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Abstract
We present an entropy stable nodal discontinuous Galerkin spectral element method
(DGSEM) for the two-layer shallow water equations on two dimensional curvilinear meshes.
We mimic the continuous entropy analysis on the semi-discrete level with the DGSEM
constructed on Legendre–Gauss–Lobatto (LGL) nodes. The use of LGL nodes endows the
collocated nodal DGSEM with the summation-by-parts property that is key in the discrete
analysis. The approximation exploits an equivalent flux differencing formulation for the
volume contributions, which generate an entropy conservative split-form of the governing
equations. A specific combination of a numerical surface flux and discretization of the non-
conservative terms is then applied to obtain a high-order path-conservative scheme that is
entropy conservative. Furthermore, we find that this combination yields an analogous dis-
cretization for the pressure and nonconservative terms such that the numerical method is
well-balanced for discontinuous bathymetry on curvilinear domains. Dissipation is added at
the interfaces to create an entropy stable approximation that satisfies the second law of ther-
modynamics in the discrete case, while maintaining the well-balanced property.We conclude
with verification of the theoretical findings through numerical tests and demonstrate results
about convergence, entropy stability and well-balancedness of the scheme.

Keywords Two-layer shallow water system · Well-balanced method · Discontinuous
Galerkin spectral element method · Summation-by-parts · Entropy stability

Mathematics Subject Classification 65M70 · 65M12 · 65M20 · 76M22 · 35L50

B Patrick Ersing
patrick.ersing@liu.se

Andrew R. Winters
andrew.winters@liu.se

1 Department of Mathematics, Linköping University, 58183 Linköping, Sweden

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-024-02451-2&domain=pdf
http://orcid.org/0009-0005-3804-5380


62 Page 2 of 35 Journal of Scientific Computing (2024) 98 :62

1 Introduction

The two-layer shallow water equations are a widely used model to describe the behavior of
two immiscible fluid layers of different density, where the horizontal scales are large relative
to the depth scale. Typical applications range from water bodies of different salinity and
temperature [7] to mixtures of oil and water [22], as well as underwater landslides [30, 41].

The system is derived from depth-averaging of the inviscid Navier–Stokes equations and
can be considered as a combination of the standard shallow water equation (SWE) for each
fluid layer with an additional nonconservative term that accounts for the coupling between
fluid layers and interaction with the bottom topography.

The design of numerical schemes for this system encounters several difficulties, many of
them connected to the inclusion of the nonconservative products. These additional coupling
terms affect the wave propagation and can even change the nature of system. In contrast to
standard shallow water flows, the system is only conditionally hyperbolic as the baroclinic
mode allows for complex eigenvalues. This loss of hyperbolicity occurs for large veloc-
ity differences between the layers and has been linked to the onset of Kelvin–Helmholtz
instability [1]. The computation of the eigenvalues themselves is also not straightforward as
even the one-dimensional system yields a 4 × 4 flux Jacobian and its eigenvalues are either
approximated, e.g. [15, 39], or computed by Ferrari’s formula [35, 44]. Another important
aspect that arises in the numerical treatment of balance laws is the preservation of steady-state
solutions. A varying or even discontinuous bottom topography generates additional source
contributions that necessitate a careful discretization of source terms and fluxes to ensure a
discrete balance. Failure to preserve these steady states can lead to accumulation of balancing
errors over time and the formation of unphysical waves [9], on the order of the grid spacing.
Since most shallow water applications revolve around the computation of small perturba-
tions around a steady-state solution, such as gravity waves, tidal flow or tsunami formation,
preserving this balance is essential. A numerical scheme that preserves these steady states is
denoted as well-balanced.

Designing a well-balanced numerical approximation for shallow water models requires a
precise discrete interplay between the pressure term in the conservative flux and the noncon-
servative term. This is particularly true in the context of high-order numerical methods see,
e.g., [21, 45, 57, 58]. Herein we present a particular path-conservative discretization of the
nonconservative terms that endows the numerical approximation with the well-balancedness
property on curvilinear meshes. This well-balanced discretization also relies on a non-
conservative discretization of the pressure flux term that naturally arises from an entropy
conservative discretization of the governing equations [25, 57]. Thus, we close the discus-
sion on well-balanced methods for now and focus, instead, on provably stable high-order
methods for shallow water models.

In recent developments regarding numerical schemes for the two-layer SWE most activ-
ities focused on the development of finite volume methods [1, 7, 10, 30, 36, 54] with only
few advances in the application of high-order discontinuous Galerkin methods [17, 29]. Due
its ability to create high-order approximations and its optimal dissipation and dispersion
properties [2] discontinuous Galerkin methods can provide excellent approximations for this
conditionally hyperbolic system of balance laws. In order to utilize these compelling proper-
ties, we select DGSEM as our numerical method in this paper. While the high-order nature
of these methods allows for accurate approximations, the inherent low amount of numerical
dissipation also makes them prone to robustness issues [24].

A contemporary approach to create robust DG approximations in the nonlinear case is the
use of entropy stability [55], where the solution is bounded by a strongly convexmathematical
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entropy function. For the two-layer SWE such an entropy function naturally occurs as the total
energy within the layers. In [24, 60] a methodology to construct entropy stable DG methods
based on the summation-by-parts (SBP) property and a flux-differencing formulation was
proposed. This methodology has been extended, for example, to the broader context of
fluctuation formulations for nonconservative systems in [48], multiphase models [11], and
compressible Euler with gravity [56].

Following this approach we construct an entropy stable nodal DGSEM using the SBP
properties to mimic a continuous entropy analysis in the semi-discrete case. We present a
combination of entropy conservative numerical surface fluxes and nonconservative terms
that satisfy an entropy conservation condition for the two-layer shallow water system. The
specific combination yields a compatible discretization of the pressure and nonconservative
terms. In this way, we obtain a method that is provably well-balanced for discontinuous
bottom topographies on curvilinear meshes. The resulting split-form DGSEM is equivalent
to the path-conservative numerical framework originally described by Renac [48]. Beyond
the two-layer SWE, it is possible to show that existing nonconservative, entropy stable high-
order nodal DG discretizations for the ideal GLM-MHD and standard SWE [3, 49, 57] are
also path-conservative. This fact is not explicitly demonstrated as it is outside the focus of the
current work; however, this link offers exciting avenues for future development. For instance,
the provably entropy stable subcell shock capturing method developed by Rueda–Ramírez
and co-authors [49, 50] becomes available for such path-conservative schemes.

This work derives, analyzes and tests a high-order, entropy stable, split-form (DGSEM)
for the two-layer SWE on curvilinear domains. To construct this numerical method we first
describe the theory and challenges of the two-layer SWE in Sect. 2, followed by a continuous
entropy analysis of the system in Sect. 3, whichwewill mimic in the semi-discrete setting.We
then derive a split-formDGSEMon curvilinear elements in Sect. 4 that will provide a baseline
scheme for the further derivation of entropy conservative and entropy stable approximations.
In Sect. 5, we first derive entropy conservative numerical fluxes that are then used in the
split-form DGSEM to create an entropy conservative approximation. We then contract the
DGSEM with the entropy variables and rely on the SBP property and metric identities to
demonstrate entropy conservation and well-balancedness. From this entropy conservative
formulation we then extend to one that is entropy stable by adding appropriate dissipation in
Sect. 6. The theoretical findings are then demonstrated and verified in Sect. 7 with a number
of test cases that provide numerical results for convergence, well-balancedness and entropy
conservation and stability.

2 Two-Layer Equations

We consider the two-layer SWE, which are a nonlinear system of balance laws derived from
depth-averaging the inviscid Navier–Stokes-equations. The two-dimensional system is given
by

⎡
⎢⎢⎢⎢⎢⎢⎣

h1
h1u1
h1v1
h2
h2u2
h2v2

⎤
⎥⎥⎥⎥⎥⎥⎦
t

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h1u1

h1u21 + gh21
2

h1u1v1
h2u2

h2u22 + gh22
2

h2u2v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
x

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h1v1
h1u1v1

h1v21 + gh21
2

h2v2
h2u2v2

h2v22 + gh22
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

y

= −

⎡
⎢⎢⎢⎢⎢⎢⎣

0
gh1(b + h2)x
gh1(b + h2)y

0
gh2(b + ρ1

ρ2
h1)x

gh2(b + ρ1
ρ2
h1)y

⎤
⎥⎥⎥⎥⎥⎥⎦

, (1)
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where the subscripts denote the upper “1” and lower “2” fluid layer. For each layer hi
denotes the respective layer height, ui and vi the averaged layer velocity in x- and y-direction
and ρi the different constant fluid densities, where we assume that ρ1 < ρ2. Furthermore,
b ≡ b(x, y) denotes the variable bottom topography and g the gravitational acceleration.
The conservative part of the system corresponds to the standard SWE for each layer and only
differs by additional nonconservative coupling terms on the right hand side that are given by
gh1 (h2)x in the upper layer and gh2(

ρ1
ρ2
h1)x in the lower layer.

