this is a difficult task since through-
out the optimization it might happen that a previously real pseudo-extremum is moved away
from the real axis into the complex plane. Consequently, another real pseudo-extremum
has to be set as the corresponding complex-conjugate, effectively changing the number of
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free optimization variables by introducing an additional constraint. To avoid this switch-like
behaviour we set a-priori a number of real and complex-conjugated pseudo-extrema. Based
on the previous results, we restrict ourselves for even-degree stability polynomials to one real
and S − 2 complex conjugated pseudo-extrema and for odd stability polynomials to S − 1
complex conjugated ones.

4.2 Restriction to Second Quadrant

Due to symmetry around the real axis it suffices to consider either the second or third quadrant
in the complex plane only. In this work, we choose the second quadrant, which implies that we
consider only complex numbers with non-negative imaginary part. This implies that for real
Jacobians (1.2) with complex-conjugated eigenvalues λ j = λ j+1 the stability requirement
|PS(�tλ(m))| ≤ 1 needs only to be checked for the m = 1, . . . , M̃ eigenvalues with non-
negative imaginary part, thereby also reducing the number of constraints.

4.3 Scaling of the Optimal Timestep

Webriefly comment on the scaling of the optimal timestep�t� with the degree of the stability
polynomial S. It is well-known that the maximum admissible timestep scales for parabolic
spectra covering the real-axis quadratic in S [9, 10]. In contrast, the one-sided imaginary axis
inclusion of polynomials with real coefficients is bound by S − 1 as shown in [26]. In [23]
the tighter maximum imaginary stability limit

√
(S − 1)2 − 1 was conjectured and proven

for special cases in [68]. The proven optimal stability polynomials for the disk scale both
linearly in S, see [24, 25]. As a consequence, we consider for general hyperbolic-parabolic
spectra an asymptotically linear scaling

�tS,p = S

SRef
�tSRef,p, (4.1)

which is observed for instance in [33, 35, 36, 39, 42] as optimal. It should be mentioned
that for S ∼ O(1) better than linear scalings are possible, as for these degrees qualitative
changes in the shape of the stability boundary still occur. Once the stability boundary is
closely adapted to the spectrum, the linear scaling is recovered.

It is immediately clear that once the timestep increases only linearly with more stages S
there is no additional efficiency gained. In particular, we observe for the methods with a large
number of stages additional complications due to internal stability, see Sect. 9.1 which render
the application of an individual many-stage scheme unattractive. Nevertheless, many-stage
stability polynomials are of great value in the context of multirate partitioned Runge–Kutta
methods where an ensemble ofmethods is used. Asmentioned in the introduction, the P-ERK
schemes [39, 40, 45] would benefit from high degree stability polynomials which enable the
efficient integration of systems even in the presence of locally restricted CFL numbers.

4.4 Constraints for Higher Order

For higher order p-consistent methods p − 1 equality constraints have to be added to the
stability inequality constraints. To obtain second order consistent methods, for instance, the
pseudo-extrema have to satisfy
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1

2
!= −

S−1∑

j=1

1

r̃ j
(4.2)

which follows fromVieta’s formulas which establish a link between the roots and coefficients
of a polynomial.More generally, for a stability polynomial thatmatches the first k = 0, . . . , p
coefficients of the exponential 1/( j !) we have the additional constraints

1

k!
!= (−1)k−1

S−1∑

1= j1, j2... jk−1
j1 
= j2 
=···
= jk−1

1

r̃ j1 r̃ j2 . . . r̃ jk−1

, k = 2, . . . , p. (4.3)

In this work we focus on second order accurate polynomials since for these the linear
order constraints (4.3) imply second order convergence also for nonlinear system, without
any additional constraints placed on the coefficients of the method [6, 46]. Nevertheless, we
also constructed third order accurate stability polynomials for some selected cases.

4.5 Focus on Even-Degree Stability Polynomials

From now on we focus on even-degree polynomials since they lead to a slightly simpler for-
mulation of the optimization problem. As we are interested in the many-stage case, focusing
on either even or odd degree case is no severe restriction.

Even-degree stability polynomials come with two main advantages. First, we observe for
all considered spectra (not only strictly convex) that the left endpoint of the spectrum, in our
cases a real eigenvalue, is always selected as one pseudo-extremum, allowing for an even
improved initialization. For strictly convex spectra, this is the only real pseudo-extremum,
cf. Figs. 1a, 2, and 3. The remaining pseudo-extrema can then be initialized with equal arc
length starting from the left endpoint of the spectrum.

Second, under the assumption motivated in Sect. 3.2 and the linear scaling of the optimal
timestep Sect. 4.3 one can readily re-use the optimal pseudo-extrema of the S/2 degree
polynomial as an advanced initialization for the S degree polynomial. In particular, every
second pseudo-extremum of the S stability polynomial is essentially known, cf. Fig. 3.

4.6 Construction of the Convex Hull Interpolant

For strictly convex spectra the convex hull defines in the second quadrant actually a strictly
concave (strictly convex in the third quadrant) function, which allows to uniquely map the
real part of the pseduo-extrema to some corresponding imaginary part. To relax the very steep
section near the imaginary axis we add the origin (0, 0) to the hull which helps to reduce the
slope in that particular segment. This allows to carry out the optimization actually in terms
of the real parts of the pseudo-extrema only, cutting the number of optimization variables in
half.

Given the (strict) convex hull of the spectrum defined through a set of eigenvalues μ( j) ∈
σHull and the expected maximum timestep �tS,p , we define the scaled spectrum

σHull
S,p :=

{
�tS,p · λ, λ ∈ σHull

}
(4.4)
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Fig. 3 Scaled spectrum σ12,2 of the 1D linear advection equation ut +ux = 0 discretized through the DGSEM
on [0, 1] using 16 cells/elements with DG polynomial degree 3 and Rusanov/Local Lax-Friedrichs flux. The
pseudo-extrema of the 12 and 24 degree second order accurate polynomial are computed. To highlight that
the relative positions of every second pseudo extremum r̃2S2 j−1 agree with r̃

S
j , the former are scaled by 0.5 due

to the linear scaling of the timestep according to (4.1)

μ
( j)
S,p := �tS,p · μ( j) . (4.5)

Based on this we construct a piece-wise linear interpolant I as

I
(
x; σHull

S,p

)
:= Im

(
μ

( j)
S,p

)
+

Im
(
μ

( j+1)
S,p

)
− Im

(
μ

( j)
S,p

)

Re
(
μ

( j+1)
S,p

)
− Re

(
μ

( j)
S,p

)
(
x − Re

(
μ

( j)
S,p

))
,

Re
(
μ

( j)
S,p

)
≤ x < Re

(
μ

( j+1)
S,p

)
.

(4.6)

While quadratic or the classic cubic splines would result in a continuously differentiable
interpolant I , they lead to numerical artifacts in the very steep sections near the imaginary
axis that are a common feature of the higher order discontinuous Galerkin (DG) spectra.
For these parts it is observed that linear splines capture the boundary of the stability domain
∂S best and should be used there. For the less steep regions quadratic and cubic splines
were tested, but the increase in approximation quality compared to linear splines was for the
majority of cases too small to justify the increased computational costs.

Global interpolation techniques were also tested but familiar problems like Runge’s phe-
nomenon and large over/undershoots in the intervals between the eigenvalues are observed
for a variety of approaches, including Bernstein polynomials ormapping to Chebyshev points
[69].

It should be mentioned that the spectrum close to the imaginary axis becomes arbitrarily
steep and thus the interpolation becomes less reliable in this part. This becomes an issue for
stability polynomials of degreesO(100) since then pseudo-extrema are placed in that region.
To solve this problem, one can work with a spectrum enclosing curve γ (τ) : R → C instead
of a spectrum enclosing function I : R → R. By identifying the eigenvalues on the hull
μ( j) ∈ σHull with an arc length parameter 0 ≤ τ ( j) ≤ 1 the imaginary part can be computed
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as

IIm
(
τ ; σHull

S,p

)
= Im

(
μ

( j)
S,p

)
+

Im
(
μ

( j+1)
S,p

)
− Im

(
μ

( j)
S,p

)

τ
( j+1)
S,p − τ

( j)
S,p

(
τ − τ

( j)
S,p

)
,

τ
( j)
S,p ≤ τ < τ

( j+1)
S,p

(4.7)

which removes the vanishingly small difference in real parts from the denominator. This,
however, comes at the expense that we have to do the interpolation (4.7) also for the real
part of the pseudo-extrema, thus doubling the computational work load. As discussed in
Sect. 10, methods with more than hundred stages introduce additional complications related
to internal stability. Consequently,we tailor the optimization approach around themore robust
S ∼ O(10) case and use the real parts of the pseudo-extrema as the optimization variables.

5 Implementation

In this section, we bundle the aforementioned details into the precise formulation of the
solved problems.

5.1 Optimization Problems

Equipped with the interpolant I (x) the optimization of lower-degree polynomial can now
be efficiently conducted. The optimization problem (2.7) is first conducted in the real parts
x j = Re(̃r j ) only, i.e.,

max�t over x ∈
[
min
m

{
Re
(
λ

(m)
S,p

)}
, 0
]N

such that (5.1a)
∣∣∣1 +

(
�tλ(m)

)
P̃S−1

(
�tλ(m); x + i I

(
x; σHull

S,p

))∣∣∣ ≤ 1 m = 1, . . . , M̃ . (5.1b)

Note that the number of optimization variables N equals for even stability polynomials
1 + S−2

2 = S
2 since we expect one real pseudo extremum and S − 2 complex conjugated

ones.
Due to the sensitive dependence of the stability and order constraints on the pseudo-

extrema we conduct a second optimization run where we allow for small corrections y in the
imaginary parts of the pseudo-extrema:

y ∈
[
−ε max

m

{
Im
(
λ

(m)
S,p

)}
, ε max

m

{
Im
(
λ

(m)
S,p

)}]N
. (5.2)

Here, ε is the sole hyperparameter needed in our approach which could for all problems
be set to O (10−2

)
with default choice 0.02. The second stage optimization problem reads

then

max�t over

(
x
y

)
∈
⎛

⎜
⎝

[
min
m

{
Re
(
λ

(m)
S,p

)}
, 0
]N

[
−ε max

m

{
Im
(
λ

(m)
S,p

)}
, ε max

m

{
Im
(
λ

(m)
S,p

)}]N

⎞

⎟
⎠ (5.3a)

such that
∣∣∣1 +

(
�tλ(m)

)
P̃S−1

(
�tλ(m); x + i

[
I
(
x; σHull

S,p

)
+ y

])∣∣∣ ≤ 1 m = 1, . . . , M̃ . (5.3b)
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The entire algorithm is given in Algorithm 1. In principle, it is also possible to conduct the
optimization in real parts and imaginary corrections (5.3) only, i.e., without solving (5.1)
first. In all considered cases, however, optimizing the real parts of the pseudo-extrema first
led not only to a more robust, but also overall faster optimization process.

