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Abstract
We investigate the use ofmodels from the theory of regularity structures as features inmachine
learning tasks. A model is a polynomial function of a space–time signal designed to well-
approximate solutions to partial differential equations (PDEs), even in low regularity regimes.
Models can be seen as natural multi-dimensional generalisations of signatures of paths; our
work therefore aims to extend the recent use of signatures in data science beyond the context
of time-ordered data. We provide a flexible definition of a model feature vector associated to
a space–time signal, along with two algorithms which illustrate ways in which these features
can be combined with linear regression. We apply these algorithms in several numerical
experiments designed to learn solutions to PDEs with a given forcing and boundary data.
Our experiments include semi-linear parabolic andwave equationswith forcing, andBurgers’
equation with no forcing. We find an advantage in favour of our algorithms when compared
to several alternative methods. Additionally, in the experiment with Burgers’ equation, we
find non-trivial predictive power when noise is added to the observations.

Keywords Regularity structures · Path signatures · Regression · Supervised learning ·
Partial differential equations
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1 Introduction

The aim of this paper is to explore the effectiveness of models from Hairer’s theory of
regularity structures [16] as feature sets of space–time signals. A model is a collection of
polynomial functions of the signal which has been used to great success in the analysis of
stochastic partial differential equations (SPDEs). This paper is the first, to our knowledge, to
explore its effectiveness in a machine learning context.

One of the motivations for this study comes from the fact that models are a higher-
dimensional analogue of the path signature, a central object in Lyons’ theory of rough
paths [32]. The signature is the collection of the iterated integrals of a path, which has a
rich mathematical structure; it is known to characterise the path up to a natural equivalence
relation [2, 6, 19] and leads to a natural notion of non-commutative moments on pathspace [8,
11]. Over the past decade, the ability of the signature to encode information about a path
in an efficient and robust way has made it a powerful tool in the analysis of time-ordered
data. Examples of applications of signatures include the recognition of handwriting [15,
45] and gestures [33], analysis of financial data [24, 30], statistical inference of SDEs [37],
analysis of psychiatric and physiological data [1, 35], topological data analysis [10], neural
networks [23], and kernel learning [11, 25].1 See [7] for a gentle introduction to the path
signature and some of its early applications.

1.1 Our Contribution

Our main contribution is to introduce a novel concept of model feature vector (MFV) that
provides an extension of path signatures outside the context of time-ordered data, that is,
to data parameterised by multi-dimensional space. The MFV is a collection of space–time
functions from D to R, where D ⊂ R

d for d ≥ 0, that is built from an input signal ξ : D →
R

K . In the context of solving PDEs, the signal may incorporate a forcing term and boundary
data. The motivation for the MFV is the fact that solutions to PDEs with a given forcing term
and boundary data should be well-approximated at a space–time point z by components of
the corresponding MFV evaluated at the same space–time point; we give further details in

1 Graham [15], Morrill et al. [35] notably received first prizes in the ICDAR 2013 competition and the
PhysioNet 2019 Computing in Cardiology Challenge respectively.
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Sect. 2.1. In a machine learning context, the MFV provides a set of features of the original
data that can be used in learning algorithms.

In addition to proposing theMFV, we give evidence that these features can carry important
information in several test cases. The basic problem on which we test the use of MFV is:

Problem 1 For a point z ∈ R
d , predict the value u(z), where u solves a PDE with a known

forcing ξ and boundary condition u0 but with unknown coefficients.

We focus on the case that the PDE in question is an evolution equation. To address Problem 1,
we propose two algorithms, Algorithms 1 and 2, in Sect. 2.3 based on elementary linear
regression with MFVs in supervised learning tasks. Algorithm 1 is designed to predict u(z)
in the presence of a general forcing ξ , while Algorithm 2 is designed to work when there is
no forcing (or equivalently ξ = 0) in which case one can leverage the flow property of u to
improve predictability. An important feature of Algorithm 2 is that it predicts u(t, x) for all
space–time points (t, x), thereby effectively learning the entire function u.

We investigate the effectiveness of Algorithms 1 and 2 in numerical experiments in Sect. 3.
We apply Algorithm 1 to non-linear parabolic and wave equations with forcing and fixed
initial conditions, and apply Algorithm 2 to Burgers’ equation with no forcing but varying
initial condition.

In the case of Burgers’ equation, Algorithm 2 performs similarly to an adaptation of the
PDE-FIND algorithm [38] on noiseless data and data with small noise, and outperforms the
latter on datawith large noise (see Sect. 3.3.1). In the case of a parabolic equation,Algorithm1
outperforms some basic off-the-shelf regression algorithms (SVR, K-Nearest Neighbours,
Random forests) applied simply by treating the forcing as a large vector.

We emphasise that the definition of MFV in Sect. 2.2 and the algorithms in Sect. 2 are pre-
sented independently of PDEs and could be applied to learn other functions of the underlying
signal, not necessarily the solution of a PDE—see Sect. 4 for further discussion.

1.1.1 RelatedWorks

The MFV is inspired by the notion of a model from [16]. The main difference between our
definition and that in [16] is that we suitably include the boundary data of the signal as part
of the model. The path signature is a special case of MFV (Proposition 2.4).

The idea to apply machine and statistical learning methods to find, predict, or study
solutions of PDEs has seen much attention in recent years. See for example [5, 18, 36, 38,
40, 44] and the references therein. We also mention the works [21, 22, 27, 29, 47] that, like
ours, treat boundary data in machine learning-based solvers. Many works in this direction
have focused on new design of learning algorithms. In contrast, our main contribution comes
from designing a new set of features which can be used in a range of algorithms. As such,
we expect our approach to complement many existing methods.

Since the appearance of this article, several works have built on MFVs (or related
approaches) especially in combination with neural networks. See for example [20, 43].

2 Model Feature Vectors and Regression Algorithms

In this sectionwemotivate and define the “model feature vector” and introduce two algorithms
based on models for learning functions of space–time signals.

We denote by N = {0, 1, 2, . . . } the set of non-negative integers and by R the set of real
numbers. Assume that we are given a spatial domain D ⊂ R

d for d ≥ 0 and a time horizon
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T > 0. Given a multi-index a ∈ N
d , we denote ∂a = ∂

a1
1 . . . ∂

ad
d where

∂
ai
i := ∂ai

∂xaii
, for i = 1, . . . , d.

We will also define the order of a multi-index as |a| := ∑d
i=1 ai . Note that ∂

0u = u. We
let ∂t denote the partial derivative with respect the time parameter t ∈ [0, T ].

