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Abstract
We investigate the Helmholtz equation with suitable boundary conditions and uncertainties
in the wavenumber. Thus the wavenumber is modeled as a random variable or a random
field. We discretize the Helmholtz equation using finite differences in space, which leads
to a linear system of algebraic equations including random variables. A stochastic Galerkin
method yields a deterministic linear system of algebraic equations. This linear system is high-
dimensional, sparse and complex symmetric but, in general, not hermitian.We therefore solve
this system iteratively with GMRES and propose two preconditioners: a complex shifted
Laplace preconditioner and a mean value preconditioner. Both preconditioners reduce the
number of iteration steps as well as the computation time in our numerical experiments.

Keywords Helmholtz equation · Polynomial chaos · Stochastic Galerkin method ·
GMRES · Complex shifted Laplace preconditioner · Mean value preconditioner

Mathematics Subject Classification 65N30 · 65C20 · 35R60

1 Introduction

The Helmholtz equation is a linear partial differential equation (PDE), whose solutions are
time-harmonic states of the wave equation, see [15, 20]. Important applications of this
model are given in acoustics and electromagnetics [2]. The Helmholtz equation includes
a wavenumber, which is either a constant parameter or a space-dependent function. Further-
more, boundary conditions are imposed on the spatial domain.

We consider uncertainties in the wavenumber. Thus the wavenumber is replaced by a
random variable or a spatial random field to quantify the uncertainties. The solution of the
Helmholtz equation changes into a random field, which can be expanded into the (gener-
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alized) polynomial chaos, see [31]. We employ the stochastic Galerkin method to compute
approximations of the unknown coefficient functions. Stochastic Galerkin methods were
used for linear PDEs of different types including random variables, for example, see [13,
33] on elliptic type, [14, 24] on hyperbolic type, and [22, 32] on parabolic type. Wang et
al. [30] applied a multi-element stochastic Galerkin method to solve the Helmholtz equation
including random variables. We investigate the ordinary stochastic Galerkin method, which
is efficient if the wavenumbers are not close to resonance.

The stochastic Galerkin method transforms the random-dependent Helmholtz equation
into a deterministic system of linear PDEs. Likewise, the original boundary conditions yield
boundary conditions for this system. We examine the system of PDEs in one and two space
dimensions. A finite difference method, see [16], produces a high-dimensional linear system
of algebraic equations. When considering absorbing boundary conditions, the coefficient
matrices are complex-valued and non-hermitian.

We focus on the numerical solution of the linear systems of algebraic equations. The
dimension of these linear systems rapidly grows for increasing numbers of random variables.
Hence we use iterativemethods like GMRES [27] in the numerical solution. The efficiency of
an iterative method strongly depends on an appropriate preconditioning of the linear systems.
We propose two preconditioners in the general case where the wavenumber can depend on
space and on multiple random variables: a complex shifted Laplace preconditioner, see [6,
8], and a mean value preconditioner, see [10, 30]. Statements on the location of spectra and
estimates of matrix norms are shown. Furthermore, results of numerical computations are
presented for both settings.

The article is organized as follows. The stochastic Helmholtz equation is introduced in
Sect. 2 and discretized in Sect. 3. We discuss the complex shifted Laplace preconditioner
in Sect. 4 and the mean value preconditioner in Sect. 5. Sections6 and 7 contain numerical
experiments in one and two spatial dimensions, respectively, which show the effectiveness
of the preconditioners.

2 ProblemDefinition

We illustrate the stochastic problem associated to the Helmholtz equation.

2.1 Helmholtz Equation

The Helmholtz equation is a PDE of the form

− �u − k2u = f in Q (1)

with an (open) spatial domain Q ⊆ R
d and given source term f : Q → R. The wavenumber

k is either a positive constant or a function k : Q → R+. The unknown solution is u : Q → K

with eitherK = R orK = C. Here� = ∑d
j=1

∂2

∂x2j
denotes the Laplace operator with respect

to x = [x1, . . . , xd ]� ∈ R
d .

Often homogeneous Dirichlet boundary conditions, i.e.,

u = 0 on ∂Q, (2)

are applied for simplicity. Alternatively, absorbing boundary conditions read as

∂nu − iku = 0 on ∂Q, (3)
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where ∂n denotes the derivative with respect to the outward normal of Q and i = √−1 is the
imaginary unit.

2.2 Stochastic Modeling

We consider uncertainties in the wavenumber. A simple model to include a variation of
the wavenumber is to replace the constant k by a random variable on a probability space
(�,A, P). We write k = k(ξ), where ξ : � → R is some random variable with a tradi-
tional probability distribution. More generally, the wavenumber can be a space-dependent
function on Q including a multidimensional random variable ξ : � → � with � ⊆ R

s . We
assume ξ = (ξ1, . . . , ξs)

� with independent random variables ξ� for � = 1, . . . , s. Now the
wavenumber becomes a random field

k(x, ξ) = k0(x) +
s∑

�=1

ξ�k�(x) (4)

with given functions k� : Q → R for � = 0, 1, . . . , s, as in [30]. A truncation of a Karhunen-
Loève expansion, see [11, p. 17], also yields a random input of the form (4). Consequently,
the solution of the deterministic Helmholtz equation (1) changes into a random field u :
Q × � → K. We write u(x, ξ) to indicate the dependence of the solution on space as well
as the random variables.

We assume that each random variable ξ� has a probability density function ρ�. Since the
random variables are independent, the product ρ = ρ1 · · · ρs is the joint probability density
function. Without loss of generality, let ρ(ξ) > 0 for almost all ξ ∈ �. The expected value
of a measurable function f : � → K depending on the random variables is

E( f ) =
∫

�

f (ξ(ω)) dP(ω) =
∫

�

f (ξ) ρ(ξ) dξ,

if the integral is finite. The inner product of two square-integrable functions f , g is

〈 f , g〉 =
∫

�

f (ξ) g(ξ) ρ(ξ) dξ. (5)

In the following, L2(�, ρ) denotes the Hilbert space of square-integrable functions. The
associated norm is ‖ f ‖L2(�,ρ) = √〈 f , f 〉.

Later we will focus on uniformly distributed random variables ξ� : � → [−1, 1]. In this
case, the joint probability density function is constant, i.e., � = [−1, 1]s and ρ ≡ 2−s .

2.3 Polynomial Chaos Expansions

We assume that there is an orthonormal polynomial basis (φi )i∈N0 inL2(�, ρ). Thus it holds
that

〈φi , φ j 〉 = δi, j =
{
1 for i = j

0 for i �= j

with the inner product (5). In the case of uniform probability distributions, the multivariate
functions φi are products of the (univariate) Legendre polynomials. We assume that φ0 ≡ 1.
The number m + 1 of multivariate polynomials in s variables up to a total degree r is

m + 1 = (s + r)!
s! r ! , (6)
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see [31, p. 65]. This number grows fast for increasing r or s.
Let u(x, ·) ∈ L2(�, ρ) for each x ∈ Q. The polynomial chaos (PC) expansion is

u(x, ξ) =
∞∑

i=0

vi (x)φi (ξ) (7)

with (a priori unknown) coefficient functions

vi (x) = 〈u(x, ξ), φi (ξ)〉 for i ∈ N0. (8)

The series (7) converges in L2(�, ρ) pointwise for x ∈ Q. If the wavenumber k is an
analytic function of the random variables, then the rate of convergence is exponentially fast
for traditional probability distributions.