Algorithm 1: Optimization problem in pseudo-extrema.

1 Perform Algorithm proposed in [36] to obtain �tSRef,p for certain SRef, p;

2 �tS,p ← �tSRef,p
S

SRef
;

3 Scale spectrum with expected timestep: σ (S,p) := {λ(m) · �tS,p}m=1,...,M̃ ;

4 Compute convex hull σHull
S,p ← γ0

(
σ (S,p)

)
;

5 Compute Interpolant I
(
x; σHull

S,p

)
;

6 if S, S/2 are even and results x(S/2) for the S/2 degree polynomial exist then

7 Set every second entry in x(S)
0 to 2x(S/2) ;

8 Set remaining entries such that
(
x0, j , I

(
x0, j ; σHull

S,p

))
, j = 2, 4, . . . , N are equally distributed

on I
(
x; σHull

S,p

)
;

9 else

10 Compute initial guess x0 such that
(
x0, j , I

(
x; σHull

S,p

))
, j = 1, . . . , N are equally distributed

on I
(
x; σHull

S,p

)
;

11 Initialize timestep with maximum possible value �t0 ← �t�S,p ;

12 Find best candidate �t�, x∗ of optimization problem (5.1);
13 Update initial guess �t0 ← �t�, x0 ← x∗, y0 = 0 ;
14 (x�, y�) ← Solve second stage optimization problem (5.3);

15 return r̃ ← x� ± i
[
I
(
x�; σHull

S,p

)
+ y�

]
;

16 return �t�S,p ← �t�;

5.2 Feasibility Problems

Under assumption that we can indeed realize the optimal timestep �tS,p one can formulate
the optimization problems (5.1), (5.3) actually as feasibility problems by fixing �t = �tS,p

and search for x, y satisfying the stability and order constraints. The feasibility problem
corresponding to (5.1) reads then

Find x ∈
[
min
m

{
Re
(
λ

(m)
S,p

)}
, 0
]N

such that (5.4a)
∣∣∣1 +

(
�tS,pλ

(m)
)
P̃S−1

(
�tS,pλ

(m); x + i I
(
x; σHull

S,p

))∣∣∣ ≤ 1 m = 1, . . . , M̃ . (5.4b)

and the analogy to (5.3) is given by

Find

(
x
y

)
∈
⎛

⎜
⎝

[
min
m

{
Re
(
λ

(m)
S,p

)}
, 0
]N

[
−ε max

m

{
Im
(
λ

(m)
S,p

)}
, ε max

m

{
Im
(
λ

(m)
S,p

)}]N

⎞

⎟
⎠ (5.5a)

such that
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∣
∣
∣1 +

(
�tS,pλ

(m)
)
P̃S−1

(
�tS,pλ

(m); x + i
[
I
(
x; σHull

S,p

)
+ y

])∣∣
∣ ≤ 1 m = 1, . . . , M̃ .

(5.5b)

In practice, the feasibility problems are solved significantly faster than their optimization
counterparts. Note that no conceptual changes to Algorithm 1 are necessary, as the timestep
handling in Lines Lines 11 and 16 can be omitted and (5.4) and (5.5) are solved in Lines 12
and 14, respectively.

5.3 Software

Both optimization and feasibility problem are solved via
Ipopt: Interioir Point OPTimizer [70], an optimization software designed

for general non-linear problems. The herein used required linear solver is MUMPS:
MUltifrontal Massively Parallel sparse direct Solver [71, 72] with
optional package METIS [73]. Being a derivative based optimizer, Ipopt requires the Jaco-
bian matrix and Hessian tensor of the constraints (and objective) to construct the Lagrangian
of the problem. Here, the derivatives are computed algorithmically via dco/c++ [74] which
requires only the adaption of some boilerplate code. Besides being much more compu-
tationally efficient than approximating the derivatives using finite differences, algorithmic
differentiation provides exact derivatives (up to machine precision).

This is especially relevant in this case, since the stability constraints are very sensitive with
respect to the pseudo-extrema, i.e., small deviations in x can make the difference between
a stable and an unstable method. This was observed when Matlab’s function for general
nonlinear optimization,fmincon failed in finding the optimal solution. Therein, finite differ-
ence approximations of Jacobians and Hessians are used and consequently, the optimization
is much less reliable than Ipopt combined with dco/c++.

In terms of complexity the proposed algorithms scales linearly in the number of constraints
(M̃ stability constraints at eigenvalues and p−1order constraints) andquadratic in the number
of unknowns (pseudo-extrema with distinct real part) N .

It should be mentioned that Ipopt provides many options which can significantly speed
up the optimization/feasible point search. Most notably, one should
specify grad_f_constant yes which ensures that the gradient of the objective is
only evaluated once and the Hessian not at all. An option for a constant objective func-
tion as it is the case for the feasibility problems is not supported, but can actually be
implemented by changing only two lines of the Ipopt source code [75]. Furthermore,
for many problems the Hessian of the Lagrangian may be successfully approximated
using the Limited-memory BFGS method [76] which is activated by specifying the option
hessian_approximation limited-memory, resulting in significant speed up. In
terms of tolerances, we demand satisfaction of the constraints to machine precision by setting
constr_viol_tol 1e-16.

Furthermore, in most cases it suffices to supply only the convex hull and a small subset
of the eigenvalues instead of the entire spectrum. This can be seen from e.g. Fig. 4a, d

where the stability constraint at the “interior” eigenvalues is usually satisfied without
being explicitly enforced. One has to ensure, however, that there is always a larger number of
constraints than pseudo-extrema to prevent degenerate cases where the roots of the stability
polynomial are placed exactly on the eigenvalues, thus allowing in principle infinitely large
timesteps.

The source code is made publicly available on GitHub [77].
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Table 1 Ratio of optimal timestep �tS,3 for circular spectra obtained from different optimization approaches

�t/S
S 20 30 40 50 60 70 80

Coeff.-based [36] 0.881 0.890 0.939 0.941 0.952 0.965 0.958

Algorithm 1 0.809 0.901 0.914 0.951 0.959 0.935 0.969

6 Optimal Stability Polynomials for Strictly Convex Spectra

6.1 Comparison to Coefficient-Based Approach

Before coming to applications of Algorithm 1 to spectra of practical semidiscretizations, we
seek to compare the herein developed approach to results obtained by applying the method
developed in [36]. For this, we consider the problem of maximum disk inclusion, i.e., finding
a stability polynomial such that the radius �t of the disk

D�t = {z : |1 + z/�t | ≤ 1} (6.1)

is contained in the region of absolute stability S. In particular, we construct third-order
accurate stability polynomials PDisk

S,3 with Algorithm 1 and compare the maximum possi-
ble timestep of this approach to the timestep obtained when applying the coefficient-based
approach from [36]. Using the basis recommended in [36] we construct stability polynomials
and corresponding optimal timesteps for S = 20, 30, . . . , 80. The timestep obtained in this
way is then used twofold: First, we use it as the fixed, supplied timestep for the feasibility
problems (5.4), (5.5) to check if Algorithm 1 is able to find a stability polynomial which is
also A-stable for the supplied spectrum. This is indeed for every considered S the case, the
corresponding pseudo-extrema are provided in the supplementary material.

Next, we test also the optimization problems (5.1), (5.3) whether they report a similar
optimal timestep. Here, we supply the expected timestep based on �t20,3, cf. (4.1) instead
of the optimal timestep found using the coefficient-based approach. Table 1 compares the
ratio �t/S for the coefficient-based approach to the one corresponding to the obtained by
applying Algorithm 1. For all considered values of S the ratios are quite similar and seem to
approach a constant value, which is in accordance with the asymptotically linear scaling of
the optimal timestep Sect. 4.3.

6.2 Applications

Here, we present many-stage optimal stability polynomials corresponding to first and second
order for the spectra shown in Fig. 2. For each spectrum, we compute �t16,p and P16,p(z)
using the approach developed in [36]. Equipped with the optimal timestep, we supply the
expected optimal timestep according to (4.1) to the feasibility problems (5.4), (5.5). In par-
ticular, we consider the constructed polynomial as optimal when the linear scaling of the
maximum timestep is realized, which is the case for all examples mentioned in this section.
For every spectrum, we start with a moderate number of stages (26 − 32) and then double
the number of stages to utilize the equal arc length property for even spectra discussed in
Sect. 4.5.
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Table 2 Runtimes of feasibility problems for different degrees constrained to spectrum of Burgers equation

t[s]
Stages S 1st Order 2nd Order 3rd Order

16 (Algorithm from [36]) 15.531 15.346 15.076

32 (Algorithm 1, lines 2-16) 0.478 0.879 1.183

64 (Algorithm 1, lines 2-16) 1.551 2.869 2.276

128 (Algorithm 1, lines 2-16) 9.383 8.845 8.549

Cumulative t 26.942 27.939 27.084

The times are obtained on a Dell Precision 5570 laptop equipped with an Intel i7-12800H

The computed pseudo-extrema alongside the constraining list of eigenvalues are provided
as supplementary material to this manuscript. Optimal stability polynomials are constructed
for:

1. Burgers’ Equation: We find the optimal stability polynomials of first, second, and third
order with degrees 32, 64, 128 constrained by M̃ = 129 eigenvalues. In particular, we
make use of the property discussed in Sect. 4.5 by conducting the optimization sequen-
tially, i.e., first performing the optimization for S = 32, re-using this results for the
initialization of the S = 64 polynomial and in turn using this results for the final S = 128
polynomial. The pseudo-extrema and contours of the optimal P64,2(z) stability polyno-
mial are displayed in Fig. 4a.
To highlight the efficiency of our approach, we provide the Ipopt runtimes for the
feasibility problem runs in Table 2. We emphasize that we do not intend to compare the
runtimes of Algorithm 1 to the optimization problem from [36]—instead, we would like
to stress that equipped with an optimal timestep for a low degree polynomial, we can
quickly compute the higher degree optimal ones.

