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Abstract
Radial basis function methods are powerful tools in numerical analysis and have demon-
strated good properties in many different simulations. However, for time-dependent partial
differential equations, only a few stability results are known. In particular, if boundary con-
ditions are included, stability issues frequently occur. The question we address in this paper
is how provable stability for RBF methods can be obtained. We develop a stability theory
for global radial basis function methods using the general framework of summation-by-parts
operators often used in the Finite Difference and Finite Element communities. Although we
address their practical construction, we restrict the discussion to basic numerical simulations
and focus on providing a proof of concept.

Keywords Global radial basis functions · Time-dependent partial differential equations ·
Energy stability · Summation-by-part operators

Mathematics Subject Classification 65N35 · 65M06 · 65N12 · 65D12 · 65D25

B Philipp Öffner
poeffner@uni-mainz.de

Jan Glaubitz
glaubitz@mit.edu

Jan Nordström
jan.nordstrom@liu.se

1 Department of Aeronautics and Astronautics & Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, USA

2 Department of Mathematics, Linköping University, 58183 Linköping, Sweden

3 Department of Mathematics and Applied Mathematics, University of Johannesburg, P.O. Box 524,
Auckland Park 2006, Johannesburg, South Africa

4 Institute of Mathematics, Johannes Gutenberg University, Mainz, Germany

5 Mathematical Institute,TU Clausthal, Clausthal-Zellerfeld, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02427-8&domain=pdf
http://orcid.org/0000-0002-1367-1917


30 Page 2 of 28 Journal of Scientific Computing (2024) 98 :30

Fig. 1 Gaussian kernel with N = 20 points (equidistant points) after ten periods

1 Introduction

We investigate energy stability of global radial basis function (RBF) methods for time-
dependent partial differential equations (PDEs). Unlike finite differences (FD) or finite
element (FE) methods, RBF schemes are mesh-free, making them very flexible with respect
to the geometry of the computational domain since the only used geometrical property is the
pairwise distance between two centers. Further, they are suitable for problems with scattered
data like in climate [12, 34] or stockmarket [6, 41] simulations. Finally, for smooth solutions,
one can reach spectral convergence [11, 13]. In addition, they have recently become increas-
ingly popular for solving time-dependent problems in quantum mechanics, fluid dynamics,
etc. [7, 29, 30, 52]. One distinguishes between global RBF methods (Kansa’s methods) [31]
and local RBFmethods, such as the RBF generated finite difference (RBF-FD) [50] and RBF
partition of unity (RBF-PUM) [55] method. However, there are some nuances regarding the
computational efficiency to take into account. For instance, a naive approach results in a large
dense differentiation matrix. Furthermore, care must be taken regarding the conditioning of
the differentiation and associated Vandermonde matrices. There exists several strategies to
combat these issues, including stable bases, compactly supported RBFs [3, 54], domain
decomposition [9, 58], and local variants of RBF methods [12, 55]. Also see the monograph
[14] and references therein. Even though the efficiency and good performance of RBF meth-
ods have been demonstrated for various problems, only a few stability results are known for
advection-dominated problems. For example, an eigenvalue analysis was performed for a
linear advection equation in [42], and it was found that RBF discretizations often produce
eigenvalues with positive real part, lending to an exponential increase of the L2 norm when
boundary conditions were introduced. To illustrate this, consider the following example (also
found in [21, Section 6.1]):

∂t u + ∂xu = 0, u(x, 0) = e−20x2 (1)

with x ∈ [−1, 1], t > 0, andwhere periodic boundary conditions are applied. In this example,
a bump travels to the right, leaving the domain and re-entering at the left boundary.

In Figure 1, we plot the numerical solution and its energy up to t = 10 using a global
RBF method with a Gaussian kernel and N = 20 points. An increase in the bump’s size
and energy can be seen. For longer times, the computation breaks down. The discrete setting
does not reflect the continuous one with zero energy growth and demonstrates the stability
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problem. To overcome those, it was shown in [21] that a weak formulation as used in classi-
cal FE methods could result in a stable method, whereas in [24] weakly imposed boundary
conditions together with properly constructed boundary operators were used. Recently, L2

estimates were also obtained using an oversampling technique [53], assuming that a suffi-
cient amount of evaluation points are used. All these efforts use special techniques, and the
question we address in this paper is how to stabilize RBF methods in a general way.
Classical summation-by-parts (SBP) operators were introduced during the 1970s in the
context of FD schemes. They allow for a systematic development of energy-stable semi-
discretizations of well-posed initial-boundary-value problems (IBVPs) [8, 49]. The SBP
property is a discrete analog to integration by parts, and proofs from the continuous set-
ting carry over directly to the discrete framework [38] if proper boundary procedures are
added [49]. Based initially on polynomial approximations, the SBP theory has recently been
extended to general function spaces developing so-called FSBP operators in [25]. Here,
we investigate stability of global RBF methods through the lens of the FSBP theory. We
demonstrate that many existing RBF discretizations do not satisfy the FSBP property, which
explains the instability of these methods. Based on these findings, we show how RBF dis-
cretizations can be modified to obtain an SBP property. This then allows for a systematic
development of energy-stable RBF methods. We provide some specific examples, including
the most frequently used RBFs. Furthermore, we connect to some recent stability results
from [53], where oversampling was used, to the FSBP property. For simplicity, we focus on
the univariate setting for developing an SBP theory in the context of global RBF methods.
That said, RBFmethods and SBP operators can easily be extended to the multivariate setting,
as demonstrated in our numerical tests. The focus of the present paper is to provide a proof
of concept and use the FSBP theory to develop provable energy-stable global RBF methods.
We restrict most of the discussion to the one-dimensional setting to avoid some technical
difficulties that might otherwise distract the reader from the core concept. That said, future
work will address the multi-dimensional case among other things, also including local RBF
methods, accuracy, and efficient implementations.
The rest of this work is organized as follows. In Section 2, we provide some preliminaries on
energy-stability of IBVPs and global RBF methods. Next, the concept of FSBP operators is
shortly revisited in Section 3. We adapt the FSBP theory to RBF function spaces in Section
4. Here, it is also demonstrated that many existing RBF methods do not satisfy the SBP
property and how to construct RBF operators in SBP form (RBFSBP). In Section 5, we give
some concrete examples of RBFSBP operators resulting in energy-stable methods. Finally,
we provide numerical tests in Section 6 and concluding thoughts in Section 7.

2 Preliminaries

We now provide a few preliminaries on IBVPs and RBF methods.

2.1 Well-posedness and Energy Stability

Following [28, 38, 49], we consider
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∂t u = L(x, t, ∂x )u + F̂(x, t), xL < x < xR, t > 0,

u(x, 0) = f (x), xL ≤ x ≤ xR,

B0(t, ∂x )u(xL , t) = gxL (t), t ≥ 0,

B1(t, ∂x )u(xR, t) = gxR (t), t ≥ 0,

(2)

where u is the solution and L is a differential operator with smooth coefficients. Further,
B0 and B1 are operators defining the boundary conditions, F̂ is a forcing function, f is the
initial data, and gxL , gxR denote the boundary data. Examples of (2) include the advection
equation

∂t u(x, t) + a∂xu(x, t) = 0 (3)

with constant a ∈ R, the diffusion equation

∂t u(x, t) = ∂x (κ∂xu(x, t)) (4)

with κ ∈ R depending on x, t , as well as combinations of (3) and (4). Let us now formalize
what we mean by the IBVP (2) being well-posed.