2.1 Motivation

Our motivating problem is to learn the solution of a PDE on [0, T ] × D given by

Lu = μ({∂au}|a|≤q) + σ({∂au}|a|≤q)ξ,

u(0, x) = u0(x), (2.1)

where L is a linear differential operator, u0 : D → R is the initial condition, and ξ : [0, T ]×
D → R is a forcing.2 The functions μ, σ : R1+d+···+dq → R take as arguments the partial
derivatives of u up to order q (i.e. the jet of u to level q) and are assumed to be smooth and
unknown, while (ξ, u0) is known.

Such an equation is often called a PDE with forcing ξ . When ξ is a random function, e.g.
space–time white noise, it is also referred to as a stochastic PDE (SPDE).

For this discussion, we assume L = ∂t − ν� is the heat operator with viscosity ν > 0,
where � = ∑d

i=1 ∂2i is the Laplacian on D ⊂ R
d , and μ, σ depend only on u (and not its

derivatives). The case when μ, σ depend on ∂au with |a| > 0 as well as the case of other
choices of L, e.g. the wave operator, are left to the reader.

Under good enough assumptions on the functionsμ, σ, u0 and the forcing ξ , equation (2.1)
admits a local in time mild solution.3 In particular, Picard’s Theorem implies that u is the
limit of the following recursive sequence

u(0) = Ic[u0],
u(n+1) = Ic[u0] + I [μ(u(n))] + I [σ(u(n))ξ ], (2.2)

where the operators I and Ic are defined by
{

(∂t − ν�)I [ f ] = f ,

I [ f ](0, ·) = 0,

{
(∂t − ν�)Ic[g] = 0,

Ic[g](0, ·) = g,
(2.3)

for functions f : [0, T ] × D → R and g : D → R, subject to the same boundary conditions
as in (2.1).

The idea is now to Taylor expand the function μ up to m terms and the function σ up to
� terms in the equation for u(n+1). Define u0,m,� = Ic[u0] and recursively set

un+1,m,� = Ic[u0] +
m∑

k=0

μ(k)(0)

k! I [(un,m,�)k] +
�∑

k=0

σ (k)(0)

k! I [(un,m,�)kξ ]. (2.4)

Then, heuristically, since Taylor’s expansion implies un,m,� → u(n) as m, � → ∞ and
since Picard theorem implies u(n) → u as n → ∞, we see that un,m,� should be a good
candidate for approximating u.

2 One might need to include other initial information like an initial speed for the case of the wave equation
from Sect. 3.2.
3 In the case that ξ is white noise on [0, T ] × [0, 1], smoothness of the above functions is enough (see [12]).

123



Journal of Scientific Computing (2024) 98 :13 Page 5 of 28 13

It is not difficult to see from (2.4) that un,m,� is a polynomial function of Ic[u0] and ξ that
involves iterated integrals (i.e. iterated applications of I ). Recalling that the unknowns are
μ and σ , and thus μ(k) and σ (k) are also unknown, it is sensible to encode as features these
polynomials of Ic[u0] and ξ and learn the solutionmap (u0, ξ) �→ u via linear regression. Our
definition of “model feature vector” below precisely encodes this collection of polynomials
that appear in un,m,� in a more general setting. These polynomials closely resemble models
appearing in the theory of regularity structures, see [16, Sec. 8], which is the motivation
behind our terminology.

2.2 Model Feature Vectors

We now generalise and abstract the polynomial features discussed in the previous subsection.
Fix for the rest of this section a pair ({u(i)}i∈J , ξ) (an “observed signal”) where J is a finite
index set (possibly empty) and

ξ = (ξ (1), . . . , ξ (K )) : [0, T ] × D → R
K , u(i) : [0, T ] × D → R. (2.5)

We call ξ the forcing. The case d = 0 corresponds to just ξ : [0, T ] → R
K and

u(i) : [0, T ] → R. In the experiments in Sect. 3, we sometimes let u be fixed, so that the
signal is only ξ , and sometimes we fix ξ (essentially taking ξ ≡ 0) so that the signal is only
u(i). One should think of {u(i)}i∈J as “boundary conditions”, like Ic[u0] in (2.2), and where
we allow multiple boundary conditions (as needed, e.g. for the wave equation).

Let us fix a linear operator I that maps space–time functions f : [0, T ] × D → R to
space–time functions I [ f ]. For example, I [ f ] could be a convolution with some space–time
kernel or a solution to some linear PDE with forcing f .

Definition 2.1 Consider a tuple of non-negative integers α = (m, �, q) ∈ N
3 and n ∈ N. The

model feature set Sn
α is the finite set of formal symbols defined inductively by4 S0

α = J and

Sn
α =

{
I[

	(k)
p∏

i=1

Dai τi
] : 1 ≤ p + 1 ≤ �

}
∪

{
I[

p∏

i=1

Dai τi
] : 1 ≤ p ≤ m

}
∪ Sn−1

α ,

where ai ∈ N
d with |ai | ≤ q , 1 ≤ k ≤ K , and τi ∈ Sn−1

α . Here 	(k) and Dai are formal
symbols. When ai = 0 we simply write Dai τ = τ .

Themodel feature vector (MFV, or simplymodel)Mn
α of (u(i), ξ) as in (2.5) is the family

functions Mn
α : Sn

α → R
[0,T ]×D that we denote by

Mn
α = ( fτ )τ∈Sn

α
,

where fτ : [0, T ] × D → R is defined recursively by fi = u(i) for i ∈ J and for τ =
I[

	(k) ∏p
i=1 D

ai τi
]
and σ = I[ ∏p

i=1 D
ai σi

]

fτ = I
[
ξ (k)

k∏

i=1

∂ai fτi
]
, fσ = I

[ k∏

i=1

∂ai fσi
]
. (2.6)

We call n the height of a model, m the additive width, � the multiplicative width, and q
the differentiation order. Furthermore,

4 We use the convention
∏0

i=1 τi = 1. Furthermore, the product of symbols is commutative, e.g. we identify
I[	D1τ1D

2τ2] = I[D2τ2	D1τ1], and multiplication by 1 is the identity, i.e. 1τ = τ .
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• if q = 0, we call Mn
α a model without derivatives,

• if � = 0, we call Mn
α a model without forcing, and

• if J is empty, we call Mn
α a model without initial conditions.

We will often use an abuse of notation and write fτ ∈ Mn
α meaning that there exists a

symbol τ ∈ Sn
α such that Mn

α[τ ] = fτ . The symbols in Sn
α can be represented as decorated

combinatorial rooted trees as in [3, Sec. 2].
Note that additive width m limits how many functions could be multiplied if none of

them includes a component of the forcing ξ , while multiplicative width � limits how many
functions could be multiplied if one of them is a component of ξ .