2. 1D Shallow Water equations: Here we optimize polynomials of degrees 30, 60, and 120
constrained by M̃ = 117 eigenvalues, again in a sequential manner. The pseudo-extrema
and contours of the optimal P60,2(z) stability polynomial are displayed in Fig. 4b. The
CPU times are very similar to Burgers’ equation with total 30.687s for the computation
of the first order accurate stability polynomial and 28.726s for the second order case.

3. 1D Ideal compressible magnetohydrodynamics (MHD): Polynomials of degrees 28, 56,
and 112 are found satisfying the M̃ = 252 stability constraints due to the eigenvalues. The
pseudo-extrema and contours of the optimal P56,2(z) stability polynomial are displayed in
Fig. 4c. The generation of the 112 degree stability polynomial takes 94.433s and 98.377s
for first and second order case, respectively.

4. 2D Compressible Euler equations: To conclude this result section, we generate stability
polynomials with degrees 26, 52, and 104 for a reduced set of M̃ = 717 eigenvalue
constraints. The pseudo-extrema and contours of the optimal P52,2(z) stability polynomial
are displayed in Fig. 4d. Due to the quadratic scaling in the number of constraints we have
significantly longer runtimes then in the previous cases, with total 2.456 min for the first
order and 8.55 min for the second order case. Note that these runtimes can be significantly
reduced if only a small portion of the eigenvalues alongside the convex hull thereof is
supplied as constraints.
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Fig. 4 Collection of strictly convex spectra of nonlinear hyperbolic PDEs and optimized pseudo-extrema. The
spectra are scaled with the optimal timestep �t16,2 in each case

7 Non-Convex Spectra

While a rich set of spatial discretization, equation, boundary and initial condition combina-
tions leads to strictly convex spectra, especially in one spatial dimension, at least equally
many cases with non-convex spectra are observed. In this section, we propose two possible
treatments thereof.

First, alpha shapes [78, 79] are proposed as a potentially accurate, yet more expensive
candidate which come with an unknown hyperparameter. Second, we follow the previous
sections and use a convex hull approach also for non-convex spectra.

7.1 Alpha Shapes

Alpha shapes [78, 79] provide a rigorous way of constructing a point enclosing shape that
is potentially closer to the point set than the convex hull. Alpha shapes are parametrized by
the real scalar α parameter that defines how close the alpha shape is shrinked to the points.
For α > 0, the construction of alpha shapes can intuitively described by rolling a disk with
radius 1/α around the points and drawing a line between two points of the set whenever they
are on the edge of the disk and no points are in the interior of the disk. For α = 0, the disk
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Fig. 5 Approximation of the optimal stability boundary by the contour of an alpha shape. The spectrum σ is
obtained from a DGSEM discretization of the 2D linear advection equation with velocities ax = 0.5, ay =
−0.1 on the periodic domain � = [−1, 1]2 discretized by a 6 × 6 mesh with local polynomials of degree 3
and Rusanov/Local Lax-Friedrichs flux

has infinite radius, i.e., degenerates to a straight line and the resulting shape is equivalent
to the convex hull which is constructed by tilting the straight line around the points. While
alpha shapes provide potentially a very accurate ansatz for the stability boundary, cf. Fig. 5
they come with two main drawbacks.

First, alpha shapes introduce a hyperparameter whose choice is not clear. While in general
higher degree polynomials follow the stability boundary more closely, i.e., correspond to
larger alpha values the best choice is highly dependent on the individual spectra. Furthermore,
for high α corresponding to small radii there is always the danger of obtaining a disjoint alpha
shape which is not useful in this context. Both of these issues can be in principle addressed
through manual inspection, which is clearly not attractive.

Secondly, and more severely, alpha shapes provide in general only a spectrum enclosing
curve γα(τ) : R → C, i.e., no spectrum enclosing function. This implies that for both the
imaginary part (cf. (4.7)) and real part

IRe
(
τ ; σα

S,p

)
= Re

(
μ

( j)
S,p

)
+

Re
(
μ

( j+1)
S,p

)
− Re

(
μ

( j)
S,p

)

τ
( j+1)
S,p − τ

( j)
S,p

(
τ − τ

( j)
S,p

)
,

τ
( j)
S,p ≤ τ < τ

( j+1)
S,p

(7.1)

of the pseudo-extrema interpolation has to be performed. Here, μ( j) ∈ σα are the eigenval-
ues selected as the upper part of the alpha shape with corresponding arc length parameter
0 ≤ τ ( j) ≤ 1. This results in doubled computational costs and an overall more difficult
optimization task.

Nevertheless, we stress that the general idea of distributing the pseudo-extrema with equal
arc length, i.e., equal distances �τ = τ ( j+1) − τ ( j), ∀ j is still applicable and Algorithm 1
can be used under the appropriate changes.

7.2 Convex Hull Ansatz

By constructing the convex hull for non-convex spectra the framework prepared in the pre-
vious sections is recovered. Precisely, even if the hull of spectrum itself may be nonconvex,
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the convex hull is constructed and used as the ansatz for the initial placement of the pseudo-
extrema. Using the convex hull difficulties with additional hyperparameters or the danger
of disjoint alpha shapes are ruled out. This comes with the drawback that we can no longer
expect to actually realize the maximum possible optimal timestep according to (4.1). Con-
sequently, one has to indeed perform the optimization problems (5.1), (5.3) as the feasibility
problems with fixed timestep will fail. Depending on the spectrum there are a priori no guar-
antees how efficient this approach will be. In practice, however, we find for many real-world
spectra excellent results, as illustrated in the next section.

8 Optimal Stability Polynomials for Nonconvex Spectra

Here, we present results for two relevant, exemplary nonconvex spectra for which we use the
convex hull-based approach.

1. Burgers’ Equation with Riemannian initial data u0(x) =
{
1.5 x < 0.5

0.5 x ≥ 0
. As before, we

discretize� = [0, 1]with 64 cells and use Godunov’s flux. At x = 0 we fix u(t, 0) = 1.5
while at x = 1 an outflow boundary is used. The solution is reconstructed using fourth
order local polynomials. The corresponding spectrum is displayed in Fig. 6a alongside its
convex hull. The convex hull is in most parts extremely close the spectrum and we thus
expect maximal timesteps very close to the optimal ones according to the linear scaling
(4.1). Indeed, for 30, 60, and 120 degree polynomials we can realize the optimal timestep.
As for the convex spectra, we display the S = 60 case in Fig. 6a.

2. 2D compressible Euler equations: Isentropic vortex advection. The advection of an isen-
tropic vortex is a classic, fully nonlinear testcase with known analytical solution [59, 80].
In terms of the physical parameters we use the same setup as in [39–41] which is spelled
out in Sect. 10.2.2. The numerical scheme is composed of Rusanov/Local Lax-Friedrichs
flux, second order local polynomials and 8 cells in each direction. This little resolution is
required to execute the eigenvalue decomposition in reasonable time. The corresponding
spectrum is shown in Fig. 6b alongside its convex hull. Similar to Burgers’ Equation, the
spectrum is in most parts reasonably close to the spectrum. For S = 28 we can realize
about 97.9% of the theoretically optimal timestep and for S = 56, S = 112 indeed the
optimal timestep according to the linear timestep scaling (4.1).

9 Construction of Many-Stage Runge–Kutta Methods

As discussed before, the primary use case of the high degree stability polynomials is the pos-
sibility to construct many-stage methods for e.g. partitioned multirate Runge–Kutta methods
such as the P-ERK [39, 40, 45] schemes.Nevertheless, we seek to demonstrate the capabilities
of the optimized stability polynomials by constructingmany-stage standalonemethods. Here,
we limit ourselves to second order accurate methods for which the linear order constraints
(2.4) imply second order convergence even in the nonlinear case, without any additional
constraints [6, 46]. Furthermore, we leave the construction of SSP methods for future work
and focus here on hyperbolic PDEs with smooth solutions.
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Fig. 6 Collection of nonconvex convex spectra of nonlinear hyperbolic PDEs and corresponding convex hull.
The spectra are scaled with the optimal timesteps �tS,2

Fig. 7 Collection of strictly convex spectra of nonlinear hyperbolic PDEs and optimized pseudo-extrema. The
spectra are scaled with the optimal timestep �t16,2 in each case

Due to the factorized form of the stability polynomial one can directly read-off a possible
choice of the intermediate steps:

PS(z) = 1 + z P̃S−1 = 1 + z

⎛

⎜⎜⎜⎜
⎝

SReal∏

j=1

(
1 − z

r̃ j

)

︸ ︷︷ ︸
Forward Euler

·
SComplex/2∏

j=1

(
1 − z

r̃ j

)(

1 − z

r̃�
j

)

︸ ︷︷ ︸
Two-Stage Submethod

⎞

⎟⎟⎟⎟
⎠

︸ ︷︷ ︸
Forward Euler

(9.1)

Note that we group the complex-conjugated pseudo-extrema to avoid complex-valued
timesteps. We focus on real timesteps since they allow easy implementation into existing
codes and spare us from technical complications. Readers interested in complex-valued
timesteps are pointed to [81] and references therein.