Definition 1 The IBVP (2) with F̂ = 0 and gxL = gxR = 0 is well-posed, if for every
f ∈ C∞ that vanishes in a neighborhood of x = xL , xR , (2) has a unique smooth solution u
that satisfies

||u(·, t)||L2 ≤ CeαC t || f ||L2
, (5)

whereC, αc are constants independent of f . Moreover, the IBVP (2) is strongly well-posed,
if it is well-posed and

||u(·, t)||2L2
≤ C(t)

(
|| f ||2L2

+
∫ t

0

(∣∣∣
∣∣∣F̂(·, τ )

∣∣∣
∣∣∣2
L2

+ |gxL (τ )|2 + |gxR (τ )|2
)
dτ

)
, (6)

holds, where the function C(t) is bounded for finite t and independent of F̂, gxL , gxR , and
f .

Switching to the discrete framework, our numerical approximation uh of (2) should be
constructed in such a way that similar estimates to (5) and (6) are obtained. We denote our
grid quantity (a measure of the grid size) by h. In the context of RBF methods, h denotes
the maximum distance between two neighboring points. We henceforth denote by ‖ · ‖h a
discrete version of the L2-norm and ||·||b represents a discrete boundary norm. Then, we
define stability of the numerical solution as follows.

Definition 2 Let F̂ = 0, gxL = gxR = 0, and f h be an adequate projection1 of the initial
data f which vanishes at the boundaries. The approximation uh is stable if

∣∣∣
∣∣∣uh(t)∣∣∣

∣∣∣
h

≤ Ceαd t
∣∣∣
∣∣∣ f h∣∣∣

∣∣∣
h

(7)

1 By “adequate projection", we mean either evaluating the function f at the grid points, or employing L2

projection operators on f , leading to the projection of f into the underlying approximation spaces.
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holds for all sufficiently small h, where C and αd are constants independent of f h . The
approximated solution uh is called strongly energy stable if it is stable and
∣∣∣
∣∣∣uh(t)∣∣∣

∣∣∣2
h

≤ C(t)

(∣∣∣
∣∣∣ f h∣∣∣

∣∣∣2
h

+ max
τ∈[0,t]

∣∣∣
∣∣∣F̂(τ )

∣∣∣
∣∣∣2
h

+ max
τ∈[0,t]

∣∣∣∣gxL (τ )
∣∣∣∣2
b + max

τ∈[0,t]
∣∣∣∣gxR (τ )

∣∣∣∣2
b

)

(8)

holds for all sufficiently small h. The function C(t) is bounded for finite t and independent
of F̂, gxL , gxR , and f h .

2.2 Discretization

To discretize the IBVP (2), we apply the method of lines. The space discretization is done
using a global RBF method resulting in a system of ordinary differential equations (ODEs):

d

dt
u = L(u). (9)

Here, u denotes the vector of coefficients and L represents the spatial operator. We used the
explicit strong stability preserving (SSP) Runge–Kutta (RK)method of third-order with three
stages (SSPRK(3,3)) [47] for all subsequent numerical tests.

2.2.1 Radial Basis Function Interpolation

RBFs are powerful tools for interpolation and approximation [10, 14, 56]. In the context of
the present work, we are especially interested in RBF interpolants. Let u : R ⊃ � → R be
a scalar valued function and XK = {x1, . . . , xK } a set of interpolation points, referred to as
centers. The RBF interpolant of u is

uh(x) =
K∑

k=1

αkϕ(|x − xk |) +
m∑
l=1

βk pl(x). (10)

Here, ϕ : R+
0 → R is the RBF (also called kernel) and {pl}ml=1 is a basis for the space of

polynomials up to degree m − 1, denoted by Pm−1. In our numerical section, we use mostly
m = 1 meaning that we include constants in our approximation space. Furthermore, the RBF
interpolant (10) is uniquely determined by the conditions

uh(xk) = u(xk), k = 1, . . . , K , (11)

K∑
k=1

αk pl(xk) = 0, l = 1, . . . ,m. (12)

Note that (11) and (12) can be reformulated as a linear system for the coefficient vectors
α = [α1, . . . , αK ]T and β = [β1, . . . , βm]T :[

	 P
PT 0

] [
α

β

]
=
[
u
0

]
, (13)

where u = [u(x1), . . . , u(xK )]T and

	 =
⎡
⎢⎣

ϕ(|x1 − x1|) . . . ϕ(|x1 − xK |)
...

...

ϕ(|xK − x1|) . . . ϕ(|xK − xK |)

⎤
⎥⎦ , P =

⎡
⎢⎣
p1(x1) . . . pm(x1)

...
...

p1(xK ) . . . pm(xK )

⎤
⎥⎦ . (14)
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Table 1 Some frequently used RBFs

RBF ϕ(r) parameter order

Gaussian exp(−(εr)2) ε > 0 0

Multiquadrics
√
1 + (εr)2 ε > 0 1

Polyharmonic splines (odd) r2k−1 k ∈ N k

Polyharmonic splines (even) r2k log r k ∈ N k + 1

Incorporating polynomial terms of degree up tom−1 in the RBF interpolant (10) is important
for several reasons:

(i) The RBF interpolant (10) becomes exact for polynomials of degree up to m − 1, i. e.,
uh = u for u ∈ Pm−1.

(ii) For some (conditionally positive) kernelsϕ, the RBF interpolant (10) only exists uniquely
when polynomials up to a certain degree are incorporated.

In addition, we will show that (i) is needed for the RBF method to be conservative [21, 25].
The property (ii) is explained in more detail in (1) as well as in [10, Chapter 7] and [18,
Chapter 3.1]. For simplicity and clarity, we will focus on the choices of RBFs listed in Table
1. More types of RBFs and their properties can be found in the monographs [10, 14, 56].

Note that the set of all RBF interpolants (10) forms a K -dimensional linear space, denoted
by Rm(XK ). This space is spanned by the cardinal functions

ci (x) =
K∑

k=1

α
(i)
k ϕ(|x − xk |) +

m∑
l=1

β
(i)
l pl(x), i = 1, . . . , K , (15)

which are uniquely determined by the cardinal property

ci (xk) = δik :=
{
1 if i = k,

0 otherwise,
i, k = 1, . . . , K , (16)

and condition (12). They also provide us with the following (nodal) representation of the
RBF interpolant:

uh(x) =
K∑

k=1

u(xk)ck(x). (17)

2.2.2 Radial Basis Function Methods

We outline the standard global RBF method for the IBVP (2). The domain � on which we
solve (2) is discretized using two point sets:

• The nodal point set (centers) XK = {x1, · · · , xK } used for constructing the cardinal basis
functions (15).

• The grid (evaluation) point set YN = {y1, · · · , yN } for describing the IBVP (2), where
N ≥ K .

By selecting YN = XK , we get a collocation method, and with N > K , a method using
oversampling. The numerical solution u is defined by the values of uh at YN and the oper-
ator L(u) by using the spatial derivative of the RBF interpolant uh , also at YN . The RBF
discretization can be summarized in the following three steps:
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1. Determine the RBF interpolant uh ∈ Rm(XK ).
2. Define L(u) in the semidiscrete equation by inserting (17) into the continuous spatial

operator. This yields

L(u) =
(
L(yn, t, ∂x )uh(t, yn) + F̂(t, yn)

)N
n=1

. (18)

3. Use a classical time integration scheme to evolve (9).

Global RBF methods come with several free parameters. These include the center and
evaluation points XK and YN , the kernel ϕ, the degreem−1 of the polynomial term included
in the RBF interpolant (10). The kernel ϕ might come with additional free parameters such
as the shape parameter ε. Finally, we note that also the basis ck of the RBF approximation
spaceRm(XK ), that one uses for numerically computing the RBF approximation uh and its
derivatives, can influence how well-conditioned the RBF method is in practice. Discussions
of appropriate choices for these parameters are filling whole books [10, 14, 15, 56] and are
avoided here. In this work, we have a different point in mind and focus on the basic stability
conditions of RBF methods.