Example 2.2 Consider n = 1, and α = (2, 2, 1), and d = 1. Suppose J = {c} is a singleton.
Then, denoting Dx = D(1),

S1
α = {

c, I[	], I[c], I[(c)2], I[	c], I[Dxc], I[cDxc], I[(Dxc)
2], I[	Dxc]

}
.

If we instead take ᾱ = (2, 2, 0), i.e., consider the model without derivatives, then

S1
ᾱ = {

c, I[ξ ], I[c], I[(c)2], I[ξc]}.
Suppose now that D = [0, 1]. Let ξ, u(c) : [0, T ] × D → R be given by ξ(t, x) = sin(t)

and u(c)(t, x) = cos(x). Finally, suppose I[ f ](t, x) = ∫ x
0 f (t, y) dy is the integration-in-

space operator. Then the MFV M1
ᾱ is

M1
ᾱ = {

cos(x), x sin(t), sin(x), (x + sin(x) cos(x))/2, sin(t) sin(x)
}
,

where we used
∫ x
0 cos(y) dy = sin(x) and

∫ x
0 cos(y)2 dy = (x + sin(x) cos(x))/2. The

space–time functions fτ in M1
ᾱ correspond to the symbols of S1

ᾱ in the same order, e.g.,
fI[(c)2] = (x + sin(x) cos(x))/2.
To give an example at level n = 2, one of the symbols in S2α is τ = I[	I[cDxc]]. The

corresponding function fτ ∈ M2
α is

fτ (t, x) =
∫ x

0
sin(t)

( ∫ y

0
cos(z)(− sin(z)) dz

)
dy =

∫ x

0
sin(t)

1

2
(− sin2(y)) dy

= 1

8
sin(t)(sin(2x) − 2x).

We next show precisely how the path signature is generalised by theMFV. Consider n ≥ 1
and a differentiable path

X = (X (1), . . . , X (K )) : [0, T ] → R
K .

Definition 2.3 The level-n signature of X over an interval [s, t] ⊂ [0, T ] is the collection
of Kn numbers {SIs,t (X)}I indexed by multi-indexes I = (i1, . . . , in) ∈ {1, . . . , K }n and
defined by the iterated integrals

S(i1,...,in)
s,t (X) =

∫ t

s

∫ tn

s
. . .

∫ t2

s
Ẋ (i1)
t1 . . . Ẋ (in−1)

tn−1
Ẋ (in)
tn dt1 . . . dtn−1 dtn . (2.7)

Proposition 2.4 Define the family of symbols Wn inductively by W0 = {1} and
Wn = {I[	(k)τ ] : τ ∈ Wn−1, 1 ≤ k ≤ K },

where 	(k)1 := 	(k). Then there is a bijection ϕ : {1, . . . , K }n → Wn given by

ϕ(i1, . . . , in) = I[	(in)I[	(in−1)I[. . . I[	(i1)] . . .]]].
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Consider furthermore d = 0 and define the RK -valued forcing

ξ = {ξ (i)}Ki=1 : [0, T ] → R
K ξ (i) = Ẋ (i).

Let I [ξ ](t) = ∫ t
0 ξ(s) ds be the integration-in-time operator and α = (0, 2, 0) and J = ∅

(i.e. consider the model without initial conditions).
Then Wn ⊂ Sn

α and, for all (i1, . . . , in) ∈ {1, . . . , K }n,
Mn

α[ϕ(i1, . . . , in)](T ) = S(i1,...,in)
0,T (X). (2.8)

Proof The inclusion Wn ⊂ Sn
α and that ϕ : {1, . . . , K }n → Wn is a bijection are clear.

Equality (2.8) is clearly true for n = 1 and in general follows by induction:

Mn
α[ϕ(i1, . . . , in)](T ) = Mn

α[I[	(in)ϕ(i1, . . . , in−1)]](T )

=
∫ T

0
Ẋ (in)S(i1,...in−1)

0,tn
(X) dtn

= S(i1,...in)
0,T (X)

where the second equality follows from the inductive hypothesis of (2.8) for n − 1 and the
third equality follows readily from the definition (2.7). �


In our experiments below, the finite index set J and “boundary conditions” {u(i)}i∈J will
be taken as follows: in Sect. 3.3 J will be a singleton J = {c} and u(c) will be the solution
to the linear heat equation with a given initial condition u(c)

0 : D → R, i.e. u(c) = Ic[u(c)
0 ]

for Ic as in Sect. 2.1; in Sect. 3.1 J will primarily be empty J = ∅ as we will ignore initial
conditions (though see Sect. 3.1.2 for an exception); in Sect. 3.2 J will contain two elements
J = {c, s} and u(c) (resp. u(s)) will be the solution of the linear wave equation with initial
condition u(c)

0 and initial speed 0 (resp. initial condition 0 and initial speed u(s)
0 ), where both

u(c)
0 , u(s)

0 are given.
While we consider only a space–time setting, Definition 2.1 readily adapts to an purely

spatial setting. In this case the linear operator I would map functions f ∈ R
D to I [ f ] ∈ R

D ,
e.g. I [ f ](x) = ∫

D K (x, y) f (y) dy for a kernel K : D × D → R.

2.3 Regression Algorithms

In this subsection, we propose two supervised learning algorithms which use the MFV of
an input ({u(i)}i∈J , ξ) to learn an output u. While in principle there is no limitation of the
nature of u (vector, classification label, etc.), we will consider the special case where u is
a number associated to a space–time point or is a space–time function. In the experiments
in Sect. 3, u will be the solution to a PDE with forcing ξ and a given initial condition. We
will furthermore consider henceforth K = 1, so the forcing is R-valued and simply write
ξ (1) = ξ ; the generalisation K > 1 is left to the reader.

2.3.1 Prediction at One Point

In the following algorithm, one should think of the observation u as a quantity which depends
on the signal ({u(i)}i∈J , ξ) at a given space–time point (t, x) ∈ [0, T ]× D. Below {u(i)}i∈J
and ξ will denote functions u(i), ξ : [0, T ] × D → R for every i ∈ J .
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Algorithm 1 (Prediction at one point.)
Parameters: integers n,m, �, q ∈ N and an operator I .
Input:

• a point (t, x) ∈ [0, T ] × D;
• a set J ;
• set of observed triplets (u, {u(i)}i∈J , ξ) ∈ U obs where u ∈ R;
• a set of pairs ({v(i)}i∈J , ζ ) ∈ U pr for which we want to make a prediction.

Output: Prediction upr ∈ R for every ({v(i)}i∈J , ζ ) ∈ U pr .