123



Journal of Scientific Computing (2024) 99 :28 Page 23 of 40 28

Being equipped with a stability polynomial, one has now in principle infinitely many
possible choices for the actual Runge–Kutta method. It is well-known that internal stability,
i.e., the propagation of round-off errors is a relevant concern for many-stage explicit methods
[56, 57, 82, 83]. This issue arises also here and seems to be the major difficulty in realizing
the maximum timestep.

Given the factorized form of the stability polynomial it is natural to construct Runge–Kutta
methods with a sequential structure. Here, we specify the methods in modified Shu-Osher
form [82, 84]

Y k := vkUn +
k−1∑

l=1

(
αk,lY l + �tβk,lF(Y l)

)
, k = 1, . . . , S + 1 (9.2a)

Un+1 = Y S+1 (9.2b)

and set v1 = 1, vk = 0, k > 1 which implies Y1 = Un . Following [82] we introduce the
notation

α1:S |i, j := αi, j , β1:S |i, j := βi, j (9.3)

withα1:S, β1:S ∈ R
S×S resembling the coefficients of the intermediate stages. The parameters

of the final stage are denoted via αS+1,βS+1 ∈ R
1×S , i.e.,

αS+1 := (
αS+1,1 . . . αS+1,S

)
, βS+1 := (

βS+1,1 . . . βS+1,S
)

(9.4)

which are in the present case conveniently chosen as

αS+1 = (
1 . . . 0

)
, βS+1 = (

0 . . . 0 z
)

(9.5)

due to the particular representation of the stability polynomial (9.1).
The two-stage submethod (cf. (9.1)) corresponding to pseudo-extrema r̃ j , r̃�

j are naturally
represented via the low-storage scheme

Y k = Y k−1 + β
( j)
k,k−1F (Y k−1) (9.6a)

Y k+1 = α
( j)
k+1,k−1Y k−1 + α

( j)
k+1,kY k + �t

(
β

( j)
k+1,k−1F(Uk−1) + β

( j)
k+1,kF(Y k)

)
. (9.6b)

The Forward Euler steps are readily reflected by α
( j)
k,k−1 = 1, β( j)

k,k−1 = −1
r̃ j
. To meet the

stability polynomial (9.1) we have for the two-stage methods the constraints

−2Re(̃r j )

|̃r j |2
!= α

( j)
k+1,kβ

( j)
k,k−1 + β

( j)
k+1,k−1 + β

( j)
k+1,k (9.7a)

1

|̃r j |2
!= β

( j)
k,k−1β

( j)
k+1,k (9.7b)

besides the usual requirement for consistency
∑k−1

l=0 αk,l = 1 [60]. The timestamps/abscissae
are computed via c := (I −α1:S)−1β1:S1 [82] where 1 denotes a column vector of ones. The
ordering of the two-stage submethods, i.e., the relation of j to k is determined based on the
accumulated β values

∥∥∥β( j)
k

∥∥∥
1

=
∥∥∥
(
β

( j)
k,k−1, β

( j)
k+1,k−1, β

( j)
k+1,k

)∥∥∥
1
. (9.8)

The methods are then ordered such that
∥∥∥β( j)

k

∥∥∥
1
increases with k.
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9.1 Internal Stability

For the discussion of internal stability we follow the main results derived in [82]. Under the
influence of round-off errors ek the modified Shu-Osher form (9.2a) reads

Ỹ k := vk Ũn +
k−1∑

l=1

(
α j,l Ỹ l + �tβk,lF(Ỹ l)

)
+ ek, k = 1, . . . , S + 1 (9.9)

where we denote the perturbed, round-off error bearing stages by Ỹ k . In [82] it was shown
that the defect from actually computed, perturbed solution Ũn to the true solution U(tn) can
for linear ordinary differential equations (ODEs) be estimated as

∥
∥Ũn+1 − U(tn+1)

∥
∥ ≤ ∥

∥Ũn − U(tn)
∥
∥+

S+1∑

k=1

∥
∥Q j (z)

∥
∥ ‖ek‖ + O(�t p+1). (9.10)

In addition to the usual truncation error O(�t p+1) we have the amplification of round-
off errors

∑
k ‖Qk(z)‖‖ek‖. Internal stability becomes a concern when both are of similar

magnitude [82].
In the estimate of the error of the perturbed iterates (9.10) Q j (z) denote the internal

stability polynomials [56, 82] which are for a method in Shu-Osher form computed as [82]

Q(z;α, β) := (αS+1 + zβS+1) (I − α1:S − zβ1:S)−1 . (9.11)

For explicit methods there is no initial round-off error e1 [82] and it suffices to consider
the internal stability polynomials starting from second stage. To estimate the potential of
round-off error amplification it is customary to investigate

M̃(α, β) := max
z∈S

S+1∑

k=2

|Qk(z;α, β)| (9.12)

which is a more precise variant of the maximum internal amplification factor proposed in
[82]. For standard double precision floating point datatypes we expect the round-off errors
to be ε = O (10−15

)
at most, thus we expect the overall internal errors to be of order

M̃ · 10−15. This can then be compared to O(�t p+1) yielding an approximate criterion
to estimate the influence of round-off errors. Both metrics are reported for the examples
considered in Sect. 10.

In principle, one could now set out to minimize M̃ over α, β under the constraints (9.7).
Given that even for methods with two intermediate stages (9.6) we have 5

2 SComplex + SReal
free optimization variables and one is minimizing not only one, but S polynomials at M
eigenvalues this is a significantly harder optimization problem than the original one (2.7). In
addition, there are no immediate properties of the internal stability polynomials Q j available,
rendering this problem practically infeasible. As an alternative, we propose a significantly
cheaper heuristically motivated approach in the next section.
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Table 3 Internal error
amplification M̃ (9.12) for
different method construction
paradigms

βk,l ∈ R
+
0 βk,l ∈ R

No Grouping 2.39 · 1022 2.19 · 1022
Grouping 7.54 · 1016 1.63 · 109

9.2 Internal Stability Optimization: Heuristic Approach

We begin by recalling that α1:S, β1:S are for explicit methods strictly lower triangular, i.e.,
nilpotent matrices with index S. Consequently, the identity

(I − α1:S − zβ1:S)−1 =
S−1∑

k=0

(α1:S + zβ1:S)k (9.13)

holds and allows an alternative to the inversion of the typically ill-conditioned matrix.
We make now the following heuristic argument: For αk,l ∈ [0, 1] and |z| ∼ O(100) for
the many-stage methods we expect a significantly higher sensitivity of M̃ with respect
to βk,l than αk,l . In order to minimize M̃ we thus minimize the accumulated βk,l values
(9.8) for each two-stage submethod individually. For these optimization problems con-
straints (9.7) satisfying local minima are easily found. Note that negative βk,l are allowed
here, which allow further reduction of M̃ due to the increased flexibility. To illustrate
this, consider the 104 degree stability polynomial optimized for the scalar advection equa-
tion (see Sect. 10.1.1) for which we construct Runge–Kutta methods with non-negative
and unconstrained βk,l . For this case, values of M for grouped and non grouped pseudo-
extrema (see next section) with non-negative and unconstrained βk,l are tabulated in Table
3.

9.3 Generalized Lebedev’s Idea

For the higher order DG spectra we observe a couple of pseudo-extrema near the imag-
inary axis with

∣∣Im(̃r j )
∣∣ � −Re(̃r j ) which can lead to βk,l � 1, which should be

avoided. Similar to Lebedev’s Idea/Realization [85, 86] we group the complex conjugated
pseudo-extrema with Re(̃r j ) > −0.5 with the pseudo-extrema of largest

∣∣Re(̃r j )
∣∣. By

staying with the two register form (9.6) we have now 13 free parameters, three linear con-
straints due to

∑ j−1
k=0 α j,k = 1 and four nonlinear constraints which are derived similar

to (9.7) by multplying out polynomials. As they are quite lengthy but readily obtained we
omit them here. As for the remaining two-stage methods, we optimize α, β to minimize∥∥∥β( j)

k

∥∥∥
1
.

The grouping of pseudo-extrema with small and large real part has a dramatic influence
on the internal stability properties. For instance, consider again the 104 degree, second order
accurate stability polynomial optimized for the scalar advection equation (see Sect. 10.1.1)
for which we construct Runge–Kutta methods with and without grouping. Values for M̃
are tabulated in Table 3 highlighting the importance of the grouping. Due to this results
all in the following constructed methods bear grouping of pseudo-extrema and may have
negative βk,l .
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9.4 Note on SSP Properties

It is natural to ask for SSP properties of Runge–Kutta schemes intended for the integration of
(nonlinear) hyperbolic systems. Furthermore, given the representation of the method in Shu-
Osher form (9.2) one can readily tell whether the method is monotonicity preserving or not.
For the methods resembling the factorized form of the stability polynomial the coefficients
of the last stage are chosen according to (9.5). Consequently, the SSP cofficient [60]

c := min
k,l

αk,l

βk,l
(9.14)

is due to αS+1,S = 0, βS+1,S = 1 always zero, regardless of the parametrization of the
intermediate stages. This implies that there exists no timestep �t > 0 such that the Runge–
Kutta method is guaranteed to be monotonicity preserving. One will also need to revisit
whether negative βk,l should be allowed as they demand special treatment for SSP methods
[60]. The construction of many-stage SSP methods is ongoing research.

10 Many-Stage Runge–Kutta Methods: Results

We present convergence studies of the many-stage Runge–Kutta methods which are con-
structed from the factorized form of the stability polynomial using the generalization of
Lebedev’s Idea and possibly negative βk,l .

10.1 Linear Problems

10.1.1 1D Advection of a Gaussian Pulse

As a first example, we consider the linear advection equation with unit transport velocity and
Gaussian initial data

ut + ux = 0, u(x, 0) = u0(x) = exp

(−x2

0.1

)
(10.1)

on � = [−5, 5] equipped with periodic boundaries. We discretize � with 512 cells and
(10.1) via the DGSEM with third order polynomials and Rusanov/Local Lax-Friedrichs flux
implemented in Trixi.jl [65–67]. Using Trixi.jlwe can generate the Jacobian using
algorithmic differentiation and compute the corresponding spectrum. For this spectrum we
compute the reference timestep �16,3 ≈ 3.53 · 10−2 using the algorithm proposed in [36]
which is then supplied to the feasibility problems (5.4) and (5.5).