To simplify the analysiswe introduce a general compact notation for this systemof balance
laws

ut + →∇x · ↔
f(u) + φ(u) ◦

(→∇x · ↔r(u)
)

= 0, (2)

where u = (h1, h1u1, h1v1, h2, h2u2, h2v2)T denotes the state vector of conserved quan-
tities and the nonconservative term composed of a nonconservative product and a source
term is reformulated in terms of the Hadamard product with the state vector φ(u) =
(0, gh1, gh1, 0, gh2, gh2)T . To obtain a compact notation for the fluxes and nonconservative
terms we introduce the block vectors, see [3, 60]

↔
f =

[
f1
f2

]
,

↔r =
[
r1
r2

]
, (3)

that contain the respective components in x- and y-directions

f1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h1u1

h1u21 + gh21
2

h1u1v1
h2u2

h2u22 + gh22
2

h2u2v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, f2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h1v1
h1u1v1

h1v21 + gh21
2

h2v2
h2u2v2

h2v22 + gh22
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, r1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
b + h2

0
0

b + ρ1
ρ2
h1

0

⎤
⎥⎥⎥⎥⎥⎥⎦
, r2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0

b + h2
0
0

b + ρ1
ρ2
h1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

The nonconservative term in (2) introduces some difficulties in the design of robust numer-
ical methods. Additionally, in the continuous analysis, the nonconservative term renders the
systemonly conditionally hyperbolic. This escape from the hyperbolic regime has been linked
to the onset of Kevin–Helmholtz instabilities [4], where high velocity difference in the shear
layer leads to heavymixing. Amechanism that cannot be replicated in the immiscible setting.

Another difficulty arises in the computation of the eigenvalues of the flux Jacobian. Even
the one dimensional system yields a fourth order characteristic polynomial and an explicit
computation of eigenvalues relies on Ferrari’s formula, see [35, 44] for details. Insteadwe fol-
low the approach fromNycander andDöös [39] and assume that the baroclinic and barotropic
modes do not interact for u1 ≈ u2 and ρ1 � ρ2. This assumption leads to the eigenvalue
approximation

λ±
ext = Um ±√g(h1 + h2),

λ±
int = Uc ±

√√√√g′ h1h2
h1 + h2

(
1 − (u1 − u2)2

g′ (h1 + h2)

)
,

(5)

where λext and λint denote the wave speeds of the barotropic and baroclinic mode, respec-
tively written in terms of the velocities Um = h1u1+h2u2

h1+h2
, Uc = h1u2+h2u1

h1+h2
and the reduced

gravity g′ = g(1 − ρ1
ρ2

). For simplicity the one-dimensional case is considered as the exten-
sion to two dimensions is straightforward. From the approximation (5) we see that internal
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eigenvalues may become complex and the hyperbolic regime of the system is estimated by

(u1 − u2)2

g′ (h1 + h2)
≤ 1. (6)

In accordance with [19] we can get the following bound on the maximum wave speeds

|λ| ≤
∣∣∣∣
h1u1 + h2u2
h1 + h2

∣∣∣∣±
√
g(h1 + h2). (7)

A particularly important property of numerical schemes for the two-layer SWE is the
preservation of steady-state solutions that remain constant in time. Themost important exam-
ple of such a steady-state is the lake-at-rest condition

u1, u2, v1, v2 ≡ 0, h2 + b ≡ constant, h1 ≡ constant. (8)

As a wide range of applications are computed from small perturbations around the lake-at-
rest condition, discrete preservation of (8) is essential. A scheme that is able to preserve (8)
is denoted as well-balanced.

3 Entropy Analysis

Stability estimates for numerical approximations are typically provided in terms of L2-
stability, where the discrete solution remains bounded within the L2-norm, see [34, 40].
While L2-stability holds for linear problems, it fails to provide stability for general nonlinear
systems [24, 38]. An alternative for nonlinear systems is the use of entropy stability [55],
where the solution is bounded by a strongly convex mathematical entropy function. The two-
layer shallow water system (1) is equipped with such a convex entropy function S = S(u),
corresponding to the total energy within the layers

S(u) = 1

2

(
ρ1
(
h1u

2
1 + h1v

2
1 + gh21

)+ ρ2
(
h2u

2
2 + h2v

2
2 + gh22

))

+ ρ2gh2b + ρ1gh1(b + h2),
(9)

together with the corresponding entropy flux

→
f S = ρ1

(
1

2
h1u1

(
u21 + v21

)+ gh1u1 (h1 + b)

)

+ ρ2

(
1

2
h2u2

(
u22 + v22

)+ gh2u2 (h2 + b)

)
+ gρ1h1h2(u1 + u2).

(10)

Differentiation of the entropy function with respect to the conservative variables yields the
entropy variables

w = Su =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ1
(
g (h1 + h2 + b) − 1

2

(
u21 + v21

))
ρ1u1
ρ1v1

ρ2

(
g
(
h1

ρ1
ρ2

+ h2 + b
)

− 1
2

(
u22 + v22

))

ρ2u2
ρ2v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (11)
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which are used to obtain a relation between the physical and entropy fluxes as well as the
nonconservative terms

→∇x · →
f S = wT

(→∇x · ↔
f + φ ◦

(→∇x · ↔r
))

. (12)

Furthermore, the entropy flux potential is defined as

→
ψ (u) = wT↔

f − →
f S . (13)

From these compatibility relations, contracting smooth solutions of (2) with the entropy
variables w yields a scalar conservation law for the entropy function

St + →∇x · →
f S = 0. (14)

We integrate the equation over the domain Ω and apply Gauss’ law to rewrite the entropy
flux as a surface integral and obtain the entropy conservation law (14) in integral form

∫

Ω

St dV+
∫

∂Ω

→
f S · →

n dS = 0. (15)

In the case of discontinuities entropy must be dissipated at shocks and solutions must instead
satisfy the entropy inequality

∫

Ω

St dV+
∫

∂Ω

→
f S · →

n dS ≤ 0. (16)

To prove entropy conservation of the numerical scheme, we will mimic the continuous
case. Note, that the contraction of physical fluxes into entropy space depends on the chain
rule, which in general does not hold discretely [46]. In order to obtain entropy fluxes in the
discrete setting, we therefore employ an alternative strategy based on entropy conservative
numerical finite volume fluxes, that will be described in Sect. 5.

4 Split-FormDGSEM on Curvinlinear Elements

In this section we derive the split-form DGSEM for the nonconservative system (2), that will
provide a baseline scheme from which we then develop our entropy conservative and stable
approximations. To generalize the formulation to curvilinear elements we first introduce
a mapping between physical and reference space. We then formulate the DGSEM for the
nonconservative system and replace the volume integralswith a flux-differencing formulation
to obtain the split-form DGSEM [25].

4.1 Mapping the Equations

We first subdivide the physical domainΩ into K non-overlapping unstructured quadrilateral
elements. Each element is mapped from physical space onto a unit square element E =
[−1, 1]2 in computational space using transfinite interpolation with linear blending [32].
The mapping is given as

→
x = X (

→
ξ) ≡ X x̂ + Y ŷ (17)
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with the coordinates in physical space
→
x = (x, y)T = (x1, x2) and computational space

→
ξ = (ξ, η)T = (ξ1, ξ2), respectively. From the mapping we directly calculate the covariant
basis vectors

→
a1 = ∂X

∂ξ
= Xξ x̂ + Yη ŷ

→
a2 = ∂X

∂η
= Xη x̂ + Yξ x̂

→
a3 = ẑ

(18)

that are tangential to the coordinate lines in computational space. The covariant basis vectors
are then used to compute the Jacobian of the mapping

J = →
a1 · (

→
a2 × →

a3) = XξYη − Yξ Xη (19)

as well as the contravariant basis vectors normal to the coordinate lines

J
→
a1 = →

a2 × →
a3 = Yη x̂ − Xη ŷ,

J
→
a2 = →

a3 × →
a1 = −Yξ x̂ + Xξ ŷ.

(20)

To map the system of equations into computational space, we first define a block matrix
with the metric terms (20) together with a 6 × 6 identity matrix I to simplify the notation

M =
[
Ja11 I Ja21 I
Ja12 I Ja22 I

]
. (21)

We transform the divergence operator into computational space

→∇x · ↔
f = 1

J

→∇ξ ·
↔
f̃, φ ◦

(→∇x · ↔r
)

= 1

J
φ ◦
(→∇ξ · ↔

r̃
)

(22)

using the contravariant block vectors for the flux and nonconservative terms

↔
f̃ = MT↔

f,
↔
r̃ = MT↔r. (23)

Applying transformation (22) to (2) then yields the transformed balance law in computational
space

Jut + →∇ξ ·
↔
f̃ + φ ◦

(→∇ξ · ↔
r̃
)

= 0. (24)

In order to obtain a free-stream preserving numerical method, the divergence of a constant
flux must vanish such that the metric identities

∂

∂ξ
J

→
a 1 + ∂

∂η
J

→
a 2 = 0 (25)

are satisfied discretely. That the metric identities hold in the discrete setting is a prerequisite
for the preservation of steady-state solutions and the entropy conservation proof presented
later in this work. In two space dimensions this is guaranteed for isoparametric boundaries,
where the same polynomial order (or lower) from the DGSEM approximation is used to
construct the mapping [31].
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4.2 Nodal Discontinuous Galerkin Spectral Element Method

The numerical scheme developed in this work is based on a standard nodal collocation
DGSEM formulation as described in the literature, see [28, 32]. In the followingwe formulate
our DGSEM and extend it for nonconservative terms analogous to the numerical schemes
developed in [20, 48].