3 Summation-by-parts Operators on General Function Spaces

SBP operators were developed tomimic the behavior of integration by parts in the continuous
setting and provide a systematic way to build energy-stable semi-discrete approximations.
First, constructed for an underlying polynomial approximation in space, the theory was
recently extended to general function spaces in [22, 25]. For completeness, we shortly review
the extended framework of FSBP operators and repeat their basic properties. We consider
the FSBP concept on the interval [xL , xR] where the boundary points are included in the
evaluation points YN . Using this framework, we give the following definition originally
found in [25]:

Definition 3 (FSBP operators) LetF ⊂ C1([xL , xR]) be a finite-dimensional function space.
An operator D = P−1Q is an F-based SBP (FSBP) operator if

(i) Df (x) = f ′(x) for all f ∈ F ,
(ii) P is a symmetric positive definite matrix, and
(iii) Q + QT = B = diag(−1, 0, . . . , 0, 1).

Here, f (y) = [ f (y1), . . . , f (yN )]T and f ′(y) = [ f ′(y1), . . . , f ′(yN )]T respectively denote
the vector of the function values of f and its derivative f ′ at the evaluation points y1, . . . , yN .
Further, D denotes the differentiation matrix and P is a matrix defining a discrete norm. In
order to produce an energy estimate, we use that P is positive definite and symmetric such
that it induces a norm. In this manuscript and in [25], we focus for stability reasons on
diagonal norm FSBP operators [17, 35, 43]. The matrix Q is nearly skew-symmetric and can
be seen as the stiffness matrix in context of FE. With these operators, integration-by-parts is
mimicked discretely as:

f (x)T PDg(x) + (Df (x))T Pg(x) = f (x)T Bg(x)

⇐⇒
∫ xR

xL
f (x) · g′(x)dx +

∫ xR

xL
f ′(x) · g(x)dx = [ f (x)g(x)]x=xR

x=xL

(19)

for all f , g ∈ F .

123



30 Page 8 of 28 Journal of Scientific Computing (2024) 98 :30

3.1 Properties of FSBP Operators

In [25], the authors proved that the FSBP-SAT semi-discretization of the linear advection
equation yields an energy stable semi-discretization. The so-called SAT term imposes the
boundary condition weakly. Moreover, the underlying function space F should contain con-
stants in order to ensure conservations.

In context of RBF methods, constants have to be included in the RBF interpolants (10),
also for the reasons discussed above.
We will extend the previous investigation to the linear advection-diffusion equation.

∂t u + a∂xu = ∂x (κ∂xu), x ∈ (xL , xR), t > 0,

u(x, 0) = f (x),

au(xL , t) − κ∂xu(xL , t) = gxL (t),

κ∂xu(xR, t) = gxR (t),

(20)

where a > 0 is a constant and κ > 0 can depend on x and t . The problem (20) is strongly
well-posed, as can be seen by the energy rate

||u||2t + 2 ||ux ||2κ =a−1
(
g2xL − (

au(xL , t) − gxL
)2 − (

au(xR, t) − g2xR
)2 + g2xR

)
(21)

with ||ux ||2κ = ∫ xR
xL

(∂xu)2κdx . To translate this estimate to the discrete setting, we discretize
(20). The most straightforward FSBP-SAT discretization reads

ut + aDu = D(KDu) + P−1
S (22)

with K = diag(κ) and

S := [S0, 0, . . . ,S1]T ,

S0 := σ0(au0 − (KDu)0 − gxL ),

S1 := σ1((KDu)N − gxR ).

(23)

We can prove the following result using Definition 3 where we additionally assume that
KDu ⊂ F . Note thatKDu ⊂ F is always satisfied whenF is invariant under differentiation
(F ′ ⊂ F) and κ does not depend on x .

Theorem 1 The scheme (22) is strongly stable with σ0 = −1 and σ1 = −1.

Proof We use the energy method together with the FSBP property. Multiplying (22) with
uT P from the left, we get

uT Put + auT PDu = uT PD(KDu) + uT S. (24)

The FSBP property PD + DT P = B implies uT PDu = uT Bu − uT DT Pu. Substituting
this into (24) yields

uT Put + auT Bu − auT DT Pu = uT PD(KDu) + uT S. (25)

Observe that uT DT Pu = (
uT DT Pu

)T = uT PDu since this is a scalar term. Hence, adding
(24) and (25), we get

2uT Put + auT Bu = 2uT PD(KDu) + 2uT S. (26)
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Furthermore, the FSBP property also implies uT PD(KDu) = uT BKDu−(Du)T PK(Du).
This transforms (26) into

2uT Put + 2(Du)T PK(Du) = −auT Bu + 2uT BKDu + 2uT S. (27)

Using ‖u‖2t = 2uT Put and ||Du||2K = (Du)T PKDu, we get

‖u‖2t + 2 ||Du||2K = −auT Bu + 2uT BKDu + 2uT S. (28)

Finally, substituting (23) for the SAT term yields

‖u‖2t + 2 ||Du||2K =au20 − au2N − 2u0(KDu)0 + 2uN (KDu)N − 2au20
+ 2u0(KDu)0 + 2u0gxL − 2uN (KDu)N + 2uN gxR

(29)

resulting in

‖u‖2t + 2 ||Du||2K = −au20 − au2N + 2u0gxL + 2uN gxR . (30)

By elementary transformation, we obtain

||u||2t + 2 ||Du||2K = a−1 (g2xL − (au0 − gxL )
2 − (auN − gxR )2 + g2xR

)
, (31)

which is a discrete analog of the continuous estimate (21). Note that P and K have to be
diagonal to ensure that we obtain our energy estimate. �

Clearly, the FSBP operators automatically reproduce the results from the continuous
setting, similar to the classical SBP operators based on polynomial approximations [49]. Note
that no details are assumed on the specific function space, grid or the underlying methods.
The only factors of importance is that the FSBP property is fulfilled and that well posed
boundary condition are used.

Remark 1 (Second-derivative FSBP operators) In our analysis, we utilize the first-order
derivative matrix twice to obtain a representation for the second derivative. Additionally,
we assume K Du ∈ F . This ensures that the first term on the right-hand side of (22) provides
a discrete representation of the second-derivative operator within the function space. Notably,
this assumption is not a requisite for stability, only for accuracy. For an in-depth examination
of second derivative FSBP operators, we refer to our recent publication [23].

4 SBP operators for RBFs

First, we adapt the FSBP theory in Section 2.2 to the RBF framework. Next, we investigate
classical RBF methods concerning the FSBP property, and demonstrate that standard global
RBF schemes does not fulfill this property. Finally, we describe how RBFSBP operators can
be constructed that lead to stability.

4.1 RBF-based SBP operators

The function spaceF ⊂ C1 for RBFmethods is defined by the description in Subsection 2.2.
Consider a set of K points, XK = {x1, · · · , xK } ⊂ [xL , xR]. The set of all RBF interpolants
(10) forms a K -dimensional approximation space, which we denote byRm(XK ). Let {ck}Kk=1
be a basis inRm(XK ). Further, we have the grid pointsYN = {y1, · · · , yN } ⊂ [xL , xR]which
include the boundaries. They are used to define the RBFSBP operators.
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Definition 4 RBF (Summation-by-Parts Operators) An operator D = P−1Q ∈ R
N×N is an

RBFSBP operator on the grid points YN if

(i) Dck(x) = c′
k(x) for k = 1, 2, . . . , K and ck ∈ Rm(XK ),

(ii) P ∈ R
N×N is a symmetric positive definite matrix, and

(iii) Q + QT = B.