We compute ten passes through the domain corresponding to final time t f = 100 with
26, 52, and 104 stage, third order accurate methods using the Runge–Kutta parametrization
with negative β and generalized Lebedev’s idea. As both the timestep as the computational
cost (due to the low-storage formulation of the Runge–Kutta method) scale linearly with
the number of stages S, we obtain constant runtimes for this examples. The used timestep
�t , number of taken timesteps Nt , internal amplification factors M̃ and the order of the
truncation error �t4 are reported in Table 4. The third order convergence in L∞-norm

e∞
S :=

∥∥∥u(h,S)(t f , x) − u(t f , x)
∥∥∥∞ (10.2)
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Fig. 8 Third order convergence in L∞, L1 for methods with 26, 52, and 104 stages optimized for the 1D
scalar advection equation (10.1)

Table 4 Results for the
simulation of the 1D scalar
advection equation (10.1) with
three many-stage optimized
methods constructed using
Algorithm 1

S �t Nt M̃ · 10−15 �t4

26 5.72 · 10−2 1748 3.59 · 10−12 1.07 · 10−5

52 1.14 · 10−1 874 1.46 · 10−9 1.72 · 10−4

104 2.29 · 10−1 437 5.39 · 10−5 2.75 · 10−3

The timestep�t is kept constant over the Nt timesteps, with the possible
exemption of the last timestep which may be reduced in order to match
the desired final time t f = 100

is observed until spatial discretization errors are becoming relevant, cf. Fig. 8a. In weighted
L1-norm

e1S := 1

|�|
∥∥∥u(h,S)(t f , x) − u(t f , x)

∥∥∥
1

(10.3)

third order convergence is observed except for the smallest timestep, as displayed in
Fig. 8b. We observe that the error constant increases with stage number, which seems to be
a general phenomenon for the herein constructed methods.

10.1.2 2D Linearized Euler Equations

The linearized Euler equations with source term read in two spatial dimensions, primitive
variables

∂t

⎛

⎜⎜
⎝

ρ′
u′
v′
p′

⎞

⎟⎟
⎠+ ∂x

⎛

⎜⎜
⎝

ρ̄u′ + ūρ′

ūu′ + p′
ρ̄

ūv′
ū p′ + c2ρ̄u′

⎞

⎟⎟
⎠+ ∂y

⎛

⎜⎜
⎝

ρ̄v′ + v̄ρ′
v̄u′

v̄v′ + p′
ρ̄

v̄ p′ + c2ρ̄v′

⎞

⎟⎟
⎠ = s (10.4)

where (ρ̄, ū, v̄, c) = (1, 1, 1, 1) denote the base state. By the method of manufactured
solutions [87, 88] we set the solution to

⎛

⎜⎜
⎝

ρ′
u′
v′
p′

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

− cos(2π t) [sin(2πx) − sin(2π y)]
sin(2π t) cos(2πx)
sin(2π t) cos(2π y)

− cos(2π t) [sin(2πx) − sin(2π y)]

⎞

⎟⎟
⎠ (10.5)
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Table 5 Results for the
simulation of the 2D linearized
Euler equations (10.4) with three
many-stage optimized methods
constructed using Algorithm 1

S �t CFL Nt M̃ · 10−15 �t3

32 1.13 · 10−2 1.0 928 1.91 · 10−11 1.45 · 10−6

64 2.17 · 10−2 0.96 484 6.30 · 10−9 1.03 · 10−5

128 3.67 · 10−2 0.81 287 5.63 · 10−5 4.94 · 10−5

The timestep�t is kept constant over the Nt timesteps, with the possible
exemption of the last timestep which may be reduced in order to match
the desired final time t f = 10.5

with corresponding source terms

s(t, x, y) = 2π

⎛

⎜
⎜
⎝

− cos(2π t) [cos(2πx) − cos(2π y)]
sin(2π t) sin(2πx)
sin(2π t) sin(2π y)

− cos(2π t) [cos(2πx) − cos(2π y)]

⎞

⎟
⎟
⎠ . (10.6)

The linearized Euler equations (10.4) are discretized on � = [0, 1]2 with 64 elements
in each direction. We employ the DGSEM with fourth order local polynomials and Harten-
Lax-Van Leer (HLL) [89] flux on a periodic domain. To leverage the computational costs
of the eigenvalue decomposition, we compute the spectrum for a discretization with 8 cells
in each coordinate direction. For the resulting set of eigenvalues we compute the reference
timestep �t16,2 ≈ 4.53 · 10−2 using the algorithm proposed in [36] which is then supplied
to the feasibility problems (5.4) and (5.5).

For the actual simulation on the 8 times finer mesh we reduce the obtained timesteps
accordingly. A convergence study is carried out in terms of the error in density fluctuation
ρ at final time t f = 10.5 and displayed in Fig. 9. We use t f = 10.5 since we observed for
t f = 10 spurious convergence of higher than second order, which is a peculiarity of the
employed testcase rather than a general phenomenon. Again, second order convergence is
observed in L∞ for all timesteps. Here, we construct polynomials of degrees 32, 64, and
128 and the corresponding methods with parametrization using potentially negative β and
the generalized Lebedev’s idea. Since the right-hand-side of the ODE system (1.1b) depends
also explicitly on time this example also showcases convergence of the many-stage methods
for non-homogeneous problems.

In contrast to the previous example, we observe that the theoretically possible maximum
stable timestep has to be reduced by factor CFL (see Table 5) for a stable simulation which
we attribute to issues with internal stability.

Consider for instance the 128 stagemethodwith CFL = 1.0 (corresponding to an unstable
simulation) with M̃ · 10−15 ≈ 7.60 · 10−2 while �t3 ≈ 9.29 · 10−4. As discussed in [82],
we observe in this case stability problems when error terms due to round off are of larger
magnitude than the truncation error.

For the S = 64 stability polynomial the reduction in optimal timestep is a consequence
of the optimization of the stability polynomials for the reduced spectrum, rather than related
to internal stability.

10.2 Nonlinear Problems

10.2.1 Burgers’ Equation with Source Term

We consider Burgers’ Equation as the classic prototype equation for nonlinear hyperbolic
PDEs. With source term s(t, x), Burgers’ Equation reads
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Fig. 9 Second order convergence
of the optimized methods with
32, 64, and 128 stages optimized
for the 2D linearized Euler
equations. For each method, we
reduce from the largest stable
timestep CFL · �tS,2

∂t u + 1

2
∂xu

2 = s. (10.7)

The presence of the source term allows a convenient construction of a continuously differ-
entiable solution u(t, x) ∈ C1 via the method of manufactured solutions. Here, the solution
is set to

u(t, x) := 2 + sin
(
2π(x − t)

)
(10.8)

which corresponds to a simple advection of the initial condition, although this time through
a nonlinear partial differential equation (PDE). Note that u(t, x) is periodic on [0, 1] for all
times t . The source term is then computed from the governing PDE (10.7) as

s(t, x) := 2π cos
(
2π(x − t)

)(
1 + sin

(
2π(x − t)

))
. (10.9)

The spatial discretization is realized using the DGSEM with third order polynomials on a
256 element mesh �(h) with periodic boundaries and Godunov flux [90].

Despite being effectively also only the simple advection of the initial data u0(x), it is now
observed that the effectively stable timestep cannot be kept constant as in the case of the
advection equation discussed previously. This is attributed to the fact that the perturbations
e j do not only corrupt the stage updates (cf. (9.9)), but thereby also change the point of
evaluation of the Jacobian and thus the spectrum. This can have dramatic effects since the
stability polynomial is only optimized for the spectrum corresponding to the unperturbed
solution. This is further amplified by the lack of the SSP property of the constructed schemes.
Thus, as the time integration schemes used here have no oscillation-surpressing guarantees,
these do arise and further perturb the spectrum. To measure this, we compute the increase of
the total variation

eTV :=
∥∥∥u(h)

(
t f
)∥∥∥

TV
−
∥∥∥u(h) (t0)

∥∥∥
TV

(10.10)

where the total variation semi-norm is defined as usual

‖u(t)‖TV :=
∑

j

∣∣u j+1(t) − u j (t)
∣∣ . (10.11)

Formethodswith S = 28, 56, and 112 stageswe observe indeed increase in total variation,
cf. Table 6. Here, the significant decrease of the optimal timestep even for methods with
moderate stages is not expected to follow from issues with internal stability. Although the
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Table 6 Results for the simulation of Burgers equation (10.7) with three many-stage optimized methods
constructed using Algorithm 1

S �t CFL Nt M̃ · 10−15 �t3 eTV

28 3.67 · 10−3 0.72 1363 1.41 · 10−12 4.95 · 10−8 1.30 · 10−2

56 7.04 · 10−3 0.69 711 1.39 · 10−10 3.48 · 10−7 5.18 · 10−2

112 3.99 · 10−3 0.28 876 4.79 · 10−10 1.86 · 10−7 6.09 · 10−3

The timestep�t is kept constant over the Nt timesteps, with the possible exemption of the last timestep which
may be reduced in order to match the desired final time t f = 5

Fig. 10 Second order convergence in L∞, L1 for methods optimized for Burgers’ equation with source (10.7)

estimate for the perturbed approximation (9.10) is only valid for linear systems, we consider
it also here as a crude estimate for the influence of internal stability. As note in table Table 6
themaximumpossible timestep�t28,2 has to be decreased to 72%of its theoretically possible
value. As M̃ · 10−15 is still 4 orders of magnitude smaller than �t3 we do not expect the
round off errors to limit the stability.