We begin with the derivation of a weak formulation of (24), where we multiply the trans-
formed equation with test functions ϕ and integrate over the domain Ω . For nonconservative
systems the definition of weak solutions is rather difficult as the theory of distributions does
not apply and classical conservative approaches may recover incorrect shock speeds. Instead
we follow the derivation provided by Franquet and Perrier [20], where a weak formulation
is obtained from integration-by-parts for the conservative fluxes, while the nonconservative
term is defined as a Borel measure according to theory of Dal Maso et al. [13]. For smooth
solutions this measure corresponds to classical integration, while at discontinuities it must be
evaluated as a line integral depending on a family of paths υ. The resulting weak formulation
is then given by

〈Jut ,ϕ〉 +
∫

∂E

ϕT
(↔
f · →

n
)
ŝ dS −

〈↔
f̃,

→∇ξϕ

〉

+
∫

∂E

ϕT (φ ◦ ↔r
) · →

nŝ dS +
〈
φ ◦
(→∇ξ · ↔

r̃
)

,ϕ
〉
= 0,

(26)

where ŝ denotes the differential surface element given by

ξ = ±1 : ŝ(η) = ∣∣J→
a 1(±1, η)

∣∣ , η = ±1 : ŝ(ξ) = ∣∣J→
a 2(ξ,±1)

∣∣ , (27)

and
→
n is the outwards pointing unit normal vector in the physical space

→
n = J

→
a i

ŝ
, i = 1, 2. (28)

We introduce a notation where at each interface we denote the state of the primary element as
“−” and the state of the secondary (neighboring) element as “+”. Accordingly, the physical
normal vector

→
n is defined to point from “−” to “+”, which the following relation for the

normal fluxes of neighboring elements at an interface

→
n = →

n− = − →
n+. (29)

Furthermore, we introduced the inner product notation on the reference element, given for
state and block vectors

〈u, v〉 =
∫

E

uT vdξdη,
〈↔
f, ↔g
〉
=
∫

E

2∑
i=1

f Ti gidξdη (30)

respectively.
To account for the definition of the nonconservative term,we further introduced the surface

numerical nonconservative term ϕT
(
φ ◦ ↔r

) that satisfies the consistency condition

(
φ ◦ ↔r

)
(u,u) = 0 (31)
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and the path-conservative property [42] so that at each element interface we obtain
(
φ ◦ ↔r

)
(u−,u+) · →

n− + (φ ◦ ↔r
)

(u+,u−) · →
n+

=
1∫

0

ANC (υ(s;u−,u+))∂sυ(s;u−,u+) ds, (32)

where ANC denotes the flux Jacobian of the nonconservative subsystem and υ is a path
connecting neighboring states u− and u+ across a discontinuity, for complete details see
[42]. The numerical nonconservative term in (26) is therefore equivalent to a fluctuation
form [42], where for each element

(
φ ◦ ↔r

) · →
n recovers the contributing fluctuations at the

interface.
Next,we approximate thesolutionwitha local tensor-product basis of polynomial degree N

u ≈ U =
N∑

i, j=0

Ui j�i (ξ)� j (η), (33)

where the basis is spanned by one-dimensional nodal Lagrange basis functions

� j (ξ) =
N∏

i=0,i �= j

ξ − ξi

ξ j − ξi
, i, j = 0, . . . , N , (34)

on the interval ξ ∈ [− 1, 1] with N + 1 interpolation nodes {ξi }Ni=0, located at the Legendre-
Gauss-Lobatto (LGL) points. In the following, interpolated quantities at the LGL nodes are
denoted with capital letters and the interpolation of a function by G = I

N (g). We then use
the basis functions to define the discrete derivative operator

Di j := ∂� j

∂ξ

∣∣∣∣
ξ=ξi

, i, j = 0, . . . , N , (35)

apply a LGLquadrature rule to approximate the integrals present in theweak formulation (26)
and collocate the interpolation and quadrature nodes. This yields the diagonal mass matrix

M = diag(ω0, . . . , ωN ), (36)

with theLGLquadratureweights {ωi }Ni=0.Using theKronecker delta property of theLagrange
basis functions (34) we then introduce the discrete inner product notation

〈 f , g〉N =
N∑

i, j=0

fi j gi jωiω j ≡
N∑

i, j=0

fi j gi jωi j . (37)

This specific choice of interpolation and differentiation operators possesses the diagonal
norm SBP property for all polynomial orders N [23]

(MD) + (MD)T = Q + QT = B, (38)

where we introduced the SBP matrix Q and the boundary matrix B
Q = MD, B = diag(−1, 0, . . . , 0, 1). (39)

This property will be necessary to prove entropy stability, as it allows us tomimic integration-
by-parts and enables the extended Gauss Law in the discrete case [33].
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We introduce polynomial approximations for the solution variables, fluxes, test functions
and the nonconservative terms as well as LGL quadrature to obtain a discrete version of (26)

〈
I
N (J )Ut ,ϕ

〉
N

+
∫

∂E,N

ϕTFnŝ dS−
〈↔
F̃,

→∇ξϕ

〉

N

+
∫

∂E,N

ϕT
(
Φ ◦ ↔

R
) · →

nŝ dS +
〈
Φ ◦

(
→∇ξ · IN (

↔
R̃)

)
,ϕ

〉

N
= 0,

(40)

where capital letters denote the discrete approximation and the surface fluxes
↔
F · →

n and
numerical nonconservative terms (Φ ◦ ↔

R) · →
n are replaced by the surface normal fluxes Fn

and surface numerical nonconservative terms (Φ ◦ ↔
R)n . Since the physical fluxes are not

uniquely defined at the discontinuous interfaces, we replace the surface normal flux Fn by a
surface numerical flux F∗

n , to resolve the discontinuity such that we obtain the discrete weak
formulation

〈
I
N (J )Ut ,ϕ

〉
N

+
∫

∂E,N

ϕTF∗
n ŝ dS−

〈↔
F̃,

→∇ξϕ

〉

N

+
∫

∂E,N

ϕT
(
Φ ◦ ↔

R
)
n
ŝ dS +

〈
Φ ◦

(
→∇ξ · IN (

↔
R̃)

)
,ϕ

〉

N
= 0.

(41)

We then mimic integration-by-parts with the the SBP property (38) and apply the dis-
crete extended Gauss Law from [33] on the flux terms to obtain the strong form DGSEM
approximation of (24)

〈
I
N (J )Ut ,ϕ

〉
N

+
∫

∂E,N

ϕT {F∗
n − Fn}ŝ dS+

〈
→∇ξ · IN (

↔
F̃),ϕ

〉

N

+
∫

∂E,N

ϕT
(
Φ ◦ ↔

R
)
n
ŝ dS +

〈
Φ ◦

(
→∇ξ · IN (

↔
R̃)

)
,ϕ

〉

N
= 0.

(42)

The method (42) serves as a baseline from which we will continue to construct an entropy
stable approximation using a special combination of differencing operator, numerical flux,
and numerical nonconservative term.

4.3 Flux-Differencing Formulation

To obtain an entropy stable discretization, we make use of another property that diagonal
norm SBP operators have and rewrite the flux divergence term in the volume into a flux
differencing formulation [5, 25]

→∇ξ · IN (
↔
F̃) ≈ →

D ·
↔
F̃# = 2

N∑
m=0

Dim

(↔
F#(Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)

+ 2
N∑

m=0

D jm

(↔
F#(Ui j ,Uim) · {{J→

a 2}}
i( j,m)

)
,

(43)
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with the consistent and symmetric two-point flux F# and arithmetic mean values given by

{{·}}(i,m) j = 1

2

(
(·)i j + (·)mj

)
, {{·}}i( j,m) = 1

2

(
(·)i j + (·)im

)
. (44)

This formulation was originally found by Fisher et al. [18], who showed that a diagonal
normSBP operator can be rewritten into a finite volume type flux-differencing formulation on
a staggered grid. From a particular choice of the two-point volume flux, the formulation (43)
recovers different alternative split-forms of the original partial differential equation that can
improve robustness of the scheme [25]. The formulation in (43) also extends two-point finite-
volume fluxes to high-order [25] and recovers an entropy conservative volume discretization
if an entropy conservative two-point flux is used [5, 24]. Recently, this approach has been
applied successfully to create entropy stable DG methods for the shallow water equation
[26, 57, 61], magnetohydrodynamics equations [3, 51] and the compressible Navier–Stokes
equations [8, 60].

In [48, 56] it was shown that the flux-differencing formulation can also be extended to
nonconservative systems such that we can apply the same discretization technique on the
conservative and nonconservative parts of the equation. This ensures that both terms are
evaluated in the same way, which will be necessary to obtain entropy conservation and
discrete preservation of steady-state solutions. Therefore, we introduce the following flux-
differencing formulation for the nonconservative volume term

Φ ◦
(

→∇ξ · IN (
↔
R̃)

)
≈ →

D · (Φ ◦
↔
R̃)# =

N∑
m=0

2Dim

(
(Φ ◦ ↔

R)#(Ui j ,Umj ) · {{J→
a 1}}

(i,m) j

)

+
N∑

m=0

2D jm

(
(Φ ◦ ↔

R)#(Ui j ,Uim) · {{J→
a 2}}

i( j,m)

)
,

(45)

where (Φ ◦ ↔
R)# denotes a two-point volume numerical nonconservative term with a given

structure

(Φ ◦ ↔
R)#(U−,U+) = Φ#(U−,U+) ◦ ↔

R#(U−,U+) + Φ#(U+,U−) ◦ ↔
R#(U+,U−)

− (
Φ#(U−,U+) + Φ#(U+,U−)

) ◦ ↔
R(U−),

(46)

where Φ# and
↔
R# are vector-valued functions. It was shown in [56, Lemma 2] that under the

consistency conditions

2Φ#(U,U) = Φ(U)
↔
R#(U,U) = ↔

R(U)
(47)

the volume numerical nonconservative term (46) provides a consistent volume discretization
of the nonconservative term. For more details about the flux-differencing formulation for
nonconservative terms we refer to [48, 56].

