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Abstract
Simplices are the fundamental domain when integrating over convex polytopes. The aim
of this work is to establish a novel framework of Monte Carlo integration over simplices,
throughout from sampling to variance reduction. Namely, we develop a uniform sampling
method on the standard simplex consisting of two independent procedures and construct
theories on change of measure on each of the two independent elements in the developed
sampling technique with a view towards variance reduction by importance sampling. We
provide illustrative figures and numerical results to support our theoretical findings and
demonstrate the strong potential of the developed framework for effective implementation
and acceleration of Monte Carlo integration over simplices.

Keywords Numerical integration · Simplex · Dirichlet law · Monte Carlo methods ·
Variance reduction

Mathematics Subject Classification 65C05 · 65D30 · 65C10 · 62H10

1 Introduction

Integrals over polytopes have found important applications in various areas such as com-
putational geometry, finite element methods, statistics and optimization. Integrating over
simplices is of particular interest in the literature, since every convex polytope can be decom-
posed intofinitelymany simplices. For instance, various formulas are developed for numerical
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integration in early years [9, 11, 12, 30, 32], to name a few. Polynomials are often the focus
of such formulas, as the principle of classical algorithms involves the approximation of an
integrand, followed by exact integration of polynomials. More recently, an exact formula
is proposed in [21] for integrating homogeneous polynomials on a simplex, of which an
extension is studied in [18] to cover a wider class, including non-homogeneous polynomials.
A closed-form expression is derived in [20] for the integral of an arbitrary polynomial on
a full-dimensional simplex on the basis of integration formulas on the standard simplex.
Moreover, a recursive formula is constructed in [22] to improve the accuracy and computing
speed when integrating polynomials. For non-polynomial integrands, quadrature formulas
are developed in [5] with the aid of functional and derivative values of the integrand up to a
fixed order at the vertices of a simplex. Approximate formulas are built in [10] for integrating
functions over hyperplane sections of the standard simplex.

Various numerical techniques have also been developed for integrating over simplices in
the literature. For instance, an adaptive numerical cubature algorithm is constructed in [8]
for approximating an integral over a collection of simplices. As for the exact integration of
polynomials over simplicial regions, computational complexity and various algorithms are
discussed in [2], where integrating an arbitrary polynomial over a general rational simplex is
shown to be NP-hard. An algorithm is presented in [27] for computing the exact value of the
integral of a polynomial with the degree of a polynomial and the dimension of a simplex fixed,
and is proved to have polynomial-time complexity. Quasi-Monte Carlo methods are applied
in [25, 26] to evaluate an integral over simplices by transforming suitable low-discrepancy
sequences on the unit hypercube to the simplex. The quasi-Monte Carlo tractability is studied
in [3] in integrating functions over the product of copies of the standard simplex.

Monte Carlo methods have been studied extensively for numerical integration over the
unit hypercube along with a variety of variance reduction techniques for accelerating the
convergence of the central limit theorem,whereas notmuch attention has been given toMonte
Carlo integration, to say nothing of variance reduction techniques, on more challenging
domains, such as polytopes. In this work, we aim to build a novel framework of Monte
Carlo integration over simplices, from the beginning (random number generation) to the
end (variance reduction). To be precise, we develop a uniform sampling technique over the
standard simplex and then examine theories on change of measure with a view towards
importance sampling.

First, the proposed uniform sampling technique (Theorem 3.2) is novel and efficient in
the sense that it only consists of two independent components and wastes no realizations
as the sample is projected towards the origin, rather than acceptance-rejection after shifting
the sample in the direction perpendicular to the canonical hyperplane [7], by which some
realizations end up outside the standard simplex and thus must be thrown out. Built on
the uniform sampling technique, we next develop two distinct frameworks (Theorems 4.2
and 4.3) on change of measure on the canonical hyperplane in combination with yet another
separate change of measure on the projection in the proposed uniform sampling technique.
We demonstrate strong potential of both two frameworks in reducing the estimator variance
by sending the mass of the relevant probability law towards more important sections of the
standard simplex, such as a single vertex, a single surface, and even multiple components at
once.

The rest of this paper is set out as follows. In Sect. 2, we formulateMonte Carlo integration
over simplices and justify our focus on the standard simplex. In Sect. 3, after summarizing
background materials on the Dirichlet law and its sampling, we develop a uniform sampling
method on the standard simplex, along with a brief review of existing sampling methods. We
construct in Sect. 4 theories on change ofmeasure on the projection (Sect. 4.1) in combination
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with change of measure on the canonical hyperplane in two ways (Sects. 4.2.1 and 4.2.2). In
addition to illustrative figures throughout, we present an extensive collection of numerical
examples in Sect. 5 to demonstrate the effectiveness of the proposed framework of Monte
Carlo integration over simplices. To maintain the flow of the paper, we collect all proofs in
the Appendix.

2 Problem Formulation

We first summarize the notation that will be used throughout. We denote by | · | and ‖ · ‖ the
magnitude and the Euclidean (or a suitablematrix) norm, respectively.We denote by Leb(D),
int(D), ∂D, D, B(D), respectively, the Lebesgue area, the interior, the boundary, the closure

and the Borel σ -field of the set D.We let
L= and

L→ denote the identity and convergence in law.
We use the notation ∇x and Hessx for the gradient and the Hessian matrix with respect to the
multivariate variable x. We denote by 1d and 0d , respectively, the vector with all unit-valued
components and the zero-valued vector, both in R

d .
The aim of the present work is to establish a novel framework of Monte Carlo integration

over the d-dimensional standard simplex [2, 20, 27]:

μ :=
∫
Xd

�(x)dx, (2.1)

where we denote by Xd := {x ∈ [0, 1]d : 〈x,1d〉 ≤ 1} the standard d-simplex, and by � a
real-valued function on R

d . For later use, we denote by Yd := {y ∈ [0, 1]d : 〈y,1d〉 = 1}
the canonical (d − 1)-simplex in R

d . Among a few other ways of calling those, we follow
[2] to call Xd the standard d-simplex and Yd the canonical (d − 1)-simplex.

In what follows, we develop theories andmethodologies on the standard d-simplexXd and
the canonical (d − 1)-simplex Yd without paying particular attention to general simplices,
for the reason that integration over general simplices can be reformulated as an integration
over those standardized simplices Xd and Yd through affine transformation. Suppose one
is interested in the integral

∫
S �0(s)ds, where v is a real-valued function on R

d and S :=
{θ0v0 + · · · + θdvd : 〈θ ,1d+1〉 ≤ 1 and θk ≥ 0 for all k} with affinely independent vectors
v0, · · · , vd in R

d . A general d-simplex S with the set of vertices {vk}k∈{0,1,··· ,d} can be
mapped onto the standard d-simplex Xd by the affine transformation T (x) := Ax + v0 for
x ∈ Xd , where A := (v1 − v0, v2 − v0, · · · , vd − v0) is an invertible matrix in R

d×d . Given
the function v and the affine transform T , one can set �(x) = �0(T (x)) to reformulate the
integral

∫
S �0(s)ds over a general d-simplex as follows:
∫
S

�0(s)ds = | det(JT )|
∫
Xd

�0(T (x))dx = | det(A)|
∫
Xd

�(x)dx, (2.2)

which is then based on the original form (2.1) over the standard d-simplex, where JT denotes
the Jacobian matrix of the affine transformation T . Here, we have | det(A)| > 0 since the
matrix A is, by definition, invertible. Clearly, the base can be chosen arbitrary from the vertices
{vk}k∈{0,1,··· ,d} as T (x) = Ax+vk with A = (v1−vk, · · · , vk−1−vk, vk+1−vk, · · · , vd−vk)
for any k ∈ {0, 1, · · · , d}. We refer the reader to, for instance, [27].

Example 2.1 For illustrative purposes, we consider an integration of the constant function
�0(s) = 2 over the 2-simplex S with vertices v0 = (2, 3), v1 = (1, 1), and v2 = (−1, 2).
With the affine transformation
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T (x) = Ax + v0 = (v1 − v0, v2 − v0)x + v0 =
[−1 −3
−2 −1

]
x +

[
2
3

]
,

the identity (2.2) reads∫
S

�0(s)ds = | det(JT )|
∫
X2

�0(T (x))dx = 5 (2Leb(X2)) = 5,

where we have applied | det(JT )| = | det(A)| = 5 and Leb(Xd) = 1/d! for all d ∈ N.
Through elementary geometry, the area of the triangle formed by v0, v1, and v2 is 5/2, thus
yielding

∫
S �0(s)ds = 2 × (5/2) = 5 as well. 
�

Upon the interpretation of the integral (2.1) as the expectation of the random variable
�(X), that is,

μ =
∫
Xd

�(x)dx = E[�(X)], (2.3)

where X is a uniform random vector on the standard d-simplex Xd , we first develop a
sampling technique of the uniform random vector X (Sect. 3), and then based on the the
sampling technique, tailor theories on change of measure for accelerating the convergence
of the central limit theorem

√
n

(
1

n

n∑
k=1

�(Xk) − μ

)
L→ N (0,Var(�(X1))) , n → +∞, (2.4)

by reducing the estimator variance Var(�(X1)) by changing the Lebesgue measure dx in
(2.3) (Sect. 4). In addition, an estimator with reduced variance is more efficient even for any
finite sample size n, not only asymptotically as n → +∞. In short, a primary advantage of
Monte Carlo integration over other deterministic methods is that its convergence rate 1/

√
n in

the number of realizations is free of the problem dimension d on the basis of the central limit
theorem (2.4). Our developments are thus not focused on very low dimensional problems,
but keep high dimensional ones well within reach. In the context of numerical integration
over simplices, this point is of particular significance as the problem dimension is usually at
least 3.

3 Sampling on the Standard Simplex

We now begin by constructing a uniform sampling technique over the standard d-simplex
Xd . The proposed technique is built on the further decomposition of the original single
integral or, equivalently, the expectation on a single uniform random vector X in (2.3) into
the following double integral or, equivalently, the expectation on two independent random
elements (Theorem 3.2):

μ =
∫
Xd

�(x)dx =
∫ 1

0

[∫
Yd

�(v1/dy)dy
]
dv = E

[
�(V 1/dY )

]
, (3.1)

where V is a uniform random variable on (0, 1) and Y is a uniform random vector on the
canonical (d − 1)-simplex Yd . That is, the inner integral with respect to dy represents the
expectation on the uniform lawon the canonical (d−1)-simplexYd , whereas the outer integral
with respect to dv is simply on the uniform law on (0, 1). Due to the product form of the two
Lebesgue measures, the corresponding two random elements V and Y are independent.
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In what follows, as the canonical hyperplane, we refer to either the canonical (d − 1)-
simplex Yd (as a section of the standard d-simplex Xd ) or a collection of (not necessarily
uniform) realizations over the canonical simplex, depending on the context. Moreover, we
call the scaling operation by the random variable V 1/d the projection of the random vector
Y on the canonical hyperplane.