In the classical RBF discretizations, the exactness of the derivatives of the cardinal functions
is the only condition which is imposed. However, to construct energy stable RBF methods,
the existence of an adequate norm is as important as the condition on the derivative matrix.
Hence it is often necessary to use a higher number of grid points than centers to ensure the
existence of a positive quadrature formula to guarantee the conditions in Definition 4.
The norm matrix P in Definition 4 has only been assumed to be symmetric positive definite.
However, asmentioned above for the remainder of this work, we restrict ourselves to diagonal
normmatrices P = diag(ω1, · · · , ωN )whereωi is the associated quadrature weight because
Diagonal-norm operators are

i) required for certain splitting techniques [17, 37, 40], and variable coefficients, see for
example (31).

ii) better suited to conserve nonquadratic quantities for nonlinear stability [32],
iii) easier to extend to, for instance, curvilinear coordinates [5, 43, 48].

Remark 2 In Definition 4, we have two sets of points, the interpolation points XK and the grid
points YN . The derivative matrix is constructed with respect to the exactness of the cardinal
functions ck related to the interpolation points XK . However, all operators are constructed
with respect to the grid points YN , i.e. D, P, Q ∈ R

N×N . This is in particular essential
when ensuring the existence of suitable norm matrix P . This means that the size of the SBP
operator is determined by the quadrature formula. So, the number of grid points and their
positioning highly effects the size of the operators and so the efficiency of the underlying
method itself. In the future, this will be investigated in more detail.

4.2 Existing Collocation RBFMethods and the FSBP Property

In this part, we shortly investigate if classical collocation RBF methods fulfill the FSBP
property for their underlying function space. In the classical collocation RBF approach, the
centers intersect with the grid points, i.e. XK = YN . It was shown in [25] that a diagonal-
norm F-exact SBP operator exists on the grid YN = {y1, · · · , yN } if and only if a positive
and (FF)′-exact quadrature formula exists on the same grid (the same requirement as for
classical SBP operators). The differentiationmatrix D ∈ R

N×N of a collocation RBFmethod
can thus only satisfy the FSBP property if there exists a positive and (Rm(YN )Rm(YN ))′-
exact quadrature formula on the grid YN . The weights w ∈ R

N of such a quadrature formula
would have to satisfy

Gw = m, w > 0, (32)

with the coefficient matrix G and vector of momentsm given by

G =
⎡
⎢⎣
g1(y1) . . . g1(yN )

...
...

gL(y1) . . . gL(yN )

⎤
⎥⎦ , m =

⎡
⎢⎢⎣
∫ b
a g1(y) dy

...∫ b
a gL(y) dy

⎤
⎥⎥⎦ , (33)
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Table 2 Residual ‖Gw − m‖2 and smallest elements minw for the cubic PHS-RBF on equidistant, Halton,
and random points, N is the number of points and m − 1 is the polynomial degree

Equidistant points

‖Gw − m‖2 minw

N \m − 1 0 1 2 0 1 2

10 7.6 · 10−1 6.6 · 10−1 1.3 · 10−12 2.7 · 10−2 3.3 · 10−2 5.6 · 10−2

20 6.9 · 10−1 6.4 · 10−1 6.1 · 10−11 1.5 · 10−2 1.6 · 10−2 2.6 · 10−2

40 6.6 · 10−1 6.4 · 10−1 2.5 · 10−9 7.7 · 10−3 8.0 · 10−3 1.3 · 10−2

Halton points

‖Gw − m‖2 minw

N \m − 1 0 1 2 0 1 2

10 1.0 1.0 5.6 3.1 · 10−4 3.9 · 10−4 5.6 · 10−3

20 1.0 1.0 1.0 · 101 2.5 · 10−6 2.7 · 10−6 −4.3 · 10−3

40 1.0 1.0 1.6 · 101 2.2 · 10−10 2.3 · 10−10 −1.3 · 10−3

Random points

‖Gw − m‖2 minw

N \m − 1 0 1 2 0 1 2

10 1.3 1.2 1.5 · 101 1.1 · 10−6 1.3 · 10−6 −9.6 · 10−2

20 1.1 1.1 1.1 · 102 5.6 · 10−16 1.8 · 10−15 −1.7 · 10−1

40 1.3 1.3 1.8 · 103 −4.1 · 10−11 −2.9 · 10−11 −1.2 · 101

In (33), {gl}Ll=1 is a basis of the function space (Rm(YN )Rm(YN ))′. In many cases, the
dimension L of (Rm(YN )Rm(YN ))′ is larger than the dimension N of Rm(YN ). In this
case, L > N and the linear system in (32) is overdetermined and has no solution. This is
demonstrated in Table 2, which reports on the residual and smallest element of the least
squares solution (solution with minimal �2-error) of (32) for different cases. In all of our
considered tests, the residuals were always larger than zero indicating that the the classical
RBF operators investigated are not in SBP form. Similar results are obtained for non-diagonal
norm matrices P , which is outlined in Appendix.

Remark 3 (Least Squares RBF Methods) It was observed in [51, 53] that using least squares
RBFmethods instead of collocation RBFmethods leads to improved stability. The above dis-
cussion sheds some new light on this observation: The differentiation matrix D of the method
can satisfy the FSBP property if and only if there exists a positive and (Rm(XK )Rm(XK ))′-
exact quadrature formula on the grid YN . If N is sufficiently large, the linear system (32)
becomes underdetermined (N > L) and will eventually admit a positive solutionw, see [20].
For a least-squares RBF method, the centers XK and grid points YN differ, with N > K .
Indeed, one possible positive and exact solution is given by least squares quadratures, which
we will subsequently use to construct RBF methods satisfying the SBP property. The (quasi-
)Monte Carlo formula, used as part of the stability analysis in [53], gives a positive but inexact
quadrature formula and therefore does not yield an exact SBP property.
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4.3 Existence and Construction of RBFSBP Operators

Translating the main result from [25], we need quadrature formulas to ensure the exact
integration of (Rm(XK )Rm(XK ))′. For RBF spaces, we use least-squares formulas, which
can be used on almost arbitrary sets of grid points YN and to any degree of exactness. The
least squares ansatz always leads to a positive and (Rm(XK )Rm(XK ))′-exact quadrature
formula as long a sufficiently large number of data points YN is used.

Remark 4 Existing results on positivity and exactness of least squares quadrature formulas
usually assume that the function space contains constants [19, 20]. Translating this to our
setting, we need this property to be fulfilled for (Rm(XK )Rm(XK ))′. Therefore, Rm(XK )

should contain constants and linear functions. However, this assumption is primarily made
for technical reasons and can be relaxed. Indeed, even when Rm(XK ) only contained con-
stants, we were still able to construct positive and (Rm(XK )Rm(XK ))′-exact least squares
quadrature formulas in all our examples. Future work will provide a theoretical justification
for this.

Due to the least-square ansatz, we may always assume that we have a positive and
(Rm(XK )Rm(XK ))′-exact quadrature formula. With that ensured, we summarize the algo-
rithm to construct a diagonal norm RBFSBP operators in the following steps:

1. Build P by setting the quadrature weights on the diagonal.
2. Split Q into its known symmetric 1

2 B and unknown anti-symmetric part QA.
3. Calculate QA by using

QAC = PCx − 1

2
BC with C = [c1(y), . . . , cK (y)] =

⎡
⎢⎣
c1(y1) . . . cK (y1)

...
...

c1(yN ) . . . cK (yN )

⎤
⎥⎦

and Cx = [c′
1(y), . . . , c

′
K (y)] is defined analogous to C where {c1, ..., cK } is a basis of

the K-dimensional function space.
4. Use QA in Q = QA + 1

2 B to calculate Q.
5. D = P−1Q gives the RBFSBP operator.

In theRBFcontext, one can always use cardinal functions as the basis.However, for simplicity
reason is can be wise to use another basis representation, derived from the cardinal functions.