Step 1 Let α = (m, �, q). For each (u, {u(i)}i∈J , ξ) ∈ U obs and (resp. each ({v(i)}i∈J , ζ ) ∈
U pr) construct a model Mn

α = ( fτ )τ∈Sn
α
using {u(i)}i∈J and ξ (resp. {v(i)}i∈J and

ζ )
Step 2 Fit a linear regression of u against ( fτ (t, x))τ∈Sn

α
for each (u, {u(i)}i∈J , ξ) ∈ U obs.

Step 3 For each ({v(i)}i∈J , ζ ) ∈ U pr , construct a prediction upr using the linear fit
constructed from Step 2 and the associated model Mn

α .

Recall that our motivating problem is to learn the solution of a PDE (2.1) at a given point
(t, x) where (u0, ξ) are observed but μ, σ are unknown. Using the notation of Sect. 2.1, our
typical choice for J is a singleton J = {c} with u(c) = Ic[u0] (but we use other choices if
we wish to encode more or less boundary conditions). The heuristic reason why Algorithm 1
should work for predicting PDEs comes from the fact that functions inMn

α constructed from
ξ and Ic[u0] well approximate the n-th Picard iterate u(n) which itself should converge to the
solution of (2.1) for smooth μ and σ .

Remark 2.5 If it is known that the Eq. (2.1) is additive, i.e. that σ is a constant, then the
heuristic of Sect. 2.1 suggests that one should consider Mn

α with � = 1. More generally, if
it is known that both μ and σ are polynomials, then the heuristic suggests that taking m and
� − 1 greater than the respective degrees of μ and σ would likely not improve the accuracy
of the above algorithm. These remarks follow from the fact that polynomials agree with their
Taylor expansion (for high enough order of expansion).

Note that, in Algorithm 1, we regress against the functions in the model at one input
space–time point (t, x) only (see Sect. 2.1 for the motivation behind this choice in the case
of PDEs). In the case of path signatures (Definition 2.3), this corresponds to using only the
endpoint T of the signature, i.e. SI0,T (X), which is common practice (see e.g. [1, 10, 25]).
There are situations, however, where it is beneficial to use the signature of a path over different
segments, i.e. use SIs,t as a feature for different choices of [s, t] ⊂ [0, T ], and the choice of
segments is a hyperparameter, see e.g. the sliding window approach of [45]. It would be of
interest to explore if a similar approach yields any benefit for MFVs.

2.3.2 Prediction Using Flow Property

We will now focus on predicting functions u defined on all space–time points which have a
given initial condition and no forcing. Algorithm 2 below is designed to workwhen u satisfies
the time-homogeneous flow property: u(t, x) should depend on u(0, ·) in the same way as
u(t + h, x) depends on u(h, ·).

The algorithm employs a discretisation of time OT = {0 = t0 < t1 < . . . < tN = T } ⊂
[0, T ] which we assume is equally spaced, i.e. tk = δk where δ = T /N . The observed and
predicted functions of this algorithm are both functions OT × D → R.
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Assume further that we are given an additional linear map Ic which is an initialising map:
given u0 : D → R, Ic[u0] is another function [0, δ] × D → R. Let Mn

α(u0) be the model
without forcing (� = 0) constructed on [0, δ] × D with J = {c} and u(c) := Ic[u0].

We briefly describe the algorithm in words. Suppose that we know or have a prediction
for u(tk, x) for some k ∈ {0, . . . , N − 1} and all x ∈ D. Under the time-homogeneous
flow property, it is natural to seek an approximation for u(tk+1, x) using a functional linear
regression of the form

u(tk+1, ·) ≈ a(·) +
∑

τ∈Sn
α

bτ (·) fτ (δ, ·), (2.9)

where a, b : D → R are functions to be learned and fτ ∈ Mn
α(utk ). The time homogenous

flow property implies that a and bτ are expected to only depend on the time step δ and
not tk (but a, bτ can depend on x ∈ D). In the training phase, we therefore decompose
each observation u : OT × D → R into N ‘subobservations’ u(tk, ·) : D → R, for k =
0, . . . , N − 1, and learn the coefficients a, bτ from these subobservations. The prediction
phase then recursively applies the formula (2.9) to predict u from the ‘initial condition’
u(0, ·). In the following, we will sometimes write ut for the function u(t, ·) : D → R.

Algorithm 2 (Prediction using flow property.)
Parameters: integers n,m, q ∈ N, operator I , and initialising map Ic.
Input:

• a collection {u(t, x)}(t,x)∈OT ×D ∈ U obs of observed functions;
• a collection u0 ∈ U pr of initial conditions u0 : D → R for which we want to make a

prediction.

Output: A prediction upr : OT × D → R for every u0 ∈ U pr .

Step 1 Let α = (m, 0, q). For k = 0, . . . N − 1 and each u ∈ U obs construct a model
Mn

α(utk ) on [0, δ] × D with J = {c} and u(c) = Ic[utk ].
Step 2 For each x ∈ D fit a linear regression as in (2.9) of

(u(t j+1, x))u∈Uobs, j=0,...,N−1

against
(
( fτ (δ, x)) fτ ∈Mn

α(ut j )
)
u∈Uobs, j=0,...,N−1 .

Step 3 For each u0 ∈ U pr construct a model Mn
α(u0) on [0, δ] × D with J = {c} and

u(c) = Ic[u0]. Make a prediction of upr(t1, x) for each x ∈ D based on the fit
from Step 2 and ( fτ (δ, x)) fτ ∈Mn

α(u0).
Step 4 Recursive step. For each u0 ∈ U pr , k ≥ 1, and the predicted uprtk , construct a model

Mn
α(uprtk ) on [0, δ] × D with J = {c} and u(c) = Ic[uprtk ] and make a prediction of

upr(tk+1, x) for each x ∈ D based on a linear fit fromStep 2 and ( fτ (δ, x)) fτ ∈Mn
α(uprtk ).

When specific boundary values are given, onemight need to enforce these for the predicted
function upr. For example one might set upr(tk, x) = 0 for x ∈ ∂D and every k = 0, . . . N
if this was known.

As remarked earlier, Algorithm 2 effectively converts the size of the training set for the
linear fit from |U obs| to N × |U obs|.