3 Discretization of the Stochastic Helmholtz Equation

We consider the stochastic Helmholtz equation

− �u(x, ξ) − k(x, ξ)2u(x, ξ) = f (x), x ∈ Q ⊆ R
d , (9)

with given source term f : Q → R and random wavenumber k : Q × � → R+, together
with either homogeneous Dirichlet boundary conditions

u(x, ξ) = 0, x ∈ ∂Q, ξ ∈ �, (10)

or with absorbing boundary conditions

∂nu(x, ξ) − ik(x, ξ)u(x, ξ) = 0, x ∈ ∂Q, ξ ∈ �. (11)

All derivatives are taken with respect to x . We discretize this boundary value problem in two
steps, with a finite difference method (FDM) in space and the stochastic Galerkin method in
the random-dependent part. The steps can be done in any order. We first give an overview
of the procedure when beginning with the FDM in Sect. 3.1. In Sect. 3.2, we discuss the
discretization when beginning with the stochastic Galerkin method.

3.1 FDM and Stochastic Galerkin Method

A spatial discretization of the boundary value problem with a second order FDM on an
equispaced grid leads to a (stochastic) linear algebraic system

S(ξ)U (ξ) = F0 (12)

with constant vector F0 ∈ R
n and stochastic matrix S(ξ) ∈ K

n,n for ξ ∈ �, depending on the
boundary conditions. In the case of homogeneous Dirichlet boundary conditions, it follows
that

S(ξ) = T − D2(ξ), (13)

with T and D2(ξ) symmetric positive definite, and in case of absorbing boundary conditions,

S(ξ) = T − iD1(ξ) − D2(ξ), (14)

with T and D1(ξ) symmetric positive semidefinite and D2(ξ) symmetric positive definite.
(For details of this discretization, see the appendix of [23].) In a second step, we consider a
PC approximation of U (ξ) of the form
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Ũm(ξ) =
m∑

i=0

φi (ξ)Vi , where Vi = [
v�,i

]n
�=1 ∈ R

n for i = 0, 1, . . . ,m, (15)

and φi are polynomials as in Sect. 2.3. The coefficient vectors Vi are determined by the
orthogonality of the residual

Rm(ξ) = S(ξ)Ũm(ξ) − F0. (16)

to the subspace span{φ0, φ1, . . . , φm} with respect to the inner product 〈·, ·〉 in (5), i.e., by
〈Rm(ξ), φi (ξ)〉 = 0 for i = 0, 1, . . . ,m. Here the inner product is taken component-wise.
The orthogonality condition is equivalent to

〈S(ξ)Ũm(ξ), φi (ξ)〉 = 〈1, φi (ξ)〉F0 = δi,0F0, i = 0, 1, . . . ,m, (17)

due to φ0 ≡ 1. This leads to a (deterministic) linear algebraic system

AV = F, V =
⎡

⎢
⎣

V0
...

Vm

⎤

⎥
⎦ , F =

⎡

⎢
⎣

F0
...

Fm

⎤

⎥
⎦ , (18)

where the stochastic Galerkin projection A ∈ K
(m+1)n,(m+1)n is a block matrix with m + 1

blocks of size n × n, and Fi = 0 ∈ R
n for i = 1, . . . ,m.

Remark 1 The Galerkin approximation (15) can be interpreted as a spatial discretization
of a Galerkin approximation ũm(x, ξ) = ∑m

i=0 vi (x)φi (ξ) of u(x, ξ). Evaluating ũm at
discretization points x1, . . . , xn yields

⎡

⎢
⎣

ũm(x1, ξ)
...

ũm(xn, ξ)

⎤

⎥
⎦ =

m∑

i=0

φi (ξ)

⎡

⎢
⎣

vi (x1)
...

vi (xn)

⎤

⎥
⎦ . (19)

Hence Vi in (15) can be interpreted as a discretization of vi (x) by v�,i = vi (x�).

The matrix S(ξ) in (13) and (14) is a (complex) linear combination of real symmetric
positive (semi-)definite matrices. The following lemma shows that this structure is preserved
in the stochastic Galerkin method; see [21, Lem. 1] and its proof. These properties of the
matrix S and thus A will be essential for our analysis of shifted Laplace preconditioners in
Sect. 4.

Lemma 2 Let A(ξ) = [
aμ,ν(ξ)

]
μ,ν

∈ R
n,n with aμ,ν ∈ L2(�, ρ), and V ∈ R

n. Define

Ai j := [〈aμ,ν(ξ)φi (ξ), φ j (ξ)〉]
μ,ν

∈ R
n,n, i, j = 0, 1, . . . ,m, (20)

and the stochastic Galerkin projection

A := [
Ai j

]
i, j ∈ R

(m+1)n,(m+1)n . (21)

We then obtain for i, j = 0, 1, . . . ,m

〈A(ξ)φi (ξ)V , φ j (ξ)〉 = Ai j V , (22)

where the inner product is taken component-wise. Additionally, Ai j = A ji . Moreover, if
A(ξ) is symmetric, then A is symmetric, and if A(ξ) is symmetric positive (semi-)definite for
almost all ξ ∈ �, then A is symmetric positive (semi-)definite.
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Corollary 3 In the notation of Lemma 2, if A(ξ) = A0 is independent of ξ , then Ai j = δi j A0

and A = Im+1 ⊗ A0, with the identity matrix Im+1 ∈ K
m+1,m+1 and the Kronecker product.

Finally, we obtain the following result on the structure of the matrix A in (18).

Theorem 4 Let the spatial dimensionbe d ∈ {1, 2}. A finite difference and stochasticGalerkin
approximation of the Helmholtz equation (9) on Q = ]0, 1[d with either homogeneous
Dirichlet or absorbing boundary conditions leads to a linear system (18) with coefficient
matrix

A = L − iB − K (23)

and real-valued matrices L, B, K. The matrix K is symmetric positive definite, B, L are
symmetric positive semidefinite. In case of homogeneous Dirichlet boundary conditions, L
is symmetric positive definite and B = 0.

Proof The statement of the theorem follows in each case by applying the stochastic Galerkin
approximation as described above to (12) and usingLemma2 aswell asCorollary 3 separately
for each term composing S(ξ); see (13) and (14). ��

The matrix L results essentially from the discretization of the Laplacian, B from the
(absorbing) boundary conditions, and K is the discretization of the term including the
wavenumber.