5 Examples of RBFSBP operators

Next, we construct RBFSBP operators for a few frequently used kernels2. We consider a set
of K points, XK = {x1, . . . , xK } ⊂ [xL , xR], and assume that these include the boundaries
xL and xR . Henceforth, we will consider the kernels listed in Table 1 and augment them with
constants. The set of all RBF interpolants including constants (10) forms a K -dimensional
approximation space, which we denote by R1(XK ). Recall that m = 1 imply constants, but
no higher-order polynomials, are included in the RBF approximation space. This space is
spanned by the cardinal functions ck ∈ R1(XK ) which are uniquely determined by (16).
The matching constraint is then simply

∑K
k=1 αk = 0. That is,

R1(XK ) = span{ ck | k = 1, . . . , K } (34)

2 The matlab code to replicate the results is provided in the corresponding repository https://github.com/
phioeffn/Energy_stable_RBF.

123

https://github.com/phioeffn/Energy_stable_RBF
https://github.com/phioeffn/Energy_stable_RBF


Journal of Scientific Computing (2024) 98 :30 Page 13 of 28 30

with the approximation space R1(XK ) having dimension K .
The product spaceR1(XK )R1(XK ) and its derivative space (R1(XK )Rm(XK ))′ are respec-
tively given by

R1(XK )R1(XK ) = span{ ckcl | k, l = 1, . . . , K }, (35)

(R1(XK )R1(XK ))′ = span{ c′
kcl + ckc

′
l | k, l = 1, . . . , K }. (36)

Note that the right-hand sides of (35) and (36) both use K 2 elements to span the product space
R1(XK )R1(XK ) and its derivative space (R1(XK )R1(XK ))′. However, these elements are
not linearly independent and the dimensions of R1(XK )R1(XK ) and (R1(XK )R1(XK ))′
are smaller than K 2. Indeed, we can observe that ckcl = clck and the dimension of (35) is
therefore bounded from above by

dimR1(XK )R1(XK ) ≤ K (K + 1)

2
. (37)

Subsequently, for ease of presentation, we round all reported numbers to the second decimal
place.

5.1 RBFSBP Operators using Polyharmonic Splines

In the first test, we work with cubic polyharmonic splines, ϕ(r) = r3. On [xL , xR] = [0, 1]
and for the centers X3 = {0, 1/2, 1}, the three-dimensional cubic RBF approximation space
(34) is given by R1(X3) = span{ c1, c2, c3 } = span{ b1, b2, b3 } with cardinal functions

c1(x) = 1

2
|x |3 − 2|x − 1/2|3 + 3

2
|x − 1|3 − 1

4
,

c2(x) = −2|x |3 + 4|x − 1/2|3 − 2|x − 1|3 + 3

2
,

c3(x) = 3

2
|x |3 − 2|x − 1/2|3 + 1

2
|x − 1|3 − 1

4

(38)

and alternative basis functions3

b1(x) = 1, b2(x) = x3 − |x − 1/2|3, b3(x) = x3 + (x − 1)3.

Wemake the transformation to the basis representation span{b1, b2, b3} to simplify the deter-
mination of (R1(X3)R1(X3))

′. In this alternative basis representation, the product space
R1(X3)R1(X3) and its derivative space (R1(X3)R1(X3))

′ are respectively given by

R1(X3)R1(X3) = span{ 1, b2, b3, b22, b23, b2b3 }
(R1(X3)R1(X3))

′ = span{ b′
2, b

′
3, b

′
2b2, b

′
3b3, b

′
2b3 + b2b

′
3 }. (39)

Next, we have to find an (R1(X3)R1(X3))
′-exact quadrature formula with positive weights.

For the chosen N = 4 equidistant grid points, the least-squares quadrature formula has

3 This basis can be constructed using a simple Gauss elimination method.
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positive weights and is (R1(X3)R1(X3))
′-exact. The points and weights are x =[

0, 1
3 ,

2
3 , 1

]T
and P = diag

( 16
129 ,

81
215 ,

81
215 ,

16
129

)
. The corresponding matrices Q and D of the

RBFSBP operator D = P−1Q obtained from the construction procedure described before
are

Q ≈

⎛
⎜⎜⎜⎝

− 1
2

59
100 − 3

20
3
50

− 59
100 0 37

50 − 3
20

3
20 − 37

50 0 59
100

− 3
50

3
20 − 59

100
1
2

⎞
⎟⎟⎟⎠ , D ≈

⎛
⎜⎜⎜⎝

− 403
100

473
100 − 121

100
51
100

− 39
25 0 49

25 − 2
5

2
5 − 49

25 0 39
25

− 51
100

121
100 − 473

100
403
100

⎞
⎟⎟⎟⎠ . (40)

This example was presented with less details in [25].

5.2 RBFSBP Operators using Gaussian Kernels

Next, we consider the Gaussian kernel ϕ(r) = exp(−r2) on [xL , xR] = [0, 1] for the centers
X3 = {0, 1/2, 1}. The three-dimensional Gaussian RBF approximation space (34) is given
by R1(X3) = span{ c1, c2, c3 } with cardinal functions

c1(x) = 2.7698 exp(−x2) − 3.9576 exp(−(x − 0.5)2) + 1.1878 exp(−(x − 1)2) + 0.8754

c2(x) = −3.9576 exp(−x2) + 7.9153 exp(−(x − 0.5)2) − 3.9576 exp(−(x − 1)2) − 0.7509

c3(x) = 1.1878 exp(−x2) − 3.9576 exp(−(x − 0.5)2) + 2.7698 exp(−(x − 1)2) + 0.87543

(41)

Again for N = 4 equidistant grid points in the least square quadrature formula,

we obtain exactness and positive weights. They are x = [
0, 1

3 ,
2
3 , 1

]T
and P =

diag (0.15, 0.36, 0.36, 0.15). The corresponding matrices Q and D of the RBFSBP oper-
ator D = P−1Q obtained from the construction procedure described before are

Q ≈

⎛
⎜⎜⎜⎝

− 1
2

3
5 − 3

100 − 7
100

− 3
5 0 16

25 − 3
100

3
100 − 16

25 0 3
5

7
100

3
100 − 3

5
1
2

⎞
⎟⎟⎟⎠ , D ≈

⎛
⎜⎜⎜⎝

− 33
10

397
100 − 23

100 − 9
20

− 42
25 0 89

50 − 1
10

1
10 − 89

50 0 42
25

9
20

23
100 − 397

100
33
10

⎞
⎟⎟⎟⎠ . (42)

To include an example with non-equidistant points for the centers, we also build matrices
and FSBP operators with Halton points X3 for this case. A bit surprising, we need twice
as many points than on an equidistant grid to get a positive exact quadrature formula. We
obtain an exact quadrature using the nodes and weights x = [i/7, ]T , with i = 0, · · · , 7,
and P = diag (0.04, 0.12, 0.19, 0.13, 0.04, 0.10, 0.30, 0.08). The corresponding matrices
Q and D are R8×8 and are given by
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Q ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2