Algorithm 2 aims to address a problem similar to that of learning a dynamical system.
A different approach to this problem is dynamic mode decomposition, which is based on
spectral analysis of the Koopman operator [39, 41].
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2.3.3 Feature Selection and Hyperparameters

The cardinality of Sn
α grows exponentially with n. To avoid overfitting or to speed up the

learning, it can be important to restrict further the number of elements in Sn
α . We do this

below by introducing a function called degree deg : Sn
α → R which satisfies deg(ξ) = η and

deg(i) = ηi , i ∈ J , for some η, ηi ∈ R together with the inductive definition

degI [τ ] = β + degτ, deg∂ai τ = degτ − |ai |, deg
k∏

i=1

∂ai τi =
k∏

i=1

deg∂ai τi , (2.10)

for some β > 0. This definition is set so that deg of symbols from Sn
α will be usually larger for

bigger n,m, �, q . We will then perform the regression in our algorithms against the functions
in the model whose symbol does not exceed a certain degree γ . When used, the degree
function and cutoff γ are additional parameters in Algorithms 1 and 2.

We follow a “rule of thumb” of keeping the ratio (number of train cases):(number of
predictors) above 10 (see [17, Sec. 4.4] and references therein for a discussion about such
rules). Thus, one would choose γ so that the number of functions in fτ ∈ Mn

α with degτ ≤ γ

is at least 10 times smaller than number of elements in U obs.
Note that it is much easier to keep the train cases to predictors ratio above 10 for

Algorithm 2 because we have N |U obs| train cases compared to only |U obs| train cases
in Algorithm 1. Nevertheless, it is still beneficial to use degree for Algorithm 2 for
computational reasons. Indeed, the linear regression time complexity for Algorithm 2 is
O(|Mn

α|3 + |Mn
α|N |U obs|). Thus, a large size of the model can drastically slow down the

learning.
The use of deg and cutoff γ is motivated by analysis of SPDEs,5 but other choices of

feature selection are possible and may lead to improved learning. For example, it is possible
to consider higher degree features but with a sparsity (i.e. l0 norm) penalty, which is often
employed in dictionary learning, though this choice would still require the computation of a
large modelMn

α , at least on the training data; it would be of significant interest to investigate
this form of feature selection (we are not aware of any systematic studies of sparse dictionary
learning even for signature features).

In addition to the degree, Algorithms 1 and 2 come with several further hyperparameters,
one ofwhich is the ‘height’ (number of iterated applications of a linear operator) of themodel;
in the case of path signatures (Definition 2.3), our ‘height’ is the ‘level’ of a signature. In
all the numerical experiments in Sect. 3, it was established that using a model with a larger
height improves the performance of regression. Another hyperparameter is the linear operator
I used in the definition of a model. In the case of Burgers’ equation analysed in Sect. 3.3, we
additionally found that I can be ‘guessed’ from the data, yielding sensible results (the guess
for I does not need to be precise but the precision influences the prediction power). Some
further discussion is given in Sect. 4.

3 Numerical Simulations

We present several numerical experiments where we learn the solution of the PDE (2.1)
with different choices of operator L and non-linearities μ, σ . In general one needs to specify
the boundary conditions of (2.1), i.e. the values of u(t, x) for x ∈ ∂D. For simplicity,

5 The notion of degree is similar to the one introduced in [16] and is related to the Hölder regularity of
functions in the model which are built from highly oscillatory signals.
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we only consider periodic boundary conditions in our experiment, but Dirichlet or Neumann
boundary conditions can be easily implemented. As in Sect. 2.3, we will only consider MFVs
(Definition 2.1) with K = 1 and q ≤ 1.

To approximate the continuum, we fix a finite grid O ⊂ [0, T ] × D. We will assume that
O = OT × OX where OT = {0 = t0 < t1 < · · · < tN = T } for some integer N ≥ 1 and
OX is a finite grid of points in D. We will work with functions defined on the gridO instead
of [0, T ] × D. For this purpose, the operator I , the partial derivatives ∂i , and Ic (whenever
it is used) must have approximations on O.

In all experiments below we use an ordinary least squares linear regression. See

https://github.com/andrisger/Feature-Engineering-with-Regularity-Structures.git

for Python code containing implementation of the model and experiments from this section.

3.1 Parabolic PDEs with Forcing

In this subsection we will suppose that the differential operator in (2.1) is given by L =
∂t − ν�, where ν > 0 is the viscosity and � = ∑d

i=1 ∂2i is the Laplacian on D ⊂ R
d . This

motivates the following definition.

Definition 3.1 Fix an initial condition u0 : D → R and a forcing ξ : [0, T ] × D → R as
well as n,m, � ≥ 1 and ν > 0. Let q ≤ 1 and α = (m, �, q). The model Mn

α for the
parabolic equation with viscosity ν is constructed by taking J = {c} with u(c) = Ic[u0]
where operators I and Ic are given by (2.3).

Remark 3.2 Algorithm 1 does not require knowledge of μ or σ in (2.1). However, in the
experiments in this subsection, μ and σ will be polynomials, and we will use knowledge
of their degree to choose the hyperparameters m, �. Another hyperparameter is ν since this
determines I through (2.3). When μ, σ, ν are completely unknown, these hyperparameters
could be chosen, as usual, by splitting the data into training, validation and test sets, and
tuning the hyperparameters on the validation set. See also Sect. 3.3 where a starting point for
an approximation of the viscosity ν̃ is derived from the training data.

3.1.1 Multiplicative Forcing

Consider the following PDE

(∂t − �)u = 3u − u3 + u ξ for(t, x) ∈ [0, 1] × [0, 1],
u(t, 0) = u(t, 1) (Periodic BC),

u(0, x) = x(1 − x), (3.1)

where ξ is a space–time forcing. Here we discretise space and time respectively in 100 and
1000 evenly distanced points, which we use to define the grids OX and OT . We solve (3.1)
for each forcing ξ using a finite difference method on the same discretisationO = OT ×OX

(see [31, Sec. 10.5]).
We take here ξ as approximations of space–time white noise. We performed Algorithm 1

both using the full modelMn
α fromDefinition 3.1 with viscosity ν = 1 and themodel without

the initial conditions (i.e. where J is assumed to be empty in the construction of Sn
α ). We

have found that in practice using the full model did not drastically improve the errors (see
Remark 3.3). Therefore, we primarily present results in this subsection for the model without
the initial condition.
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Fig. 1 Results of linear regression of solutions to (3.1) against the functions in modelM4
α with α = (3, 2, 0),

without initial conditions and of degree≤ 5. The x-axis contains values of u(t, x) for realisations of the forcing
ξ from the test set and the y-axis contains predictions of the linear regression. Subplots a–d show predictions
at space–time points (t, x) = (0.05, 0.5), (0.5, 0.5), (1, 0.5), (1, 0.95) respectively

We construct a model with J = ∅ of height n = 4, additive width m = 3, multiplicative
width � = 2,6 and differentiation order q = 0 (because μ and σ do not depend on ∂i u)
so that α = (3, 2, 0). We assign a degree from Sect. 2.3.3 to satisfy (2.10) with β = 2
and degξ = −1.5.7 In the experiments below we only consider functions fτ ∈ M4

α with
degτ ≤ 5.