3.2 Stochastic Galerkin Method and FDM

Alternatively, we can begin with the stochastic Galerkin method. This leads to a system of
deterministic PDEs, which are subsequently discretized by a FDM. The PC expansion (7)
suggests a stochastic Galerkin approximation of u(x, ξ) of the form

ũm(x, ξ) =
m∑

i=0

vi,m(x)φi (ξ). (24)

The coefficient functions vi,m in the stochastic Galerkin method are in general distinct from
the coefficients vi in (8). Nevertheless, we will usually write vi instead of vi,m in the sequel
for notational convenience. The coefficients in the Galerkin approach are determined by the
orthogonality of the residual

Rm(x, ξ) = −�ũm(x, ξ) − k(x, ξ)2ũm(x, ξ) − f (x)

= −
m∑

i=0

�vi (x)φi (ξ) − k(x, ξ)2
m∑

i=0

vi (x)φi (ξ) − f (x)

to the subspace span{φ0, φ1, . . . , φm}, i.e., by 〈Rm(x, ξ), φ j (ξ)〉 = 0 for j = 0, 1, . . . ,m
and each x ∈ Q. The latter is equivalent to

− �v j (x) −
m∑

i=0

〈k(x, ξ)2φi (ξ), φ j (ξ)〉vi (x) = 〈1, φ j (ξ)〉 f (x) = δ j,0 f (x) (25)

for j = 0, 1, . . . ,m in Q. Thus we obtain a system of PDEs for the unknown coefficient
functions v0, v1, . . . , vm . Define C(x) = [ci j (x)] ∈ R

m+1,m+1 for x ∈ Q by

ci j (x) = 〈k(x, ξ)2φi (ξ), φ j (ξ)〉 =
∫

�

φi (ξ)φ j (ξ)k(x, ξ)2ρ(ξ) dξ, i, j = 0, 1, . . . ,m.

(26)
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Since by assumption k(x, ξ) > 0 for all x and ξ , the matrix C(x) is symmetric positive
definite (as Gramian of an inner product with weight function k(x, ξ)2ρ(ξ)). Setting

v(x) = [
v0(x) v1(x) · · · vm(x)

]�
, F(x) = [

f (x) 0 · · · 0]� , (27)

we write the system of PDEs (25) as

− �v(x) − C(x)v(x) = F(x) in Q, (28)

which is a larger deterministic system of linear PDEs. Still we require boundary conditions
for the system (28).

The homogeneous Dirichlet boundary condition (10) implies v j (x) = 0 for x ∈ ∂Q and
j = 0, 1, . . . ,m, hence

v(x) = 0 on ∂Q. (29)

Inserting the Galerkin approximation (24) into the absorbing boundary conditions (11) yields
the residual

Rm(x, ξ) =
m∑

i=0

(∂nvi )(x)φi (ξ) − ik(x, ξ)

m∑

i=0

vi (x)φi (ξ). (30)

By the orthogonality 〈Rm(x, ξ), φ j (ξ)〉 = 0 in the Galerkin approach, we obtain

∂nv j (x) − i
m∑

i=0

〈k(x, ξ)φi (ξ), φ j (ξ)〉vi (x) = 0, j = 0, 1, . . . ,m. (31)

The matrix B(x) = [bi j (x)] ∈ R
m+1,m+1 with

bi j (x) = 〈k(x, ξ)φi (ξ), φ j (ξ)〉 =
∫

�

φi (ξ)φ j (ξ)k(x, ξ)ρ(ξ) dξ, i, j = 0, 1, . . . ,m,

(32)
is symmetric and positive definite (since k(x, ξ) > 0 by assumption). The boundary condi-
tion (31) can be written with B(x) as

(∂nv)(x) − iB(x)v(x) = 0 on ∂Q. (33)

Discretizing the boundary value problem (28) with (29) or (33) with a second order FDM
yields the same linear algebraic system as in Sect. 3.1.

4 Complex Shifted Laplace Preconditioner

Following the investigation in [9], we consider the Helmholtz equation (9) with a complex
shift in the wavenumber

− �u(x, ξ) − (1 + iβ)k(x, ξ)2u(x, ξ) = f (x), x ∈ Q, (34)

with β ∈ R, together with either homogeneous Dirichlet boundary conditions (10) or absorb-
ing boundary conditions (11). We discretize this boundary value problem as described in
Sect. 3.1. For β = 0, we have the matrix (23) in Theorem 4, and for β ∈ R we obtain

M := M(β) := L − iB − (1 + iβ)K = A − iβK , (35)

since only the term with the wavenumber is multiplied by 1+ iβ. Motivated by [12, p. 1945],
we call M a complex shifted Laplace preconditioner (CSL preconditioner).
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For the deterministic Helmholtz equation, preconditioning with the CSL preconditioner
is a widely studied and successful technique for solving the discretized Helmholtz equation;
see, e.g., [1, 3, 6, 7, 25] and [9], as well as references therein. See also [5] for a survey and [18]
for recent developments. In the deterministic case, the spectrum of the preconditioned matrix
AM−1 lies in the disk (36), and the improved localization of the spectrum typically leads
to a faster convergence of Krylov solvers. The CSL preconditioner M can be approximately
inverted efficiently, for example, by multigrid techniques.

Here, we focus on locating the spectrum of the preconditioned matrix in the stochastic
case, in analogy to [8, 9, 12] for the deterministic Helmholtz equation.

Theorem 5 Let the notation be as in Theorem 4, let β > 0, let A be the discretization (23)
of the stochastic Helmholtz equation (9) and M be the discretization (35) of the shifted
Helmholtz equation (34).

1. In the case of absorbing boundary conditions (11), the spectrum of the preconditioned
matrix AM−1 is contained in the closed disk

D = {z ∈ C : |z − 1/2| ≤ 1/2}. (36)

2. In the case of homogeneous Dirichlet boundary conditions (10), the spectrum of the
preconditioned matrix AM−1 lies on the circle

C = {z ∈ C : |z − 1/2| = 1/2}. (37)

Proof We begin with the case of absorbing boundary conditions. The proof closely follows
[12, Sect. 3] with minor modifications. We have

A = L − iB − z1K , M = L − iB − z2K (38)

with z1 = 1 and z2 = 1 + iβ and where L, B, K are symmetric, K is positive definite and
L, B are positive semidefinite; see Theorem 4. Then A and M are of the form in [12, Sect. 3],
except for the opposite sign of B. The opposite sign affects the positive semidefiniteness, but
not the overall strategy of the proof. Nevertheless, we give a full proof here.

Step 1: Observe first that AM−1 and M−1A have the same spectrum, and that M−1Ax =
σ x is equivalent to the generalized eigenproblem Ax = σMx .