3.1 The Dirichlet Law

The probability law on the canonical (d − 1)-simplex Yd is called the Dirichlet law if it
admits a probability density function in the form

p(y;α) := �(
∑d

k=1 αk)∏d
k=1 �(αk)

d∏
k=1

yαk−1
k , (3.2)

for y := (y1, · · · , yd) ∈ Yd and α := (α1, · · · , αd) ∈ (0,+∞)d . We henceforth write
Dir(α) for the Dirichlet law with the probability density function (3.2) with parameter α,
and refer to α as the Dirichlet parameter, for the sake of convenience. It is well known that,
among other ways (Remark 3.1), the random vector Y ∼ Dir(α) can be generated as

Y
L=
(

M1

M1 + M2 + · · · + Md
,

M2

M1 + M2 + · · · + Md
, · · · ,

Md

M1 + M2 + · · · + Md

)
,

(3.3)

where {Mk}k∈{1,··· ,d} is a sequence of mutually independent gamma random variables with
Mk ∼ Gamma(αk, 1) for k ∈ {1, · · · , d}, each of which admits probability density function
xαk−1e−x/�(αk) on (0,+∞). By settingα = 1d , theDirichlet law reduces toDir(1d)where
the probability density function (3.2) reduces to p(y;1d) = (d − 1)!, which represents the
uniform law on the canonical (d − 1)-simplex Yd since the density is flat on the domain.
Accordingly, the representation (3.3) with α = 1d provides a uniform sampling technique
on the canonical hyperplane, as

Y
L=
(

E1

E1 + E2 + · · · + Ed
, · · · ,

Ed

E1 + E2 + · · · + Ed

)

L=
(

ln(U1)

ln(U1) + · · · + ln(Ud)
, cdots,

ln(Ud)

ln(U1) + · · · + ln(Ud)

)
, (3.4)

where {Ek}k∈{1,··· ,d} is now a sequence of iid standard exponential random variables, since
Gamma(1, 1) is nothing but the standard exponential distribution. The second identity in

law holds by employing the concept of inverse transform sampling E1
L= − ln(1 − U1)

L=
− ln(U1). We do not provide a full description of the Dirichlet law and related topics but
refer the reader to, for instance, [1, 19, 23, 24] for detail.

Remark 3.1 The Dirichlet random vector can also be represented using beta or inverted beta
(also called Type II beta) random variables. Though not employed in the present work, we
provide a brief summary of those representations for the sake of completeness. The following
identities in law hold true for the random vector Y ∼ Dir(α):
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Y
L=
(
B1, B2(1 − B1), B3(1 − B1)(1 − B2), · · · , Bd−1

d−2∏
k=1

(1 − Bk),

d−1∏
k=1

(1 − Bk)

)

L=
(

B ′
1

1 + B ′
1
,

B ′
2

(1 + B ′
1)(1 + B ′

2)
, · · · , B ′

d−1

d−1∏
k=1

1

1 + B ′
k
,

d−1∏
k=1

1

1 + B ′
k

)
,

where {Bk}k∈{1,··· ,d−1} is a sequence of mutually independent beta random variables with
Bk ∼ Beta(αk,

∑d
j=k+1 α j ), and {B ′

k}k∈{1,··· ,d−1} is a sequence of mutually independent

inverted beta random variables with B ′
k ∼ IBeta(αk,

∑d
j=k+1 α j ). On an implementation

level, those two representations do not fully differ from each other as the inverted beta
random variable is often generated using the beta random variable. Sampling based on beta
or inverted beta random variables is generally considered less efficient than based on gamma
random variables (3.3), for the reason that one often uses two independent gamma random
variables to generate a single beta random variable. 
�

3.2 Projecting the Dirichlet RandomVector

The standard d-simplex Xd is the pyramidal region between the canonical hyperplane and
the origin 0d in the unit hypercube (0, 1)d . Given this structure, we here develop a sam-
pling technique on the standard simplex based on the projection of the canonical hyperplane
(Sect. 3.1) towards the origin 0d so that the standard d-simplex Xd is filled. The following
result acts as the theoretical base for this goal, with its proofs deferred to the Appendix.

Theorem 3.2 It holds that for every c ∈ [0, 1] and y ∈ Yd ,

P(〈y, Z〉 ≤ c) = cd ,

if and only if Z = (V 1/d , V 1/d , · · · , V 1/d), where V is a uniform random variable on (0, 1).

With Theorem 3.2 in hand, we are ready to construct a uniform sampling technique on
the standard d-simplex Xd . Consider a (not necessarily standard) d-simplex Xd(c), defined
by Xd(c) := {

x ∈ [0, c]d : 〈x,1d〉 ≤ c
}
for c ∈ [0, 1]. It is clear that Xd(c) ⊆ Xd(1) = Xd

and Leb(Xd(c))/Leb(Xd) = cd for all c ∈ [0, 1]. Hence, a necessary condition for a random
vector X in R

d to be uniformly distributed on the standard d-simplex Xd is the identity
P(X ∈ Xd(c)) = P(〈X ,1d〉 ≤ c) = cd for all c ∈ [0, 1]. Thanks to Theorem 3.2, this
necessary condition is satisfied by setting X = V 1/dY , where V ∼ U (0, 1) and where Y is a
randomvector on the canonical (d−1)-simplexYd , since then 〈Y , Z〉 = V 1/d〈Y ,1d〉 = V1/d
due to the constraint 〈y,1d〉 = 1 for all y ∈ Yd . If, moreover, Y ∼ Dir(1d), that is, uniformly
distributed on the canonical hyperplane, the random vector V 1/dY (after the projection by
the random variable V 1/d towards the origin 0d ) is uniformly distributed on the standard
d-simplex Xd . We note that the support of the random vector V 1/dY is exactly the standard
d-simplexXd , since every point on the canonical (d−1)-simplexYd is projected in a direction
towards the origin 0d by a scale between 0 and 1, rather than in a direction perpendicular
to the canonical hyperplane. In other words, every single point on the canonical hyperplane
ends up inside the standard d-simplex Xd after the projection, that is, no realizations are
rejected.

For the reader’s convenience, we summarize the developed uniform sampling technique
on the standard d-simplex Xd :

(I) Generate a random vector Y ∼ Dir(1d) on the canonical (d − 1)-simplex Yd .
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(II) Generate a uniform random variable V ∼ U (0, 1).
(III) Return the random vector V 1/dY .

Recall that step (I) can be implemented via the representation (3.4). It is worth stressing that
this operation becomes no more complex for a higher problem dimension. Even for the case
d = 100, the required operation remains elementary (generating 100 iid exponential random
variables, and summing and dividing those). This uniform sampling technique can then play
a central role in computing the rightmost integral (3.1) by standard Monte Carlo methods on
the basis of the central limit theorem:

√
n

(
1

n

n∑
k=1

�(V 1/d
k Yk) − μ

)
L→ N

(
0,Var(�(V 1/d

1 Y1)
)

, (3.5)

as n → +∞, where {Yk}k∈N is a sequence of iid random vectors with common law Dir(1d)
and {Vk}k∈N is a sequence of iid uniform random variables on (0, 1).

3.3 Comparison with Existing SamplingMethods

For the sake of comparison and completeness, we describe some existing sampling methods
on the standard d-simplex Xd . We begin with an existing work [7] in a similar yet different
manner (not projecting but shifting), as follows:

(A) Generate a Dirichlet random vector Y ∼ Dir(1d) on the canonical (d − 1)-simplex Yd .
(B) Generate a uniform random variable V ∼ U (0, 1).
(C) If the random vector Y − V1d/d lies inside the standard d-simplex Xd , then accept and

return it. If not, reject it and go back to (A).

This method is based on the parallel shifting of the canonical hyperplane Y by the random
vectorV1d/d in the direction perpendicular to the canonical hyperplane, unlike the projection
by the random variable V towards the origin 0d of our procedure (I)-(III). The computing
cost of (A)-(C) may look the same as (I)-(III) at first glance, whereas some portion of the
sample is rejected at the step (C). In fact, it is known [7] that the acceptance rate here is
only 1/d , meaning that quite a large portion of the sample will be thrown out, unless d = 1,
which is however too trivial to be relevant. (To be fair, we note that this method is not meant
to sample from the simplex alone, but from a more complex pyramidal set whose base is the
intersection of a simplex with the faces of a unit hypercube.) In Fig. 1, we plot results of 2000
iid runs for comparison between the two sampling methods. Although each of Fig. 1a and
b looks like a uniform sample over the standard 3-simplex X3, there remain approximately
only a third (668 in this particular experiment) of the 2000 points after parallel shifting by
the vector V13/3 (Fig. 1b), whereas all the 2000 points stay inside after projection by the
scalar V 1/3 (Fig. 1a). Hence, the developed uniform sampling technique (Sect. 3.2) requires
significantly less sampling cost.

Another knownmethod is based on the so-called uniform spacings [4, Theorem 2.1]. Here,
as the grid Sk := U(k) − U(k−1) for k ∈ {1, · · · , d + 1} with U(0) := 0 and U(d+1) := 1,
where U(1) < · · · < U(d) denotes the order statistics of d iid uniform random variables
on (0, 1), the d-dimensional random vector (S1, · · · , Sd) is uniformly distributed on the
standard d-simplex Xd . The computing cost required here consists of the generation of d iid
uniform random variables, sorting of those d numbers (to construct the order statistics) and
then subtraction d times (to construct the uniform spacings). Unless the problem dimension
d is very high and an inefficient sorting algorithm is employed, the cost is typically lower
than that of ours that consists more steps, such as the generation of (d + 1) uniform random
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Fig. 1 Plots of results of 2000 iid runs of the two uniform sampling methods on the standard 3-simplex X3
(d = 3): a projecting the canonical 2-simplex by the random variable V 1/3 via (I)-(III), and b shifting the
canonical 2-simplex by the random vector V13/3 via (A)-(C)

variables ({Uk}k∈{1,··· ,d} and V ), taking a natural logarithm, adding and dividing d times
(to construct the fractions (3.4)), and then multiplication of the canonical hyperplane by the
powered scalar V 1/d componentwise. We however do not employ this uniform sampling
method for the reason that the required sorting procedure does not fit well to the framework
of changing the underlying measure that we develop in what follows.

Yet another sampling method for the uniform law on the standard simplex Xd is available
by removing any component of a Dirichlet random vector (say, (Y1, Y2, · · · , Yd+1)) on the
canonical d-simplexYd+1 (for instance, resulting in (Y2, · · · , Yd+1) if the first component Y1
is chosen to be dropped), rather than treating the projection V differently from the canonical
(d − 1)-simplex Yd on the basis of Theorem 3.2. The framework that we develop in what
follows may well be somehow tailored to this method, while we do not go in this direction
in the present work, because the canonical (d − 1)-simplex Yd alone can often be the object
of interest (for instance, in copositive programming [6]) and thus change of measure on the
canonical simplex Yd independently from its projection V is beneficial.