We randomly sample 1000 realisations of approximations of white noise ξ on O and
solve (3.1) for each realisation. We then split the pairs (u, ξ) into training and test sets of size
700 and 300 respectively. There are only 56 functions in fτ ∈ M4

α with degree degτ ≤ 5
thus corresponding to a ratio of training cases to the number of predictors of 700/56 = 12.5.
In Fig. 1, we show results of performing Algorithm 1 with models without initial conditions
at various space–time points (t, x). In every subfigure one can see a scatter plot of actual
values of u(t, x) from the test set plotted against the predicted values. The error is measured

6 See Remark 2.5 for a motivation behind taking these particular widths.
7 This is motivated by the Hölder regularity of space–time white noise being −1.5 − ε for any small ε > 0
and the fact that the heat operator I increases the Hölder regularity by 2.
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Table 1 Average relative �2 errors, slopes, and R2 for linear regression against models of different heights

Model height Error (%) Slope R2 Error (%) Slope R2

(t, x) = (0.05, 0.5) (t, x) = (0.5, 0.5)

1 9.3 0.91 0.91 21.1 0.85 0.84

2 5.4 0.97 0.97 9.5 0.97 0.97

3 4.9 0.98 0.97 8.0 0.98 0.98

4 4.8 0.98 0.98 7.7 0.98 0.98

(t, x) = (1, 0.5) (t, x) = (1, 0.95)

1 23.2 0.73 0.73 22.1 0.75 0.75

2 13.7 0.91 0.91 13.4 0.91 0.91

3 7.7 0.97 0.97 7.7 0.97 0.97

4 6.5 0.98 0.98 6.6 0.98 0.98

Prediction is performed at space–time points (t, x) = (0.05, 0.5), (0.5, 0.5), (1, 0.5), (1, 0.95)

as a relative �2 error, i.e. for the vector of realisations R and predictions P we set

‖R − P‖�̄2 :=
√
√
√
√1

n

n∑

i=1

|Ri − Pi |2 and ‖R‖�̄2 :=
√
√
√
√1

n

n∑

i=1

|Ri |2.

and the relative �2 error is defined by

E := Error(R, P) = ‖R − P‖�̄2

‖R‖�̄2
=

√∑n
i=1 |Ri − Pi |2
∑n

i=1 |Ri |2 .

We also report the R2 coefficient of determination and the “error standard deviation” which
we define as

σ :=
√
√
√
√1

n

n∑

i=1

(
E − |Ri − Pi |

‖R‖�̄2

)2
.

We also report the slope of the regression line between true values and the predicted ones.
In Fig. 1 one sees a better fit for a small time t = 0.05 which is explained by the fact that

the approximation of u by functions fromM4
α is local because of the Taylor expansions in the

Picard iterations (see Sect. 2.1 and Eq. (2.4)). For larger times t ∈ {0.5, 1} as well as different
spatial points x ∈ {0.5, 0.95} there seem to be no big statistical difference in accuracy.

In Table 1, we show average relative �2 error, slope of the regression line, and R2 statistic
for Algorithm 1 applied to models of heights 1, 2, 3 and 4. All experiments are performed
1000 times (i.e. splitting the data randomly into training/test sets) and the average values over
these experiments are reported. Table 1 demonstrates that increasing height indeed allows for
a better overall prediction. A similar result holds true for the width: additive width smaller
than 3 [which corresponds to the third power in the non-linearity in (3.1)] gives on average
a worse error.

Remark 3.3 Note that the error for the middle time t = 0.5 is slightly worse than for the end
time t = 1. This could be caused by using a model without initial conditions instead of the
full model. Indeed, using the full model as in Definition 3.1 allows to slightly reduce the error
for the prediction at (t, x) = (0.5, 0.5) to 7.4% (with the same n = 4 and α = (3, 2, 0))
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Table 2 Average relative �2 errors, slopes, and R2 for off-the-shelf learning algorithms applied to flattened
noise with 100,000 points

RFR SVR KNN

Error (%) Slope R2 Error (%) Slope R2 Error (%) Slope R2

42.7 0.04 0.03 37.2 0.23 0.30 44.2 0.12 0.003

Prediction is performed at space–time point (t, x) = (1, 0.5)

while making almost no change to the error for the prediction at (t, x) = (1, 0.5) and at
(t, x) = (0.05, 0.5).

A heuristic reason why the effect of the fixed initial condition could be ignored for the
parabolic equations could be a good local structure and dissipative properties of the heat
operator. The advantage of using models with J = ∅ for parabolic equations is that such
models contain fewer functions, which both improves the speed of the computation and
potentially helps with problems of overfitting.

We compare the results from Algorithm 1 with several basic off-the-shelf learning algo-
rithms. To do this, for (u, ξ) ∈ U obs we transform all the space–time points of the forcing ξ

into a vector (in this case a vector of 100,000 points) and applied support vector regression
(SVR), K-nearest neighbours (KNN), and random forest regressions (RFR) to predict the
value of u(t, x) for (t, x) = (1, 0.5) ∈ [0, T ] × D. These algorithms were applied with the
default settings in the Python sklearn library (e.g. SVR was taken with the RBF kernel)
and each algorithm was tested on 1000 realisations of the noise with a 700:300 split for train-
ing and testing data as before. We give the results in Table 2. None of these algorithms gave
better than 35% error. We also subsampled ξ by taking 50, 200 and 1000 evenly sampled
space–time points (vs. the full 100,000 points) to avoid over-fitting, but these three choices
only increased the error for each regressor. This short comparison demonstrates that theMFV
captures information that is lost by treating the noise simply as a large vector.

3.1.2 Two-Dimensional Spatial Domain

We consider a similar experiment as in the previous subsection but over a two-dimensional
domain. Specifically, we consider the PDE

(∂t − �)u = 3u − u3 + u ξ for(t, x) ∈ [0, 1] × T
2,

u(0, x, y) = cos(2π(x + y)) + sin(2π(x + y)), (3.2)

where T2 def= R
2/Z2 is the two-dimensional torus that we identify with [0, 1)2 as a set (i.e.

we consider periodic boundary conditions). We take the forcing ξ now as white in time and
coloured in space. The precise definition is ξ(t, x, y) = β̇(t)w(x, y)where β(t) is Brownian
motion, and w is independent of β and normally distributed according to N (0, 33/2(−� +
49I )−3) as in [43, Sec 4.3]. Here � is a periodic Laplacian on T

2 and we take its discrete
periodic approximation to generate the data. The reason why we take a coloured noise in
space instead of space–time white noise is that the equation (3.2) is singular in two spatial
dimensions (see [16]) and does not have a classical solution if the noise is white in both space
and time.