33
100

29
100

7
100 − 7

100 − 2
25 − 19

100
3
20

− 33
100 0 11

100
1
10

7
100

2
25

3
50 − 1

10
− 29

100 − 11
100 0 9

100
1
10

13
100

11
50 − 13

100
− 7

100 − 1
10 − 9

100 0 3
100

3
50

23
100 − 3

50
7

100 − 7
100 − 1

10 − 3
100 0 1

100
4
25 − 1

20
2
25 − 2

25 − 13
100 − 3

50 − 1
100 0 1

10
1
10

19
100 − 3

50 − 11
50 − 23

100 − 4
25 − 1

10 0 59
100

− 3
20

1
10

13
100

3
50

1
20 − 1

10 − 59
100

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

D ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 304
25

811
100

177
25

41
25 − 7

4 − 197
100 − 451

100
71
20

− 137
50 0 91

100
17
20

29
50

33
50

53
100 − 79

100
− 157

100 − 59
100 0 23

50
14
25

69
100

29
25 − 71

100
− 27

50 − 83
100 − 69

100 0 21
100

12
25

46
25 − 47

100
167
100 − 33

20 − 239
100 − 31

50 0 29
100

191
50 − 113

100
81
100 − 81

100 − 32
25 − 3

5 − 3
25 0 99

100
101
100

31
50 − 11

50 − 73
100 − 77

100 − 11
20 − 33

100 0 99
50

− 87
50

23
20

157
100

7
10

29
50 − 6

5 − 351
50

597
100

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

5.3 RBFSBP Operators usingMultiquadric Kernels

As the last example, we consider the RBFSBP operators using multiquadric kernels ϕ(r) =√
1 + r2 on [xL , xR] = [0, 0.5] and centers X3 = {0, 1/4, 1/2}. The (R1(X3)R1(X3))

′-
exact least square ansatz yields the points x = [

0, 1
6 ,

1
3 ,

1
2

]T
and norm matrix P =

diag (0.07, 0.18, 0.18, 0.07) . With this norm matrix, we obtain finally

Q ≈

⎛
⎜⎜⎜⎝

− 1
2

57
100 − 1

50 − 1
20

− 57
100 0 59

100 − 1
50

1
50 − 59

100 0 57
100

1
20

1
50 − 57

100
1
2

⎞
⎟⎟⎟⎠ D ≈

⎛
⎜⎜⎜⎝

− 767
100

219
25 − 29

100 − 79
100

− 309
100 0 319

100 − 1
10

1
10 − 319

100 0 309
100

79
100

29
100 − 219

25
767
100

⎞
⎟⎟⎟⎠ (43)

6 Numerical Results

For all numerical tests presented in this work, we used an explicit SSP-RKmethods. The step
size�t was chosen to be sufficiently small not to influence the accuracy.Toguarantee stability,
we applied weakly enforced boundary conditions using Simultanuous Approximation Terms
(SATs), as is usually done in the SBP community [1, 2, 39], and for RBFs in [24]. To avoid ill-
conditioned matrix calculations inside the construction and application, we use a multi-block
structure in some of our tests. In each block, a global RBF method is used and the blocks are
coupled using SAT terms as in [4, 26].While this is beyond the scope of thiswork, futurework
will address other techniques to overcome ill-conditioned matrices, including tailored point
distributions, kernels, shape parameters, alternative bases, and efficient implementations.
Additionally, most of the results can be calculated as well with classical SBP-FD operators
and we get analogues results. We stress that this section provide a proof of concept and
we focus on global RBF methods and their stability properties, not on efficiency and real
application tests.
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Fig. 2 Cubic kernels with approximation spaces K = 15/30 on equidistant points after 1 period

Most numerical simulations are performed using polyharmonic splines to avoid a discussion
about the shape parameter, which highly effects the accuracy and stability properties of
the RBF approach [14, 30]. In future work, we will investigate the connection between the
selection of the shape parameter and the construction of RBFSBP operators.

6.1 Advection with Periodic Boundary Conditions

In the first test, we consider the linear advection

∂t u + a∂xu = 0, x ∈ (xL , xR), t > 0, (44)

with a = 1 and periodic BCs. The initial condition is u(x, 0) = e−20x2 from the introducing
example (1) and the domain is [−1, 1]. We are in the same setting as shown in Figure 1. We
compare a classical collocation RBFmethod with our new RBFSBPmethods, focus on cubic
splines and consider the final time to be T = 2. In Figure 2a and Figure 2c, the solutions are
plotted using collocation RBF method and the RBFSBP approach. In Figure 2a, we select
K = 15 for both approximations and N = 29 evaluation points for the RBFSBP operator.
The collocation RBF method dampens the Gaussian bump significantly while the RBFSBP
method do better. The decrease can also be seen in the energy profile 2b where the collocation
approach loses more. To obtain a comparable result between the collocation and RBFSBP
methods, we double the number of interpolation points K in our second simulation for the
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Fig. 3 Gaussian and Cubic kernels with approximation space K = 5 and I = 20 blocks on equidistant points
after 10 periods

collocation RBF method, cf. Figure 2c and Figure 2d. The RBFSBP method still performs
better and demonstrates the advantage of the RBFSBP approach.

Next, we focus only on RBFSBP methods and demonstrate the high accuracy of the
approach by increasing the degrees of freedom. In Figure 3, we plot the result and the energy
using Gaussian (ε = 1) and cubic kernels. We use K = 5 and I = 20 blocks. We obtain an
highly accurate solution and the energy remains constant.

6.2 Advection with Inflow Boundary Conditions

In the following test from [24], we consider the advection equation (44) with a = 1 in the
domain [0, 1]. The BC and IC are

g(t) = uinit(0.5 − t), uinit(x) =
{
e8e

−8
1−(4x−1)2 if 0 < x < 0.5,

0 otherwise.
(45)

We have a smooth IC and an inflow BC at the left boundary x = 0. We apply cubic splines
with constants as basis functions and the discretization

ut + aDu = P−1
S. (46)

with the simultaneous approximate terms (SAT) S := [S0, 0, . . . , 0]T , S0 := −(u0 − g).
In Figures 4a - 4b, we show the solutions at time t = 0.5 with K = 5 and I = 15, 20
elements using equidistant point and randomly disturbed equidistant points. The numerical
solutions using disturbed points in Figure 4a has wiggles but these are reduced by increasing
the number of blocks, see Figure 4b. Note that the wiggles are more pronounced if the point
selection is not distributed symmetrically around the midpoints, e.g. for the Halton points
in Figures 4c - 4d. Next, we focus on the error behavior. As mentioned before, the RBF
methods can reach spectral accuracy for smooth solutions. In Figure 5, the error behavior for
K = 3−7 basis functions using 20 blocks is plotted in a logarithmic scale. Spectral accuracy
is indicated by the (almost) constant slope.
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Fig. 4 Cubic kernel with approximation space K = 5 on equidistant, and Halton points

Remark 5 (Accuracy) For different point selections, we obtain similar convergence rates, e.g.
same slopes, but the error can be different. This can be seen in the numerical results using
Halton points which are not as accurate as the ones using equidistant points, cf. Figure 4.

6.3 Advection-Diffusion

Next, the boundary layer problem from [59] is considered

∂t u + ∂xu = κ∂2xxu, 0 ≤ x ≤ 0.5, t > 0.

The initial condition is u(x, 0) = 2x and the boundary conditions are u(0, t) = 0 and

u(0.5, t) = 1. The exact steady state solution is u(x) = exp( x
κ )−1

exp
(

1
2κ

)
−1

. Cubic splines and

Gaussian kernels with shape parameter 1 are used together with constants. We expect to
obtain better results using Gaussian kernels due to structure of the steady state solution. In
Figure 6, we show the solutions for different times using K = 5 elements on equidistant grid
points with diffusion parameters κ = 0.2 and κ = 0.1.

Some overshoots can be seen in the more steep case for κ = 0.1. This behavior can be
circumvented by using more degrees of freedom and multi-blocks which are avoided in this
case.
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Fig. 5 Error plots using cubic kernels with approximation space K = 4−7 on equidistant points with I = 20
blocks. For K = 5, the errors correspond to the solutions printed in the red dotted line on the right side of
Figure 4

Fig. 6 Gaussian and Cubic kernels with approximation space K = 5 and I = 1 block on equidistant points at
T = 2.