Step 2: x is an eigenvector of Ax = σMx if and only if (L − iB)x = λKx , which can be
seen as follows:

(L − iB − z1K )x = σ(L − iB − z2K )x ⇔ (1 − σ)(L − iB)x = (z1 − σ z2)Kx . (39)

For σ �= 1, we obtain (L − iB)x = λKx with λ = (z1 − σ z2)/(1 − σ). (Note that σ = 1
is equivalent to z1 = z2, i.e., to A = M , which is excluded since β > 0.) Conversely, if
(L − iB)x = λKx , then (L − iB − z1K )x = (λ − z1)Kx = λ−z1

λ−z2
(L − iB − z2K )x and

σ = λ−z1
λ−z2

, provided that λ �= z2. (Note that (L − iB)x = z2Kx , i.e., λ = z2, implies that M
is singular and thus not eligible as preconditioner.)

Step 3: Location of λ in the generalized eigenvalue problem (L − iB)x = λKx . Since K
is real, symmetric positive definite, it has a Cholesky factorization K = UU� = UUH and
the generalized eigenvalue problem is equivalent to

U−1(L − iB)U−Hy = λy, (40)

where y = UHx . Multiplication of (40) by yH and division by yHy yields

λ = yHU−1LU−Hy

yHy
− i

yHU−1BU−Hy

yHy
. (41)
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Fig. 1 Images under μ of the real
and imaginary axis (solid and
dashed circles, respectively) and
of the four quadrants; see
Remark 6 and the proof of
Theorem 5

This shows Re(λ) ≥ 0 and Im(λ) ≤ 0 since L and B are symmetric positive semidefinite.
Step 4: Estimate of the eigenvalues σ of M−1A. Since it holds that z1 �= z2,

μ(z) = z − z1
z − z2

(42)

is a Möbius transformation. By step 2, σ = μ(λ) where λ is an eigenvalue of the generalized
eigenvalue problem (L − iB)x = λKx which satisfies Im(λ) ≤ 0. To determine μ(R), we
compute

μ(0) = z1
z2

= 1

1 + iβ
= 1 − iβ

1 + β2 , μ(z1) = 0, μ(∞) = 1 (43)

and
∣
∣
∣
∣μ(0) − 1

2

∣
∣
∣
∣

2

=
∣
∣
∣
∣

1

1 + β2 − 1

2
− i

β

1 + β2

∣
∣
∣
∣ = (1 − β2)2

4(1 + β2)2
+ β2

(1 + β2)2
= 1

4
. (44)

Hence μ maps the real line onto the circle C in (37) (for any β �= 0). For β > 0, the lower
half-plane is mapped by μ onto the interior of C (for β < 0 onto the exterior); see Fig. 1.
This completes the proof in case of absorbing boundary conditions.

The proof in the case of Dirichlet boundary conditions is very similar. The only difference
is in the location of the eigenvalues λ in step 3. Since L is symmetric positive definite and
B = 0, (40) implies λ > 0, hence σ = μ(λ) lies on the circle (37). ��

Remark 6 In the proof of Theorem 5, we additionally have Re(λ) ≥ 0. Hence σ is located
in the image of the (closed) fourth quadrant under μ in (42). To determine this image, note
that μ maps the imaginary axis onto the circle

Cβ = {z ∈ C : |z − (1 − i(β/2))| = |β|/2}, (45)

which intersects μ(R) = C perpendicularly in μ(0) and μ(∞) = 1. Considering the orien-
tations shows that μ maps the right half-plane onto the exterior of Cβ ; see Fig. 1. Thus the
spectrum satisfies

σ(AM−1) ⊆ {z ∈ C : |z − 1/2| ≤ 1/2} \ {z ∈ C : |z − (1 − i(β/2))| < |β|/2}. (46)

In case of Dirichlet boundary conditions, the eigenvalues of AM−1 lie on the arc of the circle
C from μ(0) to μ(∞) = 1 that contains the origin.
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This observation further tightens the inclusion set of σ(AM−1), also in the case of a
deterministic wavenumber. This tighter inclusion set is already visible in [8, Figs. 1, 2] and
[9, Fig. 2.1] but we are not aware of a proof in the literature.

5 Mean Value Preconditioner

We consider the discretization from Sect. 3.1. Let S(ξ) ∈ K
n,n be the coefficient matrix of a

linear system resulting from a spatial discretization of the Helmholtz equation (1) including
boundary conditions andwavenumber k(x, ξ).We assume that S(ξ) is non-singular for almost
all realizations ξ ∈ �. Let ξ̄ ∈ � be the expected value of the multidimensional random
variable ξ . It holds that

S(ξ) = S(ξ̄ ) + (S(ξ) − S(ξ̄ )) =: S(ξ̄ ) + �S(ξ).

The stochastic Galerkinmethod applied to S(ξ) yields amatrix A ∈ K
(m+1)n,(m+1)n as shown

in Sect. 3.1. Furthermore, we define the constant matrix

Ā = Im+1 ⊗ S(ξ̄ ). (47)

This matrix allows for the construction

A = Ā + (A − Ā) =: Ā + �A. (48)

We employ the Frobenius matrix norm ‖ · ‖F in the following.

Theorem 7 Using the Frobenius norm, it holds that

‖ Ā−1A − I(m+1)n‖F ≤ Cm ‖S(ξ̄ )−1‖F
∥
∥‖�S(ξ)‖F

∥
∥L2(�,ρ)

(49)

with the constants

Cm = √
m + 1

( m∑

i, j=0

‖φi (ξ)φ j (ξ)‖2L2(�,ρ)

) 1
2

provided that the L2-norm of the matrix norm is finite.

Proof The definition (48) directly yields

Ā−1A − I(m+1)n = I(m+1)n + Ā−1�A − I(m+1)n = Ā−1�A.

We obtain ‖ Ā−1�A‖F ≤ ‖ Ā−1‖F ‖�A‖F. The properties of the Kronecker product and (47)
imply ‖ Ā−1‖2F = (m + 1)‖S(ξ̄ )−1‖2F. We estimate ‖�A‖F using the Cauchy-Schwarz
inequality with respect to the inner product (5)

‖�A‖2F =
m∑

i, j=0

n∑

μ,ν=1

∣
∣〈φi (ξ)φ j (ξ),�Sμ,ν(ξ)〉∣∣2

≤
m∑

i, j=0

n∑

μ,ν=1

‖φi (ξ)φ j (ξ)‖2L2(�,ρ)
‖�Sμ,ν(ξ)‖2L2(�,ρ)

=
( m∑

i, j=0

‖φi (ξ)φ j (ξ)‖2L2(�,ρ)

)
∥
∥‖�S(ξ)‖F

∥
∥2L2(�,ρ)

.
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In the last step, we used that the square of an L2-norm is an integral and thus summation
(with respect to μ, ν) and integration can be interchanged. Applying the square root to the
above estimate yields the statement (49). ��

Remark 8 Rough estimates are used in the proof of Theorem 7. Thus the true matrix norms
of Ā−1A − I(m+1)n are often much smaller than the upper bounds in (49).

Remark 9 If the random variable �S(ξ) is essentially bounded, then it follows that
∥
∥‖�S(ξ)‖F

∥
∥L2(�,ρ)

≤ sup
ξ∈�\ϒ

‖�S(ξ)‖F < ∞

with a set ϒ ⊆ � of measure zero due to the normalization ‖1‖L2(�,ρ) = 1.