Inserting the flux-differencing formulations (43) and (45) into the discrete strong formu-
lation (42) then yields the split-form DGSEM

〈
I
N (J )Ut ,ϕ

〉
N

+
∫

∂E,N

ϕT {F∗
n − Fn}ŝ dS+

〈
→
D ·

↔
F̃#,ϕ

〉

N

+
∫

∂E,N

ϕT
(
Φ ◦ ↔

R
)
n
ŝ dS +

〈
→
D · (Φ ◦

↔
R̃)#,ϕ

〉

N
= 0.

(48)
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With method (48) we are now equipped to derive the necessary components F #, F ∗ and
(Φ ◦ ↔

R)#, (Φ ◦ ↔
R) to first create an entropy conservative and well-balanced scheme, and

from that, a scheme that is entropy stable.

5 Entropy Conservative DGSEM

To show that the scheme is entropy conservative we use the approach described in [3, 57, 60]
and mimic the continuous entropy analysis of Sect. 3 in the discrete setting. First, we contract
the split-form DGSEM (48) into entropy space by setting the test function to the interpolated
entropy variablesW

〈
I
N (J )Ut ,W

〉
N

+
∫

∂E,N

WT {F∗
n − Fn}ŝ dS+

〈
→
D ·

↔
F̃#,W

〉

N

+
∫

∂E,N

WT
(
Φ ◦ ↔

R
)
n
ŝ dS +

〈
→
D · (Φ ◦

↔
R̃)#,W

〉

N
= 0.

(49)

5.1 Time Derivative

As we are interested in the semi-discrete analysis, we assume that the chain rule with respect
to differentiation in time holds and examine the time derivative term in (49) to obtain

〈
I
N (J )Ut ,W

〉
N

=
N∑

i, j=0

Ji jωi jWT
i j
dUi j

dt
=

N∑
i, j=0

Ji jωi j
d Si j
dt

=
〈
I
N (J )St , 1

〉
N

. (50)

From (50) we see that the rate of entropy change for a single element depends solely on the
remaining surface and volume contributions. To obtain the total entropy, we sum over the all
K elements in the domain Ω

dS̄

dt
=

K∑
k=1

〈
I
N (J )k Skt , 1

〉
N

. (51)

To demonstrate discrete entropy conservation, we will show that the entropy conservation
law (14) is satisfied in a discrete sense by the split-form approximation (48). Assuming a
closed system, the second lawof thermodynamics states that the entropyflux at the boundaries
vanishes and the total entropy must be conserved

dS̄

dt
= 0. (52)

5.2 Discrete Entropy Flux

The contraction of the physical flux nonconservative terms to the entropy flux in (12) is
challenging as it depends on the chain rule, which in general does not hold in the discrete
setting [46]. Therefore, we apply an alternative strategy to find a combination of numerical
fluxes and numerical nonconservative terms that recover the entropy flux on a discrete level.
To reduce the degrees of freedom in this derivation we assume a fixed discretization of the
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numerical nonconservative term

(Φ ◦ ↔
R) = 1

2
Φ− ◦ �

↔
R� = 1

2
Φ− ◦

(↔
R+ − ↔

R−) , (53)

which can be derived from the path-conservative property, using a linear path and satisfies
the consistency conditions (47). The task now reduces to finding an accompanying entropy
conservative (EC) numerical flux

↔
f EC .

To derive such EC fluxes we require discrete entropy conservation in a finite volume con-
text similar to [14, 59]. These finite volume type numerical fluxes are then directly applicable
to the split-form DGSEM (43) as the volume contribution relates to a subcell finite volume
scheme and elements are coupled via numerical fluxes on the surface [18, 25]. We consider a
single interface between neighboring finite volume cells with distinct cell averages denoted
by “−” and “+” and cell size Δx . We introduce a notation to define jumps and arithmetic
averages of cell values across the interface

�·� = (·)+ − (·)−, {{·}} = 1

2

(
(·)+ + (·)−) . (54)

The respective finite volume formulation of system (2)with the numerical nonconservative
term (53) is given by

Δx
∂

∂t
u− = f− − f∗ − φ− ◦ �r� Δx

∂

∂t
u+ = f∗ − f+ − φ+ ◦ �r�, (55)

at each side of the interface. To obtain an entropy conservation statement we follow the
continuous analysis and contract (55) with the entropy variables. As before, we assume time
continuity such that the chain rule in time holds to obtain the rate of entropy change in each
cell

Δx
∂

∂t
S− = (w−)T

(
f− − f∗ − φ− ◦ �r�

2

)
,

Δx
∂

∂t
S+ = (w+)T

(
f∗ − f+ − φ+ ◦ �r�

2

)
. (56)

We then sum over both cells to find the total discrete entropy change over the interface

Δx
∂

∂t

(
S− + S+) = �w�T f∗ − �wT f� − {{w ◦ φ}}T �r�. (57)

From (57) we see that a discrete version of the integral entropy conservation law (15) holds
provided the right hand side recovers the jump of the entropy flux over the interface

�w�T f∗ − �wT f� − {{w ◦ φ}}T �r� != −�
→
f S�. (58)

Manipulating (58) and subsequently substituting the definition of the entropy potential (13)
we find an entropy conservation condition for the numerical flux

�w�T
↔
f EC = �

→
ψ� − {{w ◦ φ}}T �

↔r�. (59)

Accordingly, a numerical flux that satisfies this condition in combination with the numer-
ical nonconservative term (53) recovers the integral entropy conservation law (15) and is
therefore defined as an EC numerical flux.

With this in mind we create an EC split-form DGSEM by selecting a proper combination
of EC fluxes and nonconservative terms for both volume and surface contributions. In general
the split-form offers flexibility in choosing different discretizations on the volume and the
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surface. However, we note that the numerical nonconservative term (53) can also be applied
in the volume as it corresponds to the structure given in (46) when setting

Φ#(U−,U+) = 1

2
Φ−,

↔
R#(U−,U+) = ↔

R+ (60)

and satisfies the consistency conditions (47). This circumvents the need for different surface
and volume fluxes, such that our method is given by

〈
I
N (J )Ut ,W

〉
N

+
∫

∂E,N

WT {FEC
n − Fn}ŝ dS+

〈
→
D ·

↔
F̃EC ,W

〉

N

+
∫

∂E,N

WT
(
Φ ◦ ↔

R
)
n
ŝ dS +

〈
→
D · (Φ ◦

↔
R̃),W

〉

N
= 0.

(61)

We then set the following EC numerical fluxes

FEC
1 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

{{h1u1}}(i,m), j

{{h1u1}}(i,m), j {{u1}}(i,m), j + g {{h1}}2(i,m), j − 1
2 g
{{
h21
}}

(i,m), j
{{h1u1}}(i,m), j {{v1}}(i,m), j

{{h2u2}}(i,m), j

{{h2u2}}(i,m), j {{u2}}(i,m), j + g {{h2}}2(i,m), j − 1
2 g
{{
h22
}}

(i,m), j
{{h2u2}}(i,m), j {{v2}}(i,m), j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

FEC
2 :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

{{h1v1}}(i,m), j
{{h1v1}}(i,m), j {{u1}}(i,m), j

{{h1v1}}(i,m), j {{v1}}(i,m), j + g {{h1}}2(i,m), j − 1
2 g
{{
h21
}}

(i,m), j
{{h2v2}}(i,m), j

{{h2v2}}(i,m), j {{u2}}(i,m), j

{{h2v2}}(i,m), j {{v2}}(i,m), j + g {{h2}}2(i,m), j − 1
2 g
{{
h22
}}

(i,m), j

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(62)

which fulfill the entropy conservation condition (59)

�W�T
↔
FEC = �

→
Ψ � − {{W ◦ Φ}}T �

↔
R�,

as shown in Appendix A for FEC
1 . This EC flux (62) corresponds to the EC volume flux found

by Wintermeyer et al. [57] for the standard SWE within each layer. The reason behind this
is that the conservative part of the two-layer model (1) corresponds to the standard shallow
water system in each layer and only the nonconservative terms differ. That is, the EC split-
form DGSEM (61) is directly applicable to the standard SWE if one selects the EC flux from
[57] and the numerical nonconservative term (53). For the standard SWE there are different
combinations of entropy conserving fluxes and nonconservative terms that satisfy an entropy
conservation condition see, e.g., [19, 45, 57]. To obtain a scheme that remains well-balanced
on curvilinear meshes, in [57] it was deemed necessary to choose a different form of EC
fluxes in the volume and on the surface. However, we will show in Sect. 5.5 that this is not
necessary and well-balancedness even in the curvilinear case can be achieved using the same
path-conservative discretization of the nonconservative term (53) and the EC flux (62) for
both volume and surface contributions, which results in a simpler method.

