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Abstract
In this work, we are interested in solving large linear systems stemming from the extra–
membrane–intra model, which is employed for simulating excitable tissues at a cellular
scale. After setting the related systems of partial differential equations equipped with proper
boundary conditions, we provide its finite element discretization and focus on the resulting
large linear systems. We first give a relatively complete spectral analysis using tools from the
theory of Generalized Locally Toeplitz matrix sequences. The obtained spectral information
is used for designing appropriate preconditioned Krylov solvers. Through numerical experi-
ments, we show that the presented solution strategy is robust w.r.t. problem and discretization
parameters, efficient and scalable.

Keywords Spectral distribution · Symbol · Electrophysiology · Preconditioning · Iterative
solvers

Mathematics Subject Classification 15A18 · 35Q92 · 65F08 · 65F50 · 65N55 · 65N30

1 Introduction

TheEMI (Extra, Intra,Membrane)model, also knownas the cell-by-cellmodel, is a numerical
building block in computational electrophysiology, employed to simulate excitable tissues
at a cellular scale. With respect to homogenized models, such as the well-known mono and
bidomain equations, the EMImodel explicitly resolves cells morphologies, enabling detailed
biological simulations. For example, inhomogeneities in ionic channels along the membrane,
as observed in myelinated neuronal axons [12], can be described within the EMI model.
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The main areas of application for the EMI model are computational cardiology and neu-
roscience, where spreading excitation by electrical signalling plays a crucial role [13, 16,
17, 24, 25, 29, 32, 34]. We refer to [35] for an exhaustive description of the EMI model, its
derivation, and relevant applications.

This work considers a Galerkin-type approximation of the underlying system of partial
differential equations (PDEs). A finite element discretization leads to block-structured linear
systems of possibly large dimensions. The use of ad hoc tools developed in the theory of
Generalized Locally Toeplitz matrix sequences allows us to give a quite complete picture
of the spectral features (the eigenvalue distribution) of the resulting matrices and matrix
sequences.

The latter information is crucial to understand the algebraic properties of such discrete
objects and to design iterative solution strategies, enabling the efficient solution of large scale
models, as in [9, 10]. More precisely, spectral analysis is employed for designing tailored
preconditioning strategies for Krylov methods. The resulting efficient and robust solution
strategies are theoretically studied and numerically tested.

The current paper is organized as follows. In Sect. 2 the continuous problem is intro-
duced together with possible generalizations. Section3 considers a basic Galerkin strategy
for approximating the examined problem. The spectral analysis is given in Sect. 4 in terms of
distribution results and degenerating eigenspaces. Specifically, Sect. 4.1 lays out the founda-
tional theories and concepts necessary for understanding the distribution of the spectrum of
the entire system (presented in a general form in Sect. 4.2) and the specific stiffness matrices
and matrix sequences (discussed in Sect. 4.3). These findings are then employed in Sect.
4.4 for proposing a preconditioning strategy. In Sect. 5 we report and critically discuss the
numerical experiments and Sect. 6 contains conclusions and a list of relevant open problems.

2 The EMI Problem

We introduce the partial differential equations characterizing the EMI model. When compar-
ing to the homogenized models, we observe that the novelty of the EMI approach consists
in the fact that the cellular membrane Γ is explicitly represented, as well as the intra- and
extra-cellular quantities, denoted with subscript i and e respectively.

More in detail, given a domain Ω = Ωi ∪ Ωe ∪ Γ ⊂ R
d , typically with d ∈ {2, 3},

∂Ω = ∂Ωe/Γ , and ∂Ωi = Γ , we consider the following stationary problem for the intra-
and extra-cellular potentials ui , ue, and for the membrane current Im :

− ∇ · (σe∇ue(x)) = 0 for x ∈ Ωe, (1)

− ∇ · (σi∇ui (x)) = 0 for x ∈ Ωi , (2)

σe∇ue(x) · ne = −σi∇ui (x) · ni ≡ Im(x) for x ∈ Γ , (3)

ui (x) − ue(x) = v(x) for x ∈ Γ , (4)

v(x) − τ Im(x) = f (x) for x ∈ Γ , (5)

with σe, σi , τ ∈ R+, ni (resp. ne) is the outer normal on ∂Ωi (resp. ∂Ωe) and f ∈ L2(Γ ) is
known. We can close the EMI problem with homogeneous boundary conditions:

ue(x) = 0 for x ∈ ∂ΩD, (6)

σe∇ue(x) · ne = 0 for x ∈ ∂ΩN , (7)
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with ∂Ω = ∂ΩD ∪∂ΩN . In the case of a pure Neumann problem, with ∂Ω = ∂ΩN , unique-
ness must be enforced through an additional constraint (e.g. a condition on the integral of
ue). We are imposing homogeneous boundary conditions for simplicity; the inhomogeneous
case reduces to the homogeneous case by considering the lifting of the boundary data.

Essentially, the EMI problem consists of two homogeneous Poisson problems coupled at
the interface Γ through a Robin-type condition (3)–(5), depending on the current Im . The
EMI problem can be considered amixed-dimensional problem since the unknowns of interest
are defined on sets of different dimensionality, d for ui and ue and d − 1 for Im .

It is worth noticing that possible dynamics originate in the membrane via the source term
f . In particular, Eq. (5) is obtained by discretizing point-wise the capacitor current–voltage
relation, a time-dependent ODE with t ∈ (0, T ] given a final time T > 0:

∂v(t)

∂t
= C−1

m (Im(t) − Iion(v, t)),

v(0) = v0,

where the positive constant Cm is a capacitance and the ionic current Iion is a reaction term.
An implicit (resp. explicit) integration of Im (resp. Iion), with time step Δt > 0, results in
Eq. (5) with

f (x) = v0(x) − τ Iion(v0(x)), (8)

and τ = C−1
m Δt .

The model in Eqs. (1)–(5) can describe a single cell or multiple disjoint cells, i.e. with
Ωi = ⋃Ncell

j=1 Ω
j
i , in an extracellular media, cf. Fig. 1. Extending model (1)–(5) to multiple

cells, with possibly common membranes (a.k.a. gap junctions), is straightforward [23].

3 Weak Formulation and Discrete Operators

The EMI problem can be weakly formulated in various ways, depending on the unknowns
of interest. We refer to [35] for a broad discussion on various formulations (including the so-
called mixed ones). As it could be expected from the structure of (1)–(5), all formulations and
correspondingdiscretizations give rise to blockoperators,with different blocks corresponding
to Ωi ,Ωe, and possibly Γ .

We use the so-called single-dimensional formulation and the corresponding discrete oper-
ators. In this setting, theweak form depends only on bulk quantities ui and ue since the current
term Im is replaced by:

Im(x) = τ−1(ui (x) − ue(x) − f (x)),

according to equations (4)–(5). Let us remark that “single” refers to the previous substitution,
eliminating the variable defined inΓ ; the overall EMI problem is still in multiple dimensions,
in the sense that d ≥ 1.