Remark 10 The bound of Theorem 7 also holds true for the Frobenius norm of AĀ−1 −
I(m+1)n .

Theorem 7 together with Remark 8 demonstrate that the matrix Ā is a good preconditioner
for solving linear systemswith coefficientmatrix A. In this context, Ā is called themean value
preconditioner, as in [30] for the multi-element method. When Ā is used as a preconditioner
(left-hand or right-hand), linear systems with coefficient matrix Ā have to be solved. The
matrix Ā from (47) is block-diagonal with m + 1 identical blocks in this application. Thus
just a single LU -decomposition of the matrix S(ξ̄ ) is required. Many linear systems with
different right-hand sides are solved using this LU -decomposition in an iterative method like
GMRES, for example.

Theorem 11 Let S(ξ) = S0 + θT (ξ) with a non-singular constant matrix S0, a matrix
T = [

tμ,ν

]
μ,ν

depending on a random variable ξ with components tμ,ν ∈ L2(�, ρ) and a
real parameter θ > 0. Using A0 = Im+1 ⊗ S0, the Frobenius norm exhibits the asymptotic
behavior

‖A−1
0 A − I(m+1)n‖F = O(θ). (50)

Proof Since the entries of T (ξ) are assumed to be square-integrable, also the expected values
are finite. Let T̄ be the constant matrix containing the expected values of T (ξ). We apply the
decomposition

S(ξ) = (S0 + θ T̄ ) + θ(T (ξ) − T̄ ).

The matrix S0 + θ T̄ is non-singular for sufficiently small θ . Moreover, we obtain the relation
(S0 + θ T̄ )−1 = S−1

0 + O(θ). Theorem 7 yields

‖ Ā−1A − I(m+1)n‖F ≤ Cm ‖(S0 + θ T̄ )−1‖F
∥
∥‖θ(T − T̄ )‖F

∥
∥L2(�,ρ)

with Ā = Im+1 ⊗ (S0 + θ T̄ ). It holds that Ā = A0 + O(θ) and thus Ā−1 = A−1
0 + O(θ).

We conclude

‖A−1
0 A − I(m+1)n‖F ≤

(
Cm

(
‖S−1

0 ‖F + O(θ)
)

θ
∥
∥‖T − T̄ ‖F

∥
∥L2(�,ρ)

)
+ O(θ) = O(θ),

which confirms (50). ��

An important case of Theorem 11 is T̄ = 0, i.e., these expected values are zero. Then
A0 = Ā is the mean value preconditioner.
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Corollary 12 Under the assumptions of Theorem 7, the Frobenius norm satisfies the estimate

‖ Ā−1A − I(m+1)n‖F < 1 (51)

for all sufficiently small �S.

Likewise, the Frobenius norm using A0 instead of Ā is smaller than one if the parameter
θ is sufficiently small in the context of Theorem 11.

A stationary iterative scheme for solving a linear system Ax = b reads as

Bx (i+1) = b − (A − B)x (i) for i = 0, 1, 2, . . . (52)

with a non-singular matrix B which should approximate A, see [29, p. 621]. In each iteration
step, we have to solve a linear systemwith coefficientmatrix B. The property (51) is sufficient
for the global convergence of the iteration (52) using B = Ā. The computational costs of an
iteration step are much less than the steps in GMRES using Ā as preconditioner, because the
construction of Krylov subspaces is avoided. In practice, we do not know if�S is sufficiently
small such that the bound (51) is guaranteed. Nevertheless, it is worth to try this stationary
iteration, as we will observe in Sect. 7.

6 Numerical Experiments in 1D

Our model problem in one space dimension is the stochastic Helmholtz equation (9) on Q =
]0, 1[ with absorbing boundary conditions. The right-hand side is the point source f (x) =
δ(x − 1

2 ), similarly to, e.g., [9, 12, 19, 28], where the right-hand side is a (possibly scaled)
point source. We consider a random wavenumber k(x, ξ) = k(ξ) constant in space, which is
uniformly distributed in some interval [kmin, kmax] with 0 < kmin < kmax. Equivalently, we
define

k(ξ) = (1 + θξ)k (53)

with a random variable ξ that is uniformly distributed in [−1, 1], a mean value k, and a real
parameter θ ∈ ]0, 1[. It follows that kmin = (1 − θ)k and kmax = (1 + θ)k.

In our numerical experiments in one and two spatial dimensions, we compute the mesh-
size h = 1

q+1 in the FD discretization by

q = 2� − 1, where � = max

{⌈

log2

(
15

2π
kmax

)⌉

, 1

}

. (54)

Then the relation 2π
kh ≈ constant, advocated in [17, Sect. 4.4.1], is satisfied. Indeed, the

estimate x ≤ �x� ≤ x + 1 for x ∈ R implies 15k
2π ≤ q + 1 ≤ 215k

2π for large k. In particular,
q grows linearly with k and thus the size of the matrix A grows with k; see, e.g., Fig. 3. Our
choice for q can be adapted for a future use of a multigrid method (as in [9]).

Discretizing the model problem yields the linear algebraic system of equations

Ax = b (55)

in Theorem 4. This one-dimensional problem can be solved by a direct method, since the
computational work is not too large. Nevertheless we also consider its solution with the
GMRESmethod [27] and investigate the application of CSL and mean value preconditioners
introduced in Sects. 4 and 5, respectively.
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Table 1 Different discretizations of the Helmholtz and shifted Helmholtz equation, with or without uncer-
tainties

A Discretized Helmholtz equation with uncertainties (θ > 0)

A0 Discretized Helmholtz equation without uncertainties (θ = 0)

M Discretized shifted Helmholtz equation with uncertainties (θ > 0)

M0 Discretized shifted Helmholtz equation without uncertainties (θ = 0)

The matrix A in (55) has the form

A = Im+1 ⊗ T − i[Bi j ] − [Ci j ]. (56)

If needed, we write Aθ to indicate the dependence of A on θ , and in particular A0 for
θ = 0, which corresponds to the mean value preconditioner. Since the wavenumber in (53)
is constant in space, the matrices [Bi j ] and [Ci j ] have the form

[Bi j ] = [〈k(ξ)φ j (ξ), φi (ξ)〉]i j ⊗ D1, D1 = 1

h
diag(1, 0, . . . , 0, 1), (57)

[Ci j ] = [〈k(ξ)2φ j (ξ), φi (ξ)〉]i j ⊗ D2, D2 = diag
(1

2
, 1, . . . , 1,

1

2

)
, (58)

and, moreover, Bi j = 0 for |i − j | > 1 andCi j = 0 for |i− j | > 2. In other words, the matri-
ces

[〈k(ξ)φ j (ξ), φi (ξ)〉]i j and
[〈k(ξ)2φ j (ξ), φi (ξ)〉]i j are tridiagonal and pentadiagonal,

respectively, due to the orthogonality properties of the polynomials φi (ξ), i = 0, 1, . . ..