As shown in Gassner et al. [25, Lemma 1], depending on the product of averages in the
numerical volume flux the split-form DGSEM (48) recovers different discrete split-forms of
the governing equations.Using this flexible relationship, the specific averaging of the pressure
term in (62) produces a split-form that recovers the product rule 1

2h
2
x = hhx in the discrete
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setting. This analogous discretization of the pressure and nonconservative term is the key to
demonstrable well-balancedness in the formulation (61). Well-balancedness follows directly
for the lake-at-rest steady state, where h1 and h2 + b are constants, as the combination
of the pressure and nonconservative terms yield the contributions h1(h1 + h2 + b)x and
h2(rh1+h2+b)x in the upper and lower layer, respectively. These terms individually vanish
provided the metric identities (25) are satisfied. We delay the complete discussion and proof
of the well-balancedness property until Sect. 5.5.

First, we examine the volume and surface contributions separately to demonstrate discrete
entropy conservation for approximation (61). We start with the volume parts and show that
for the given choice of two-point volume flux (62) and numerical nonconservative term (53)
they become the entropy flux evaluated at the boundary, when contracted into entropy space.
Using the same combination of EC flux and numerical nonconservative term the total surface
contribution then cancels in entropy space, which shows entropy conservation. Furthermore,
we demonstrate that by using an analogous discretization for the pressure and nonconservative
terms yields a method that is well-balanced.

5.3 Volume Contribution

Lemma 1 (Entropy contribution of the curvilinear volume terms) The curvilinear volume
contributions of the split-form DGSEM (48) with the EC volume flux (62) contracted into
entropy space become the entropy flux evaluated at the interface.

〈
→
D ·

↔
F̃EC ,W

〉

N
+
〈

→
D · (Φ ◦

↔
R̃),W

〉

N
=
∫

∂E,N

(→
F S · →

n
)
ŝ dS (63)

Proof See Appendix B. ��
Remark 1 The proof requires the SBP property (38), the entropy conservation condition (59),
and that the metric identities (25) are satisfied discretely.

The result from Lemma 1 shows that the volume contributions from the flux and non-
conservative terms cancel in entropy space and become the entropy flux evaluated at the
boundary. Therefore, the volume parts do not contribute to the total discrete entropy and the
entropy balance is entirely dependent on the surface contributions.

5.4 Surface Contribution

On the surface we select the same EC numerical flux as in the volume. From Lemma 1 we
know that the volume contributions move onto the surface such that the change in discrete
entropy depends solely on the surface terms. So, we assemble the surface contributions for
a single element

Γk =
∫

∂Ek ,N

WT {FEC
n − Fn}ŝ dS+

∫

∂Ek ,N

(→
F S · →

n
)
ŝ dS

+
∫

∂E,N

WT
(
Φ ◦ ↔

R
)
n
ŝ dS, k = 1, . . . , K .

(64)

To obtain the total discrete entropy as described by (51) we sum over all elements k =
1, . . . , K . Due to the discontinuous approximation, summing over the elements creates jumps
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in the fluxes, nonconservative terms and entropy variables, whereas the numerical surface
fluxes are defined uniquely at each interface.

After summing over the elements, we examine the terms in the surface integrals (64)
separately. Starting with the physical flux term we obtain jumps in the flux and entropy
variables and use that the numerical flux is unique at the interface to have

K∑
k=1

∫

∂Ek ,N

WT {FEC
n − Fn}ŝ dS =

∑
faces

∫

N

{
�W�T

↔
FEC − �WT ↔

F�
}

· →
nŝ dS . (65)

In a similar way summing over the second integral generates a jump in the entropy flux

K∑
k=1

∫

∂Ek ,N

(→
F S · →

n
)
ŝ dS =

∑
faces

∫

N

�
→
F S� · →

nŝ dS . (66)

The third integral in (64) contains the the numerical nonconservative term (53), which is
non-unique at the interface. In the following we examine the total surface contribution of the
nonconservative parts after summing over the interfaces.

Lemma 2 (Surface contribution of the numerical nonconservative term)Setting the numerical
nonconservative term to (53)

(
Φ ◦ ↔

R
) = 1

2
Φ− ◦ �

↔
R�

yields the total surface contribution of the nonconservative terms

K∑
k=1

∫

∂Ek ,N

WT
(
Φ ◦ ↔

R
)
n
ŝ dS =

∑
faces

∫

N

{{W ◦ Φ}}T �
↔
R� · →

nŝ dS . (67)

Proof The total surface contribution from the nonconservative terms in (64) is given by

K∑
k=1

∫

∂Ek ,N

WT (Φ ◦ ↔
R)n ŝ dS . (68)

Introducing the definition for the numerical nonconservative term (53) into (64) and examin-
ing the nonconservative contribution, where “–” denotes the primary and “+” the secondary
state, yields

K∑
k=1

∫

∂Ek ,N

WT (Φ ◦ ↔
R)n ŝ dS =

K∑
k=1

∫

∂Ek ,N

WT
(
1

2
Φ− ◦ �

↔
R�

)
· →
nŝ dS . (69)

To obtain the total interface contribution, we must take contributions from neighboring
cells into account. Since the nonconservative term is not symmetric, we need to consider
the different normal directions of neighboring cells as defined in (29). Summing over all
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elements, we then obtain the total contribution from the interfaces

K∑
k=1

∫

∂Ek ,N

WT (Φ ◦ ↔
R)n ŝ dS

=
∑
faces

∫

N

1

2

((
W−)T

(
Φ− ◦ �

↔
R�

)
+ (W+)T

(
Φ+ ◦ �

↔
R�

))
· �nŝ dS

=
∑
faces

∫

N

{{W ◦ Φ}}T �
↔
R� · �nŝ dS,

(70)

where we used that due to anti-symmetry the different sign in the jump operator between
“+” and “−” cancels with the sign flip from opposite normal directions. ��
Lemma 3 (Total entropy contribution of the surface terms)When summing over all elements,
the total entropy contributions of the advective and nonconservative terms in (64) cancel on
the surface

K∑
k=1

∫

∂Ek ,N

(
WT {FEC

n − Fn} +
(→
F S · →

n
)

+ WT (Φ ◦ R)n
)
ŝ dS = 0. (71)

Proof First we write the fluxes in terms of jumps according to (65), (66) and apply the result
of Lemma 2 for the nonconservative contributions to obtain

∑
faces

∫

N

{
�W�T

↔
FEC − �WT ↔

F� + �
→
F S� + {{W ◦ Φ}}T �

↔
R�
}

· →
nŝ dS . (72)

Now we substitute the definition of the entropy flux potential (13)
∑
faces

∫

N

{
�W�T

↔
FEC − �

→
Ψ � + {{W ◦ Φ}}T �

↔
R�
}

· →
nŝ dS, (73)

and substitute the entropy conservation condition (59) to cancel the remaining terms and
therefore show that the total entropy contribution on the surface is zero. ��

Now that the surface and volume contributions are examined, we have everything assem-
bled and combine the previous results to show that approximation (48) is EC.

Theorem 1 (Entropy conservation of the curvilinear split-form DGSEM for the two-layer
shallow water equations) The curvilinear split-form DGSEM for the two-layer shallow water
equations

〈
I
N (J )Ut ,ϕ

〉
N

+
∫

∂E,N

ϕT {F∗
n − Fn}ŝ dS+

〈
→
D ·

↔
F̃#,ϕ

〉

N

+
∫

∂E,N

ϕT (Φ ◦ R)n ŝ dS+
〈

→
D · (Φ ◦

↔
R̃)#,ϕ

〉

N
= 0

(74)

with the EC flux (62) and the numerical nonconservative term (53)

F# = F∗ = ↔
FEC , (Φ ◦ R)# = (Φ ◦ R) = 1

2
Φ− ◦ �

↔
R�, (75)

is entropy conservative.
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Proof From Lemma 1, we have that the entropy contributions cancel in the volume and
generate the entropy flux on the surface. Then we apply the result from Lemma 3 to show
that the entropy contribution cancels on the surface and therefore entropy is conserved. ��

5.5 Well-Balancedness

In the following we show that in addition to entropy conservation, the discretization (74) is
well-balanced as it satisfies the lake-at-rest condition (8).

Corollary 1 (Well-balancedness of the curvilinear split-form DGSEM for the two-layer shal-
low water equations) The EC curvilinear split-form DGSEM for the two-layer shallow water
equations

〈
I
N (J )Ut ,ϕ

〉
N

+
∫

∂E,N

ϕT {FEC
n − Fn}ŝ dS+

〈
→
D ·

↔
F̃EC ,ϕ

〉

N

+
∫

∂E,N

ϕT (Φ ◦ R)n ŝ dS+
〈

→
D · (Φ ◦

↔
R̃),ϕ

〉

N
= 0

(76)

preserves the lake-at-rest initial condition (8)

u1, u2, v1, v2 = 0, b + h2 = const, h1 = const .

Proof To show that the scheme is well-balanced, we take the same approach as demonstrating
entropy conservation. That is we examine the volume and surface parts separately, to see that
both contributions vanish for the lake-at-rest condition (8).
In the continuity equations in (4), it is clear that well-balancedness is directly satisfied as all
products vanish due to the initial condition u1, u2, v1, v2 = 0. Therefore, only themomentum
equations need to be considered to show well-balancedness. For simplicity the proof is only
demonstrated for the h1u1-equation as the other components are analogous.