Instead, we believe that the lack of the SSP property causes the limitations in timestep.
To provide reason for this, we consider SSP the third order accurate methods with variable
number of stages Sn = n2 proposed in [91]. For the S = 152 = 225 method we have
M̃ · 10−15 ≈ 2.13 · 10−13 and �t4 ≈ 5.42 · 10−8, i.e., similar values to the 28 stage method
constructed here. In that case, however, we have eTV ≡ 0, as expected for the TVD time
integration when applied to a smooth solution. For the schemes constructed here the spurious
oscillations can even produce amplifying modes in the spectrum of the semidiscretization,
i.e.,move the system into an unphysical, energy-generating state. In that case, the true solution
itself is unstable - this is a qualitatively different scenario to the lack of absolute stability
where the numerical scheme is unstable for a certain eigenvalue. For S = 28 and �t from
Table 6 we have for instance at t = 0.5 an eigenvalue with Re (λ) = 8.57 ·10−12 which bears
the possibility to cause the whole computation to diverge. This effect becomes especially
severe for the 112 stage method where the CFL number has to be dramatically decreased for
a stable simulation.

Nevertheless, all methods achieve second order convergence in L∞-norm once the oscil-
lations vanished which is the case for�t ≤ 1

4�tS,2, cf. Fig. 10a. In weighted L1-norm (10.3)
second order convergence is observed for every timestep as displayed in Fig. 10b.
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10.2.2 2D Compressible Euler Equations: Isentropic Vortex Advection

To conclude the examples, we consider the 2D compressible Euler equations

∂tρ + ∇ ·
(

ρvx
ρvy

)
= 0 (10.12a)

∂t

(
ρvx
ρvy

)
+ ∇ ·

(
ρv2x ρvxvy

ρvyvx ρv2y

)
+ ∇ p = 0 (10.12b)

∂t E + ∇ ·
(

(E + p)vx
(E + p)vy

)
= 0 (10.12c)

with total energy E = E(ρ, v, p) = ρ
(

p
γ−1 + 1

2

(
v2x + v2y

))
. As a testcase we consider the

advection of an isentropic vortex [80, 92]. Here, we use similar parameters to the ones used
in [39, 40]. In particular, the base state is set to

ρ∞ = 1, v∞ =
(
1
1

)
, p∞ := ρ

γ∞
γMa2∞

(10.13)

with Ma∞ = 0.4. To localize the effect of the vortex centered at c(t, x, y) :=
(
x
y

)
− v∞t

the perturbations are weighted with the Gaussian g(t, x, y) := exp

(
1−‖c(t,x,y)‖22

2R2

)
where

R = 1.5. While the size of the vortex is governed by R, its intensity/strength is quantified
by I which is set here to 13.5 following [39, 40]. The density is given by

ρ(t, x, y) = ρ∞
(
1 − I 2M2(γ − 1)g2(t, x, y)

8π2

) 1
γ−1

(10.14)

and the corresponding perturbed velocities are

v(t, x, y) = v∞ + Ig(t, x, y)

2πR
c(t, x, y) (10.15)

while the pressure is computed analogous to the base pressure (10.13) as

p(t, x, y) = ργ (t, x, y)

γMa2∞
. (10.16)

The advection of the vortex is simulated on � = [−10, 10]2 discretized with 64 × 64
elements, sixth order local polynomials, and HLLC Flux [93]. Final time t f is set to 20
which corresponds to a full traversion of the vortex through the periodic domain. For this
setup 30, 60, and 120 degree methods of second order accuracy are constructed. As for the
previous example, we observe a reduction of the theoretically stable timestep as given in
Table 7 which we attribute again to the lack of SSP guarantees, which cause the rise of
oscillations that move the system into an amplifying state.

For the L∞ error in density ‖ρ(h)(t f , x, y) − ρ(t f , x, y)‖∞ second order convergence is
observed, until spatial discretization errors start to become significant, cf. Fig. 11.
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Table 7 Results for the
simulation of the 2D
compressible Euler equations
(10.12) with three many-stage
optimized methods constructed
using Algorithm 1

S �t CFL Nt M̃ · 10−15 �t3

30 5.92 · 10−2 0.79 338 1.80 · 10−12 2.08 · 10−4

60 9.75 · 10−2 0.65 206 3.21 · 10−11 9.26 · 10−4

120 1.20 · 10−1 0.40 167 6.50 · 10−10 1.72 · 10−3

The timestep�t is kept constant over the Nt timesteps, with the possible
exemption of the last timestep which may be reduced in order to match
the desired final time t f = 20

Fig. 11 Second order
convergence of the optimized
methods with 30, 60, and 120
stages optimized for the 2D
compressible Euler equations.
For each method, we reduce from
the largest stable timestep
CFL · �tS,2

11 Conclusions

In this work, a novel optimization approach for the generation of optimal stability polyno-
mials for spectra of hyperbolic PDEs is devised. Parametrizing the stability polynomials in
terms of the herein introduced pseudo-extrema offers both a numerically stable and readily
interpretable representation. The optimization approach is motivated by examining the prop-
erties of the pseudo-extrema for the proven optimal stability polynomials of first and second
order for disks. These findings are directly extended to strictly convex spectra for which an
optimization procedure is developed in detail. For non-convex spectra, possible remedies
are discussed and optimal stability polynomials for both convex and nonconvex spectra are
presented. Stability polynomials with degrees larger than 100 are constructed for a range of
classical hyperbolic PDEs that match the linear consistency requirements up to order three.

Equipped with high degree stability polynomials in factorized form a possible choice for
the actual Runge–Kutta methods is proposed. The construction of the numerical schemes
centers around minimizing the propagation and amplification of round-off errors, which can
become a concern for many-stage methods. Here, methods of second order are constructed
which match their designed order of accuracy for both linear and nonlinear problems. For lin-
ear problems, only internal stability might limit the theoretically possible maximum timestep
while for nonlinear problems the lack of the SSP property is much more severe which spoils
the effectiveness of the very high-stage methods.

As mentioned earlier, the application of individual optimized many-stage methods do
not provide efficiency gains compared to medium- or few-stage methods as both the stable
timestep and the computational cost scale linearly in the number of stages. In fact, the main
motivation for the construction of such high degree stability polynomials are multiscale
problems where a composition of stabilized Runge–Kutta methods is applied to integrate the
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system more efficiently. In this scenario, one would adjust the number of stages according
to the characteristic speeds in a part of the domain with the aim to keep the overall timestep
constant. For this case, the relatively robust medium-stage methods with up to, say, 32 stages
are a promising candidate to be included in the family of Runge–Kutta methods.
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Appendix A. Pseudo-Extrema of Shifted Chebyshev Polynomials

Consider the shifted Chebyshev polynomials of first kind

TS
(
1 + z/S2

) = cos
(
S arccos

(
1 + z/S2

) )
(A.1)

providing the optimal first order stability polynomial for parabolic spectra [2, 3, 11]. It is
well-known that the S+1 extrema of the shifted Chebyshev polynomials are on the [−2S2, 0]
interval given by

x j := S2
(
cos

(
jπ

S

)
− 1

)
, j = 0, . . . , S (A.2)

where TS
(
1 + x j/S2

)
attains either +1 or −1. In particular, (A.2) includes the S− 1 critical

points corresponding to j = 1, . . . , S − 1 besides the extrema at the ends of the domain
which correspond to j = 0 (right end) and j = S (left end).

We can rewrite the stability polynomial according to (2.10) as

P̃S−1(z; r̃) = PS,1(z; r̃) − 1

z
(A.3)

and seek out to determine the pseudo-extrema r̃ , i.e., the roots of P̃S−1. Apart from z = 0
the roots of P̃S−1 are given by the roots of the nominator, i.e.,

PS,1(z; r̃) − 1 = 0. (A.4)
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For even degree S, S/2 + 1 roots of (A.4) are given by the Chebyshev extreme points
where TS

(
1 + x j/S2

)
takes value +1:

r̃ j = S2
(
cos

(
2 jπ

S

)
− 1

)
, j = 0, . . . , S/2. (A.5)

We recall that the nominator of (A.3) PS,1(z)−1 = TS
(
1 + z/S2

)−1 is a polynomial of
degree S in real coefficients and thus has, by the fundamental theorem of algebra, S (possibly
complex-conjugated) roots. As we have found already S/2 + 1 real roots it follows that
the remaining S/2 − 1 roots have to be multiples of the already found ones. In particular,
we have that the “outer“ roots r̃0 = −2S2 and r̃S/2 = 0 have multiplicity one, and the
“interior“ roots r̃ j , j = 1, . . . S/2 − 1 have each multiplicity two. This follows from the
fact that the r̃ j , j = 1, . . . S/2 − 1 are a subset of the critical points of PS,1(z) − 1, i.e.,
d
dz

(
TS
(
1 + z/S2

)− 1
) |̃r j = 0, j = 1, . . . S/2 − 1.

Considering the roots of (A.3) we have to be careful when it comes to j = 0, i.e., x j = 0
since we divide by r̃ j = 0. Recalling the introduction of the lower degree polynomial (2.10)
we have by construction P̃S−1(0; r̃) = 1. As a consequence, we have that the S − 1 roots of
the lower-degree polynomial P̃S−1(z; r̃) are given by

r̃ j = S2
(
cos

(
2 jπ

S

)
− 1

)
, j = 1, . . . , S/2 (A.6)

where r̃S/2 has multiplicity one and the remaining S/2 − 1 roots have multiplicity two.
For odd degree S, we can follow a similar reasoning which yields that the pseudo-extrema

in this case are given by

r̃ j = S2
(
cos

(
2 jπ

S

)
− 1

)
, j = 1, . . . ,

S − 1

2
(A.7)

which all have multiplicity two. This follows from the fact that for odd S, the extremum at
the left end of the

[−2S2, 0
]
interval of the Chebyshev polynomial is −1 while for even S,

the left extremum takes value +1.
While these findings are for the shifted Chebyshev polynomials admittedly trivial, they

generalize neatly to the known first and second order accurate optimal stability polynomials
of circular/disk-like spectra, as shown in Sect. 3.1.