4 Change of Measure on the Standard Simplex

Built on the uniform sampling technique (Sect. 3), we next develop theories on change of
measure on the standard d-simplexXd with a view towards variance reduction by importance
sampling in Monte Carlo integration of the integral (3.1), that is,

μ =
∫
Xd

�(x)dx =
∫ 1

0

[∫
Yd

�(v1/dy)dy
]
dv = E

[
�(V 1/dY )

]
. (4.1)

We note that it suffices to deal with those two measures separately thanks to the product
form of the two measures dy and dv or, equivalently, independence of the corresponding two
random elements V and Y in the representation (4.1). We stress that our approaches below
do not yield an estimator with variance larger than that of the crude estimator (4.1), since the
original measure is a member of the relevant parametric family.
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4.1 Change of Measure on the Projection

We begin with change of the outer Lebesgue measure dv on the unit interval (0, 1) in the
representation (4.1), which plays a role of projecting realizations on the canonical (d − 1)-
simplexYd towards the origin 0d (Theorem3.2). In order to form the proposal law,we employ
the so-called bypass function [14, 15], a typical choice of which is an exponential bypass
function f (and its tail mass F and inverse F−1):

f (w; λ) = λe−λw, F(w; λ) = e−λw, F−1(v; λ) = −1

λ
ln(v),

F(F−1(v; λ); λ0) = vλ0/λ, 	0 = (0,+∞), (4.2)

for (v,w) ∈ (0, 1) × (0,+∞). With such a suitable bypass function chosen, the integral
(4.1) can be parameterized further with λ0, λ ∈ 	0, as follows:

μ =
∫ 1

0

[∫
Yd

�(v1/dy)dy
]
dv

=
∫
D

[∫
Yd

�
(
(F(w; λ0))

1/dy
)
dy
]
f (w; λ0)dw

=
∫
D

f (w; λ0)

f (w; λ)

[∫
Yd

�
(
(F(w; λ0))

1/dy
)
dy
]
f (w; λ)dw

=
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

[∫
Yd

�
(
(F(F−1(v; λ); λ0))

1/dy
)
dy
]
dv (4.3)

= E

[
f (F−1(V ; λ); λ0)

f (F−1(V ; λ); λ)
�
(
(F(F−1(V ; λ); λ0))

1/dY
)]

, (4.4)

where we have changed variables v = F(w; λ0) followed by w = F−1(v; λ) along the way
and have placed square brackets inside to stress that only the outer integral is dealt with. In
the expectation (4.4), it holds that V ∼ U (0, 1) and Y ∼ Dir(1d), corresponding to the two
respective measures dv and p(y;1d)dy, and moreover that they are independent, thanks to
the product form of those two measures in (4.3) even after changing variables.

In fact, instead of the exponential bypass function (4.2) (which we employ in all numerical
illustrations (Figs. 2, 4 and 6), and all numerical examples in Sect. 5), one may come up with,
for instance, a Gaussian bypass function f (w; λ) = φ(w−λ), with a little more computation
required than (4.2), due to the lack of closed-form expressions of its distribution function �

and inverse�−1. We do not proceed in this direction but refer the reader to [15, Section 5] for
details on other bypass functions. In short, the choice of bypass function is rather arbitrary
as long as Assumption 4.1 below is satisfied.

Assumption 4.1 We choose in advance an open set 	0 ⊆ R with Leb(	0) > 0, a family
{ f (·; λ) : λ ∈ 	0} of probability density functions on the domain D(⊂ R) and a family
{F(·; λ); λ ∈ 	0} of functions on D in such a way that

(a) The support D of the probability density function f (·; λ) is open and independent of the
parameter λ;

(b) For almost every w ∈ D (with respect to dw), the function f (w; ·) is twice continuously
differentiable on 	0;

(c) For every λ ∈ 	0 and B ∈ B(D), it holds that
∫
D 1(F(w; λ) ∈ B) f (w; λ)dw =

Leb(B);
(d) For every λ ∈ 	0, the inverse F−1(·; λ) is well defined and continuous on (0, 1);
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Fig. 2 Typical 2000 iid realizations of the random vector (V λ0/λ)1/dY (that is, the uniform random vector Y
on the canonical hyperplane projected by the random variable (V λ0/λ)1/d towards the origin) for 3 different
values of the projection parameter λ with λ0 = 1.0 fixed, resulting in a uniform sampling on the standard
d-simplexXd (corresponding to Fig. 1 a), and more mass towards b the canonical hyperplane and c the origin

(e) For every λ ∈ 	0 and B ∈ B(D), it holds that
∫
(0,1) 1(F−1(v; λ) ∈ B)dv =∫

B f (w; λ)dw;
(f) For almost everyw ∈ D (with respect to dw), it holds that limn→+∞ supλ∈∂Kn

f (w; λ) =
0, where {Kn}n∈N is an increasing sequence of compact subsets of the open set 	0,
satisfying ∪n∈NKn = 	0 and Kn � int(Kn+1).

(g) For almost every w ∈ D (with respect to dw), the reciprocal 1/ f (w; ·) is twice contin-
uously differentiable and convex on 	0.

Assumption 4.1 (c), (d), and (e) indicate that if V ∼ U (0, 1) and W is a random variable

taking values in Dwith density f (·; λ), then it holds that F(W ; λ)
L= V , and Z

L= F−1(V ; λ),
as we have already seen to get to the expressions (4.3) and (4.4). Hereafter, for the sake of
convenience, we refer to λ as the projection parameter, as it is concerned with the projection
V 1/d in the representation (4.1). The conditions (f) and (g) are employed later in Theorems
4.2 and 4.3 for technical purposes.

Evidently, the exponential bypass function (4.2) satisfies Assumption 4.1 with the
support D = (0,+∞). In particular, (f)-(g) hold true due to limλ→0+ f (w; λ) =
limλ→+∞ f (w; λ) = 0 and 1/ f (w; λ) = λ−1eλw is twice continuously differentiable and
is convex in λ on 	0. We provide Fig. 2 to visualize how the projection parameter λ can
change the law of the random vector (F(F−1(V ; λ); λ0))

1/3Y on the standard 3-simplex
X3 (because d = 3), with V ∼ U (0, 1), Y ∼ Dir(13) and λ0 = 1.0. We remark that
(F(F−1(V ; λ); λ0))

1/3Y is the random vector inside the expectation (4.4) and reduces to
(V λ0/λ)1/3Y based on the exponential bypass function (4.2). In short, by wisely setting the
value of the projection parameter λ, onemay send themass of the law (b) away, or (c) towards
the origin. Clearly, the parameter set (a) λ = λ0 reduces the law to the original uniform law
on the standard 3-simplex X3, corresponding to the uniform sampling technique developed
in Sect. 3.2.

4.2 Change of Measure on the Canonical Simplex

Now that change of the outer Lebesgue measure has been developed (Sect. 4.1), we next
address the inner integral with respect to the Lebesgue measure dy on the canonical hyper-
plane in the double integral (4.3) in two distinct ways (Sects. 4.2.1 and 4.2.2).
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4.2.1 Change of Measure Within the Dirichlet Law

The first framework we develop here is based on the interpretation of the inner Lebesgue
measure dy on the canonical (d − 1)-simplex Yd as its identical form p(y;1d)dy, that is, an
element Dir(1d) in the class of the Dirichlet law Dir(α) for α ∈ (0,+∞)d . Further to the
integral (4.3) with the projection parameter λ fixed in its domain 	0, the Dirichlet parameter
α can be incorporated by changing the inner measure p(y;1d)dy, in a similar spirit to [13],
as follows:

μ =
∫ 1

0

[∫
Yd

�(v1/dy)dy
]
dv

=
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

[∫
Yd

�
(
(F(F−1(v; λ); λ0))

1/dy
)
dy
]
dv

=
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

[∫
Yd

�
(
(F(F−1(v; λ); λ0))

1/dy
)
p(y;1d)dy

]
dv

=
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

[∫
Yd

p(y;1d)
p(y;α)

�
(
(F(F−1(v; λ); λ0))

1/dy
)
p(y;α)dy

]
dv

(4.5)

= Eα

[
f (F−1(V ; λ); λ0)

f (F−1(V ; λ); λ)

p(Y ;1d)
p(Y ;α)

�
(
(F(F−1(V ; λ); λ0))

1/dY
)]

, (4.6)

where the likelihood ratio p(·;1d)/p(·;α) is well defined over the canonical (d−1)-simplex
Yd for all α ∈ (0,+∞)d , since the Dirichlet lawDir(α) has the supportYd in common. In the
representation (4.6), we have denoted by Eα the expectation under which the random vector
Y follows the law Dir(α) and remains independent of the random variable V ∼ U (0, 1).

We provide Fig. 3 to illustrate the flexibility of the law Dir(α)with respect to the Dirichlet
parameter α. That is, we here focus on the behavior of the random vector Y ∼ Dir(α) on
the canonical hyperplane under the expectation operator Eα in (4.6). For each of 6 different
values of the Dirichlet parameter α with d = 3, we plot 2000 iid realizations from the law
Dir(α) on the canonical hyperplane by generating gamma random variables in accordance
with the representation (3.3). The parameter set α = (1.0, 1.0, 1.0) (Fig. 3a) corresponds to
uniform sampling. Otherwise, the law Dir(α) may tilt its mass towards (b) a vertex, and (c)
an edge. Even more flexibly, the mass can be sent towards (d) two edges, and (e) all vertices.
Finally, the mass can also stay (f) away from all vertices and edges, thus towards the center
of the canonical hyperplane.

In addition, we demonstrate in Fig. 4 how the Dirichlet and projection parameters (α, λ)

togethermay alter the uniform law on the standard 3-simplexX3, by recycling the realizations
of the law Dir(α) on the canonical hyperplane of Fig. 3. The two parameters (α, λ) together
offer quite flexible means of tilting the uniform law, such as towards (a) A single surface, (b)
The three vertices alone on the canonical hyperplane, and (c) A single bottom edge.