After substituting the expression for Im in (3), assuming the solution ur , for r ∈ {i, e}, to
be sufficiently regular over Ωr , we multiply the PDEs in (1)–(2) by test functions vr (x) ∈
Vr (Ωr ), with Vr a sufficiently regular Hilbert space with elements satisfying the boundary
conditions in (6)–(7); in practice H1(Ωi ) and H1(Ωe), would be a standard choice. After
integrating over Ωr and applying integration by parts, using the normal flux definition (3),
the weak EMI problem reads: find ui ∈ Vi (Ωi ) and ue ∈ Ve(Ωe) such that
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Ωe

Ω1
i

Ω2
i

∂Ω

Γ

Ve,h(Ωe)

Vi,h(Ωi)

Γ

∂Ω

e,in

e, Γ

i,in

i, Γ

Fig. 1 Left: example of EMI geometry with Ωi = Ω1
i ∪ Ω2

i . Right: example of the discretization setting for
d = 2 on a regular grid. We notice that interior and exterior nodes overlap in Γ . For p = 1, in this case, we
have Ni = 9, Ne = 24 with Ni,in = 1, Ne,in = 16, and NΓ = 8. Corresponding labels are reported

τ

∫

Ωe

σe∇ue · ∇ve dx +
∫

Γ

ueve ds −
∫

Γ

uive ds = −
∫

Γ

f ve ds, (9)

τ

∫

Ωi

σi∇ui · ∇vi dx +
∫

Γ

uivi ds −
∫

Γ

uevi ds =
∫

Γ

f vi ds, (10)

for all test functions ve ∈ Ve(Ωe) and vi ∈ Vi (Ωi ). We refer to [35, Section 6.2.1] for
boundedness and coercivity results for this formulation.

For each subdomain Ωr , with r ∈ {i, e}, we construct a conforming tassellation Tr .
We then introduce a yet unspecified discretization via finite element basis functions (e.g.
Lagrangian elements of order p ∈ N on a regular grid) for Ve and Vi :

Ve,h = span
(
{φe

j }Ne
j=1

)
, Vi,h = span

(
{φi

j }Ni
j=1

)
,

with Ne, Ni ∈ N denoting the number of degrees of freedom in the corresponding subdo-
mains. We can further decompose Nr = Nr ,in + Nr ,Γ , i.e. further differentiating between
internal and membrane degrees of freedom, with Nr ,Γ basis functions φr

j having support
intersecting Γ , cf. Fig. 1. In the numerical experiments, we consider matching Tr on the
interface Γ and the same p for Ve,h and Vi,h ; nevertheless Sects. 3 and 4 are developed in a
general setting, so that the theory is ready also for potential extensions.

From (9)–(10) we define the following discrete operators: intra- and extra- Laplacians

Ae =
[∫

Ωe

σe∇φe
j (x) · ∇φe

k (x) dx
]Ne

j,k=1

∈ R
Ne×Ne , (11)

Ai =
[∫

Ωi

σi∇φi
j (x) · ∇φi

k(x) dx
]Ni

j,k=1

∈ R
Ni×Ni , (12)

membrane mass matrices:

Me =
[∫

Γ

φe
j (x)φ

e
k (x) ds

]Ne

j,k=1
∈ R

Ne×Ne , (13)

Mi =
[∫

Γ

φi
j (x)φ

i
k(x) ds

]Ni

j,k=1
∈ R

Ni×Ni , (14)
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and the coupling matrix

Tei =
[∫

Γ

φi
j (x)φ

e
k (x) ds

](Ne,Ni )

( j,k)=(1,1)
∈ R

Ne×Ni . (15)

Finally, we write the linear system of size n = Ne + Ni corresponding to (9)–(10) as
[
τ Ae + Me Tei

T T
ei τ Ai + Mi

] [
ue
ui

]

=
[
fe
fi

]

⇐⇒ Anu = f, (16)

with ur , fr ∈ R
Nr the unknowns and the right hand side corresponding to Ωr and r ∈ {i, e}.

We remark that the operator An is symmetric and positive definite.1 Making the degrees of
freedom in Γ denoted explicitly (with reference to Fig. 1), i.e. ui,Γ ,ue,Γ ∈ R

NΓ , as well as
the interior ones, i.e. ui,in ∈ R

Ni−NΓ and ue,in ∈ R
Ne−NΓ , we can rewrite more extensively

system (16) as
⎡

⎢
⎢
⎢
⎣

τ Ain
e τ Ain,Γ

e 0 0
τ AΓ ,in

e τ AΓ
e + MΓ

e 0 T Γ
ei

0 0 τ Ain
i τ Ain,Γ

i
0 (T Γ

ei )T τ AΓ ,in
i τ AΓ

i + MΓ
i

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

ue,in
ue,Γ
ui,in
ui,Γ

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

0
fΓ ,e

0
fΓ ,i

⎤

⎥
⎥
⎦ , (17)

with

An =

⎡

⎢
⎢
⎢
⎣

τ Ain
e τ Ain,Γ

e 0 0
τ AΓ ,in

e τ AΓ
e + MΓ

e 0 T Γ
ei

0 0 τ Ain
i τ Ain,Γ

i
0 (T Γ

ei )T τ AΓ ,in
i τ AΓ

i + MΓ
i

⎤

⎥
⎥
⎥
⎦

. (18)

For forthcoming use, we define the bulk matrix

Ãn =

⎡

⎢
⎢
⎣

τ Ain
e 0 0 0

0 0 0 0
0 0 τ Ain

i 0
0 0 0 0

⎤

⎥
⎥
⎦ , (19)

where all membrane terms are zeroed, and the difference matrix

Rn = An − Ãn, (20)

which contains all the terms corresponding to the membrane Γ .

4 Spectral Analysis

In this section, we study the spectral distribution of the matrix sequence {An}n under various
assumptions for determining the global behaviour of the eigenvalues of An as the matrix size
n tends to infinity. The spectral distribution is given by a smooth function called the (spectral)
symbol as it is customary in the Toeplitz and Generalized Locally Toeplitz (GLT) setting [7,
8, 19, 20].

1 Dirichlet boundary conditions can be imposed to the right-hand side to enforce symmetry.
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First,we give the formal definition ofToeplitz structures, eigenvalue (spectral) and singular
value distribution, the basic tools that we use from the GLT theory, and finally, we provide
the specific analysis of our matrix sequences under a variety of assumptions.

4.1 Toeplitz Structures, Spectral Symbol, GLT Tools

We initially formalize the definition of block Toeplitz and circulant sequences associatedwith
a matrix-valued Lebesgue integrable function. Then, we provide the notion of eigenvalue
(spectral) and singular value distribution, and we introduce the basic tools taken from the
GLT theory.

Definition 4.1 [Toeplitz, block-Toeplitz, multilevel Toeplitz matrices] A finite-dimensional
or infinite-dimensional Toeplitz matrix is a matrix that has constant elements along each
descending diagonal from left to right, namely,

T =

⎡

⎢
⎢
⎢
⎢
⎣

a0 a−1 a−2 · · ·
a1 a0 a−1 · · ·
a2 a1

. . .
. . .