Appendix B. Simulation Configurations with Strictly Convex Spectra

1. Burgers’ Equation ∂t u + ∂x
1
2u

2 = 0 is discretized using the DGSEM on � = [0, 1]
and Godunov flux [90]. The periodic domain is discretized with 64 elements on which
the solution is reconstructed using third order local polynomials. As initial condition
we supply u(t0, x) = 2 + sin(2πx) leading to a multi-valued solution at t = 1

2π . The
spectrum is computed using the algorithmic differentiation capabilities of Trixi.jl
and is displayed in Fig. 2a.

2. The Shallow Water equations with variable bottom topography b(x) read in 1D

∂t

(
h
hv

)
+ ∂x

(
hv

hv2 + g
2 h

2

)
+
(

0
gh∂xb

)
= 0. (B.1)

We discretize (B.1) on � = [0,√2] using the DGSEM with flux differencing [94, 95].
In particular, for the first component of (B.1) the surface flux is approximated using the
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Rusanov/Local Lax-Friedrichs flux and the second component via the flux proposed in
[96]. For the volume term we used the fluxes presented in [97]. � is discretized with 32
cells where we use third order local polynomials to reconstruct the solution. The initial
condition is in this case a moderate discontinuity:

(
h(t0, x)
v(t0, x)

)
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

−b(x) +
{
3.25 |x − 0.7| > 0.5

4 else
{
0 |x − 0.7| > 0.5

0.1882 else

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(B.2)

with sinusoidal bottom topography b(x) = sin(x). The corresponding spectrum is dis-
played in Fig. 2b.

3. The ideal compressible MHD equations considered here are of form

∂t

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρ

ρv1
ρv2
ρv3
ρe
B1

B2

B3

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

+∂x

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜
⎝

ρv1
ρv21 + p + eB − B2

1
ρv1v2 − B1B2

ρv1v3 − B1B3

v1(ev + γ (ρe − ev − eB) + 2eB) − B1(v1B1 + v2B2 + v3B3)

0
v1B2 − v2B1

v1B3 − v3B1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0 (B.3)

with eB := 0.5(B2
1 + B2

2 + B2
3 ), ev := ρ(v21 +v22 +v23), p = (γ −1)(ρe− ev − eB). The

solution is represented with p = 1 local polynomials and we employ the Rusanov/Local
Lax-Friedrichs flux [98]. The periodic domain � = [0, 1] is again discretized using 32
cells. For the initial condition we choose the Alfvén wave [99]

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

ρ(t0, x)
v1(t0, x)
v2(t0, x)
v3(t0, x)
p(t0, x)
B1(t0, x)
B2(t0, x)
B3(t0, x)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
0

0.1 sin(2πx)
0.1 cos(2πx)

0.1
1

0.1 sin(2πx)
0.1 cos(2πx)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.4)

and set γ = 5
3 . The spectrum for this particular configuration is shown in Fig. 2c.

4. The compressible Euler equations in two spatial dimensions are given by

∂t

⎛

⎜⎜
⎝

ρ

ρv1
ρv2
ρe

⎞

⎟⎟
⎠+ ∂x

⎛

⎜⎜
⎝

ρv1
ρv21 + p
ρv1v2

(ρe + p)v1

⎞

⎟⎟
⎠+ ∂y

⎛

⎜⎜
⎝

ρv2
ρv1v2

ρv22 + p
(ρe + p)v2

⎞

⎟⎟
⎠ = 0 (B.5)

which are represented on� = [−1, 1]2 with 8 cells per direction using second order local
polynomials. Here, p = (γ −1)(ρe−0.5ρ(v21 +v22)) and γ = 1.4. For the flux we use the
Harten-Lax-Van Leer Contact (HLLC) flux [93] and supply again periodic boundaries.
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The fields are initialized as
⎛

⎜
⎜
⎝

ρ(t0, x)
v1(t0, x)
v2(t0, x)
p(t0, x)

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

2 + 0.1 sin
(
π(x + y)

)

1
1

[
2 + 0.1 sin

(
π(x + y)

)]2

⎞

⎟
⎟
⎠ . (B.6)

The spectrum corresponding to this initial state and semidiscretization is displayed in
Fig. 2d.

References

1. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen
Physik. Mathematische Annalen 100, 32–74 (1928). https://doi.org/10.1007/BF01448839

2. Franklin, J.: Numerical stability in digital and analog computation for diffusion problems. J. Math. Phys.
37, 305–315 (1958)

3. Guillou, A., Lago, B.: Domaine de stabilité associé aux formules d’intégration numérique d’équations
différentielles, a pas séparés et a pas liés. recherche de formules a grand rayon de stabilité, Ier Congr.
Ass. Fran. Calcul., AFCAL, pp. 43–56 (1960)

4. Saul’ev, V.: Integration of parabolic equations by the grid method. Fizmatgiz Moscow 13, 14–19 (1960)
5. Forsythe, G.E., Wasow, W.R.: Finite-Difference Methods for Partial Differential Equations. Applied

Mathematics Series, Wiley, New York (1960)
6. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Prob-

lems, vol. 375. Springer, Berlin (1996). https://doi.org/10.1007/978-3-642-05221-7
7. Hundsdorfer, W.H., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-Reaction

Equations. Springer Series in Computational Mathematics, vol. 375, 1st edn. Springer, Berlin (2010)
8. Verwer, J.G.: Explicit Runge–Kutta methods for parabolic partial differential equations. Appl. Numer.

Math. 22, 359–379 (1996). https://doi.org/10.1016/S0168-9274(96)00022-0
9. Abdulle, A.: Explicit stabilized Runge–Kutta methods, Technical Report. Mathematics Institute of Com-

putational Science and Engineering, School of Basic Sciences, Section of Mathematics EPFL Lausanne
(2011)

10. Van der Houwen, P.: The development of Runge–Kutta methods for partial differential equations. Appl.
Numer. Math. 20, 261–272 (1996). https://doi.org/10.1016/0168-9274(95)00109-3

11. Chzao-Din, Y.: Some difference schemes for the solution of the first boundary value problem for linear
differential equations with partial derivatives. Moscow Stage University, Thesis (1958)

12. Burrage, K.: Order and stability properties of explicit multivaluemethods. Appl. Numer.Math. 1, 363–379
(1985). https://doi.org/10.1016/0168-9274(85)90001-7

13. Lomax, H.: On the Construction of Highly Stable, Explicit, Numerical Methods for Integrating Coupled
Ordinary Differential Equations with Parasitic Eigenvalues. National Aeronautics and Space Administra-
tion (1968)

14. Lebedev, V.: A new method for determining the roots of polynomials of least deviation on a segment
with weight and subject to additional conditions. Part I. Russ. J. Numer. Anal. Math. Model. 8, 195–222
(1993a). https://doi.org/10.1515/rnam.1993.8.3.195

15. Lebedev, V.: A new method for determining the roots of polynomials of least deviation on a segment
with weight and subject to additional conditions. Part II, Russ. J. Numer. Anal. Math. Model. 8, 397–426
(1993b). https://doi.org/10.1515/rnam.1993.8.5.397

16. Van der Houwen, P.J.: Construction of integration formulas for initial value problems. Technical Report,
Stichting Mathematisch Centrum, Amsterdam (1977)

17. VanderHouwen, P.,Kok, J.:Numerical Solution of aMinimaxProblem.StichtingMathematischCentrum,
Toegepaste Wiskunde (1971)

18. Abdulle, A., Medovikov, A.A.: Second order Chebyshev methods based on orthogonal polynomials.
Numer. Math. 90, 1–18 (2001). https://doi.org/10.1007/s002110100292

19. Riha, W.: Optimal stability polynomials. Computing 9, 37–43 (1972). https://doi.org/10.1007/
BF02236374

20. Van der Houwen, P.: Explicit Runge–Kutta formulas with increased stability boundaries. Numer. Math.
20, 149–164 (1972). https://doi.org/10.1007/BF01404404

21. Kinnmark, I.P., Gray,W.G.: One step integrationmethodswithmaximum stability regions.Math. Comput.
Simul. 26, 87–92 (1984). https://doi.org/10.1016/0378-4754(84)90039-9

123

https://doi.org/10.1007/BF01448839
https://doi.org/10.1007/978-3-642-05221-7
https://doi.org/10.1016/S0168-9274(96)00022-0
https://doi.org/10.1016/0168-9274(95)00109-3
https://doi.org/10.1016/0168-9274(85)90001-7
https://doi.org/10.1515/rnam.1993.8.3.195
https://doi.org/10.1515/rnam.1993.8.5.397
https://doi.org/10.1007/s002110100292
https://doi.org/10.1007/BF02236374
https://doi.org/10.1007/BF02236374
https://doi.org/10.1007/BF01404404
https://doi.org/10.1016/0378-4754(84)90039-9


Journal of Scientific Computing (2024) 99 :28 Page 37 of 40 28

22. Sonneveld, P., Van Leer, B.: Aminimax problem along the imaginary axis, Technical Report 4. Technische
Hogeschool Delft, Onderafdeling der Wiskunde en Informatica (1984)

23. Kinnmark, I.P., Gray, W.G.: One step integration methods of third-fourth order accuracy with large
hyperbolic stability limits. Math. Comput. Simul. 26, 181–188 (1984). https://doi.org/10.1016/0378-
4754(84)90056-9

24. Jeltsch, R., Nevanlinna, O.: Largest disk of stability of explicit Runge–Kutta methods. BIT Numer. Math.
18, 500–502 (1978)

25. Owren, B., Seip, K.: Some stability results for explicit Runge–Kutta methods. BIT Numer. Math. 30,
700–706 (1990). https://doi.org/10.1007/BF01933217

26. Vichnevetsky, R.: New stability theorems concerning one-step numericalmethods for ordinary differential
equations. Math. Comput. Simul. 25, 199–205 (1983). https://doi.org/10.1016/0378-4754(83)90092-7

27. Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge–Kutta schemes with optimized stability
regions. J. Comput. Phys. 231, 364–372 (2012). https://doi.org/10.1016/j.jcp.2011.09.003

28. Torrilhon, M., Jeltsch, R.: Essentially optimal explicit Runge–Kutta methods with application to
hyperbolic-parabolic equations. Numer. Math. 106, 303–334 (2007). https://doi.org/10.1007/s00211-
006-0059-5