Now, as opposed to the insensitivity of the firstmoment (4.6) to theDirichlet and projection
parameters (α, λ), its estimator variance (or, equivalently, the second moment since the first
moment is invariant) is not independent of those parameters, as follows:

123



64 Page 12 of 29 Journal of Scientific Computing (2024) 98 :64

Fig. 3 Typical 2000 iid realizations from the law Dir(α) on the canonical hyperplane for 6 different values of
the Dirichlet parameter α, resulting in a uniform sampling, and more mass towards b a vertex, c an edge, d
two edges simultaneously, e all vertices simultaneously, and f the center of the canonical hyperplane

Fig. 4 Typical 2000 iid realizations of the random vector (F(F−1(V ; λ); λ0))
1/dY on the standard d-simplex

Xd in the expectation (4.6), that is, the random vector Y ∼ Dir(α) on the canonical hyperplane, projected
by the random variable (F(F−1(V ; λ); λ0))

1/d towards the origin, for 3 different sets of the Dirichlet and
projection parameters (α, λ) with λ0 = 1.0. More mass is present towards a a single surface, b all three
(non-origin) vertices simultaneously, and c a single edge

Varα

(
f (F−1(V ; λ); λ0)

f (F−1(V ; λ); λ)

p(Y ;1d )

p(Y ; α)
�
(
(F(F−1(V ; λ); λ0))

1/dY
))

=
∫ 1

0

∫
Yd

∣∣∣∣ f (F
−1(v; λ); λ0)

f (F−1(v; λ); λ)

p(y;1d )

p(y; α)
�
(
(F(F−1(v; λ); λ0))

1/dy
)∣∣∣∣

2

p(y;α)dydv − μ2

=
∫ 1

0

∫
Yd

f (F−1(v; λ0); λ0)

f (F−1(v; λ0); λ)

p(y;1d )

p(y;α)
|�(v1/dy)|2 p(y;1d )dydv − μ2

:= Wa(α, λ) − μ2 (4.7)

where we have changed variables v = F(w; λ) and then w = F−1(v; λ0) along the
way. Here, we have denoted by Varα the variance associated with the expectation Eα

in (4.6). We henceforth call Wa the second moment function (of the estimator inside
the expectation (4.6). We note that setting (α, λ) = (1d , λ0) yields Wa(1d , λ0) =
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∫ 1
0

∫
Yd

|�(v1/dy)|2 p(y;1d)dydv, which is nothing but the crude second moment (crude,
as no change of measure is employed).

Hence, the convergence of Monte Carlo integration of the representation (4.6) may be
accelerated by choosing the Dirichlet and projection parameters (α, λ) in such a wise way to
yield a smaller estimator variance (Wa(α, λ) < Wa(1d , λ0)) or, more ideally, by finding the
minimizer (argmin(α,λ) Wa(α, λ)) over a suitable parameter domain. To describe a tractable
structure of the second moment function Wa(α, λ), we define the following two parameter
sets based on the representation (4.7):

A(λ) := int
⋃
B

{
B ⊆ (0, +∞)d :

∫ 1

0

∫
Yd

f (F−1(v; λ0); λ0)

f (F−1(v; λ0); λ)

× sup
α∈B

[
max {1, ‖∇α‖ , ‖Hessα‖} p(y;1d )

p(y; α)

]
|�(v1/dy)|2 p(y;1d )dydv < +∞

}
, (4.8)

	a(α) := int
⋃
B

{
B ⊆ 	0 :

∫ 1

0

∫
Yd

sup
λ∈B

[
max

{
1, |(∂/∂λ)| , |(∂2/∂λ2)|

} f (F−1(v; λ0); λ0)

f (F−1(v; λ0); λ)

]

× p(y;1d )

p(y; α)
|�(v1/dy)|2 p(y;1d )dydv < +∞

}
, (4.9)

wherewehavewrittenmax{1, ‖∇x‖, ‖Hessx‖}b(x) := max{|b(x)|, ‖∇b(x)‖, ‖Hess(b(x))‖}
for the sake of brevity.

Theorem 4.2 (i) Let λ ∈ 	0. IfLeb(A(λ)) > 0, then the matrixHessα(Wa(α, λ)) is positive
semi-definite on the domain A(λ).

(ii) Let α ∈ (0,+∞)d . If Leb(	a(α)) > 0, then the function Wa(α, ·) is twice continu-
ously differentiable and strictly convex on the domain 	a(α). Moreover, if int{λ ∈ 	0 :
Wa(α, λ) < +∞} = 	a(α), then λ∗(α) := argminλ∈	a(α) Wa(α, λ) exists uniquely in
	a(α) satisfying (∂/∂λ)Wa(α, λ)|λ=λ∗(α) = 0.

The second moment function Wa(α, λ) is convex in each argument, whereas it does not
seem jointly convex in the both Dirichlet and projection parameters (α, λ). Similar partial
convexity has been encountered in [17], where the second moment is convex in either impor-
tance sampling or control variates alone, but not in both. At any rate, the partial convexity
provides a theoretical basis of searching the relevant domain for aminimizer in one parameter
without worrying about local minima, with the other parameter fixed. We refer the reader to
existing methodologies for parameter search, such as [13].

4.2.2 Change of Measure Through Inverse Transform

Apart from the first framework developed in Sect. 4.2.1, we next construct change of mea-
sure on the canonical hyperplane through inverse transform of the exponential law by the
uniform law. Recall first the second identity in law in the representation (3.4), which pro-
vides an expression of the uniform random vector on the canonical (d − 1)-simplex Yd

using iid uniform random variables on the unit hypercube (0, 1)d , resulting in the following
reformulation:

μ =
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

[∫
Yd

�
(
(F(F−1(v; λ); λ0))

1/dy
)
p(y;1d)dy

]
dv

=
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

[∫
(0,1)d

�
(
(F(F−1(v; λ); λ0))

1/dh(u)
)
du
]
dv, (4.10)
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by change of variables via the function h : (0, 1)d → Yd , given by

h(u) :=
(

ln(u1)∑d
k=1 ln(uk)

,
ln(u2)∑d
k=1 ln(uk)

, · · · ,
ln(ud)∑d
k=1 ln(uk)

)
, u := (u1, u2, · · · , ud ) ∈ (0, 1)d .

In this section, we change the Lebesgue measure du on the unit hypercube (0, 1)d in
the representation (4.10). To this end, we again employ the bypass function as in Sect. 4.1
without repeating similar details in order to avoid overloading the section. Here, in a similar
manner to Assumption 4.1, we denote by g(·; θ) the bypass function on the support D (this
time, a subset of R

d ) for θ ∈ �0 and suppose that the function G and its inverse G−1 satisfy∫
D 1(G(z; θ) ∈ B)g(z; θ)dz = Leb(B) and

∫
(0,1)d 1(G−1(u; θ) ∈ B)du = ∫

B g(z; θ)dz
for all θ ∈ �0 and B ∈ B(D). As in Assumption 4.1, we assume the reciprocal 1/g(u; ·) is
convex for almost every u ∈ (0, 1)d . Hereafter, for the sake of convenience and clarity, we
also refer to θ as the bypass parameter. By introducing a suitable bypass function to (4.10),
it holds, in a similar manner to (4.5), that

μ =
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

[∫
(0,1)d

�
(
(F(F−1(v; λ); λ0))

1/dh(u)
)
du
]
dv,

=
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

[∫
(0,1)d

g(G−1(u; θ); θ0)

g(G−1(u; θ); θ)
�
(
(F(F−1(v; λ); λ0))

1/dh(G(G−1(u; θ); θ0))
)
du
]
dv

(4.11)

= E

[
f (F−1(V ; λ); λ0)

f (F−1(V ; λ); λ)

g(G−1(U ; θ); θ0)

g(G−1(U ; θ); θ)
�
(
(F(F−1(V ; λ); λ0))

1/dh(G(G−1(U ; θ); θ0))
)]

, (4.12)

where we have changed variables u = G(z; θ0) and then z = G−1(u; θ) along the way. Let
us stress that, unlike change of measure within the Dirichlet law (4.5), the proposal measure
here in (4.11) remains the Lebesgue measure du on the unit hypercube (0, 1)d . That is,
unlike the parameterized expectation operator Eα needs to be prepared in (4.6), Monte Carlo
integration (4.12) can be performed on the uniform random vectorU on (0, 1)d , irrespective
of the bypass parameter θ .

The estimator variance ofMonte Carlo integration (4.12), however, depends on the bypass
parameter θ , as it is given by:

Var

(
f (F−1(V ; λ); λ0)

f (F−1(V ; λ); λ)

g(G−1(U ; θ); θ0)

g(G−1(U ; θ); θ)
�
(
(F(F−1(V ; λ); λ0))

1/dh(G(G−1(U ; θ); θ0))
))

=
∫ 1

0

∫
(0,1)d

∣∣∣∣ f (F
−1(v; λ); λ0)

f (F−1(v; λ); λ)

g(G−1(u; θ); θ0)

g(G−1(u; θ); θ)
�
(
(F(F−1(v; λ); λ0))

1/d h(G(G−1(u; θ); θ0))
)∣∣∣∣

2

dudv − μ2

=
∫ 1

0

∫
(0,1)d

f (F−1(v; λ0); λ0)

f (F−1(v; λ0); λ)

g(G−1(u; θ0); θ0)

g(G−1(u; θ0); θ)
|�(v1/dh(u))|2dudv − μ2 =: Wb(θ , λ) − μ2, (4.13)

where we have changed variables u = G(z; θ) and then z = G−1(u; θ0), as well as v =
F(w; λ) and then w = F−1(v; λ0), without any intervention between the two lines along
the way.

To describe in Theorem 4.3 below that the second moment function Wb(θ , λ) is finite
valued with a tractable structure, we define the parameter sets based on the representation
(4.11):
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�1(λ) := int
⋃
B

{
B ⊆ �0 :

∫ 1

0

∫
(0,1)d

f (F−1(v; λ0); λ0)

f (F−1(v; λ0); λ)
sup
θ∈B

[
max {1, ‖∇θ ‖, ‖Hessθ ‖} g(G−1(u; θ0); θ0)

g(G−1(u; θ0); θ)

]

× |�(v1/dh(u))|2dudv < +∞
}
, (4.14)

	b(θ) := int
⋃
B

{
B ⊆ 	0 :

∫ 1

0

∫
(0,1)d

sup
λ∈B

[
max

{
1, |(∂/∂λ)| , |(∂2/∂λ2)|} f (F−1(v; λ0); λ0)

f (F−1(v; λ0); λ)

]

× g(G−1(u; θ0); θ0)

g(G−1(u; θ0); θ)
|�(v1/dh(u))|2dudv < +∞

}
, (4.15)

where we have again employed the notation max{1, ‖∇x‖, ‖Hessx‖}b(x) := max{|b(x)|,
‖∇xb(x)‖, ‖Hessx(b(x))‖} for the sake of brevity. The next result states partial convexity
of the second moment function Wb(θ , λ). As for Wa(α, λ) of Sect. 4.2.1, it does not seem
convex jointly in the bypass and projection parameters (θ , λ).

Theorem 4.3 (i) Let λ ∈ 	0. If Leb(�1(λ)) > 0, then the function Wb(·, λ) is twice
continuously differentiable and strictly convex on the domain �1(λ). Moreover, if
int{θ ∈ �0 : Wb(θ , λ) < +∞} = �1(λ), then θ(λ) := argminθ∈�1(λ) Wb(θ , λ)

exists uniquely in �1(λ) satisfying ∇θWb(θ , λ)|θ=θ(λ) = 0d .
(ii) Let θ ∈ �0. If Leb(	b(θ)) > 0, then the function Wb(θ , ·) is twice continuously differ-

entiable and strictly convex on the domain	b(θ). Moreover, if int{λ ∈ 	0 : Wb(θ , λ) <

+∞} = 	b(θ), then λ(θ) := argminλ∈	b(θ) Wb(θ , λ) exists uniquely in 	b(θ) satisfy-
ing (∂/∂λ)Wb(θ , λ)|λ=λ(θ) = 0.