We discretise space into 64 × 64 points and time into 1000 points. We construct a model
withJ = {c} a singleton and height n = 2 and remaining parameters (m, �, q and degree cut-
off) as in Sect. 3.1.1. For the corresponding function uc in (2.5) we take u(c) = Ic[u0]+ I [ξ ]
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Fig. 2 Results of linear regression of solution to (3.2). The x-axis contains values of u(t, x, y), where (t, x, y)
is the indicated space–time point, from the test set and the y-axis contains predictions of the linear regression

where Ic and I are as in (2.3). Remark that this definition slightly differs from Definition 3.1;
we made this choice to still incorporate the initial condition while keeping the number of
functions in Mn

α relatively small for computational reasons (cf. Remark 3.3). Note though
that this implies that the height 0 model already has some non-trivial information (coming
from I [ξ ]).

We sampled 1000 realisations of ξ and performed Algorithm 1 as in Sect. 3.1.1 (with 700
training and 300 testing samples). Figure2 shows the outcome for three space–time points.
As in Fig. 1, we see an decrease in accuracy at larger times, which is expected from theory
(as explained in Sect. 3.1.1). We also mention that we performed the same experiment with
no initial conditions (i.e. with J = ∅ as Sect. 3.1.1), but achieved no meaningful predictive
power (see Sect. 3.2 for a similar outcome for the wave equation), a feature not encountered
in the one-dimensional setting of Sect. 3.1.1.

We furthermore performed the experiment 1000 times, each time resampling the training
and testing set, and record the averages of the relative �2 error, slope of regression line,
and R2 statistic. The results are recorded in Table 3. As in Table 1, we see a sharp rise in
predictive power with the height of the model, further demonstrating that non-linearities in
the MFV capture important information of the underlying signal. We note that height n = 2
here effectively corresponds to height n = 3 of Sect. 3.1.1 since we included I [ξ ] in u(c).
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Table 3 Average relative �2 errors, slopes, and R2 for linear regression against models of different heights
for Eq. (3.2)

Model height Error (%) Slope R2 Error (%) Slope R2

(t, x, y) = (0.05, 0.5, 0.5) (t, x, y) = (0.5, 0.5, 0.5)

0 7.0 0.06 0.05 100.3 0.00 0.00

1 1.3 0.97 0.97 46.8 0.79 0.78

2 0.27 0.999 0.999 6.1 0.996 0.996

(t, x) = (1, 0.5, 0.5)

0 100.1 0.00 0.00

1 65.2 0.59 0.57

2 9.8 0.991 0.990

Prediction is performed at the same space–time points as in Fig. 2

Fig. 3 Results of linear regression of solution to (3.3) against the functions in modelM5
α with α = (3, 1, 0),

without initial conditions and of degree ≤ 7.5. The x-axis contains values of u(t, x) for realisations of the
forcing ξ from the test set and the y-axis contains predictions of the linear regression. Subplots a, b show
predictions at space–time points (t, x) = (0.5, 0.5) and (t, x) = (1, 0.5) respectively

3.1.3 Additive Forcing

We repeat the same experiment for the additive version of the Eq. (3.1) namely:

(∂t − �)u = 3u − u3 + ξ for(t, x) ∈ [0, 1] × [0, 1],
u(t, 0) = u(t, 1) (Periodic BC),

u(0, x) = x(1 − x). (3.3)

Discretisation of space–time and number of training and test cases is the same as in
Sect. 3.1.1. We perform Algorithm 1 using the modelM5

α from Definition 3.1 with viscosity
ν = 1 and α = (3, 1, 0), without initial conditions (J = ∅), and with degree ≤ 7.5, which
gives 58 functions.8 Note that since multiplicative width is 1 this reduces the number of
functions in the model compared to the multiplicative case of Sect. 3.1.1, which allows us
to take a larger height and upper bound for the degree. Figure3 shows the results for space–
time points (t, x) = (0.5, 0.5) and (t, x) = (1, 0.5). One can see that the additive equation

8 See Remark 2.5 for a motivations behind taking these particular widths.
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exhibits a worse prediction for long times compared to the multiplicative equation (Fig.1,
Table 1) but a slightly better prediction for short times (for t = 0.05 error is even better:
0.1% in comparison to ≈ 5% in the multiplicative case).

The prediction error rises in this additive case as t increases. This is expected by a similar
reason as mentioned in Sect. 3.1.1, which is the Taylor expansions in the Picard iterations
approximating u (see (2.4)). It would be of interest to extend Algorithm 1 to decrease this
error. A potential way to do this is to generalise and combine Algorithms 1 and 2 and compute
models on subintervals to learn the ‘flow’ of the equation, i.e. build models from the initial
condition and the forcing over subintervals of [0, T ], use this model to predict the solution
over subintervals, and chain the predictions together. (See also the discussion at the end of
Sect. 2.3.1.) We leave this generalisation for a future work.

3.2 Wave Equation with Forcing

We will now consider a wave equation taking L = ∂2t − � in (2.1) and predict solutions of
the following non-linear wave equation

(∂2t − �)u = cos(π u) + u2 + u ξ for(t, x) ∈ [0, 1] × [0, 1],
u(t, 0) = u(t, 1) (Periodic BC),

u(0, x) = sin(2π x),

∂t u(0, x) = x(1 − x), (3.4)

where ξ is a space–time forcing which we again take as a realisation of white noise. We will
compare Algorithm 1 with both models with and without initial conditions. Discretisation of
space–time and number of training and test cases is the same as in Sect. 3.1.1.

Note that, in the general case, the level zero of the full model M0
α for the wave equation

should not only include the contribution of the initial condition u0 but also the contribution
of the initial speed ∂t u(0, x) = v0. This leads to the following definition.

Definition 3.4 Consider an initial condition u0 : D → R, an initial speed v0 : D → R, and
a forcing ξ : [0, T ] × D → R, as well as n,m, � ≥ 1, q ≤ 1 and ν > 0. Let α = (m, �, q).
The model Mn

α for the wave equation with propagation speed
√

ν is constructed by taking
J = {c, s} with u(c) = Ic[u0], u(s) = Is[v0] where

⎧
⎪⎨

⎪⎩

(∂2t − ν�)Ic[u0] = 0

Ic[u0](0, x) = u0(x),

∂t Ic[u0](0, x) = 0.