29. Kennedy, C.A., Carpenter, M.H., Lewis, R.: Low-storage, explicit Runge–Kutta schemes for the com-
pressible Navier–Stokes equations. Appl. Numer. Math. 35, 177–219 (2000). https://doi.org/10.1016/
S0168-9274(99)00141-5

30. Allampalli, V., Hixon, R., Nallasamy, M., Sawyer, S.D.: High-accuracy large-step explicit Runge–Kutta
(HALE-RK) schemes for computational aeroacoustics. J. Comput. Phys. 228, 3837–3850 (2009). https://
doi.org/10.1016/j.jcp.2009.02.015

31. Toulorge, T., Desmet,W.: Optimal Runge–Kutta schemes for discontinuousGalerkin space discretizations
applied to wave propagation problems. J. Comput. Phys. 231, 2067–2091 (2012). https://doi.org/10.1016/
j.jcp.2011.11.024

32. Mead, J., Renaut, R.: Optimal Runge–Kutta methods for first order pseudospectral operators. J. Comput.
Phys. 152, 404–419 (1999). https://doi.org/10.1006/jcph.1999.6260

33. Al Jahdali, R., Boukharfane, R, Dalcin, L., Parsani, M.: Optimized explicit Runge–Kutta schemes for
entropy stable discontinuous collocated methods applied to the Euler and Navier–Stokes equations. In:
AIAA Scitech 2021 Forum, 2021, p. 0633. https://doi.org/10.2514/6.2021-0633

34. Kubatko, E.J., Yeager, B.A., Ketcheson, D.I.: Optimal strong-stability-preserving Runge–Kutta time dis-
cretizations for discontinuous Galerkin methods. J. Sci. Comput. 60, 313–344 (2014). https://doi.org/10.
1007/s10915-013-9796-7

35. Nasab, S.H., Cagnone, J.-S., Vermeire, B.C.: Optimal explicit Runge–Kutta time stepping for density-
based finite-volume solver. In: AIAA SCITECH 2022 Forum, 2022, p. 1049. https://doi.org/10.2514/6.
2022-1049

36. Ketcheson, D., Ahmadia, A.: Optimal stability polynomials for numerical integration of initial value
problems. Commun. Appl. Math. Comput. Sci. 7, 247–271 (2013). https://doi.org/10.2140/camcos.2012.
7.247

37. Vermeire, B., Loppi, N., Vincent, P.: Optimal Runge–Kutta schemes for pseudo time-stepping with high-
order unstructured methods. J. Comput. Phys. 383, 55–71 (2019). https://doi.org/10.1016/j.jcp.2019.01.
003

38. Schlottke-Lakemper, M., Winters, A.R., Ranocha, H., Gassner, G.J.: A purely hyperbolic discontinuous
Galerkin approach for self-gravitating gas dynamics. J. Comput. Phys. 442, 110467 (2021). https://doi.
org/10.1016/j.jcp.2021.110467

39. Vermeire, B.C.: Paired explicit Runge–Kutta schemes for stiff systems of equations. J. Comput. Phys.
393, 465–483 (2019). https://doi.org/10.1016/j.jcp.2019.05.014

40. Hedayati Nasab, S., Vermeire, B.C.: Third-order paired explicit Runge–Kutta schemes for stiff systems
of equations. J. Comput. Phys. 468, 111470 (2022). https://doi.org/10.1016/j.jcp.2022.111470

41. Vermeire, B.C., Hedayati Nasab, S.: Accelerated implicit-explicit Runge–Kutta schemes for locally stiff
systems. J. Comput. Phys. 429, 110022 (2021). https://doi.org/10.1016/j.jcp.2020.110022

42. Hedayati Nasab, S., Pereira, C.A., Vermeire, B.C.: Optimal Runge–Kutta stability polynomials for mul-
tidimensional high-order methods. J. Sci. Comput. 89, 11 (2021). https://doi.org/10.1007/s10915-021-
01620-x

43. Klinge, M., Weiner, R.: Strong stability preserving explicit peer methods for discontinuous Galerkin
discretizations. J. Sci. Comput. 75, 1057–1078 (2018). https://doi.org/10.1007/s10915-017-0573-x

44. Ellison, A.C., Fornberg, B.: A parallel-in-time approach for wave-type PDEs. Numer. Math. 148, 79–98
(2021). https://doi.org/10.1007/s00211-021-01197-5

123

https://doi.org/10.1016/0378-4754(84)90056-9
https://doi.org/10.1016/0378-4754(84)90056-9
https://doi.org/10.1007/BF01933217
https://doi.org/10.1016/0378-4754(83)90092-7
https://doi.org/10.1016/j.jcp.2011.09.003
https://doi.org/10.1007/s00211-006-0059-5
https://doi.org/10.1007/s00211-006-0059-5
https://doi.org/10.1016/S0168-9274(99)00141-5
https://doi.org/10.1016/S0168-9274(99)00141-5
https://doi.org/10.1016/j.jcp.2009.02.015
https://doi.org/10.1016/j.jcp.2009.02.015
https://doi.org/10.1016/j.jcp.2011.11.024
https://doi.org/10.1016/j.jcp.2011.11.024
https://doi.org/10.1006/jcph.1999.6260
https://doi.org/10.2514/6.2021-0633
https://doi.org/10.1007/s10915-013-9796-7
https://doi.org/10.1007/s10915-013-9796-7
https://doi.org/10.2514/6.2022-1049
https://doi.org/10.2514/6.2022-1049
https://doi.org/10.2140/camcos.2012.7.247
https://doi.org/10.2140/camcos.2012.7.247
https://doi.org/10.1016/j.jcp.2019.01.003
https://doi.org/10.1016/j.jcp.2019.01.003
https://doi.org/10.1016/j.jcp.2021.110467
https://doi.org/10.1016/j.jcp.2021.110467
https://doi.org/10.1016/j.jcp.2019.05.014
https://doi.org/10.1016/j.jcp.2022.111470
https://doi.org/10.1016/j.jcp.2020.110022
https://doi.org/10.1007/s10915-021-01620-x
https://doi.org/10.1007/s10915-021-01620-x
https://doi.org/10.1007/s10915-017-0573-x
https://doi.org/10.1007/s00211-021-01197-5


28 Page 38 of 40 Journal of Scientific Computing (2024) 99 :28

45. Vermeire, B.C.: Embedded paired explicit Runge–Kutta schemes. J. Comput. Phys. 487, 112159
(2023). https://doi.org/10.1016/j.jcp.2023.112159. (https://www.sciencedirect.com/science/article/pii/
S0021999123002541.)

46. Hairer, E., Wanner, G., Nørsett, S.P.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd
edn. Springer, Berlin (1993). https://doi.org/10.1007/978-3-540-78862-1

47. Hundsdorfer, W., Mozartova, A., Savcenco, V.M.: Vonotonicity Conditions for Multirate and Partitioned
Explicit Runge–Kutta Schemes, pp. 177–195. Springer, Berlin (2013). https://doi.org/10.1007/978-3-
642-33221-0_11

48. Hu, F., Hussaini, M.Y., Manthey, J.: Low-dissipation and low-dispersion Runge–Kutta schemes for com-
putational acoustics. J. Comput. Phys. 124, 177–191 (1996). https://doi.org/10.1006/jcph.1996.0052

49. Berland, J., Bogey, C., Bailly, C.: Low-dissipation and low-dispersion fourth-order Runge–Kutta algo-
rithm. Comput. Fluids 35, 1459–1463 (2006). https://doi.org/10.1016/j.compfluid.2005.04.003

50. Bernardini, M., Pirozzoli, S.: A general strategy for the optimization of Runge–Kutta schemes for wave
propagation phenomena. J. Comput. Phys. 228, 4182–4199 (2009). https://doi.org/10.1016/j.jcp.2009.
02.032

51. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization
methods. SIAM J. Numer. Anal. 40, 469–491 (2002). https://doi.org/10.1137/S0036142901389025

52. Ruuth, S.: Global optimization of explicit strong-stability-preserving Runge–Kutta methods. Math. Com-
put. 75, 183–207 (2006). https://doi.org/10.1090/S0025-5718-05-01772-2

53. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.
Methods Softw. 11, 625–653 (1999). https://doi.org/10.1080/10556789908805766

54. Domahidi, A., Chu, E., Boyd, S.: ECOS: an SOCP solver for embedded systems. In: 2013 European
Control Conference (ECC), pp. 3071–3076. https://doi.org/10.23919/ECC.2013.6669541

55. Trefethen, L.N.: Approximation Theory and Approximation Practice, Other Titles in Applied Mathemat-
ics, Extended SIAM, London (2019). https://doi.org/10.1137/1.9781611975949

56. Verwer, J.G., Hundsdorfer, W.H., Sommeijer, B.P.: Convergence properties of the Runge–Kutta–
Chebyshev method. Numer. Math. 57, 157–178 (1990). https://doi.org/10.1007/BF01386405

57. vanDerHouwen, P.J., Sommeijer, B.P.: On the internal stability of explicit, m-stageRunge–Kuttamethods
for large m-values. ZAMM J. Appl. Math. Mech. 60, 479–485 (1980). https://doi.org/10.1002/zamm.
19800601005

58. Verwer, J.G., Sommeijer, B.P., Hundsdorfer, W.: RKC time-stepping for advection–diffusion–reaction
problems. J. Comput. Phys. 201, 61–79 (2004). https://doi.org/10.1016/j.jcp.2004.05.002

59. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes.
J. Comput. Phys. 77, 439–471 (1988). https://doi.org/10.1016/0021-9991(88)90177-5

60. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods.
SIAM Rev. 43, 89–112 (2001). https://doi.org/10.1137/S003614450036757X

61. Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge–Kutta and Multistep Time
Discretizations. World Scientific, Singapore (2011). https://doi.org/10.1142/7498

62. Godunov, S.K., Bohachevsky, I.: Finite difference method for numerical computation of discontinuous
solutions of the equations of fluid dynamics. Matematičeskij sbornik 47(89), 271–306 (1959)
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