Inserting the lake-at-rest conditions (8) into the EC approximation (74) and using that
{{h}}2 − 1

2

{{
h2
}} = h+h−

2 , the volume flux contribution simplifies to
〈

→
D ·

↔
F̃EC ,ϕh1u1

〉

N

=
N∑

i, j=0

ωi j

[
2

N∑
m=0

Dim

((
g {{h1}}2(i,m) j − 1

2
g
{{
h21
}}

(i,m) j

){{
J

→
a11
}}

(i,m) j

)

+ 2
N∑

m=0

D jm

((
g {{h1}}2i( j,m) − 1

2
g
{{
h21
}}
i( j,m)

){{
J

→
a21
}}
i( j,m)

)]

= g
N∑

i, j=0

ωi j (h1)i j

[
N∑

m=0

Dim

(
(h1)mj

{{
J

→
a11
}}

(i,m) j

)

+
N∑

m=0

D jm

(
(h1)im

{{
J

→
a21
}}
i( j,m)

)]
.

(77)

The nonconservative volume contribution is then rewritten into a similar form. Therefore,
we first use that the metric identities (25) are satisfied such that any terms containing only
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local contributions Φ i j ◦ ↔
Ri j vanish to obtain

Φ ◦
(

�∇ξ · IN (

↔
R̃)

)
≈ �D · (Φ ◦

↔
R̃) =

N∑
m=0

Dim

(
Φ i j ◦

(↔
Rmj · {{J �a 1}}

(i,m) j

))

+
N∑

m=0

D jm

(
Φ i j ◦

(↔
Rim · {{J �a 2}}

i( j,m)

))
.

(78)

By expanding the nonconservative term, the contribution to the h1u1-equation is then given
by

〈
→
D · (Φ ◦

↔
R̃),ϕh1u1

〉

N
= g

N∑
i, j=0

ωi j (h1)i j

[
N∑

m=0

Dim

(
(b + h2)mj

{{
J

→
a11
}}

(i,m) j

)

+
N∑

m=0

D jm

(
(b + h2)im

{{
J

→
a21
}}
i( j,m)

)]
.

(79)

Next we assemble the total volume contribution from (77) and (79). We first use that b +
h1 + h2 = constant, according to (8). Then, from the consistency of the derivative matrix
and assuming that the metric identities (25) hold discretely, the volume parts vanish for the
lake-at-rest condition

〈
�D ·

↔
F̃ EC , ϕh1u1

〉

N
+
〈
�D · (Φ ◦

↔
R̃), ϕh1u1

〉

N

=
N∑

i, j=0

ωi j g (h1)i j

[
N∑

m=0

Dim

(
(b + h1 + h2)mj

{{
J �a11
}}

(i,m) j

)

+
N∑

m=0

D jm

(
(b + h1 + h2)im

{{
J �a21
}}
i( j,m)

)]

= g

2
(b + h1 + h2)

N∑
i, j=0

ωi j (h1)i j

[
N∑

m=0

Dim

((
J �a11
)
i j + (J �a11

)
mj

)

+
N∑

m=0

D jm

((
J �a11
)
i j + (J �a11

)
im

)]

= g

2
(b + h1 + h2)

N∑
i, j=0

ωi j (h1)i j

[
N∑

m=0

Dim
(
J �a11
)
mj +

N∑
m=0

D jm
(
J �a11
)
im

]

= 0.

(80)

The remaining surface contributions are given by

∫

∂E,N

ϕT
h1u1{F∗

n − Fn}ŝ dS+
∫

∂E,N

ϕT
h1u1(Φ ◦ R)n ŝ dS . (81)
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Expanding the terms in the h1u1-equation, again all products with velocity components
vanish, and (81) simplifies to

∫

∂E,N

(
g {{h1}}2 − 1

2
g
{{
h21
}}− 1

2
g
(
h−
1

)2 + 1

2
gh−

1 �b + h2�

)
n1ŝ dS

= g

2

∫

∂E,N

(
2 {{h1}}2 − {{h21

}}− (h−
1

)2 + h−
1 �b + h2�

)
n1ŝ dS .

(82)

The first three terms are rewritten as

2 {{h1}}2 − {{h21
}}− (h−

1

)2 = h−
1 h

+
1 − (h−

1 )2 = h−
1 �h1�. (83)

Inserting this into (82) and using that �b+h1+h2� = 0 according to the lake-at-rest condition
yields

g

2

∫

∂E,N

(
h−
1 �h1� + h−

1 �b + h2�
)
n1ŝ dS

= g

2

∫

∂E,N

(
h−
1 �b + h1 + h2�

)
n1ŝ dS

= 0,

(84)

which shows that the h1u1-equation satisfies (8) as both the volume and the surface contri-
butions vanish. As the remaining momentum equations are analogous, this shows that the
EC split-form DGSEM approximation (74) is well-balanced for the two-layer SWE.

��

6 Entropy Stable DGSEM

The high-order approximation introduced in Theorem 1 satisfies the entropy conservation
statement (14) in a semi-discrete setting. In the presence of discontinuities entropy conser-
vation is not sufficient and instead the entropy inequality (16) must be satisfied to account
for entropy dissipation at shocks. Following the idea of Tadmor [55], we add numerical dis-
sipation to the EC scheme from Theorem 1 to construct a discretization that is entropy stable
(ES). We use the approach from [19] and create an ES flux by adding a local Lax–Friedrichs
type dissipation to the EC flux

↔
FES = ↔

FEC − 1

2
|λmax |H̄�w�, (85)

where λmax denotes an approximation of the maximum eigenvalue from (7) and H̄ = wu is
the symmetric positive definite entropy Jacobian matrix, evaluated at the arithmetic average
value of the solution state at element interfaces. That the dissipation is dependent on the jump
in entropy variables guarantees that entropy is dissipated at shocks and conserved for smooth
solutions.

Theorem 2 (Entropy stability of the curvilinear split-form DGSEM for the two-layer shal-
low water equations) The curvilinear split-form DGSEM for the two-layer shallow water
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equations

〈
I
N (J )Ut ,ϕ

〉
N

+
∫

∂E,N

ϕT {FES
n − Fn}ŝ dS+

〈
→
D ·

↔
F̃EC ,ϕ

〉

N

+
∫

∂E,N

ϕT (Φ ◦ R)n ŝ dS+
〈

→
D · (Φ ◦

↔
R̃),ϕ

〉

N
= 0

(86)

is ES and well-balanced, when the ES flux (85) is used at element interfaces, together with
the EC flux (75) on the volume and the numerical nonconservative term (53).

Proof Entropy stability follows, provided (86) is more dissipative than the EC discretization
(74). From Lemma 3 it is clear that the surface contributions of (86) vanish together with
the EC flux part of (85) when contracted into entropy space. Therefore, the change in total
entropy obtained from summing over all elements depends only on the remaining dissipation
term

dS̄

dt
= −

∑
faces

∫

N

(
1

2
�W�T |λmax |H̄�W�

)
· �nŝ dS ≤ 0. (87)

Using that H̄ is the Hessian of a convex function and therefore positive definite, the total
entropy decreases in time and the discretization is therefore ES. For the lake-at-rest initial
condition (8), the entropy variables (11) remain constant and the ES flux simplifies to the EC
flux. The proof for well-balancedness then follows directly from Corollary 1. ��

7 Results

To demonstrate the theoretical findings and performance of the split-form DGSEM, we
present and discuss results from several numerical experiments. First, we investigate con-
vergence properties and show spectral convergence on a curvilinear mesh. Then we provide
numerical evidence of the well-balanced property for discontinuous bottom topography and
add a perturbation to this test case to demonstrate entropy stability. We then close the dis-
cussion with a more complex test, showcasing a partial dam break of a parabolic dam.

Numerical results are obtained using the open-source framework Trixi.jl [47, 53]. A repro-
ducibility repository is available on Zenodo [16] andGitHub1 for the results presented herein.
All computations use a low storage five-stage fourth-order Runge–Kutta scheme of Carpenter
and Kennedy [6] for time integration, with either fixed or CFL-based time stepping [12].

7.1 Convergence Results

We apply the method of manufactured solutions to demonstrate spectral convergence of the
numerical approximation against an exact reference solution. To construct the exact solution,
layer heights and bathymetry are defined by trigonometric functions and constants are used

1 https://github.com/trixi-framework/paper-2023-es_two_layer.
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Fig. 1 Curvilinear mesh adapted
from [57] with polynomial
degree N = 6 representation of
interfaces used to test spectral
convergence and
well-balancedness

for the velocities

u1 = 0.9, u2 = 1, v1 = 1, v2 = 0.9

b = 1 + 0.1 cos(πx) sin(π y)

h1 = 2 + 0.1 sin(2πx + t) cos(2π y + t)

h2 = 4 + 0.1 cos(2πx + t) sin(2π y + t) − h1 − b.

(88)

The additional source terms for themanufactured solution are then computed using analyt-
ical derivatives with the gravitational constant set to g = 10 and the density ratio ρ1

ρ2
= 0.9.

src =

⎛
⎜⎜⎜⎜⎜⎜⎝

h1
h1u1
h1v1
h2
h2u2
h2v2

⎞
⎟⎟⎟⎟⎟⎟⎠

t

+

⎛
⎜⎜⎜⎜⎜⎜⎝

h1u1
h1u21 + 0.5gh21

h1u1v1
h2u2

h2u22 + 0.5gh22
h2u2v2

⎞
⎟⎟⎟⎟⎟⎟⎠

x

+

⎛
⎜⎜⎜⎜⎜⎜⎝

h1v1
h1u1v1

h1v21 + 0.5gh21
h2v2
h2u2v2

h2v22 + 0.5gh21

⎞
⎟⎟⎟⎟⎟⎟⎠

y

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
h1g (b + h2)x
h1g (b + h2)y

0

h2g
(
b + ρ1

ρ2
h1
)
x

h2g
(
b + ρ1

ρ2
h1
)
y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(89)

The resulting problem is solved in the domain Ω = [0, √2]2 on the curvilinear mesh
shown in Fig. 1 using polynomial degree N = 6 representation at element edges. Solutions
are computed at the final time tend = 1 for polynomial degrees up to N = 30 and a fixed
timestep Δt = 1/12,000.