. . .
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎥
⎦

, Tn =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a0 a−1 a−2 · · · a−n+1

a1 a0 a−1
. . .

a2 a1
. . .

. . .
...

... a1 a0 a−1

an−1 · · · a2 a1 a0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(21)

As indicated in (21), left, the matrix T can be infinite-dimensional. A finite-dimensional
Toeplitz matrix of dimension n is denoted as Tn . We also consider sequences of Toeplitz
matrices as a function of their dimension, denoted as {Tn}n, n = 1, 2, . . . ,∞.

In general, the entries ak , k ∈ Z, can be matrices (blocks) themselves, defining Tn as
a block Toeplitz matrix. Thus, in the block case, ak, k ∈ {−n + 1, . . . , n − 1} are blocks
of size s1 × s2, the subindex of Tn is the number of blocks in the Toeplitz matrix while
N1 × N2 is the size of the matrix with N1 = n s1, N2 = n s2. To be specific, we use also
the notation XN1,N2 = Tn . A special case of block-Toeplitz matrices is the class of two-
and multilevel block Toeplitz matrices, where the blocks are Toeplitz (or multilevel Toeplitz)
matrices themselves. The standard Toeplitz matrices are sometimes addressed as unilevel
Toeplitz.

Definition 4.2 [Toeplitz sequences (generating function of)] Denote by f a d-variate
complex-valued integrable function, defined over the domain Qd = [−π, π]d , d ≥ 1, with
d-dimensional Lebesgue measure μd(Qd) = (2π)d . Denote by fk the Fourier coefficients
of f ,

fk = 1

(2π)d

∫

Qd

f (θ)e−i (k,θ) dθ, k = (k1, . . . , kd) ∈ Z
d , i2 = −1,

where θ = (θ1, . . . , θd), (k, θ) = ∑d
j=1 k jθ j , n = (n1, . . . , nd), and N (n) = n1 ×· · ·×nd .

By following the multi-index notation in [36, Section 6], with each f we can associate a
sequence of Toeplitz matrices {Tn}n , where

Tn = { fk−�}nk,�=eT ∈ C
N (n)×N (n),
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e = [1, 1, . . . , 1] ∈ N
d . For d = 1

Tn =

⎡

⎢
⎢
⎢
⎢
⎣

f0 f−1 · · · f−n+1

f1 f0
. . .

...
...

. . . f0 f−1

fn−1 · · · f1 f0

⎤

⎥
⎥
⎥
⎥
⎦

,

or for d = 2, i.e. the two-level case, and for example n = (2, 3), we have

Tn =
[
F0 F−1

F1 F0

]

, Fk =
⎡

⎣
fk,0 fk,−1 fk,−2

fk,1 fk,0 fk,−1

fk,2 fk,1 fk,0

⎤

⎦ , k = 0,±1.

The function f is referred to as the generating function (or the symbol of) Tn . Using a more
compact notation, we say that the function f is the generating function of the whole sequence
{Tn}n and we write Tn = Tn( f ).

If f is d-variate, Cs1×s2 matrix-valued, and integrable over Qd , d, s1, s2 ≥ 1, i.e. f ∈
L1(Qd , s1 × s2), then we can define the Fourier coefficients of f in the same way (now fk
is a matrix of size s1 × s2) and consequently Tn = { fk−�}nk,�=eT ∈ C

s1N (n)×s2N (n), then Tn
is a d-level block Toeplitz matrix according to Definition 4.1. If s1 = s2 = s then we write
f ∈ L1(Qd , s).
As in the scalar case, the function f is referred to as the generating function of Tn . We

say that the function f is the generating function of the whole sequence {Tn}n , and we use
the notation Tn = Tn( f ).

Definition 4.3 Let f : D → C
s×s be a measurable matrix-valued function with eigenvalues

λi ( f ) and singular values σi ( f ), i = 1, . . . , s. Assume that D ⊂ R
d is Lebesguemeasurable

with positive and finite Lebesgue measure μd(D). Assume that {An}n is a sequence of
matrices such that dim(An) = dn → ∞, as n → ∞ and with eigenvalues λ j (An) and
singular values σ j (An), j = 1, . . . , dn .

– We say that {An}n is distributed as f over D in the sense of the eigenvalues, and we
write {An}n ∼λ ( f , D), if

lim
n→∞

1

dn

dn∑

j=1

F(λ j (An)) = 1

μd(D)

∫

D

1

s

s∑

i=1

F(λi ( f (t))) dt, (22)

for every continuous function F with compact support. In this case, we say that f is the
spectral symbol of {An}n .

– We say that {An}n is distributed as f over D in the sense of the singular values, and we
write {An}n ∼σ ( f , D), if

lim
n→∞

1

dn

dn∑

j=1

F(σ j (An)) = 1

μd(D)

∫

D

1

s

s∑

i=1

F(σi ( f (t))) dt, (23)

for every continuous function F with compact support. In this case, we say that f is the
singular value symbol of {An}n .

– The notion {An}n ∼σ ( f , D) applies also in the rectangular case where f is Cs1×s2

matrix-valued. In such a case the parameter s in formula (23) has to be replaced by the

minimum between s1 and s2: furthermore An ∈ C
d(1)
n ×d(2)

n with dn in formula (23) being
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the minimum between d(1)
n and d(2)

n . Of course the notion of eigenvalue distribution does
not apply in a rectangular setting.

Throughout the paper, when the domain can be easily inferred from the context, we replace
the notation {An}n ∼λ,σ ( f , D) with {An}n ∼λ,σ f .

Remark 4.1 If f is smooth enough, an informal interpretation of the limit relation (22) (resp.
(23)) is that when n is sufficiently large, the eigenvalues (resp. singular values) of An can
be subdivided into s different subsets of the same cardinality. Then dn/s eigenvalues (resp.
singular values) of An can be approximated by a sampling ofλ1( f ) (resp.σ1( f )) on a uniform
equispaced grid of the domain D, and so on until the last dn/s eigenvalues (resp. singular
values), which can be approximated by an equispaced sampling of λs( f ) (resp. σs( f )) in the
domain D.

Remark 4.2 We say that {An}n is zero-distributed in the sense of the eigenvalues if {An}n ∼λ

0. Of course, if the eigenvalues of An tend all to zero for n → ∞, then this is sufficient to
claim that {An}n ∼λ 0.

For Toeplitz matrix sequences, the following theorem due to Tilli holds, which generalizes
previous research along the last 100 years by Szegő, Widom, Avram, Parter, Tyrtyshnikov,
and Zamarashkin (see [7, 20] and references therein).

Theorem 4.1 [33] Let f ∈ L1(Qd , s1 × s2), then {Tn( f )}n ∼σ ( f , Qd). If s1 = s2 = s and
if f is a Hermitian matrix-valued function, then {Tn( f )}n ∼λ ( f , Qd).

The following theorem is useful for computing the spectral distribution of a sequence of
Hermitian matrices. For the related proof, see [27, Theorem 4.3] and [28, Theorem 8]. Here,
the conjugate transpose of the matrix X is denoted by X∗.