We illustrate in Fig. 5 how the bypass parameter θ changes the law of the random vector
h(G(G−1(U ; θ); θ0)) inside the expectation (4.12) on the canonical hyperplane. As for
the projection (Sect. 4.1), we employ the (multivariate) exponential bypass function with
independent components, that is, for θ = (θ1, · · · , θd) ∈ (0,+∞)d ,

g(z; θ) =
d∏

k=1

θke
−θk zk , G(z; θ) = (e−θ1z1 , · · · , e−θd zd

)
,

G−1(u; θ) =
(

− 1

θ1
ln(u1), · · · ,− 1

θd
ln(ud)

)
, (4.16)

on the open support (0,+∞)d irrespective of the bypass parameter θ . Then, with θ0 =
(θ0, · · · , θ0) fixed, we have

G(G−1(u; θ); θ0) =
(
uθ0/θ1
1 , · · · , uθ0/θd

d

)
,

h(G(G−1(u; θ); θ0)) =
(

(θ0/θ1) ln(u1)∑d
k=1(θ0/θk) ln(uk)

, · · · ,
(θ0/θd) ln(ud)∑d
k=1(θ0/θk) ln(uk)

)
.(4.17)

As is clear from the expressions (4.17), the law of the random vector h(G(G−1(U ; θ); θ0))

depends solely on the (componentwise) ratio of θ and θ0 and is moreover invariant up to a
constant multiple of θ (for instance, θ , 2θ and 3θ do not yield different laws). In a similar
manner to verifying Assumption 4.1 based on the univariate exponential bypass function
(4.2), one can easily show that the multivariate exponential bypass function (4.16) and (4.17)
satisfies a multivariate version of Assumption 4.1. We refer the reader to [15, Section 5.1]
for more details. In short, by wisely choosing the bypass parameter θ , one may tilt the law
towards (b) a vertex, and (c) an edge. Clearly, the parameter set θ = θ0 (Fig. 5a) corresponds
to uniform sampling.
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Fig. 5 Typical 2000 iid realizations of the random vector h(G(G−1(U ; θ); θ0)) inside the expectation (4.12)
on the canonical hyperplane for 3 different values of the bypass parameter θ with θ0 = (1.0, 1.0, 1.0), resulting
in a uniform sampling, and more mass towards b a vertex and c an edge

Fig. 6 Typical 2000 iid realizations of the random vector (F(F−1(V ; λ); λ0))
1/dh(G(G−1(U ; θ); θ0)) on

the standard d-simplexXd in the expectation (4.2), for 3 different sets of the bypass and projection parameters
(θ , λ)with θ0 = (1.0, 1.0, 1.0) and λ0 = 1.0. More mass is present towards (a) A single surface, (b) A vertex,
and (c) An edge

Next, in Fig. 6, we illustrate how the bypass and projection parameters (θ , λ) together tilt
the probability law on the standard d-simplex Xd , by recycling the same sets of realizations
used for plotting Fig. 5. The multivariate and univariate exponential bypass functions (4.17)
and (4.2) are employed as g(·; θ) and f (·; λ), respectively. By wisely adjusting the Dirichlet
and projection parameters (θ , λ), one can tilt the law towards (a) A single surface, (b) A
vertex, and (c) An edge.

Now that the two ways have been constructed for changing the measure rather separately
(Sects. 4.2.1 and 4.2.2), let us summarize and compare those, or more precisely, claim supe-
riority of the latter (Sect. 4.2.2) over the former (Sect. 4.2.1) from a practical point of view.
Both frameworks are based on the decomposition (4.1) (or, identically, (3.1)) of the base
integral

∫
Xd

�(x)dx onto the canonical hyperplane and its projection towards the origin.
As for the projection in both two frameworks, among many possible ways of changing its
Lebesgue measure (such as via the beta and triangular distributions), we have focused on a
way via the bypass function (4.3) in common.

Hence, the two frameworks only differ as to how the measure on the canonical hyperplane
is treated. In the former (Sect. 4.2.1), on the one hand, we interpret the uniform law dy
as the law Dir(1d) (with probability density function p(y;1d)) and then change it within
the class of the Dirichlet law Dir(α) (with probability density function p(y;α)). That is,
every time the Dirichlet parameter is altered (say, from αk−1 to αk), the random number
generator needs to be updated as well (from Dir(αk−1) to Dir(αk)). This point has been
indicated by the parameterization of the expectation operator Eα in the expression (4.6). On
the other hand, in the latter framework (Sect. 4.2.2), we again start with the interpretation
of the uniform law dy as the law Dir(1d), but then further represent the law Dir(1d) by the
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representation (3.4) using iid uniform random variables, which we again tilt via a bypass
function (as for, yet separately from, the projection in Sect. 4.2). Given that both measures
on the canonical hyperplane and its projection are changed via the bypass function in the
latter framework, the random number generator remains unchanged even when the bypass
and projection parameters (θ , λ) are updated, as indicated by no parameterization in the
expectation operator E in the expression (4.12), and moreover has only to be (a repeated use
of) standard uniform U (0, 1) throughout the experiment.

This invariance of the random number generator in the latter framework plays a crucial
role in the context of adaptive implementation of Monte Carlo averaging and simultane-
ous parameter search, which we describe in brief. Based upon two sequences {Vk}k∈N and
{Uk}k∈N, respectively, of iid uniform random vectors on the unit hypercube (0, 1)d (not on the
canonical hyperplane) and of iid uniform random variables on (0, 1), the martingale strong
law of large numbers (not the ordinary strong law of large numbers for iid random variables,
like (3.5)) asserts the almost sure convergence

1

n

n∑
k=1

f (F−1(Vk; λk−1); λ0)

f (F−1(Vk; λk−1); λk−1)

g(G−1(Uk; θk−1); θ0)

g(G−1(Uk; θk−1); θk−1)

×�
(
(F(F−1(Vk; λk−1); λ0))

1/dh(G(G−1(Uk; θk−1); θ0))
)

→ μ, (4.18)

as n → +∞, while the bypass and projection parameters (θ , λ) keep updating, for instance,
by stochastic approximation [16, 17] as gradient decent of the second moment function
Wb(θ , λ) through the expression (4.13):
⎧⎪⎪⎨
⎪⎪⎩

θk =∏�1(λk−1)

[
f (F−1(Vk ;λ0);λ0)

f (F−1(Vk ;λ0);λk−1)

(
∇θ

g(G−1(Uk ;θ0);θ0)
g(G−1(Uk ;θ0);θ)

) ∣∣∣
θ=θk−1

|�(V 1/d
k h(Uk))|2

]
,

λk =∏	b(θk−1)

[(
d
dλ

f (F−1(Vk ;λ0);λ0)
f (F−1(Vk ;λ0);λ)

) ∣∣∣
λ=λk−1

g(G−1(Uk ;θ0);θ0)
g(G−1(Uk ;θ0);θk−1)

|�(V 1/d
k h(Uk))|2

]
,

(4.19)

where we have denoted by
∏

B [x] the metric projection of the point x onto the set B. Upon
implementation of the search algorithm (4.19), there remain a few points to be cleared,
such as how to find and update the search domains �1(λk−1) and 	b(θk−1) in the metric
projections, and whether or not the iteration converges in the absence of joint convexity of the
second moment function in both parameters. We however do not go in the direction towards
parameter search but leave the relevant topics as future research.

In summary, it is an advantage of the latter framework (Sect. 4.2.2), at least from the per-
spective of implementation, that the averaging operation (4.18) proceeds along the parameter
updating (4.19), where common random sequences {Vk}k∈N and {Uk}k∈N can be applied to
both lines (4.18) and (4.19). In contrast, such adaptive implementation is impossible in the
former framework (Sect. 4.2.1), where the randomnumber generator needs to be altered every
time the Dirichlet parameter is updated.

5 Examples

In this section, we examine four problems (Examples 5.1, 5.2, 5.3 and 5.4) to demonstrate the
effectiveness of the established Monte Carlo integration along with change of measure over
simplices (as well as exemplify a practical problem in Example 5.5 for which the proposed
method is not fully valid due to its infinite estimator variance). Althoughwe have just claimed
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practical superiority of one framework (Sect. 4.2.2) over the other (Sect. 4.2.1) in terms of
the parameter search, we here do not pay attention to this point but focus on the effectiveness
of two ways of changing the underlying measure given every relevant parameter has already
been fixed. Recall that λ, α and θ denote, respectively, the projection parameter (Sect. 4.1),
the Dirichlet parameter (Sect. 4.2.1) and the bypass parameter (Sect. 4.2.2). We note that the
parameter sets α = (1.0, · · · , 1.0) and θ = (1.0, · · · , 1.0) with λ = 1.0 recover the original
crude estimator (4.1), presented in every example for comparison purposes.

Example 5.1 We start with a simple example to demonstrate that the expectations (4.6) and
(4.12) yield the constant μ of ultimate interest, that is, changing the measure does not affect
the value of an integral. To this end, consider an integral of the form

∫
Xd

h(〈x,1d〉)dx(=∫
Xd

h(x1+· · ·+xd)dx), where h is a continuously differentiable function on the unit interval
(0, 1), that is, �(x) = h(〈x,1d〉) in the formulation (2.1). We have chosen this simple
problem setting because this integral on the standard d-simplex Xd can be reformulated as
an integral on the unit interval via the formula

∫
Xd

h(〈x,1d〉)dx = ∫ 10 vd−1h(v)dv/(d −1)!,
which provides a convenient means for numerical comparison. It is worth mentioning that
this formula does not require the integrand to be polynomial.

Consider the integral of the non-polynomial function �(x) = ex1+x2+x3 on the standard
3-simplex X3:

μ =
∫
X3

ex1+x2+x3dx = 1

2

∫ 1

0
z2ezdz = e − 2

2
≈ 0.359141.

We present in Tables 1 and 2 the averages and standard deviations of 100 iid empirical means.
Each of those 100 iid experiments is obtained by Monte Carlo integration of the integrand
ex1+x2+x3 on the standard 3-simplexX3 based on 105 iid realizations, without approximation
by polynomial, where the average and the standard deviation are computed in accordance
with the formulas:

1

100

100∑
k1=1

1

105

105∑
k2=1

�(Xk1,k2),

⎡
⎢⎣ 1

100 − 1

100∑
k1=1

⎛
⎝ 1

105

105∑
k2=1

�(Xk1,k2) − 1

100

100∑
k=1

1

105

105∑
k2=1

�(Xk,k2)

⎞
⎠

2
⎤
⎥⎦
1/2

, (5.1)

for an array of iid samples {Xk1,k2}k1∈{1,··· ,100},k2∈{1,··· ,105} on X3. We note that the empirical
standard deviations presented here are not for illustrating variance reduction but for validation
of the proposed change of measure. In estimating the value

∫
X3

ex1+x2+x3dx ≈ 0.359141
by Monte Carlo integration, we examine both representations (4.6) and (4.12), each with 9
distinct sets of the parameters (α, λ) and (θ , λ)with θ0 = (1.0, 1.0, 1.0) and λ0 = 1.0, some
of which are taken from Figs. 4 and 6.