Remark 13 In the deterministic case k(ξ) = k in (53), i.e., θ = 0, the matrices [Bi j ] =
k Im+1 ⊗ D1 and [Ci j ] = k

2
Im+1 ⊗ D2 are diagonal, and

A0 = Im+1 ⊗ (T − ikD1 − k
2
D2) = Im+1 ⊗ S(0) (59)

with S from (14). This shows that the mean value preconditioner A0 is block-diagonal with
m + 1 identical diagonal blocks. The latter are the FD-discretization of the deterministic
Helmholtz equation with wavenumber k (associated to ξ = 0).

If not specified otherwise, we use m = 3 in the stochastic Galerkin method and θ = 0.1
in (53). Finally, we also consider the shifted Helmholtz equation (34) with shift β = 1

2 and
denote the CSL preconditioner by M = M( 12 ), see (35). As for A, we write Mθ if we wish
to emphasize the dependence on θ . Table 1 summarizes the four kinds of matrices involved
in our computations in Sect. 6 and Sect. 7.

The numerical experiments have been performed in the software package MATLAB
R2020b on an i7-7500U @ 2.70GHz CPU with 16 GB RAM.

6.1 Spectra

By Theorem 5, the eigenvalues of the CSL preconditioned matrix AM−1 lie in the closed
disk (36). This is illustrated in the left panel of Fig. 2, which displays the spectra of AM−1

with θ = 0.1 and of A0M
−1
0 , i.e., with θ = 0 (without uncertainties); see also Table 1 for

an overview of the different matrices. Each eigenvalue of A0M
−1
0 is (m + 1)-fold, since

A0 = Im+1 ⊗ S(0) is block-diagonal with identical diagonal blocks, see Remark 13, and
similarly for M0. For θ �= 0, the matrix AM−1 is not block-diagonal, and AM−1 has clusters
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Fig. 2 Left: Spectrum of AM−1 for k = 50, m = 3, θ = 0.1 (crosses) and θ = 0 (circles). The large solid
circle illustrates (37). Right: Spectrum of AA−1

0

ofm+1 eigenvalues close to each (m+1)-fold eigenvalue of A0M
−1
0 . This can be observed

in the figure with m + 1 = 4. The right panel in Fig. 2 displays the spectrum of AA−1
0

with the mean value preconditioner A0. The eigenvalues are clustered at 1, which suggests
a fast convergence of GMRES. If the eigenvalues satisfy |λ − 1| < 1, then the stationary
method (52) with B = A0 converges.

6.2 Condition Numbers

Recall that A, M , A0 and M0 denote the discretizations of the (shifted) Helmholtz equation
wiht or without uncertainties; see Table 1. Figure3 displays the 2-norm condition numbers of
A, M , AM−1, A0 and AA−1

0 as functions of k (with θ = 0.1). Clearly, the condition numbers
of M and AM−1 are much smaller than the condition number of A. A smaller condition
number is beneficial when solving linear systems, since then a small relative residual of an
approximate solution implies a small relative error of the approximate solution. (This follows
from the following well-known residual-based forward error bound: Let A ∈ C

n,n be non-
singular, b ∈ C

n\{0}, x = A−1b, and let x̂ be an approximate solution of the linear algebraic
system Ax = b. Then the relative error satisfies ‖x − x̂‖2/‖x‖2 ≤ κ2(A)‖r‖2/‖b‖2 with the
residual r = b − Ax̂ .) In this example, κ2(M) ≤ 205 for all k, which is very moderate, and
κ2(AM−1) grows linearly in k from 2.6485 when k = 10 to only 36.5190 when k = 200.
In contrast, κ2(A) is roughly 50 to 160 times larger than κ2(AM−1). The observed spikes
of κ2(A) occur when more discretization points are used which leads to a larger size of A,
compare the curve of size(A). The condition number of the mean value preconditioned
matrix AA−1

0 is also moderate, growing from 2 to 141, which is beneficial for solving the
preconditioned linear system, while κ2(A0) is of the order of κ2(A).

6.3 GMRES

We solve the unpreconditioned system (55) and the right and left preconditioned systems

AM−1y = b, x = M−1y, and M−1Ax = M−1b (60)

with full GMRES (no restarts), using MATLAB’s built-in gmres command. The residual in
the i th step is r (i) = b − Ax (i) for unpreconditioned and right preconditioned GMRES, and
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Fig. 3 2-norm condition numbers as functions of k (left) and zoom-in (right). The matrices A and A0 arise
from the Helmholtz equation with and without uncertainties, respectively, and M and M0 from the shifted
Helmholtz equation; see also Table 1

M−1r (i) for left preconditioned GMRES. The stopping criterion is that the relative residual
norm is less than 10−12, i.e., ‖r (i)‖2/‖r (0)‖2 < 10−12 for unpreconditioned and right precon-
ditioned GMRES, and ‖M−1r (i)‖2/‖M−1r (0)‖2 < 10−12 for left preconditioned GMRES.
In particular, the stopping criterion is in general different for left and right preconditioning; see
[26, Ch. 9.3] for a detailed discussion. We will consider the following three preconditioners:

1. the CSL preconditioner M ,
2. the mean value preconditioner A0,
3. the mean value CSL preconditioner M0.

In preconditioned GMRES, we need to solve linear systems with the preconditioner, for
which we use an LU -decomposition. In one spatial dimension, this is not competitive with
the direct solution (see the end of Sect. 6.3), but in two spatial dimensions the block structure
of the preconditioners A0 and M0 leads to a competitive method. In MATLAB, the LU -
decomposition of the sparse matrix M calls the associated routine from UMFPACK; see [4].
The decomposition has the form

PMQ = LU (61)

with a lower triangular matrix L , upper triangular matrix U , and two permutation matrices
P, Q. By Remark 13, A0 = Im+1 ⊗ S(0) ∈ K

(m+1)n,(m+1)n is block-diagonal with equal
diagonal blocks so that, for fixed k, only a single LU -decomposition of S(0) ∈ K

n,n is
necessary to compute A−1

0 x for any vector x ∈ K
(m+1)n . In our implementation, we partition

and reshape x so that only one linear system with S(0) (using the LU -factors) is solved. The
preconditioner M0 is implemented in the same way.