Theorem 4.2 [27, Theorem 4.3] Let {An}n be a sequence of matrices, with An Hermitian
of size dn, and let {Pn}n be a sequence such that Pn ∈ C

dn×δn , P∗
n Pn = Iδn , δn ≤ dn and

δn/dn → 1 as n → ∞. Then {An}n ∼λ f if and only if {P∗
n An Pn}n ∼λ f .

With the notations of the result above, the matrix sequence {P∗
n An Pn}n is called a com-

pression of {An}n and the single matrix P∗
n An Pn is called a compression of An .

In what follows we take into account a crucial fact that often is neglected: the generating
function of a Toeplitz matrix sequence and even more the spectral symbol of a given matrix
sequence is not unique, except for the trivial case of either a constant generating function or
a constant spectral symbol. In fact, here we report and generalize Remark 1.3 at p. 76 in [14]
and the discussion below Theorem 3 at p. 8 in [15].

Remark 4.3 [Multiple Toeplitz generating functions and multiple spectral symbols] Let n be
a multiple of k and consider the Toeplitz matrix Xn = Tn( f ). We can view Xn as a block-
Toeplitz with blocks of size k× k such that Xn = Tn( f ) = Tn

k
( f [k]). In our specific context,

we have

f [k](θ) = Tk( f ) − e1eTk e
i θ − ekeT1 e

−i θ

with e j , j = 1, . . . , k, being the canonical basis of Ck .
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As an example, let n be even and consider the function f (θ) = 2 − 2 cos(θ). According
to Definition 4.2, Xn = Tn( f ) but we can also view the matrix as Xn = Tn

2
( f [2]), namely

Xn = Tn( f ) =

⎡

⎢
⎢
⎢
⎢
⎣

2 −1 0

−1
. . .

. . .

. . .
. . . −1

0 −1 2

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

A0 A−1 0

A1
. . .

. . .

. . .
. . . A−1

0 A1 A0

⎤

⎥
⎥
⎥
⎥
⎦

= Tn
2
( f [2]),

where

A0 =
[
2 −1

−1 2

]

, A1 = AT−1 =
[
0 −1
0 0

]

.

Thus, f [2] = (
A0 + A1eiθ + AT

1 e
−iθ

)
.

It is clear that analogous multiple representations of Toeplitz matrices hold for every
function f .As a consequence, taking into considerationTheorem4.1,wehave simultaneously
{Tn( f )}n ∼λ ( f , Qd) and {Tn( f )}n ∼λ ( f [k], Qd) for any fixed k independent of n. It should
be also observed that a situation in which k does not divide n is not an issue thanks to the
compression argument in Theorem 4.2.

More generally,we can safely claim that the spectral symbol in theWeyl sense ofDefinition
4.3 is far from unique and in fact any rearrangement is still a symbol (see [6, 15]). A simple
case is given by standard Toeplitz sequences {Tn( f )}n , with f real-valued and even that is
f (θ) = f (−θ) almost everywhere, θ ∈ Q. In that case

1

2π

∫ π

−π

F( f (θ)) dθ = 1

π

∫ π

0
F( f (θ)) dθ, (24)

due to the even character of f , and hence it is also true that {Tn( f )}n ∼λ ( f , Q+), Q+ =
(0, π). A general analysis of these concepts via rearrangement theory can be found in [6]
and references therein.

Remark 4.4 We remark that the presented tools are general and can be applied to matrix
sequences stemming from a variety of discretization schemes such as isogeometric analysis
or finite volumes, in the spirit of the sections of books [7, 20] dedicated to applications and
of the exposition paper [22].

4.2 Symbol Analysis

In this section, we state and prove three results which hold under reasonable assumptions.
The first has the maximal generality, while the second and the third can be viewed as special
cases of the first. Let us remind that Ni , Ne and NΓ denote the number of intra-, extra- and
membrane degrees of freedom. We recall that the system matrix An and its decomposition
as Ãn + Rn are defined in Eqs. (18)–(20).

Theorem 4.3 Assume that

NΓ = o(min{Ni , Ne})for NΓ , Ni , Ne → ∞,

lim
Ni ,Ne→∞

Ni

Ne + Ni
= r ∈ (0, 1).

Assume that

{τ Ain
e }n ∼λ ( f e, De), (25)
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{τ Ain
i }n ∼λ ( f i , Di ), (26)

De ⊂ R
ke , Di ⊂ R

ki , given f e and f i extra- and intra- spectral symbols. It follows that

{ Ãn}n, {An}n ∼λ (g, [0, 1] × Di × De)

where g(x, ti , te) = f i (ti )ψ[0,r ](x) + f e(te)ψ(r ,1](x), x ∈ [0, 1], ti ∈ Di , te ∈ De, and

{Rn}n ∼λ 0,

ψZ denoting the characteristic function of the set Z.

Proof First, we observe that because of the Galerkin approach and the structure of the equa-
tions, all the involved matrices are real and symmetric. Hence the symbols f e, f i are
necessarily Hermitian matrix-valued. Without loss of generality we assume that both f e,
f i take values into C

s×s (the case where f e, f i have different matrix sizes is treated in
Remark 4.6, for the sake of notational simplicity). Because of Eqs. (25) and (26), setting
N ′
e = Ne − NΓ , N ′

i = Ni − NΓ , and taking into account Definition 4.3, we have

lim
Ne→∞

1

N ′
e

N ′
e∑

j=1

F(λ j (τ A
in
e )) = 1

μke (D
e)

∫

De

1

s

s∑

m=1

F(λm( f e(te))) dte, (27)

lim
Ni→∞

1

N ′
i

N ′
i∑

j=1

F(λ j (τ A
in
i )) = 1

μki (D
i )

∫

Di

1

s

s∑

m=1

F(λm( f i (ti ))) dti , (28)

for any continuous function F with bounded support. Now we build the 2 × 2 block matrix

X [Ne, Ni , NΓ ] = diag(τ Ain
e , τ Ain

i )

and we consider again a generic continuous function F with bounded support. By the block
diagonal structure of X [Ne, Ni , NΓ ], we infer

Δ(Ne, Ni , NΓ , F) = 1

N ′
e + N ′

i

N ′
e+N ′

i∑

j=1

F(λ j (X [Ne, Ni , NΓ ]))

=
N ′
e∑

j=1

F(λ j (τ Ain
e ))

N ′
e + N ′

i
+

N ′
i∑

j=1

F(λ j (τ Ain
i ))

N ′
e + N ′

i

= N ′
e

N ′
e + N ′

i

N ′
e∑

j=1

F(λ j (τ Ain
e ))

N ′
e

+ N ′
i

N ′
e + N ′

i

N ′
i∑

j=1

F(λ j (τ Ain
i ))

N ′
i

.