6.4 2D Linear Advection

We conclude our examples with a 2D case and consider the linear advection equation:

∂t u(x, y, t) + a∂xu(x, y, t) + b∂yu(x, y, t) = 0 (47)

with constants a, b ∈ R.

6.4.1 Periodic Boundary Conditions

In our first test, a = b = 1 are used in (47). The initial condition is u(x, y, 0) =
e−20

(
(x−0.5)2+(y−0.5)2

)
for (x, y) ∈ [0, 1]2 and periodic boundary conditions, i. e.,

u(0, y, t) = u(1, y, t) and u(x, 0, t) = u(x, 1, t), are considered. The coupling at the bound-
ary was again done via SAT terms. We use cubic kernels (K = 13) equipped with constants
in each direction. Figure 7b illustrates the numerical solution at time T = 1. The bump has
once left the domain at the right upper corner and entered again in the left lower corner. It
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Fig. 7 Cubic kernels with approximation space K = 13 on equidistant points

Fig. 8 Cubic kernels with approximation space K = 13 on equidistant points

reaches its initial position at T = 1. No visible differences between the numerical solution
at T = 1 and the initial condition can be seen. In Figure 7d the energy is reported over time.
We notice a slight decrease of energy when the bump is leaving the domain (at t = 0.5) due
to weakly enforced slightly dissipative SBP-SAT coupling.

6.4.2 Dirichlet-Inflow Conditions

In the last simulation, we consider (47) with a = 0.5, b = 1, initial condition u(x, y, 0) =
e−20

(
(x−0.25)2+(y−0.25)2

)
for (x, y) ∈ [0, 1]2 and zero inflow u(0, y, t) = 0, and u(x, 0, t) =

0. We again use cubic kernels (K = 13) equipped with constants. The boundary conditions
are enforced weakly via SAT terms. The initial condition lies in the left corner, cf. Figure 7a.
In Figure 8b, the numerical solution is shown. The bump moves in y direction with speed
one and in x-direction with speed 0.5. Figure 8c shows a slight decrease of the energy over
time due the bump leaving the domain.

6.5 Conditioning of the RBFSBP operators

A significant challenge associated with global RBF methods is that a direct approach leads
to a large and dense differentiation matrix. Furthermore, the conditioning of the differenti-
ation matrix, the corresponding norm matrix and the associated Vandermonde matrix, can
become problematic, in particular they can become highly ill-conditioned resulting in sta-
bility issues of the scheme. To address these issues, extensive efforts have been made to
analyze the conditioning of RBF methods and to improve the schemes. To give a concrete
example: the selection of basis functions alongside their associated shape parameters and
point distributions can substantially impact the efficiency of the methods. As noted in [44], a
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Table 3 Examples of condition
numbers using cubic splines

N 30 50 100

Differ. matrix D 9.64 · 103 4.54 · 104 3.69 · 105
Norm matrix P 2.17 · 1011 1.98 · 1013 3.66 · 1019
Vander. matrix V 4.35 · 105 3.39 · 106 5.45 · 107

close relationship exists between the flatness of RBFs (using small shape parameter) and the
resulting ill-conditioning of the matrix in equation (13). This directly affects the accuracy of
the RBF interpolant, a concept referred to as the uncertainity or trade-off principle of direct
RBFmethods. For potential solutions, as well as applications and comprehensive discussions
on this matter, we direct readers to references such as [16, 33, 36, 45, 46, 57].

In this paper we focus on other issues but provide a concrete example of the conditioning
numbers in the differentiation matrices, the norm matrices and the Vandermonde matrices in
the collocation approach. We consider cubic splines utilizing equidistant points, similar to
the setup in Subsection 6.1. The numerical values for these condition numbers are presented
in Table 3. Notably, an increase in the condition numbers can be recognized, particularly the
norm matrix increases as the number of evaluation points N .

Table 3 is provided to give a first impression of the condition numbers in classical RBF
methods. We avoid further investigation using a collocation approach and instead point to
the aforementioned literature concerning this situation, cf. [10, 15, 16, 33, 45, 46, 56] and the
references therein. We focus on assessing the efficiency and conditioning of our RBFSBP
operators. Note that the differentiation matrices within the (function-space) SBP framework
are not regular, while the norm matrix remains exact within the finite function space. There-
fore, focussing on the condition number of D and P does not provide us with any information
about the performance of our algorithm since if these matrices exist, the schemes are energy
stable as demonstrated in Section 3. The challenging aspect within our RBFSBP framework
lies in constructing an appropriate norm matrix P corresponding to the derivative matrix D.
As underscored in Remark 2, the matrices dimensions are determined by the availability of a
suitable norm matrix. In our construction procedure, we apply a least square method to build
P , as elaborated in Section 4.3. This involves iteratively solving the linear systems presented
in equation (32), progressively increasing the number of evaluation points with each itera-
tion. This iterative procedure continues until a suitable norm matrix P corresponding to the
derivative matrix D is found ensuring the FSBP property.

Throughout all our computations up to this point, the evaluation points Y in our approach
have been consistently selected using equidistant points. The matrix G is a Vandermonde
like matrix. It is well-known that in classical polynomial interpolation formulating the
Vandermonde matrix with respect to the wrong basis, e.g. monomials, this matrix gets
highly ill-conditioned for increasing N . We see a similar behavior for most of our matri-
ces G ∈ R

L×N , also for small K .
In the subsequent analysis, we provide an initial study of the overall performance of our
algorithm focussing on these three properties: the condition number of GTG, the number
of points required for constructing the matrix P , and the norm of matrix D. We use cubic
splines on equidistant points for the center points X .

Table 4 offers a first impression of the conditioning of our methods, revealing that in this
simulation, the numerical values remain modest within the computations, e.g. all three values
remain small. This finding intersects with the observations made in our previous numerical
simulations, where no issues were encountered.
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Table 4 Condition numbers of
GT G, N and K using cubic
splines on equidistant points

K 5 10 15

N 9 19 29

cond(GT G) 1.86 · 104 6.40 · 104 1.08 · 105
||D||2 13.41 228.9 6.68 · 103

Table 5 Condition numbers of
GT G, N and K using cubic
splines on Halton points

K 5 7 9

N 16 38 32

cond(GT G) 2.25 · 1017 1.5 · 1018 1.32 · 1017
||D||2 22.2 61.8 1.88 · 1010

Table 6 Condition numbers of
GT G, N and K using Gaussian
RBF with ε = 1

K 5 6 7

N 12 20 418

cond(GT G) 3.69 · 1011 3.528 · 1017 1.32 · 1019
||D||2 28.4647 35.62 −

Table 7 Condition numbers of
GT G, N and K using Gaussian
RBF with ε = 5

K 5 6 7

N 11 16 16

cond(GT G) 3.19 · 106 8.76 · 1010 1.24 · 1010
||D||2 12.72 27.05 23.77

In Table 5, we present comparable results while now employingHalton points as the center
points X . Note that even with small values of K , the condition number of GTG becomes
high. A noteworthy observation is that increasing the dimension K doesn’t necessarily lead to
an automatic increase in the required number of evaluation points N .Note that our evaluation
procedure remains confined to equidistant points, signifying that we employ an equidistant
point distribution for the evaluation points Y as opposed to using Halton points or any
optimization procedure for the point distribution. While potential enhancements could stem
from adopting diverse point selections for Y , these considerations will be deferred to future
investigations.