In a first experiment, we fix k = 50, θ = 0.1 and m = 3. Solving the unpreconditioned
system (55) with GMRES suffers from a long delay of convergence; see Fig. 4. In contrast, all
three preconditioners M , M0, and A0 lead to a significant decrease in the number of iteration
steps from about 250 to 50 for M and M0 (factor 5), and to about 25 for A0 (factor 10); see
Fig. 4 (left panel). The differences between computed solutions are very small: ‖x − x ′‖∞ ≤
1.7 ·10−14 (and typically of order 10−15), where x is the computed direct solution and x ′ is a
solution computed with GMRES (unpreconditioned or with one of the preconditioners). Left
and right preconditioning lead to very similar relative residual norms and timings for each
preconditioner. A heuristic explanation why A0 performs better than M and M0, is that A is
closer to A0 than to M or M0. Indeed, we have ‖A − A0‖∞ < ‖A − M‖∞ < ‖A − M0‖∞
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Fig. 4 Relative residual norms when solving (55) with GMRES with various preconditioners,m = 3, k = 50,
and θ = 0.1 (left) or θ = 0.2 (right). The matrices A and A0 arise from the Helmholtz equation with and
without uncertainties, respectively, and M and M0 from the shifted Helmholtz equation; see also Table 1

in this example. Repeating this experiment with θ = 0.2 leads to very similar results, see
Fig. 4, so we focus on θ = 0.1.

In a second experiment, we let k vary while θ = 0.1 and m = 3 are fixed. Figure5
displays the number of GMRES iteration steps (top) and the computation time (bottom),
measured as wall clock time with MATLAB’s tic toc command, as functions of k. For
small k ∈ [10, 50], the difference between unpreconditioned and preconditioned GMRES is
not so pronounced, since the linear systems are rather small. For 60 ≤ k ≤ 200, the three
preconditioners significantly reduce the number of iteration steps and the computation time
compared to unpreconditioned GMRES. The number of iteration steps is reduced to 8–15%
of the number of iteration steps in unpreconditioned GMRES when using M , to 9–16%
when using M0 and to only 3–6% when using A0 as preconditioner. GMRES preconditioned
with M or M0 needs only 1–4% of the computation time of unpreconditioned GMRES, and
the computation time of GMRES preconditioned with A0 is reduced to 0.5–1.1% of the
computation time of unpreconditoned GMRES. The mean value preconditioner A0 leads to
the smallest number of GMRES iteration steps and computation time, which is likely due to
the fact that A is closer to A0 than to M or M0. Note, however, that the condition number
of A0 (and A) is much larger than that of M and M0. For k = 150, we have (rounded to
the nearest integer) κ2(A) = 2428, κ2(A0) = 2220, κ2(M) = 109, κ2(M0) = 91; see also
Fig. 3. Thus, if accuracy is an issue, it is preferable to work with the CSL preconditioners M
or M0.

Finally, we note that the direct solution using the ‘backslash’ command with a sparse
matrix in MATLAB calls an efficient algorithm from UMFPACK; see [4]. In the above test
example, solving the linear system (55) by GMRES (with or without preconditioner) is not
competitive with this direct solution, as it is much faster; see the bottom right panel in Fig.5.

6.4 Solutions

Figure 6 displays the real and imaginary parts of the computed coefficients v0, v1, v2, v3 in
the Galerkin approximation for k = 50 and θ = 0.1 in (53). We recognize an effect of the
point source at x = 1

2 in the real part of v0.
We compute the solution for total polynomial degree m = 100. Figure7 shows ‖vi‖∞

as a function of the polynomial degree i . In the left panel, θ = 0.1 is fixed and k varies,
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Fig. 5 Number of GMRES iteration steps (top) and computation time in seconds (bottom) as functions of k
for different left and right preconditioners (see Table 1) with fixed θ = 0.1 and m = 3. The right panels are
zoom-ins

while in the right panel θ varies and k = 100 is fixed. We observe an exponential decay
of the coefficients in all cases, which is related to the exponential convergence of the PC
expansion (7). Larger wavenumbers and larger values of θ lead to a slower decay of the
maximum-norm of the coefficients. The effect of larger θ on the convergence/decay is more
pronounced, compare, for example, the curve for (k, θ) = (150, 0.1) in the left panel with
the curve for (100, 0.5) in the right panel.

Next,wevarym (themaximal degree of the polynomials in the stochasticGalerkinmethod)
and denote by xm the solution of (55), which consists of a discretization of the coefficients
v0,m, . . . , vm,m in a Galerkin approximation (24) of the solution u of the Helmholtz equation;
see also Remark 1. The convergence of the stochastic Galerkin method is illustrated by the
exponential decay of the norms ‖xm − xm+1‖2 in Fig. 8.

7 Numerical Experiments in 2D

Next, we consider the stochastic Helmholtz equation in two space dimensions, where the
wavenumber depends on random variables and on the spatial variables.
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Fig. 6 Plots of the coefficients v0, v1, v2, v3 for k = 50 and θ = 0.1

Fig. 7 Maximum-norms ‖vi‖∞ as a function of i = deg(φi ). Left: For fixed θ = 0.1 and different values of
k. Right: For fixed k = 100 and different values of θ

7.1 Modeling

We consider the stochastic Helmholtz equation (9) in Q = ]0, 1[2 with absorbing boundary
conditions (11), the point source f (x, y) = δ((x, y)− ( 12 ,

1
2 )) as right-hand side, and space-

dependent random wavenumber

k(x, y, ξ1, ξ2, ξ3) =

⎧
⎪⎨

⎪⎩

(1 + θξ1)k1, y ≤ 0.2 + 0.1x,

(1 + θξ2)k2, 0.2 + 0.1x < y < 0.6 − 0.2x,

(1 + θξ3)k3, 0.6 − 0.2x ≤ y.

(62)
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Fig. 8 Norms ‖xm − xm+1‖2 as a function of the maximal degree m in the stochastic Galerkin method. Left:
For fixed θ = 0.1 and different values of k. Right: For fixed k = 100 and different values of θ

Table 2 For different total
degrees r , number of basis
polynomials (n.basis), size of the
matrix A, number of non-zero
elements in A (nnz), and time to
generate A

r n.basis Size of A nnz Time (s)

0 1 16641 82689 0.3264

1 4 66564 364038 0.6592

2 10 166410 993300 1.4090

3 20 332820 2119728 3.3421

4 35 582435 3892575 10.3049

5 56 931896 6461094 32.8872

6 84 1397844 9974538 101.1674

7 120 1996920 14582160 291.5063

8 165 2745765 20433213 802.0748

on the wedge-shaped domain from [19, p. 146]; similar domains have been examined in [6,
Sect. 6.3] and [8, Sect. 4.4]. The modeling (62) can also be written in the form (4) using
spatial indicator functions. The random variables ξ1, ξ2, ξ3 are independent and uniformly
distributed in [−1, 1]. The mean value of the wavenumber is

k(x, y) =

⎧
⎪⎨

⎪⎩

k1, y ≤ 0.2 + 0.1x,

k2, 0.2 + 0.1x < y < 0.6 − 0.2x,

k3, 0.6 − 0.2x ≤ y.