The 95%-confidence intervals for all the examined 18 parameter sets here contain the
true value

∫
Xd

ex1+x2+x3dx ≈ 0.359141. Among those 18 confidence intervals, the widest
one is [0.358318, 0.359540] when θ = (1.5, 0.3, 0.3) and λ = 0.5, whereas the narrowest
one is [0.359080, 0.359160] under uniform sampling, that is, when α = θ = (1.0, 1.0, 1.0)
with λ = 1.0. We add that the 90%-confidence intervals, which are obviously even narrower,
contain the true value in all the 18 parameter sets. 
�
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Table 1 Averages of 100 iid empirical means in estimating the value
∫
X3

ex1+x2+x3dx ≈ 0.359141

α θ

λ (1.0, 1.0, 1.0) (0.5, 1.5, 1.5) (0.5, 0.5, 0.5) (1.0, 1.0, 1.0) (1.5, 0.3, 0.3) (0.3, 1.5, 1.5)

1.0 0.359120 0.358993 0.359182 0.359120 0.358998 0.359020

1.5 0.359183 0.359055 0.359225 0.359183 0.359058 0.359089

0.5 0.359105 0.358848 0.359190 0.359105 0.358929 0.358869

Each of those 100 iid empirical means is obtained by Monte Carlo integration based on 105 iid realizations

Table 2 Standard deviations of the 100 iid empirical means corresponding to Table 1

α θ

λ (1.0, 1.0, 1.0) (0.5, 1.5, 1.5) (0.5, 0.5, 0.5) (1.0, 1.0, 1.0) (1.5, 0.3, 0.3) (0.3, 1.5, 1.5)

1.0 0.000204 0.001953 0.000899 0.000204 0.002522 0.001946

1.5 0.000353 0.001896 0.000983 0.000353 0.002667 0.001927

0.5 0.000801 0.002499 0.001145 0.000801 0.003115 0.002437

Table 3 Averages of 100 iid empirical means (×10−7) in estimating the value
∫
X10

ex1+···+x10dx ≈
6.86255 × 10−7

α θ

λ (1.0, · · · , 1.0) (1.5, · · · , 1.5) (0.5, · · · , 0.5) (1.0, · · · , 1.0) (1.5, · · · , 1.5) (0.5, · · · , 0.5)

1.0 6.86265 6.85804 6.86429 6.86265 6.86327 6.87051

1.5 6.86290 6.85936 6.86657 6.86290 6.86135 6.86844

0.5 6.86423 6.86205 6.86746 6.86423 6.87087 6.87977

Each of those 100 iid empirical means is obtained by Monte Carlo integration based on 105 iid realizations

Example 5.2 Next, to demonstrate the effectiveness of the developed frameworks in terms
of problem dimension, we continue the problem setting of Example 5.1, but here in 10
dimensions,

μ =
∫
X10

ex1+···+x10dx = 1

9!
∫ 1

0
z9ezdz ≈ 6.86255 × 10−7.

We present in Tables 3 and 4 the averages and standard deviations of 100 iid empirical
means, again in accordance with the formulas (5.1). As in Example 5.1, each of the 100 iid
empirical means is obtained by Monte Carlo integration of the integrand ex1+···+x10 on the
standard 10-simplex X10 using 105 iid realizations, without approximation by polynomial.
For simplicity, we set the vectors of identical components (1.0, · · · , 1.0), (1.5, · · · , 1.5),
and (0.5, · · · , 0.5) to the Dirichlet α and bypass parameters θ with θ0 = (1.0, · · · , 1.0)
and λ0 = 1.0. We note that the empirical standard deviations presented here are not for
illustrating variance reduction but for validation of the proposed change of measure.

Even in this high dimensional problem, the 95%-confidence intervals for all the examined
18 parameter sets contain the true value

∫
X10

ex1+···+x10dx ≈ 6.86255×10−7, with thewidest

one [6.84440× 10−7, 6.89734× 10−7] and the narrowest one [6.86231× 10−7, 6.86300×
10−7]. We report that unlike d = 3 in Example 5.1, one of the 18 examined parameter
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Table 4 Standard deviations (×10−7) of the 100 iid empirical means corresponding to Table 3

α θ

λ (1.0, · · · , 1.0) (1.5, · · · , 1.5) (0.5, · · · , 0.5) (1.0, · · · , 1.0) (1.5, · · · , 1.5) (0.5, · · · , 0.5)

1.0 0.00177 0.04206 0.04880 0.00177 0.10404 0.08839

1.5 0.01121 0.05048 0.05853 0.01121 0.09916 0.10726

0.5 0.01418 0.05248 0.05828 0.01418 0.13504 0.10165

sets fails slightly to capture the true value within its 90%-confidence interval [6.86305 ×
10−7, 6.98142 × 10−7], when θ = (0.5, · · · , 0.5) and λ = 0.5. It is worth stressing that,
as discussed in Sect. 3.2, the computing cost required here remains comparable to the case
d = 3 in Example 5.1, as the essential difference only lies in the number of random elements
involved while the operation remains elementary irrespective of dimension. 
�

Now that our Monte Carlo integration proves effective on non-polynomial integrands, we
henceforth focus on polynomial integrands. We next demonstrate and compare the effective-
ness of the two frameworks (Sects. 4.2.1 and 4.2.2). Namely, the primary objective from here
on is to prove the potential of those two frameworks in reducing the estimator variance for
the acceleration of Monte Carlo integration. As the integrand is polynomial, we make use of
the well-known Stroud formula [31] for comparison purposes:

∫
Xd

xa11 xa22 · · · xadd dx =
∏d

k=1 ak !
(d +∑d

k=1 ak)!
, (5.2)

provided that {ak}k∈{1,··· ,d} is a sequence of non-negative integers, as a direct consequence
of the fact that the function (3.2) is a probability density function. Clearly, the integral∫
Xd

�(x)dx of a general polynomial � can be expressed as a linear combination of the
formula (5.2).

For each experiment in both numerical examples below, we present empirical variances
on a single run of sample size 105, that is,

1

105 − 1

105∑
k2=1

⎛
⎝�(X1,k2) − 1

105

105∑
k=1

�(X1,k)

⎞
⎠

2

, (5.3)

which should not be confused with the empirical standard deviation (5.1) based on 100 iid
runs, each of sample size 105 as in Examples 5.1 and 5.2. We present tables of empirical
variances under various sets of the relevant parameters for illustration of the effectiveness of
the proposed change of measure. For convenience, we attach the superscript  to the lowest
variance among the examined parameter sets. We stress the the lowest variances are only the
lowest among the examined parameter sets and are highly unlikely to be optimal over the
parameter domain.

Example 5.3 Consider the following integral on the standard 3-simplex X3:

μ =
∫
X3

(x21 + x22 + x23 )dx = 1

20
.

We begin with the first framework (Sect. 4.2.1). In Table 5, we present empirical variances
under 15 different sets of the Dirichlet and projection parameters (α, λ). The parameter set
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Table 5 Empirical variances (×10−2) on a single run of sample size 105 under 15 different sets of theDirichlet
and projection parameters (α, λ) with λ0 = 1.0 when integrating the polynomial �(x) = x21 + x22 + x23 over
the standard 3-simplex X3

λ α

(1.0, 1.0, 1.0) (1.5, 1.5, 1.5) (2.0, 2.0, 2.0) (0.8, 0.8, 0.8) (0.5, 0.5, 0.5)

1.0 2.4411 15.016 86.198 1.9854 4.9765

0.5 9.8840 33.724 184.08 9.0837 14.009

1.5 0.7010 10.616 59.433 0.3216 2.8595

The value 0.3216 with superscript  is the lowest among the 15 parameter sets

Table 6 Empirical variances (×10−2) on a single run of sample size 105 under 15 different sets of the bypass
and projection parameters (θ , λ) with θ0 = (1.0, 1.0, 1.0) and λ0 = 1.0, when integrating the polynomial
�(x) = x21 + x22 + x23 on the standard 3-simplex X3

λ θ

(1.0, 1.0, 1.0) (1.2, 0.8, 0.8) (0.8, 1.2, 1.2) (1.5, 0.3, 0.3) (0.3, 1.5, 1.5)

1.0 2.4411 4.1522 4.2187 58.430 33.934

0.5 9.8840 12.718 12.935 101.80 65.343

1.5 0.7010 2.1888 2.1932 48.644 26.530

The value 0.7010 with superscript  is the lowest among the 15 parameter sets. The values of the bypass
parameter θ here, except for θ = (1.0, 1.0, 1.0), do not correspond to and are thus not comparative to the
values of the Dirichlet parameter α in Table 5

α = (1.0, 1.0, 1.0) and λ = 1.0 corresponds to uniform sampling. With the projection
parameter λ fixed, the experiment with α = (0.8, 0.8, 0.8) presents the lowest estimator
variance among the five examined Dirichlet parameters. This is a natural consequence as the
Dirichlet law with α = (0.8, 0.8, 0.8) has more mass equally towards all three vertices of
the canonical hyperplane (in a similar manner to Fig. 3e), where the integrand x21 + x22 + x23
returns its largest value 1. It is worth noting that tilting the law toomuchmay cause a negative
effect, as the vertices are the most important, but not only the places of importance. Here, the
Dirichlet parameter α = (0.5, 0.5, 0.5) returns a larger variance than α = (0.8, 0.8, 0.8).

Next, we present in Table 6 empirical variances under 15 different sets of the bypass and
projection parameters (θ , λ) in the second framework (Sect. 4.2.2). We note that the first
columns in Tables 5 and 6 are identical because both represent the same set of experiments.
With the projection parameter λ fixed, the estimator variance is unfortunately increased by
altering the bypass parameter θ , since this change of measure does not seem capable of
sending the mass towards all vertices of the canonical hyperplane at once.