Spectral convergence for both the ES and EC approximations is shown in Fig.2, which
shows a semi-log plot for the error in L2 over the polynomial degree N . We see suboptimal
convergence for the EC scheme for various polynomial degrees N . The characteristic pattern
of suboptimal convergence at odd polynomial degree, reported in [23, 25] cannot be observed
for curved elements, but does occur under the initial conditions (88) and resolution parameters
on a mesh with straight element edges. The convergence behavior of the remaining quantities
was similar and is not shown.
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Fig. 2 Spectral convergence of ES and EC approximations in space shown in a semi-log plot for the L2-error
in h1u1 over the polynomial degree N . Results are obtained with a fixed timestep of Δt = 1/12,000 at the
final time tend = 1

Table 1 Maximum norm of the
lake-at-rest error in H1 and H2
for EC and ES fluxes at time
tend = 100 with polynomial
degree N = 8 and CFL = 0.7

‖H1(tend ) − H1(t0)‖∞ ‖H2(tend ) − H2(t0)‖∞
↔
FEC 4.635 × 10−14 7.659 × 10−13

↔
FES 2.770 × 10−13 1.220 × 10−12

7.2 Well-Balanced

The next test is adapted from [57] and demonstrates that the approximation preserves the lake-
at-rest condition (8) for the two-layer SWEwith discontinuous bottom topography, according
toCorollary 1.Againwe use the curvilinearmesh fromFig. 1 and set the following lake-at-rest
conditions with a discontinuous bottom topography at element 3 × 2 (see Fig. 3)

H1 = 0.6, H2 = 0.5, u1, u2, v1, v2 = 0,
ρ1

ρ2
= 0.9

b =
{
0.25 + 0.1 sin (2πx) + 0.1 cos (2π y) , for element 3 × 2

0, else.

(90)

We set periodic boundary conditions and compute the solution with a polynomial degree
N = 8 and a CFL-based timestep up to the final time tend = 100. In Fig. 3 we show the
bottom topography and present the error in the absolute water height H1 = h1 + h2 + b
relative to the lake-at-rest initial condition (90). Even after considerate time of t = 100, errors
in H1 and H2 remain around machine precision and the steady-state is preserved. Similar
results with errors near unit roundoff were also obtained with the ES flux. We collect these
results in Table 1, where we present the maximum norm of the lake-at-rest error for the EC
and ES fluxes.

7.3 Well-Balanced Perturbation

Next, we introduce a small discontinuous perturbation to the lake-at-rest configuration
described in Sect. 7.2, and examine the resulting change in entropy for both the EC and
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Fig. 3 a Discontinuous bottom topography in element 3 × 2 and b lake-at-rest error at time tend = 100 for
the EC flux with N = 8 and CFL = 0.7

Table 2 Mean, minimum and maximum values of total discrete entropy change for the EC and ES fluxes in
the domain Ω within T = [0, 1]

min
t∈T ṠΩ mean

t∈T ṠΩ max
t∈T ṠΩ

↔
FEC − 3.670 × 10−16 − 1.194 × 10−17 3.756 × 10−16

↔
FES − 2.082 × 10−2 − 1.273 × 10−4 − 1.061 × 10−5

Results obtained for CFL = 0.7 and polynomial degree N = 8

ES schemes. We adopt the previous setup, but modify the initial conditions (90) to include a
discontinuous perturbation in h1 within a single element

H1 =
{
0.65 for element 2 × 3

0.6 else.
(91)

To demonstrate entropy conservation for the approximation (74) and entropy stability for
(86), we evaluate the total discrete entropy change over all elements K in the domain Ω as

ṠΩ := 1

V

∫

Ω

Ṡ dV ≈ 1

V

K∑
k=1

N∑
i, j=0

J ki jωi j Ṡ
k
i j . (92)

Minimum, mean and maximum values of the entropy change for
↔
FEC and

↔
FES within

the time interval T = [0, 0.1] are presented in Table 2. For the EC flux we see that entropy
is conserved discretely with a total discrete entropy change around machine precision. For
the ES flux on the other hand, we observe a noticeable change as entropy is dissipated at
discontinuities. The solutions shows a strict decrease in entropy throughout the time interval
T and therefore satisfies the entropy inequality (16).

Furthermore, in Table 3, we present the conservation error in total mass evaluated as

ΔhΩ :=
∣∣∣∣
1

V

∫

Ω

h(tend) − h(t0) dV

∣∣∣∣ ≈
∣∣∣∣
1

V

K∑
k=1

N∑
i, j=0

J ki jωi j

(
h(tend)

k
i j − h(t0)

k
i j

) ∣∣∣∣ (93)

in both layers to demonstrate the conservation properties of the DGSEM. For both layers we
observe conservation of the total mass, with conservation errors near machine precision.
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Table 3 Change in total mass of
h1 and h2 in the domain Ω for
EC and ES fluxes at time
tend = 0.1

Δh1,Ω Δh2,Ω

↔
FEC 2.637 × 10−16 1.388 × 10−15

↔
FES 2.914 × 10−16 9.437 × 10−16

Results obtained for CFL = 0.7 and polynomial degree N = 8

7.4 Parabolic Dam Break

As a final test case, we apply the EC and ES schemes to a more complex problem with non-
periodic BCs and demonstrate the solution behavior.We consider a partial dambreak problem
with initial conditions similar to [37, 43], but with a modified geometry featuring a parabolic
dam to create a curvilinear boundary. The solution domain is given by Ω = [0, 10]2, and
includes a parabolic dam described by the centerline x = 1

25 y
2−0.4y+6, thickness d = 0.2

and a gap size of 1. We solve the problem on a curvilinear quadrilateral mesh containing
2239 elements and set the boundary conditions as slip-wall for the dam and Dirichlet for the
outer boundaries. The curvilinear quadrilateral mesh was constructed using HOHQMesh.jl.2

Initial conditions are chosen such that both layers are at rest, with a discontinuity across the
dam.

h1, h2 =
{
1.0 if x ≤ 1

25 y
2 − 0.4y + 6

0.75 else
ρ1

ρ2
= 0.25, g = 1, u1, u2, v1, v2 = 0.

(94)

In Fig. 4 a sequence of computational results for the ES scheme obtained with polynomial
degree N = 3 is shown over time. After the initial dam break we observe a shock and
rarefaction wave in both layers and the formation of vortices at the corners of the dam
opening. Furthermore, in Fig. 5we compare the result with the EC schemewithout dissipation
along the horizontal line y = 5. We see that both schemes do well in resolving the shock and
rarefactionwaves. However, the dissipation-free EC discretization shows significant spurious
oscillations, due to lack of entropy dissipation at shocks. The ES scheme, on the other hand,
introduces dissipation near the shocks and eliminates notable spurious oscillations. However,
the additional dissipation is only designed to satisfy an entropy inequality and additional
shock capturing is necessary to obtain a scheme that is oscillation free, while remaining ES,
e.g., [27, 50].

8 Conclusion

We presented a high-order collocated nodal discontinuous Galerkin spectral element method
(DGSEM) for the two-layer shallow water equations on curvilinear quadrilateral meshes.
We first constructed the DGSEM in a specific way such that it is endowed with the
summation-by-parts (SBP) property and introduced a path-conservative approximation of
the nonconservative terms. Using the SBP property we then replaced the volume contribu-
tions with a flux-differencing formulation and demonstrated that the resulting approximation

2 https://github.com/trixi-framework/HOHQMesh.jl.
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Fig. 4 Visualization of the dam break test case at different times for polynomial degree N = 3 and Δt =
4 · 10−4

Fig. 5 Layer heights along y = 5 for the EC and ES flux at t = 0.25 with polynomial degree N = 3 and
Δt = 4 · 10−4
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is entropy conservative (EC) for a specific combination of the EC flux and numerical non-
conservative terms.

Applying an equivalent discretization for the pressure and nonconservative terms, we
further showed that the method is well-balanced for discontinuous bottom topography. This
interplay of the discrete conservative and nonconservative contributions in the volume and on
the surface was crucial to guarantee well-balancedness together with entropy conservation
on curvilinear domains. We found that the construction of a well-balanced approximation
was possible with an identical form for these volume and surface terms in contrast to a result
fromWintermeyer et al. [57]. From the dissipation free EC formulation we then constructed
an entropy stable scheme by adding additional numerical dissipation at interfaces using a
local Lax–Friedrichs type dissipation.

Finally, we provide numerical results for a number of academic test cases to demonstrate
convergence, well-balancedness and entropy stability of the scheme. We then conclude with
the application on a more complex parabolic dam break test and demonstrate the solution
behavior. The numerical tests verify the analysis and show that the scheme is well-balanced
and EC up to machine precision.