As mentioned before the shape parameter effects highly the conditioning numbers of the
corresponding RBF methods. For flat RBF methods meaning small ε, the matrices becoming
ill-conditioned. Also in this case, we see a similar behavior for the RBFSBP operators. In
Table 6, we give the numbers using ε = 1 in a Gaussian kernel. We recognize that the
condition number of GTG is high and stress that even if we could derive G, our construction
procedure of the RBFSBP methods from Subsection 4.3 would be problematic. The reason
being that, we have to solve a linear system to obtain QA where also the corresponding
Vandermonde matrix is ill-conditioned. By increasing the shape parameter to 5, we get better
result as reported in Table 7. In this example, we do not run into the ill-conditioning problem
and we can increase the dimension of K .
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7 Concluding Thoughts

RBF methods are a popular tool for numerical PDEs. However, despite their success
for problems with sufficient inherent dissipation, stability issues are often observed for
advection-dominated problems. In this work, we used the FSBP theory combinedwith aweak
enforcement of BCs to develop provable energy-stable RBF methods. We found that one can
construct RBFSBP operators by using oversampling to obtain suitable positive quadrature
formulas. Existing RBF methods do not satisfy such an RBFSBP property, either because
they are based on collocation or because an inappropriate quadrature is used. This is demon-
strated for simple test cases and the one-dimensional setting. Our findings imply that the
FSBP theory provides a building block for systematically developing stable RBF methods,
filling a critical gap in the RBF theory.

In future work, it would be interesting to analyze the ill-condition property of the matrices
with respect to the shape parameter using well-known techniques from the RBF community
and to study the connection between the classical RBF and the RBFSBP framework. Addi-
tionally, it would be interesting to improve the quadrature procedure in the construction and
optimize the point selection of the evaluation pointsY to avoid the ill-conditioning ofG. Also,
instead of working with the basis representation of the cardinal functions, one may change
the basis to avoid ill-conditioning of the Vandermonde matrices. However, these points are
left for future work. Our investigation is a first consideration of the condition properties of
the RBFSBP approach. Additionally, future work will address the extension to local RBF
methods and multiple dimensions on complex domains.
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Appendix

Necessity of Polynomials in RBFs

For completeness, we shortly explain why the RBF interpolant (10) exists uniquely when the
kernel ϕ is conditionally positive definite of order m and polynomials of degree up to m − 1
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are incorporated. To this end, recall that ϕ is conditionally positive definite of order m when

αT	α > 0 (48)

for all α ∈ R
K \ {0} that satisfy (12), where 	 is given by (14). Further, (12) is equivalent

to PTα = 0. Next note that the RBF interpolant (10) exists uniquely if and only if the
linear system (13) has a unique solution for every u, which is equivalent to the corresponding
homogeneous linear system

	α + Pβ = 0, (49)

PTα = 0, (50)

admitting only the trivial solution, α = 0 and β = 0. To show that this is the case, we
multiply both sides of (49) by αT from the left, which yields

αT	α = 0, (51)

since αT P = 0T due to (50). Further, for conditionally positive definite ϕ, (51) implies
α = 0. Substituting α = 0 into (49) yields Pβ = 0, which means that the polynomial

p(x) =
m∑
l=1

βl pl(x) (52)

has zeros x1, . . . , xK . Finally, for m ≤ K , this can only be the case if β = 0.

RBFSBP property with Non-diagonal NormMatrix

In Section 4.2, we demonstrated that there exist no diagonal P such that the RBFSBP prop-
erties are fulfilled in general. In the general definition (4), P must only be symmetric positiv
definite and not necessarily diagonal. Therefore, some non-diagonal normmatrixmight exists
fulfilling the RBFSBP property. Here, we demonstrate that this is not the case. To investigate
this, we set XK = YN . The differentiation operators D ∈ R

N×N of classic global RBFmeth-
ods are usually constructed to be exact for the elements of the finite dimensional function
spaceRm(YN ). Unfortunately, neither the normmatrix P nor the matrix Q are explicitly part
of RBF methods, which only come with an RBF-exact differentiation operator D ∈ R

N×N

for the cardinal functions. That said, we will now demonstrate that in many cases existing
collocation RBF methods cannot satisfy the RBFSBP property since certain conditions are
violated.

To this end, let D ∈ R
N×N be the RBF-differentiation operator. We assume that there

exist a positive definite and symmetric norm matrix P ∈ R
N×N and a matrix Q ∈ R

N×N

such that (see (4))

D = P−1Q, Q + QT = B. (53)

The two conditions in (53) can be combined to

PD + (PD)T − B = 0. (54)

Next, we assume that the RBF interpolant include polynomials of most degree m − 1 ≥ 0.
In this case, R1(YN ) contains constants and P must be associated with a R1(YN )-exact
quadrature formula. Since D is R1(YN )-exact, this can be reformulated as∫ xR

xL
1∂x f dx = f |xRxL ⇐⇒ 1T PDf = f |xRxL ∀ f ∈ R1(YN ) (55)
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Table 8 Residual ‖PD+ (PD)T − B‖2 for the determined norm matrix P in the case of equidistant, Halton,
and random grid points

Equidistant points

Cubic Quintic

N \m − 1 0 1 2 0 1 2

10 1.5e − 10 8.1e − 11 5.8e − 10 5.8e − 10 4.0e − 10 4.0e − 10

20 3.8e − 10 9.3e − 10 5.5e − 10 1.0e − 05 7.5e − 08 6.0e − 08

Halton points

Cubic Quintic

N \m − 1 −1 0 1 −1 0 1

10 1.8e − 01 2.0e − 01 2.0e − 01 3.1e − 01 1.9e − 01 1.8e − 01

20 1.9e − 01 2.0e − 01 1.9e − 01 1.8e − 01 1.6e − 01 1.5e − 01

Random points

Cubic Quintic

N \m − 1 −1 0 1 −1 0 1

10 1.2e − 01 9.3e − 02 1.0e − 01 9.3e − 01 5.9e − 01 5.7e − 01

20 6.9e − 02 7.1e − 02 6.4e − 02 3.2e + 02 5.1e + 00 3.6e − 01

Since D and f are formulated with respect to the same basis span{ck}. The entries of D
are given by Djk = c′

k(x j ) with collocation points x j . Hence, (55) is used for every basis
element span{ci }, e.g. for c1:

c1|xRxL = c1(xR) − c1(xL) =
∫ xR

xL
1∂x c1dx =

N∑
j=1

w j c
′
1(x j ) = 1T Pc′

1. (56)

Since c′
i are the columns of the derivative matrix. We can collect every basis element using

(56) resulting in

1T PD = m. (57)

withm = [c1|xRxL , . . . , cN |xRxL ]. We shall now summarize the above discussion: Letm−1 ≥ 0
and b(P) := ‖PD + (PD)T − B‖2. Moreover, for given D let us consider the following
optimization problem:

min
P

{
b(P) s.t. P = PT , P > 0, 1T PD = m

}
(58)

If the differentiation operator D of a classic global RBF method satisfies the FSBP property,
then minimizers P∗ of the optimization problem (58) satisfy b(P∗) = 0. There exist a
suitable quadrature formula to determine P through the minimization problem (58). It should
be stressed that b(P) = 0 is necessary for the given D to satisfy the SBP property, but not
sufficient. This follows directly from [25, Lemma 4.3] containing the fact that the derivatives
of the basis functions are integrated exactly.

In our implementation we solved (58) using Matlab’s CVX [27]. The results for different
numbers and types of grid points x as well as kernels ϕ and polynomial degrees m − 1
can be found in Table 8. Our numerical findings indicate that in all cases classic global
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RBF methods do not satisfy the RBFSBP property. This can be noted from the residual
b(P) = ‖PD + (DP)T − B‖2 corresponding to the minimizer P of (58) to be distinctly
different from zero (machine precision in our implementation is around 10−16). This result
is not suprising and in accordance with the observations made in the literature [21, 53].
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