The numerical results in Tables 5 and 6 together indicate that with theDirichletα or bypass
parameter θ fixed, the lowest estimator variance is found when the projection parameter is
λ = 1.5, by which realizations are projected back towards the canonical hyperplane (in
the direction opposite to the origin by λ = 0.5), as illustrated in Figs. 2b, 4b and 6b. This
phenomenon does not deserve a surprise because the integrand x21 + x22 + x23 tends to vanish
towards the origin. Although the first framework (Sect. 4.2.1) may look more effectiveness
as it can deal with all three vertices at once, there is still potential for substantial reduction
of the variance in the second framework (Sect. 4.2.2) in practice, particularly in the absence
of prior knowledge on important regions. 
�
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Table 7 Empirical variances (×10−2) on a single run of sample size 105 under 15 different sets of theDirichlet
and projection parameters (α, λ) with λ0 = 1.0 when integrating the polynomial �(x) = (1 − x1)

4 over the
standard 3-simplex X3

λ α

(1.0, 1.0, 1.0) (0.8, 1.0, 1.0) (0.8, 1.2, 1.2) (0.5, 1.5, 1.5) (1.0, 0.5, 0.5)

1.0 8.9011 4.9058 3.9558 11.932 39.733

0.5 14.424 8.9606 7.5102 14.004 52.630

1.5 30.302 24.822 23.144 43.736 83.488

The value 3.9558 with superscript  is the lowest among the 15 parameter sets

Table 8 Empirical variances (×10−2) on a single run of sample size 105 under 15 different sets of the bypass
and projection parameters (θ , λ) with θ0 = (1.0, 1.0, 1.0) and λ0 = 1.0 when integrating the polynomial
�(x) = (1 − x1)

4 over the standard 3-simplex X3

λ θ

(1.0, 1.0, 1.0) (1.0, 0.8, 0.8) (1.5, 0.3, 0.3) (1.6, 0.8, 0.8) (0.3, 1.5, 1.5)

1.0 8.9429 8.4928 39.026 3.7432 142.42

0.5 14.531 13.117 45.840 6.5266 196.61

1.5 29.425 31.721 74.556 27.666 208.66

The value 3.7432 with superscript  is the lowest among the 15 parameter sets. The values of the bypass
parameter θ here, except for θ = (1.0, 1.0, 1.0), do not correspond to and are thus not comparative to the
values of the Dirichlet parameter α in Table 7

Example 5.4 Consider the following integral on the standard 3-simplex X3:

μ =
∫
X3

(1 − x1)
4dx = 1

14
.

Clearly, the hyperplane x1 = 0 is themost important region (in a similarmanner to Figs. 4a
and 6a), because the integrand (1 − x1)4 attains its largest value 1 over the hyperplane.

We present in Tables 7 and 8 empirical variances under 15 different sets, respectively, in
the first and second frameworks (Sects. 4.2.1 and 4.2.2). As can be predicted, the mass can
be sent towards the plane x1 = 0 in a systematic manner, by tilting the law towards the edge
connecting the two vertices (0, 1, 0) and (0, 0, 1) (in a similar manner to Figs. 3c and 5c),
with the uniformity of the projection retained (that is, λ = 1.0).

It is worth warning that tilting the law further in the same direction may not necessarily
improve the estimator variance. For instance, by tilting the mass further (for instance, with
α = (0.5, 1.5, 1.5) in the same direction as α = (0.8, 1.2, 1.2)), we may end up with (in
fact, substantially) larger variances. 
�

Example 5.5 We close the present study with an illustrative problem with an unbounded yet
integrable function on a general twisted simplex. Consider the integrand�0(s) = ‖s−v0‖−2

on a general 3-simplex S (d = 3) with the four distinct vertices v0 = (0, 10, 10)�, v1 =
(0, 1, 0)�, v2 = (−0.5, 0, 0)� and v3 = (0.5, 0, 0)�, which occurs often in electrostatic
problems. In accordancewith the transform formula (2.2)with s ← Ax+v0 and the projection
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principle (Theorem 3.2), the integral can be reformulated, as follows:
∫
S

�0(s)ds = | det(A)|
∫
X3

1

‖Ax‖2 dx = | det(A)|
∫ 1

0
v−2/3dv

∫
Y3

1

‖Ay‖2 dy ≈ 0.1551,

(5.4)

where the matrix A and its determinant are given by

A = [v1 − v0, v2 − v0, v3 − v0
] =

⎡
⎣ 0 −0.5 0.5

−9 −10 −10
−10 −10 −10

⎤
⎦ , |det(A)| = 10.

As far as Monte Carlo integration is concerned, there is an issue of infinite estimator variance
due to singularity at the origin, as follows:
∫
S
(�0(s))2ds = | det(A)|

∫
X3

1

‖Ax‖4 dx = | det(A)|
∫ 1

0
v−4/3dv

∫
Y3

1

‖Ay‖4 dy = +∞.

(5.5)

In other words, the strong law of large numbers remains true for Monte Carlo integration
(2.3) due to a finite first moment (5.4), whereas the central limit theorem (2.4) fails to hold
due to infinite variance (5.5). In the context of this particular example, the so-called partial
averaging can serve as a remedy, as soon as noticed. That is, in the decomposition (5.4), the
first integral

∫ 1
0 v−2/3dv(= 3), which is the source of infinite variance, requires no numerical

approximation at all. It then remains to implement Monte Carlo integration for the second
integral

∫
Y3

‖Ay‖−2dy on the canonical simplex Y3.
Before continuing, let us briefly touch on the transform using a different base (from v0),

for instance, s ← Bx + v1 with B = [v0 − v1, v2 − v1, v3 − v1], with which the second
moment can be reformulated as

∫
S(�0(s))2ds = |det(B)| ∫X3

‖B(x − (1, 0, 0)�)‖−4dx. It
is easy to observe non-integrability due to a quartic explosion towards the vertex (1, 0, 0)�
(for instance, via a further transform on X3 using the vertex (1, 0, 0)�), in a similar manner
to the explosion towards the origin in (5.5). Hence, we do not adopt such other transforms
but proceed with the original formulation (5.4) and (5.5) based on the transform using the
base v0.

To closely look into infinite variance, observe that the probability ε on the non-standard
simplex Xd(ε

1/d), that contains the origin, causes explosion of the second moment as slowly
as
∫
X3\X3(ε1/3)

‖Ax‖−4dx = ∫ 1
ε1/3

v−4/3dv
∫
Y3

‖Ay‖−4dy ∼ Cε−1/9, as ε → 0+, with

C = 3
∫
Y3

‖Ay‖−4dy. Hence, on the one hand, a majority (more precisely, 9 out of 10) of
the crude running averages (Fig. 7a) look fairly convergent in Monte Carlo integration for
|det(A)| ∫X3

‖Ax‖−2dx. Those stable trajectories are necessarily underestimating the value
0.1551, becausemost uniform realizations {Xk}k∈N generated onX3 are away from the origin.
On the other hand, one trajectory has exhibited an explosive behavior on its way, caused by
a single realization very close to the origin. In general practice, a typical experiment cannot
detect infinite variance explicitly but sends implicit signals at best in the form of extreme
fluctuations, like this bumpy trajectory.

In reality, even if the theoretical variance is infinite, Monte Carlo integration is often still
implementablewithout a serious issue, since the empirical variance (such as (5.1) and (5.3)) is
necessarily finite. With this point in mind, we have searched for the minimizer by numerical
approximation as λ(θ) = 0.3333 and θ(λ) = (1.037, 1.048, 1.043)�, based on the
representation (4.13). In short, with the parameter value λ(θ) = 0.3333 (and λ0 = 1),
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Fig. 7 Typical 10 iid trajectories of the running average (that is, n−1∑n
k=1 �(Xk ) against n) a without and

b with change of measure

the (transformed) projection V λ0/λ (according to (4.2)) tends to stay away from the origin.
The minimizer θ(λ) here is fairly close to θ0 = 13 with no surprise, because Monte Carlo
integration for the integral

∫
Y3

‖Ay‖−4dy is extremely stable without a variance reduction
technique. In Fig. 7b, we have presented 10 typical trajectories of the running average based
on the expression (4.12) with the parameters λ(θ) and θ(λ) applied form the outset of the
experiment. To be compatible with the numerical results presented in the previous examples,
we have also run 100 iid experiments, each of sample size 105, from which we have obtained
empirical mean 0.1548 and variance 3.009 × 10−5 for the crude implementation (in line
with Fig. 7a), while mean 0.1551 and variance 1.115× 10−9 for change of measure with the
parameters λ(θ) and θ(λ) (as for Fig. 7b).

The proposed method has significantly stabilized Monte Carlo integration by roughly a
factor of 27000 in terms of of the empirical variances (as the ratio (3.009× 10−5)/(1.115×
10−9))), despite bringing up the empirical variance may seem a little awkward when the
theoretical variance is originally infinite. On the contrary, interestingly, the present frame-
work, involving a change of measure on the projection via the exponential bypass function
(4.2), has effectively mitigated the issue of infinite variance associated with the power-law
explosion (5.5), in fact, resulting in the induction of finite theoretical variance. That is to say,
with the exponential bypass function (4.2), the second moment Wb(θ , λ) defined in (4.13)
can be expressed (with θ = θ0 fixed for the sake of simplicity), as follows:

Wb(θ0, λ) = |det(A)|
∫ 1

0

f (F−1(v; λ0); λ0)

f (F−1(v; λ0); λ)
v−4/ddv

∫
(0,1)d

1

|h(u)|4 du

= |det(A)|
∫ 1

0

λ0

λ
v1−4/d−λ/λ0dv

∫
(0,1)d

1

|h(u)|4 du,

where the projection term reduces to
∫ 1

0

λ0

λ
v1−4/d−λ/λ0dv = 1

λ/λ0(2 − 4/d − λ/λ0)
≥ 1

(1 − 2/d)2
, (5.6)

with the minimum (1 − 2/d)−2 attained uniquely when λ/λ0 = 1 − 2/d . In the present
context with d = 3 and λ0 = 1, all the above indicates that change of measure with the
exponential bypass function (4.2) has lead the second moment Wb(θ0, λ) to be finite-valued
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with λ ∈ (0, 2/3). No change of measure (that is, λ = 1) is outside this interval and thus
has originally resulted in infinite variance (5.5). As a consequence, the parameter search,
such as (4.19), would cause no trouble as soon as the parameter λ gets in the open interval
(0, 2/3), not because the empirical variance is necessarily finite no matter what, but because
the theoretical variance is indeed finite there.