As a consequence, taking the limit as Ni , Ne → ∞, using the assumption NΓ =
o(min{Ni , Ne}),

lim
Ni ,Ne→∞

Ni

Ne + Ni
= r ∈ (0, 1),

we obtain that the limit of Δ(Ne, Ni , NΓ , F) exists and it is equal to

r

μke (D
e)

∫

De

1

s

s∑

m=1

F(λm( f e(te))) dte + 1 − r

μki (D
i )

∫

Di

1

s

s∑

m=1

F(λm( f i (ti ))) dti . (29)
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With regard to Definition 4.3, the quantity (29) does not look like the right-hand side of (22),
since we see two different terms. The difficulty can be overcome by enlarging the space with
a fictitious domain [0, 1] and interpreting the sum in (29) as the global integral involving a
step function. In reality, we rewrite (29) as

1

μq(D)

∫ 1

0
dx

∫

De×Di

1

s

s∑

m=1

F(λm( f e(te))ψ[0,r ](x) + λm( f i (ti ))ψ(r ,1](x)) dtedti ,

with D = [0, 1] × Di × De, q = ke + ki + 1, μq(D) = μke (D
e)μki (D

i ). Hence the proof
of the relation

{X [Ne, Ni , NΓ ]}n ∼λ (g, [0, 1] × Di × De)

is complete. Now we observe that X [Ne, Ni , NΓ ] is a compression of Ãn (cf. definition after
Theorem 4.2): therefore by exploiting again the hypothesis NΓ = o(min{Ni , Ne}) which
implies NΓ = o(n), by Theorem 4.2, we deduce

{ Ãn}n ∼λ (g, [0, 1] × Di × De).

Finally, in [19] the following is proven: if {Vn}n ∼λ f (not necessarily Toeplitz or GLT),
{An = Vn + Yn}n with {Yn}n zero-distributed and An, Yn Hermitian for every dimension,
then {An}n ∼λ f . This setting is exactly our setting since by direct inspection the rank of

Rn =

⎡

⎢
⎢
⎢
⎣

0 τ Ain,Γ
e 0 0

τ AΓ ,in
e τ AΓ

e + MΓ
e 0 T Γ

ei
0 0 0 τ Ain,Γ

i
0 (T Γ

ei )T τ AΓ ,in
i τ AΓ

i + MΓ
i

⎤

⎥
⎥
⎥
⎦

is bounded by 4NΓ . Hence the number of nonzero eigenvalues of the latter matrix cannot
exceed 4NΓ = o(n), n = Ni + Ne, and therefore the related matrix sequence is zero-
distributed in the eigenvalue sense i.e. {Rn}n ∼λ 0. Since An = Ãn + Rn , the application of
the statement in [19, Exercise 5.3] implies directly {An}n ∼λ (g, [0, 1] × Di × De) and the
proof is concluded. ��
Remark 4.5 An informal implication of Theorem 4.3 is that, under the listed assumptions, the
spectrum of An is essentially driven by the bulk blocks, while membrane terms are negligible
for large n, i.e. {Rn}n ∼λ 0.

Remark 4.6 The case where f e and f i have different matrix sizes would complicate the
derivations in the proof of the above theorem. However, in this case, the argument is simple
and relies on the non-uniqueness of the spectral symbol: for a discussion on the matter refer
to [6, 15] and Remark 4.3.

The following two corollaries simplify the statement of Theorem 4.3, under special
assumptions which are satisfied for a few basic discretization schemes and when dealing
with elementary domains.

Corollary 4.1 Assume that

NΓ = o(min{Ni , Ne})for NΓ , Ni , Ne → ∞,

lim
Ni ,Ne→∞

Ni

Ne + Ni
= 1/2.
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Assume that

{τ Ain
e }n ∼λ ( f e, D), (30)

{τ Ain
i }n ∼λ ( f i , D), (31)

D ⊂ R
k . It follows that

{ Ãn}n, {An}n ∼λ

([
f e 0
0 f i

]

, D

)

and

{Rn}n ∼λ 0.

Proof Notice that the writing

{ Ãn}n, {An}n ∼λ

[
f e 0
0 f i

]

and

{ Ãn}n, {An}n ∼λ f i (θ)ψ[0,c](x) + f e(θ)ψ(c,1](x).

are equivalent for c = 1/2. ��
Corollary 4.2 Assume that

NΓ = o(min{Ni , Ne})for NΓ , Ni , Ne → ∞,

lim
Ni ,Ne→∞

Ni

Ne + Ni
= r ∈ [0, 1].

Assume that

{τ Ain
e }n ∼λ ( f , D), (32)

{τ Ain
i }n ∼λ ( f , D), (33)

D ⊂ R
k . It follows that

{ Ãn}n, {An}n ∼λ ( f , D)

and

{Rn}n ∼λ 0.

Proof The proof of the relation { Ãn}n, {An}n ∼λ ( f , D) follows directly from the limit
displayed in (29), after replacing f e, f i with f and necessarily De, Di with D. The rest is
obtained verbatim as in Theorem 4.3. ��

4.3 Analysis of Stiffness Matrix Sequences

The spectral analysis of stiffness matrix sequences is crucial to understand the global spectral
behaviour of EMI matrices and, in turn, to justify our preconditioning approach. According
to [21, Section 5], given a bi-dimensional square domain, the sequence of corresponding
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stiffness matrices {Asquare
n }n obtained from the linearQ1 Lagrangian finite element method2

(FEM) has the following spectral distribution:

{Asquare
n }n ∼λ f square,

with f square(θ1, θ2) = h1D(θ1) f1D(θ2) + f1D(θ1)h1D(θ2), the functions f1D and h1D being,
respectively, the symbols associated to the stiffness andmass matrix sequences in one dimen-
sion, that is, f1D(θ) = 2− 2 cos(θ), h1D(θ) = 2

3 + 1
3 cos(θ). Expanding the coefficients, we

have

f square(θ1, θ2) = 8

3
− 2

3
cos(θ1) − 2

3
cos(θ2) − 2

3
cos (θ1 + θ2) − 2

3
cos(θ1 − θ2). (34)

Let us now consider {Tn( f square)}n , the sequence of bi-level Toeplitz matrices generated by
f square, which is a multilevel GLT sequence by definition (see [20]). We adopt the bi-index
notation, that is, we consider the elements of Tn( f square) to be indexed with a bi-index (i1, i2)
with i1 = 1, . . . , n1 and i2 = 1, . . . , n2.

Let us focus onΩi . In theQ1 case there is a one-to-one correspondence between the mesh
grid points which are in the interior of the subdomain Ω in

i and the Ni degrees of freedom,
where Ni is the dimension of Vi,h . See [21, Section 3] for an explanation.