In future work, we aim to complement the scheme with wetting and drying techniques and
add shock capturing methods to create a scheme that is oscillation-free. Furthermore, we aim
to extend the present formulation to obtain an entropy stable and well-balanced discretization
of the Savage–Hutter model [52] for submarine avalanches.
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Appendices

A Entropy Conservation Condition of the EC Flux

To show that the EC flux (62) satisfies the entropy conservation condition (59), we contract
EC flux with the jump in entropy variables and restrict the derivation to the ξ -direction for
clarity as the approach in η-direction is analogous. The contraction of the EC flux in the
ξ -direction is given by

�w�T fEC1 =
�

ρ1

(
g (h1 + h2 + b) − u21

2
− v21

2

)�

{{h1u1}}

+ �ρ1v1� {{h1u1}} {{v1}} + �ρ1u1�
(
{{h1u1}} {{u1}} + g {{h1}}2 − g

2

{{
h21
}})

+
�

ρ2

(
g

(
ρ1

ρ2
h1 + h2 + b

)
− u22

2
− v22

2

)�

{{h2u2}} + �ρ2v2� {{h2u2}} {{v2}}

�ρ2u2�
(
{{h2u2}} {{u2}} + g {{h2}}2 − g

2

{{
h22
}})

.

(95)

We expand all the terms in (95) and see that several terms cancel directly

ρ1g�h1� {{h1u1}} + ρ1g�h2� {{h1u1}} + ρ1g�b� {{h1u1}}
− 1

2
ρ1�u

2
1 + ��v

2
1� {{h1u1}} + ρ1�u1� {{h1u1}} {{u1}} + ρ1g�u1� {{h1}} {{h1}}

− ρ1
g

2
�u1�

{{
h21
}}+��������

ρ1�v1� {{h1u1}} {{v1}} + ρ1g�h1� {{h2u2}}

+ ρ2g�h2� {{h2u2}} + ρ2g�b� {{h2u2}} − 1

2
ρ2�u

2
2 + ��v

2
2� {{h2u2}}

+ ρ2�u2� {{h2u2}} {{u2}} + ρ2g�u2� {{h2}} {{h2}} − ρ2
g

2
�u2�

{{
h22
}}

+ ��������
ρ2�v2� {{h2u2}} {{v2}}.

(96)

Then we apply the jump rule �a2� = 2 {{a}} �a� and again cancel out the resulting equal terms

ρ1g�h1� {{h1u1}} + ρ1g�h2� {{h1u1}} + ρ1g�b� {{h1u1}}
− ��������

ρ1�u1� {{u1}} {{h1u1}} +��������
ρ1�u1� {{h1u1}} {{u1}} + ρ1g�u1� {{h1}} {{h1}}

− ρ1
g

2
�u1�

{{
h21
}}+ ρ1g�h1� {{h2u2}} + ρ2g�h2� {{h2u2}}

+ ρ2g�b� {{h2u2}} −��������
ρ2�u2� {{u2}} {{h2u2}} +��������

ρ2�u2� {{h2u2}} {{u2}}
+ ρ2g�u2� {{h2}} {{h2}} − ρ2

g

2
�u2�

{{
h22
}}

.

(97)

We continue and group the expression for common variables

ρ1g�h1� {{h1u1}} + ρ1g�u1� {{h1}} {{h1}} − ρ1
g

2
�u1�

{{
h21
}}

+ ρ2g�h2� {{h2u2}} + ρ2g�u2� {{h2}} {{h2}} − ρ2
g

2
�u2�

{{
h22
}}

+ ρ1g�h2� {{h1u1}} + ρ1g�h1� {{h2u2}}
+ ρ1g�b� {{h1u1}} + ρ2g�b� {{h2u2}} ,

(98)
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and then make use of an additional rule that holds for jumps and averages of two arbitrary
quantities a and b given by

�a� {{ab}} + �b� {{a}}2 − 1

2
�b�
{{
a2
}} = 1

2
�a2b�. (99)

Applying this rule to (97) now shows that the entropy conservation condition (59) holds

1

2
ρ1g�h21u1� + 1

2
ρ1g�h22u2�

+ ρ1g�h2 + b� {{h1u1}} + ρ2g�b + ρ2
ρ1
h1� {{h2u2}}

= �Ψ1� − {{w ◦ φ}}T �r1�.

(100)

B Entropy Volume Contribution

To show that the volume contributions generate entropy fluxes at the boundary, we will
examine the volume contributions given by

〈
→
D ·

↔
F̃EC ,W

〉

N
+
〈

→
D · (Φ ◦

↔
R̃),W

〉

N
. (101)

First we expand the volume contributions of the fluxes

〈
→
D ·

↔
F̃EC ,W

〉

N
=

N∑
i, j=0

ωi jWT
i j

[
2

N∑
m=0

Dim

(↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)

+ 2
N∑

m=0

D jm

(↔
FEC (Ui j ,Uim) · {{J→

a 2}}
i( j,m)

)] (102)

and the nonconservative terms
〈

→
D · (Φ ◦

↔
R̃),W

〉

N
=

N∑
i, j=0

ωi jWT
i j

[
2

N∑
m=0

Dim

((
1

2
Φ i j ◦ �

↔
R�(i,m), j

)
· {{J→

a 1}}
(i,m) j

)

+ 2
N∑

m=0

D jm

((
1

2
Φ i j ◦ �

↔
R�i( j,m)

)
· {{J→

a 2}}
i( j,m)

)]
.

(103)

We will only present the proof for the ξ -direction as it simplifies the analysis and the η-
direction is done analogously. Next, we rewrite (102) in terms of the undivided differencing
operator Qim = ωiDim

N∑
i, j=0

ωi jWT
i j2

N∑
m=0

Dim

(↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)

=
N∑
j=0

ω j

N∑
i=0

WT
i j

N∑
m=0

2ωiDim

(↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)

=
N∑
j=0

ω j

N∑
i=0

WT
i j

N∑
m=0

2Qim

(↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)
.

(104)
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We make use of the SBP property 2Qim = Qim − Qmi + Bim and subsequently exchange
the indexing of i and m to rewrite Qmi as Qim , using that

↔
FEC (Ui j ,Umj ) and

{{
J

→
a 1
}}

(i,m) j
are symmetric regarding i and j

N∑
i=0

WT
i j

N∑
m=0

2Qim

(↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)

=
N∑

i,m=0

WT
i j (Qim − Qmi + Bim)

(↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)

=
N∑

i,m=0

Qim
(
Wi j − Wmj

)T (↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)

+ BimWT
i j

(↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)
.

(105)

We then use consistencywith the physical flux
↔
FEC = ↔

F at the boundary part, as the boundary
matrix consists of zero entries besides B00 = −1 and BNN = 1 to substitute the definition
of the entropy flux potential (13)

BimWT
i j

↔
FEC (Ui j ,Umj ) = Bim

(→
Ψi j + →

F S
i j

)
(106)

and then substitute this in (105) to obtain

N∑
i=0

WT
i j

N∑
m=0

2Qim

(↔
FEC (Ui j ,Umj ) · {{J→

a 1}}
(i,m) j

)

=
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(i,m) j

)

+ Bim

(→
Ψi j + →

F
S
i j

)
· {{J→

a 1}}
(i,m) j

. (107)

We then examine the contribution of the nonconservative term volume terms (103) in
ξ -direction. Again, we use the undivided differencing operator and rewrite the numerical
nonconservative term

N∑
i, j=0

ωi jWT
i j2

N∑
m=0

Dim

((
1

2
Φ i j ◦ �

↔
R�(i,m), j

)
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ω j
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WT
i j
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Φ i j ◦

(↔
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Ri j
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a 1}}
(i,m) j

) (108)
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We apply the SBP property 2Qim = Qim −Qmi +Bim , exchange indices i and m to rewrite
the second operator and regroup the terms

N∑
i=0

WT
i j

N∑
m=0

2Qim

((
1

2
Φ i j ◦

(↔
Rmj − ↔

Ri j

))
· {{J→
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(i,m) j

)
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N∑
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WT
i j

N∑
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i j

(
1

2
Φ i j ◦

(↔
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)
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(109)

We then use the structure of the boundary matrix, which has only zero entries apart from
B00 = −1 and BNN = 1 such that the boundary terms cancel due to the jumps and the
nonconservative volume contribution simplifies to

N∑
i=0

WT
i j

N∑
m=0

2Qim

((
Φ i j ◦ �

↔
R�
)

· {{J→
a 1}}

(i,m) j

)

=
N∑

i,m=0
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(
1

2

(
Wi j ◦ Φ i j + Wmj ◦ Φmj

)T (↔
Rmj − ↔

Ri j

)
· {{J→

a 1}}
(i,m) j

) (110)

With the result (107) we now gather the total volume contribution in ξ -direction. From
(107) and (110) we substitute the entropy conservation condition (59) to obtain

N∑
i,m=0

Qim
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(111)
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We then reindex the second term
→
Ψmj and apply SBP again to find that the entropy potential

vanishes on the boundary part and use that the rows ofQ sum to zero in the last step to obtain

N∑
i,m=0

Qim
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Ψmj
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(112)

We use the same approach for the η-direction and gather the total volume contributions
in both directions to have
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(113)

These are regrouped to separate the contributions from the metric terms
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(114)

This can now be used to show that the volume contributions cancel in entropy space, if
the metric identities are satisfied discretely so that

2∑
l=1

∂

∂ξ l
I
N
(
Jaln
)

=
N∑

m=0

Dim
(
Ja1n
)
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(
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im = 0. (115)
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From that we see that the volume terms vanish in entropy space and generate the entropy
flux at the boundary

〈
→
D ·

↔
F̃EC ,W

〉

N
+
〈

→
D · (Φ ◦

↔
R̃),W

〉

N
=
∫

∂E,N
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F S · →

n
)
ŝ dS . (116)
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