Even further, optimal change of measure, that is, with λ = 1 − 2/d = 1/3(= λ(θ)) in
line with (5.6), has resulted in the so-called perfect important sampling in the decomposition
form (5.4). Here, the integral on the projection has been transformed, as follows:
∫ 1

0

f (F−1(v; λ); λ0)

f (F−1(v; λ); λ)

1

(F(F−1(v; λ); λ0))2/d
dv =

∫ 1

0

λ0

λ
vλ0/λ−1 1

(vλ0/λ)2/d
dv = 3

∫ 1

0
dv,

where the rightmost integral corresponds to Monte Carlo integration of constant 1 with
respect to the projection dv, meaning that the infinite variance in its original form has now
been (not quite reduced but) completely eliminated. The trajectories presented in Fig. 7b
are thus extremely stable with no surprise, since Monte Carlo integration for the remaining
integral

∫
Y3

‖Ay‖−2dy is intrinsically easy.
As such, the proposed framework has showcased its capability to transform an initially

infinite variance into afinite one. Furthermore, it excels in identifying perfect importance sam-
pling, even in cases where one might overlook such specific structures beforehand. Although
the achieved success may seem problem-dependent at first glance, let us stress its significant
value because this kind of problem settings are typical (and even central) in various fields of
application. 
�

6 Concluding Remarks

In this paper, we have established a novel framework of Monte Carlo integration over sim-
plices, from sampling to variance reduction. We have first developed a uniform sampling
technique over the standard simplex. This technique is built on the decomposition of the uni-
form law on the standard simplex into the uniform law on the canonical hyperplane and its
projection towards the origin in the form of two independent random elements. Its implemen-
tation is quite simple and wastes no computing cost, unlike acceptance-rejection sampling.
We have next constructed theories on change of measure in integration over simplices with
a view towards variance reduction by importance sampling. For the projection, we have
employed the so-called bypass function to change its uniform law. To address the canonical
hyperplane, we have developed two ways of changing the measure. One is to stay within the
Dirichlet law, while the other is, as for the projection, the bypass function on the uniform
random variables appearing in a representation of the Dirichlet random vector. Throughout,
we have provided figures and numerical examples to support our theoretical developments,
as well as to claim great potential of the proposed framework of sampling and acceleration
of Monte Carlo integration over simplices.

We close this study by highlighting future research directions. As described in Remark 3.1
and Sect. 3.3, there exist other methods for generating the uniform sample on the simplices
Xd andYd , for which the change of measure can also be developed and investigated as appro-
priate. As discussed towards the end of Sect. 4, the second framework (changing the measure
via the bypass function on both canonical simplex and projection) has further potential for
adaptive implementation ofMonteCarlo averaging and parameter search on common random
elements. Other types of variance reduction techniques, such as antithetic variates, control
variates [17] and stratified sampling [29], should be effective, to a large extent, in the context
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of Monte Carlo integration over simplices, even under a batching procedure [28]. Finally, it
would certainly be worthwhile to conduct an exhaustive numerical study in a wide variety of
relevant problem settings in application. Those topics would be interesting future directions
of research deserving of their own separate investigation.
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A Proofs

We collect all proofs here. Complete proofs entail rather lengthy arguments of somewhat
routine nature. To avoid overloading the Appendix, we skip non-essential details in some
instances. In what follows, we denote by A⊗2 the outer product of the matrix A.

Proof of Theorem 3.2 Note that 〈y,1d〉 = 1 since y ∈ Yd . First, suppose P(〈y, Z〉 ≤ c) = cd

for all c ∈ [0, 1] and y ∈ Yd . Then, for every c ∈ [0, 1] and y ∈ Yd , we have

cd = P (〈y, Z〉 ≤ c) = P(y1Z1 + y2Z2 + · · · + yd Zd ≤ c)

= P (y1(Z1 − Zd) + · · · + yd−1(Zd−1 − Zd) + Zd ≤ c) , (A.1)

where the last equality holds by the constraint 〈y,1d〉 = 1. This asserts the identity in
law L(y1(Z1 − Zd) + · · · + yd−1(Zd−1 − Zd) + Zd) = L(V 1/d), since P(V 1/d ≤ c) =
P(V ≤ cd) = cd if V ∼ U (0, 1). We next show that Z = (V 1/d , V 1/d , · · · , V 1/d) is a
necessary condition for this identity in law to hold true, by considering the special case where
yk = 1 for some k ∈ {1, · · · , d}. It suffices to consider two cases. First, if k = d and thus
y = (0, · · · , 0, 1), it follows directly that L(Zd) = L(V 1/d). Next, if k ∈ {1, · · · , d − 1},
we have L(yk(Zk − Zd) + Zd) = L(Zk) = L(V 1/d). Therefore, it is necessary to have
Zk ≡ V 1/d for the identity (A.1) to hold true for all y ∈ Yd .

Conversely, suppose V ∼ U (0, 1) and Z = (V 1/d , V 1/d , · · · , V 1/d). Then, for every
c ∈ [0, 1] and y ∈ Yd , we have

P (〈y, Z〉 ≤ c) = P

(
V 1/d〈y,1d〉 ≤ c

)
= P

(
V 1/d ≤ c

)
= cd ,

where the second equality holds due to the constraint 〈y,1d〉 = 1. The proof is now complete.

�
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Proof Weomit the proof of Theorem 4.3, as the results follow in a similar manner to Theorem
4.2 (ii). For relevant derivations, we refer the reader to [14–16] as well. In what follows, we
prove Theorem 4.2 with the aid of the notation

M(v; λ) := f (F−1(v; λ0); λ0)

f (F−1(v; λ0); λ)
, H(y;α) := p(y;1d)

p(y;α)
.

(i) For y := (y1, · · · , yd) ∈ Yd and α ∈ (0,+∞)d , define Qa(y;α) and Qb(α) in R
d×d by

Qa(y;α) :=
⎡
⎢⎣

ψ(α1) − ψ(〈1d ,α〉) − ln(y1)
...

ψ(αd ) − ψ(〈1d ,α〉) − ln(yd)

⎤
⎥⎦

⊗2

, Qb(α) := Qc(α) − ψ1 (〈1d , α〉)1⊗2
d ,

(A.2)

where Qc(α) := diag(ψ1(α1), · · · , ψ1(αd)) and where ψ and ψ1 denote the digamma and
trigamma functions, respectively. Then, for every α ∈ A(λ), it holds that

Hessα (Wa(α, λ)) =
∫ 1

0

∫
Yd

M(v; λ)Hessα (H(y;α)) |�(v1/dy)|2 p(y;1d)dydv

=
∫ 1

0
M(v; λ)

[∫
Yd

Qa(y;α)H(y;α)|�(v1/dy)|2 p(y;1d)dy

+Qb(α)

∫
Yd

H(y;α)|�(v1/dy)|2 p(y;1d)dy
]
dv,

where the dominated convergence theorem justifies the interchange of the Hessian and the
integral due to the integrability condition imposed in the definition (4.8). It suffices to inves-
tigate the inner integrals with respect to the Lebesgue measure dy, since the likelihood ratio
M(v; λ) is non-negative for almost all v ∈ (0, 1).

The first inner integral is positive semi-definite since the matrix Qa(y;α) is positive semi-
definite by definition (A.2) and the integrand H(y;α)|�(v1/dy)|2 p(y;1d) is non-negative
for almost every (v, y) ∈ (0, 1) × Yd . It remains to show that the second integral, more
precisely, the matrix Qb(α) is positive semi-definite. We show this by proving that its inverse
is positive semi-definite. To this end, observe that

〈
z, Q−1

b (α)z
〉
= 〈z, Q−1

c (α)z
〉+ ψ1(〈1d ,α〉)

1 − ψ1(〈1d ,α〉)〈1d , Q−1
c (α)1d 〉

〈
1d , Q

−1
c (α)z

〉2
,

for z ∈ R
d . Since Q−1

c (α) is positive semi-definite and the trigamma function ψ1 is strictly
positive, the necessary and sufficient condition for the claim to hold true is that the denom-
inator is strictly positive, that is, 1 − ψ1(〈1d ,α〉)〈1d , Q−1

c (α)1d〉 > 0, which can be
rewritten as 1/ψ1(α1) + · · · + 1/ψ1(αd) < 1/ψ1(〈1d ,α〉). This indeed holds true for all
α ∈ (0,+∞)d , since the function 1/ψ1(x) is positive, increasing, convex on (0,+∞), and
limx→0+(1/ψ1(x)) = 0, that is, superadditive.
(ii) Fix a point λ in the domain 	a(α) and let {λk}k∈N be a sequence of points in the domain
	a(α) converging toλ. ByAssumption 4.1 (b), the functionM(v; ·) is twice continuously dif-
ferentiable for almost every v ∈ (0, 1). The integrability condition imposed in the definition
(4.9) ensures that the families {(∂q/∂λq)M(·; λ); λ ∈ 	a(α), q ∈ {0, 1, 2}} of functions are
dominated by a non-negative function, independent of λ, integrable with respect to the mea-
sure H(y;α)|�(v1/dy)|2dydv on Yd × (0, 1). It thus holds by the dominated convergence

123



64 Page 28 of 29 Journal of Scientific Computing (2024) 98 :64

theorem that for every q ∈ {0, 1, 2},

lim
k→+∞

∫ 1

0

∫
(0,1)d

[
∂q

∂λq
M(v; λk)

]
H(y;α)|�(v1/dy)|2 p(y;1d)dydv

=
∫ 1

0

∫
(0,1)d

lim
k→+∞

[
∂q

∂λq
M(v; λk)

]
H(y;α)|�(v1/dy)|2 p(y;1d)dydv,

which shows that the function Wa(α, ·) is twice continuously differentiable.
Since the set 	a(α) is open, it holds by the mean value theorem that for each q ∈ {0, 1},

there exists ε > 0 satisfying λ ± ε ∈ 	a(α) and

Hessα (Wa(α, λ)) =
∫ 1

0

∫
Yd

M(v; λ)Hessα (H(y;α)) |�(v1/dy)|2 p(y;1d)dydv

=
∫ 1

0
M(v; λ)

[∫
Yd

Qa(y;α)H(y;α)|�(v1/dy)|2 p(y;1d)dy

+Qb(α)

∫
Yd

H(y;α)|�(v1/dy)|2 p(y;1d)dy
]
dv,

where λε is an intermediate point on the line segment joining two points λ± ε both in the set
	a(α), again due to twice continuous differentiability of the function M(v; ·). Here, the last
inequality holds by the integrability condition imposed in the definition (4.9). Hence, with
the aid of the dominated convergence theorem, we get

∂2

∂λ2
Wa(α, λ) =

∫ 1

0

∫
(0,1)d

[
∂2

∂λ2
M(v; λ)

]
H(y;α)|�(v1/dy)|2 p(y;1d)dydv,

where the remaining integrand H(y;α)|�(v1/dy)|2 p(y;1d) is clearly neither negative nor
degenerate. Hence, with the aid of the convexity of the reciprocal 1/ f (v; ·) by Assumption
4.1 (g), we get the desired strict convexity of the function Wa(α, ·) on the domain 	a(α).

Finally, let 	1(α) := int{λ ∈ 	0 : Wa(α, λ) < +∞}, and let {Ln}n∈N be an increasing
sequence of compact subsets of 	1(α), satisfying ∪n∈NLn = 	1(α) and Ln � int(Ln+1)

for all n ∈ N. The second moment Wa(α, λ) explodes as λ → ∂	0 ∪ ∂	1(α), since the
probability density function f (·; λ) in the denominator in the expression (4.7) tends to zero
for almost every v ∈ (0, 1), due to Assumption 4.1 (f). Hence, the uniqueness and first-order
necessary optimality of the point λ∗(α) holds true by the strict convexity of Wa(α, ·). 
�
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