(63)

We discretize the boundary value problem as described in Sect. 3.1 and obtain the linear
algebraic system Ax = b in Theorem 4. The number of polynomials in the three random
variables ξ1, ξ2, ξ3 with total degree at most r is, see (6),

m + 1 = (r+3)!
r ! 3! = 1

6 (r + 1)(r + 2)(r + 3). (64)

Table 2 includes the number of basis polynomials for degrees r = 0, 1, . . . , 8.
Let k1 = 30, k2 = 15, k3 = 20, and θ = 0.1. Table 2 shows the size of A and the time (in

seconds) for constructing the matrix A for polynomial degrees up to r = 0, 1, . . . , 8 in the
stochastic Galerkin method. As a function of r , the computation time when solving Ax = b
directly in MATLAB grows much faster than for the iterative solvers; see Fig. 9 (left panel).
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Fig. 9 Solving the linear system directly and with GMRES preconditioned by A0 and M0; see Sect. 7. Left:
Computation time (in seconds) as a function of the polynomial degree r in the stochastic Galerkin method.
Right: Relative residual norms in preconditioned GMRES for polynomial degree r = 8

Table 3 Total operation count until convergence of preconditioned GMRES with the mean value precondi-
tioner A0 = Im+1 ⊗ S0 for polynomial degrees r = 1, . . . , 8, as described in Sect. 7.2

polynomial degree r 1 2 3 4 5 6 7 8

LU -factorization of sparse matrix S0 ∈ K
n,n 1 1 1 1 1 1 1 1

Matrix-vector products with A ∈ K
(m+1)n,(m+1)n 13 17 18 19 20 20 20 20

Solves of S0X = B ∈ K
n,m+1 with LU -factors of S0 14 18 19 20 21 21 21 21

7.2 Iterative Solvers

We solve the linear algebraic system Ax = b with GMRES using the mean value precondi-
tioner A0 = Im+1 ⊗ S0 from (47) as right preconditioner, that is, we solve

AA−1
0 y = b, A0x = y. (65)

Here S0 denotes the FD discretization of the Helmholtz equation with absorbing boundary
conditions and deterministic wavenumber (63). The solution of linear systems with the pre-
conditioner A0 is implemented as described in Sect. 6.3. We solve (65) with full GMRES (no
restarts), tol=1e-8 and maxit=200 for polynomial degrees up to r = 1, . . . , 8 in the
stochastic Galerkin method. In contrast to the experiments in 1D in Sect. 6, preconditioned
GMRES is significantly faster than the direct solution with MATLAB’s ‘backslash’ com-
mand; see Fig. 9 (left panel). The computation times for preconditioned GMRES include the
computation of the LU -decomposition of a diagonal block of A0. Furthermore, the relative
residual norms in GMRES for polynomial degree r = 8 are shown in Fig. 9 (right panel). The
mean value CSL preconditioner M0 has a similar block-diagonal structure to A0, which we
denote again by M0 = Im+1 ⊗ S0, and performs similarly well; see Fig. 9. Here S0 denotes
the FD discretization of the Helmholtz equation with absorbing boundary conditions and
deterministic wavenumber (63) with a complex shift. Tables 3 and 4 contain the number of
operations performed until preconditioned GMRES converges to the prescribed tolerance.

Alternatively to GMRES or a direct solution of the linear system, we also investigate the
stationary iteration (52) with B = A0, i.e.,

A0x
(i+1) = b − (A − A0)x

(i) for i = 0, 1, 2, . . . . (66)
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Table 4 Total operation count until convergence of preconditioned GMRES with the mean value CSL pre-
conditioner M0 = Im+1 ⊗ S0 for polynomial degrees r = 1, . . . , 8, as described in Sect. 7.2

polynomial degree r 1 2 3 4 5 6 7 8

LU -factorization of sparse matrix S0 ∈ K
n,n 1 1 1 1 1 1 1 1

Matrix-vector products with A ∈ K
(m+1)n,(m+1)n 29 31 32 32 32 32 32 32

Solves of S0X = B ∈ K
n,m+1 with LU -factors of S0 30 32 33 33 33 33 33 33

Fig. 10 Relative error norms in
the stationary iteration (66) for
different polynomial degrees r in
the stochastic Galerkin method

We take the starting vector x (0) = A−1
0 b. Linear systems with the matrix A0 are solved as

described above. For θ = 0.1, this iteration converges. Figure10 displays the relative error
norms in the maximum-norm for polynomial degrees r = 2, 4, 6, where we take the direct
solution as the ‘exact’ solution. The slower convergence for larger degree r in the stochastic
Galerkin method is expected, since the matrix size also grows causing higher condition
numbers. For θ = 0.2, the stationary iteration diverges. This behavior is in agreement to
Theorem 11 and Corollary 12.

7.3 Solutions

In Fig. 11, the top row displays the expected value of the real and imaginary part of the com-
puted stochastic Galerkin approximation ũm (with polynomial degree r = 5). The variance
is displayed in the bottom row of the figure.

Denote by xr the solution of Ax = b when using polynomials of degree up to r in the
stochastic Galerkin method, where the number of basis polynomials is given in (64). The
left panel of Fig. 12 displays the differences ‖xr−1 − xr‖2 as a function of r (the vector xr−1

is padded with zeros at the end to match the size of xr ). The observed exponential decay
suggests convergence of the stochastic Galerkin method.

Next, we fix the degree r = 8 in the stochastic Galerkin method. Recall from (15) and (18)
that the solution of Ax = b contains the coefficient vectors V0, . . . , Vm of the polynomials
φ0, . . . , φm in the stochastic Galerkin method. We also examine the largest maximum norm
of the coefficients associated to polynomials of total degree (exactly) j , i.e., the values

γ j = max
{‖Vi‖∞ : deg(φi ) = j

}
. (67)
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Fig. 11 Expected value (top) and variance (bottom) of Re(̃um ) and Im(̃um )

Fig. 12 Left: Euclidean norms ‖xr−1 − xr‖2 as a function of the polynomial degree r = 2, . . . , 8, where xr
is the solution of Ax = b using total degree r in the stochastic Galerkin method. Right: Magnitudes (67) as a
function of the degree j

The right panel of Fig. 12 shows the magnitudes (67) for j = 0, 1, . . . , 8. The observed
exponential decay stems from the exponential convergence of (7), since the wavenumber
in (62) is an analytic function of ξ1, ξ2, ξ3.

We repeat this experiment with θ = 0.2 instead of θ = 0.1. Overall, the behavior is
similar as for θ = 0.1, but convergence is slower: the relative residual norms reach the
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prescribed tolerance in 60 instead of 20 iteration steps, and also ‖xr−1 − xr‖2 as well as the
magnitudes (67) converge more slowly.

8 Conclusions

We investigated the Helmholtz equation including a random wavenumber. The combination
of a stochastic Galerkin method and a finite difference method yielded a high-dimensional
linear system of algebraic equations. We examined the iterative solution of these linear sys-
tems using three types of preconditioners: a complex shifted Laplace preconditioner, a mean
value preconditioner, and a combined variant. Theoretical properties of the preconditioned
linear systems were shown. In our numerical experiments, the straightforward mean value
preconditioner leads to a more efficient iterative solution of the linear system than the other
preconditioners considered here.
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