Following the analysis performed in [5], first, we set to zero all the rows (i1, i2) and

columns (i1, i2) in Tn( f square) such that
(

i1
n1+1 ,

i2
n2+1

)
/∈ Ω in

i , which in the Q1 case means

that
(

i1
n1+1 ,

i2
n2+1

)
is not a mesh grid point tied to a degree of freedom associated with a

trial function in Vi,h . We call the matrix resulting from this operation Ti . Then, we define the
restrictionmapsΠΩi andΠT

Ωi
such thatΠΩi TiΠ

T
Ωi

is thematrix obtained from Ti deleting all

rows (i1, i2) and columns (i1, i2) such that
(

i1
n1+1 ,

i2
n2+1

)
/∈ Ω in

i . With a similar procedure,

we construct also the matricesΠΩe TeΠ
T
Ωe

. Then, we can apply [5, Lemma 4.4] and conclude
that

{τΠΩe TeΠ
T
Ωe

}n ∼λ ( f e, De),

{τΠΩi TiΠ
T
Ωi

}n ∼λ ( f i , Di ),

with f i (x, θ) = τ f square(θ), (x, θ) ∈ Di = Ωi × [0, π]2, and f e(x, θ) = τ f square(θ),
(x, θ) ∈ De = Ωe × [0, π ]2. Apart from a low-rank correction due to boundary conditions,
the matrices ΠΩi TiΠ

T
Ωi

coincide with Ain
i and the same holds for the external domain. Since

low-rank corrections are zero-distributed and hence in the Hermitian case have no impact on
spectral distributions (see Exercise 5.3 in book [19]), we can safely write

{τ Ain
e }n ∼λ ( f e, De), (35)

{τ Ain
i }n ∼λ ( f i , Di ). (36)

Finally, by exploiting again the useful non-uniqueness of the spectral symbol as in Remark
4.3, we also have

{τ Ain
e }n ∼λ (τ f square, [0, π]2), (37)

{τ Ain
i }n ∼λ (τ f square, [0, π]2), (38)

2 The label Qp denotes the space of elements of order p with square support while Pp is used for elements
in a triangulated mesh. For a broader understanding and the analysis with the P1 elements, we refer to [5,
Section 7].
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since f square over [0, π ]2 is a rearrangement of both f e over De and f i over Di .
Given relationships (35) and (36), Theorem 4.3 applies since the other assumptions are

verified when using any reasonable discretization. For instance, the parameter r in Theorem
4.3 is the ratio

μd(Ωi )

μd(Ωi ) + μd(Ωe)
, d = 1, 2, 3.

Furthermore, if μd(Ωi ) = μd(Ωe), r = 1/2 and Corollary 4.1 applies. We observe that in
our specific setting, due to (37) and (38), also the assumptions of Corollary 4.2 hold true, so
that the assumption on the ratio r is no longer relevant.

4.4 Monolithic Solution Strategy

Since, by construction, An is symmetric positive definite (cf. Sect. 3),we employ the conjugate
gradient method (CG) to solve system (16) iteratively. We first describe the dependency on
τ and subsequently discuss preconditioning.

Conjugate Gradient Convergence

To better understand the convergence properties of the CG method in the EMI context, in
particular robustness w.r.t. τ , we recall the following result, proved in [4].

Lemma 4.1 Assume An to be a symmetric positive definitematrix of size n.Moreover, suppose
there exists a, b > 0, both independent of the matrix size n, and an integer q < n such that

b < λi (An), for i = 1, ..., q

a ≤ λ j (An) ≤ b, for j = q + 1, ..., n,

then k iterations of CG are sufficient in order to obtain a relative error of ε of the solution,
for any initial guess, i.e.

‖ek‖An/‖e0‖An ≤ ε,

where ek is the error vector at the kth iteration and

k = q + �log(2ε−1)/ log(α−1)�,
with α =

√
b−√

a√
b+√

a
.

This lemma can be useful if q � n, i.e. if there are q outliers in the spectrum of An , all larger
than b. Interestingly, the convergence of the CG method does not depend on the magnitude
of the outliers, but only on q . The latter is an explanation of why the convergence rate of the
CG applied to a linear system with matrix τ−1An does not significantly depend on τ , as we
will show in the numerical section. Indeed, the matrix τ−1An can be written as

τ−1An = Bn + R̃n

with

Bn =

⎡

⎢
⎢
⎢
⎣

0 Ain,Γ
e 0 0

AΓ ,in
e AΓ

e 0 0
0 0 0 Ain,Γ

i
0 0 AΓ ,in

i AΓ
i

⎤

⎥
⎥
⎥
⎦

, R̃n = τ−1

⎡

⎢
⎢
⎣

0 0 0 0
0 MΓ

e 0 T Γ
ei

0 0 0 0
0 (T Γ

ei )T 0 MΓ
i

⎤

⎥
⎥
⎦ , (39)

123



Journal of Scientific Computing (2024) 98 :58 Page 15 of 23 58

where the first term does not depend on τ and the second term has rank at most 2NΓ . Thanks
to the Cauchy interlacing theorem (see [11]), if we choose [a, b] = [λmin(Bn), λmax(Bn)] in
Lemma 4.1, then q ≤ 2NΓ . In practice, for τ sufficiently small, we have q = 2NΓ , as we
show in the numerical section (cf. Fig. 3). Nevertheless, due to the proximity of the lower
bound a to zero, the convergence of the CG method is far from satisfactory, and it becomes
essential to design an appropriate preconditioner for An .

Preconditioning

We propose a theoretical preconditioner, which is proven to be effective through the spec-
tral analysis carried out in the previous sections. The process of implementing a practical
preconditioning strategy is discussed at the end of the current section.

Denoting by IΓ
e and IΓ

i the identity matrices of the same size as AΓ
e and AΓ

i respectively,
a first observation is that the block diagonal matrix

Pn =

⎡

⎢
⎢
⎣

τ Ain
e 0 0 0

0 IΓ
e 0 0

0 0 τ Ain
i 0

0 0 0 IΓ
i

⎤

⎥
⎥
⎦

is such that the Hermitian matrix

An − Pn =

⎡

⎢
⎢
⎢
⎣

0 τ Ain,Γ
e 0 0

τ AΓ ,in
e τ AΓ

e + MΓ
e − IΓ

e 0 T Γ
ei

0 0 0 τ Ain,Γ
i

0 (T Γ
ei )T τ AΓ ,in

i τ AΓ
i + MΓ

i − IΓ
i

⎤

⎥
⎥
⎥
⎦

has rank less than or equal to 4NΓ = o(n), n = Ni + Ne, using an argument similar to
the one in the proof of Theorem 4.3. In fact the typical behavior is NΓ ∼ √

n if Ω is a
two-dimensional domain. In the general setting of a d-dimensional domain and with any

reasonable discretization scheme we have NΓ ∼ n
d−1
d , d ≥ 1.

The function f square in formula (34) is nonnegative, implying that thematrices Tn( f square)
are Hermitian positive definite according to [20, Theorem 3.1]. The restriction operatorsΠΩi

and ΠT
Ωi

have full rank and so ΠΩi Tn( f
square)ΠT

Ωi
is Hermitian positive definite. Moreover,

in our case the boundary conditions do not alter the positive definiteness and the same holds
for Ain

e . Hence, the matrix P−1/2
n An P

−1/2
n is well-defined and we can write

P−1/2
n An P

−1/2
n = In − P−1/2

n (Pn − An)P
−1/2
n

with P−1/2
n (Pn − An)P

−1/2
n having rank less than or equal to 4NΓ = o(n), n = Ni + Ne,

which means that the sequence {P−1/2
n (Pn − An)P

−1/2
n }n is zero-distributed. Since all the

involved matrices are Hermitian, Exercise 5.3 in book [19] tells us that the matrix sequence
{P−1/2

n An P
−1/2
n }n is distributed as 1 in the eigenvalue sense. Therefore Pn could serve as an

effective preconditioner for An , also because, as already pointed out, the number of possible

outliers cannot grow more than O(n
d−1
d ), d ≥ 1, d dimensionality of the physical domain.

We now face the task of finding an efficient method for approximating the matrix–vector
products with the inverses of Ain

e and Ain
i . Given themultilevel structure of these matrices and

their role as discretization of the Laplacian operator,multigrid techniques are a natural choice.
Defining k = �n/4�, when dealing with a bi-level Toeplitz matrix of size n generated by
f square, the conventional bisection and linear interpolation operators are an effective choice
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for restriction and prolongation operators. These can be paired with the Jacobi smoother,
which requires suitably chosen relaxation parameters. See [30] for the theoretical background.
A similar multigrid strategy can be applied to the “subdomain” matrices Ain

e and Ain
i thanks

to [31].
In practice, we will apply one multigrid iteration as preconditioner for the whole matrix

An , avoiding the construction of Pn . It has been proven [31] that if two linear systems have
coefficient matrices that are spectrally equivalent, the effectiveness of a multigrid method for
one system also extends to the other. The matrix sequences {An}n and {Pn}n share the same
spectral distribution, but the matrices may not be spectrally equivalent due to outliers, which
are at most 4NΓ by the Cauchy interlacing theorem. However, outliers are controlled by the
CG method, as shown by Lemma 4.1. For a recent reference on spectrally equivalent matrix
sequences and their use to design fast iterative solvers see [3].

5 Numerical Results

5.1 Problem and Discretization Settings

We consider the following two scenarios:

(i) An idealized geometry for a single cell, i.e. a two-dimensional square domainΩ = [0, 1]2
with Ωi = [0.25, 0.75]2, discretized with a uniform mesh, cf. Fig. 1. The domain Ω is
discretized considering a uniform grid with N × N elements. This tessellation results in
n = Ni + Ne = (Np+ 1)2 + 2Np degrees of freedom,3 with p the finite element order.

(ii) A three-dimensional geometry, representing one astrocyte [1], cf. Fig. 2 discretized with
32,365 grid nodes leading to n = 212548 degrees of freedom for p = 2 (as used in the
numerical experiments).

In both cases, we set σi = σe = 1, pure Dirichlet boundary conditions, i.e. ∂ΩD = ∂Ω in
(6), and the following right-hand side source in (8):

f (x, y) = sin(2πx) sin(2π y).

5.2 Implementation and Parameters for the SolutionMethods

We use FEniCS [2, 26] for parallel finite element assembly and multiphenics4 to handle
multiple meshes with common interfaces and the corresponding mixed-dimensional weak
forms. FEniCS wraps PETSc parallel solution strategies. For multilevel preconditioning,
we use hypre boomerAMG algebraic multigrid (AMG) [18], with default options, cf.
Appendix A. In the 3D case, i.e. scenario (ii), for AMG we use a threshold of 0.9 for the
strong coupling.5 since since the default value (0.25) is optimized for 2D applications. For
comparative studies, we use MUMPS as a direct solver and incomplete LU (ILU) precondi-
tioning with zero fill-in. Parallel ILU relies on a block Jacobi preconditioned, approximating
each block inverse with ILU. In all cases, preconditioners are directly applied to the system
matrix An . For iterative strategies, we use a tolerance of 10−6 for the relative unprecondi-
tioned residual, as stopping criteria.

3 The term 2Np = NΓ is present since the membrane degrees of freedom are repeated both for Ωi and Ωe .
4 https://multiphenics.github.io/index.html.
5 With the command -pc_hypre_boomeramg_strong_threshold.
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Fig. 2 Left: astrocyte geometry and corresponding mesh. A cube with 0.1 sides is shown as a reference. Right:
solution corresponding to Table 4

Fig. 3 Left: spectrum of τ−1An varying τ for (N , p) = (16, 1). The [a, b] = [λmin(Bn), λmax(Bn)] interval
is shown, with reference to Lemma 4.1 and Eq. (39). Crucially, the majority of eigenvalues are included in
[a, b], which is independent of τ . Right: condition number of An and CG iterations to convergence. In yellow
the theoretical bound is shown, which depends on a, b and the relative error ε

The implementation is verified considering the same benchmark problem as in [34, Section
3.2], obtaining the expected convergence rates.

5.3 Experiments: Eigenvalues and CG Convergence

Weconsider the behaviour of unpreconditionedCG for τ → 0 and scenario (i). For simplicity,
in this section, we use a unit right-hand side, i.e. f = 1/‖1‖2 in (16). In Fig. 3 an example
of the spectrum of An is shown; as presented in Sect. 4.4, varying τ influences only 2NΓ

eigenvalues. Using Lemma 4.1, with q = 2NΓ , results in a strict upper bound for the number
of CG iterations, which is observed in practice, despite the increasing condition number
κ(An).

In this idealized setting, imposing τ = 1, we numerically confirm the results of Sects. 4.2–
4.3, showing that the spectral distribution

{An}n ∼λ (g, D),
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Fig. 4 Left: comparison between the eigenvalues λ j (An) and the samples of g over a uniform grid on D.

Right: comparison between the eigenvalues λ j (An) and the samples of f square over a uniform grid on [0, π ]2.
In both cases (N , p) = (128, 1) and τ = 1

with the symbol domain

D = [0, 1] × [0, π ]2 × [0, π]2

and

g(x, θ i , θe) = f square(θ i )ψ[0, 14 ](x) + f square(θe)ψ( 14 ,1](x),

reasonably approximates the eigenvalues of An , given a uniform sampling even for very few
grid points in each of the 5 dimensions of D. In order to make visualization possible, we
evaluate the function g on its domain and then we arrange the evaluations in ascending order,
which corresponds to considering the monotone rearrangement of g. Note that in this setting
the number r defined in Theorem 4.3 is equal to 1/4. In the left panel in Fig. 4 we observe
that the spectrum of An is qualitatively described by the samplings of the function g over a
uniform grid on D. Moreover, in our particular setting, also the spectral distribution

{An}n ∼λ ( f square, [0, π]2)
holds, andwenumerically confirm this result in the right panel of Fig. 4,where the eigenvalues
of An are described by the samplings of the function f square over a uniform grid on [0, π]2.

5.4 Experiments: Preconditioning

In Fig. 5, we report the spectra of An and P−1
n An to highlight the clustering of eigenvalues

around one in the preconditioned case. Such behavior is more precisely quantified in Table 1,
where, for ε > 0, we report the number of outliers given by cn = cn(ε), the latter being
the number of eigenvalues of the preconditioned matrix not belonging to [1 − ε, 1 + ε]. As
expected, we observe cn/n → 0 as the total size n is increased and cn ∼ √

n, showing the
effectiveness of the theoretical preconditioner Pn .

In Table 2, we report iterations to convergence using the AMG-preconditioned CG (PCG),
showing robustness w.r.t. all discretization parameters. We remark that, for PCG, time-to-
solution depends linearly on n, as expected for multilevel methods. In Table 3 we report
runtimes and iterations to convergence for various preconditioning strategies for scenario (i);
assembly and direct solution timings are also reported for practicality. In terms of efficiency,
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Fig. 5 Spectra of An and P−1
n An

for τ = 1 and (N , p) = (32, 1)

Table 1 Given ε > 0, we denote
with cn(ε) ∈ N, the number of
eigenvalues of P−1

n An which are
not in [1 − ε, 1 + ε]

(N , p, τ ) n cn cn/n

(16, 1, 1) 321 60 0.19

(32, 1, 1) 1153 122 0.11

(64, 1, 1) 4353 247 0.06

(16, 2, 10−4) 1153 127 0.11

(32, 2, 10−4) 4353 250 0.06

(16, 2, 10−4) 16,897 485 0.03

We report cn for ε = 0.1 varying the discretization parameters (N , p, τ )

Table 2 Number of PCG
iterations to convergence,
scenario (i), using a single AMG
iteration as preconditioner

(N , p) (32, 1) (64, 1) (128, 1) (256, 1) (512, 1)
n 1153 4353 16,897 66,561 264,193

τ = 1 5 5 5 6 5

τ = 10−1 5 5 6 6 6

τ = 10−2 5 5 5 6 7

τ = 10−3 5 5 5 6 6

(N , p) (16, 2) (32, 2) (64, 2) (128, 2) (256, 2)

τ = 1 5 5 5 6 5

τ = 10−1 5 6 5 6 6

τ = 10−2 4 5 5 5 6

τ = 10−3 6 5 5 6 6

the AMG preconditioner is preferable. In Table 4, we show strong scaling data corresponding
to scenario (ii), i.e. the astrocyte geometry. In this case, AMG and ILU preconditioners are
both competitive in terms of runtime and parallel efficiency.

Summing up the numerical results, we can observe how the AMG-preconditioned CG
exhibits a near-to-optimal robustness, converging in 5 to 7 iterations in 2D and in 12 iterations
in 3D. Regarding time-to-solution, AMG is also themost convenient choice, with ILU being a
close competitor. Regarding scalability, a parallel efficiency of approximately 80% is reached
for both approaches, before saturation.
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Table 3 Runtimes (s) and
iterations to convergence (in
square brackets) for various
solution strategies for τ = 0.01
and scenario (i) with
(N , p) = (512, 1) for a single
core

Runtime [its.]

Assembly 2.6

Direct 1.6

CG 1.4 [583]

PCG(Jacobi) 1.5 [557]

PCG(SOR) 1.2 [199]

PCG(ILU) 0.7 [120]

PCG(AMG) 0.3 [5]

For completeness, finite element assembly timing is also reported

Table 4 Runtimes (s) and
iterations to convergence (in
square brackets) for various
parallel solution strategies for
τ = 0.01 and scenario (ii), cf. the
astrocyte geometry in Fig. 2, and
p = 2

Cores 1 2 4 8

Assembly 8.4 5.5 3.4 2.3

Direct 16 12.1 10.6 9.9

CG 6.3 [725] 3.5 [724] 2.2 [724] 2.0 [720]

PCG(Jacobi) 3.0 [337] 1.7 [337] 1.0 [337] 1.0 [337]

PCG(SOR) 2.6 [129] 2.0 [174] 1.4 [181] 1.2 [185]

PCG(ILU) 2.2 [98] 1.3 [104] 0.8 [113] 0.6 [119]

PCG(AMG) 1.8 [12] 1.2 [12] 0.8 [12] 0.6 [12]

For completeness, finite element assembly timings are also reported

6 Concluding Remarks

We described numerical approximation schemes for the EMI equations and studied the
structure and spectral features of the coefficient matrices obtained from a finite element dis-
cretization in the so-called single-dimensional formulation.Theobtained spectral information
has been employed for designing appropriate (preconditioned) Krylov solvers. Numerical
experiments have been presented and critically discussed; the CG method, preconditioned
withAMG results in an efficient, scalable, and robust solution strategy. The spectrum analysis
made it possible to understand the convergence properties, somehow counterintuitive, of CG
in this context.

Acknowledgements Pietro Benedusi and Marie Rognes acknowledge support from the Research Council of
Norway via FRIPRO Grant #324239 (EMIx) and from the national infrastructure for computational science
in Norway, Sigma2, via Grant #NN8049K. Paola Ferrari and Stefano Serra-Capizzano are partially supported
by the Italian Agency INdAM-GNCS. Furthermore, the work of Stefano Serra-Capizzano is funded from the
European High-Performance Computing Joint Undertaking (JU) under Grant Agreement No. 955701. The JU
receives support from the European Union’s Horizon 2020 research and innovation programme and Belgium,
France, Germany, and Switzerland. Stefano Serra-Capizzano is also grateful for the support of the Laboratory
of Theory, Economics and Systems - Department of Computer Science at Athens University of Economics and
Business. Special thanks are extended to the anonymous Referee for the enriching comments and to Jørgen
Dokken, Miroslav Kuchta, Francesco Ballarin, Lars Magnus Valnes, Halvor Herlyng, Abdellah Marwan, and
Marius Causemann for their precious help.

Funding Open access funding provided by Università della Svizzera italiana

Data Availability Data sets generated during the current study are available from the corresponding author on
reasonable request.

123



Journal of Scientific Computing (2024) 98 :58 Page 21 of 23 58

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix: Parameters of Multigrid

Weprovide the default AMGparameters in PETSc obtained using the ksp_view command.
For the 3D case, i.e. scenario (ii), the threshold for strong coupling is set to 0.9.
KSP Object: 1 MPI process

type: cg
maximum iterations=10000, initial guess is zero
tolerances: relative=1e-06, absolute=1e-50, divergence=10000.
left preconditioning
using UNPRECONDITIONED norm type for convergence test

PC Object: 1 MPI process
type: hypre

HYPRE BoomerAMG preconditioning
Cycle type V
Maximum number of levels 25
Maximum number of iterations PER hypre call 1
Convergence tolerance PER hypre call 0.
Threshold for strong coupling 0.25
Interpolation truncation factor 0.
Interpolation: max elements per row 0
Number of levels of aggressive coarsening 0
Number of paths for aggressive coarsening 1
Maximum row sums 0.9
Sweeps down 1
Sweeps up 1
Sweeps on coarse 1
Relax down symmetric-SOR/Jacobi
Relax up symmetric-SOR/Jacobi
Relax on coarse Gaussian-elimination
Relax weight (all) 1.
Outer relax weight (all) 1.
Using CF-relaxation
Not using more complex smoothers.
Measure type local
Coarsen type Falgout
Interpolation type classical
SpGEMM type cusparse

linear system matrix = precond matrix
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