⎧
⎪⎨

⎪⎩

(∂2t − ν�)Is [v0] = 0

Is[v0](0, x) = 0,

∂t Is[v0](0, x) = v0(x).

Moreover, for functions f : [0, T ] × D → R the operator I [ f ] is defined to be the solution
to a wave equation

(∂2t − ν�)I [ f ] = f ,

with I [ f ](0, x) = ∂t I [ f ](0, x) = 0.

Boundary conditions for the above equation are taken to be the same as boundary conditions
for the underlying wave equation (in this case periodic).

For this experiment we choose n = 4, α = (m, �, q) = (2, 2, 0), and ν = 1, and impose
the degree to satisfy degξ = −1.5, degu0 = degv0 = −0.5 and β = 1.5 in (2.10). We
choose only functions of degree ≤ 1.5 which gives 60 functions in M4

α .
Figure 4 shows the importance of using the full model in the case of the wave equation,
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Fig. 4 Results of linear regression of solution to (3.4) using functions from models M4
α with α = (2, 2, 0)

of degree ≤ 1.5 without and with initial conditions. The x-axis contains values of u(t, x) for realisations of
the forcing ξ from the test set and the y-axis contains predictions of the linear regression. Subplots a, b show
predictions at space–time point (t, x) = (1, 0.5) for models with J = ∅ and J = {c, s} respectively

Table 4 Average relative �2 errors, slopes, and R2 for prediction at space–time point (t, x) = (1, 0.5) for
different heights of the model

Model height With initial speed Without initial speed
Error (%) Slope R2 Error (%) Slope R2

1 59.8 0.04 0.03 59.8 0.03 0.03

2 12.8 0.96 0.96 13.8 0.95 0.95

3 2.1 0.999 0.999 5.0 0.994 0.993

4 1.4 0.999 0.999 4.3 0.995 0.995

First column involves models using J = {c, s} and the second column involves models using J = {c} only

i.e. the contribution of the initial condition (even fixed and deterministic) can’t be ignored.9

The model constructed with J = ∅ in the case of the wave equation gives absolutely no
predictability contrary to the parabolic case (see Remark 3.3) because the wave operator is
not dissipative contrary to the heat operator.

Average relative �2 errors corresponding to different heights of themodel with andwithout
initial speed are presented in the Table 4 for 1000 repeated experiments. Table 4 further shows
the importance of including the contributions of both the initial condition and the initial speed
in the model when predicting the wave equation.

3.3 Burgers’ Equation

In this subsection, we aim to predict solutions to the following Burgers’ equation with no
forcing

(∂t − 0.2�)u = −u∂xu, (t, x) ∈ [0, 10] × [−8, 8]
u(t,−8) = u(t, 8) (Periodic BC),

9 This parallels the necessity of including the initial condition in an analogue of the model in [14] where the
authors solve a non-linear singular stochastic wave equation in 3 dimensions.
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Table 5 Performance of Algorithm 2 on predicting solutions to (3.5) with no noise and true viscosity ν = 0.2,
with estimated viscosity (EV), and with 1% noise and 3% noise on observed data

Algorithm 2
AE AER TER ASD SDR

No noise 1.1% 0.8–1.6% 0.06–9.4% 1.1% 0.8–1.9%

EV 1.1% 0.8–1.6% 0.06–9.2% 1.1% 0.7–1.9%

1% noise 8.8% 5.8–12.4% 0.4–50.0% 8.0% 4.9–11.1%

3% noise 13.7% 8.7–13.7% 1.8–68.3% 8.7% 4.8–12.8%

PDE-FIND

No noise 0.9% 0.5–2.3% 0.2–10.5% 0.6% 0.2–2.2%

1% noise 7.3% 4.6–14.2% 0.9–32.7% 5.5% 3.3–8.9%

3% noise 19.1% 13.9–25.1% 3.2–77.1% 12.5% 7.8–18.4%

Comparison is given with PDE-FIND on observations with no noise, 1%, and 3% noise (see Sect. 3.3.1).
AE, average relative �2 errors over all experiments and test cases; AER, average error range over all exper-
iments; TER, total error range over all experiments and test cases; ASD, average standard deviation over all
experiments; SDR, standard deviation range over all experiments

u(0, x) =
10∑

k=−10

ak
1 + |k|2 sin

(
λ−1πkx

)
(3.5)

from the knowledge of the initial condition u0. That is, given only the initial condition
u0 : [−8, 8] → R, our goal is to reconstruction the entire function u : [0, 10] × [−8.8] → R

without explicitly solving the PDE (3.5), i.e., we wish to learn the map u0 �→ u. This
experiment is partly inspired by [34]. The above equation satisfies the time homogeneous
flow property that motivates Algorithm 2, which we use in the experiments below.

Above, (ak)k=−10,...,10 are sampled as independent and identically distributed (i.i.d.) stan-
dard normal random variables and λ is a scaling parameter. We sample 120 such initial
conditions with scaling λ = 8, 4, 2 (40 initial conditions for each scaling), which corre-
sponds to u0 having respectively one, two and four cycles. We then randomly subdivide
these initial conditions into training and test sets of sizes 100 and 20 respectively.

To discretise time, we take 201 evenly spaced points OT ⊂ [0, 10] (N = 200, δ = 0.05
in the notation of Sect. 2.3.2). To approximate the spatial domain, we take 512 evenly spaced
points OX ⊂ D = [−8, 8]. Solutions to the equation, however, we generated using a finer
grid (2001 time points and 512 space points).

There is no forcing ξ in the equation so � = 0. We construct the models using Defi-
nition 3.1 with viscosity ν = 0.2. In constructing the model, we discretise time with the
finer grid, so the relevant space–time domain in continuum is [0, δ] × D which we discre-
tise to {0, δ/10 . . . , 9δ/10, δ} × OX . In particular, the operator Ic takes as input a function
u0 : OX → R and outputs a function Ic[u0] : {0, δ/10 . . . , 9δ/10, δ} × OX → R.

We choose height n = 3, additive width m = 2, and differentiation order q = 1 for
the model, i.e. α = (2, 0, 1). We assign for the degree degu0 = −1.5 and β = 2 in (2.10)
and only functions fτ with degree degτ ≤ 2.5 are considered. This gives 20 functions of
degτ ≤ 2.5 instead of the original 91 functions in M3

α . Using this degree cutoff speeds up
the fitting of the linear regression by around 20 times in addition to a faster computation of
the model.

As the number of training and testing cases (100 and 20) is relatively small, we repeated
the above experiment 10 times. In the first row of Table 5 we record the performance of
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Fig. 5 Heat-maps for the solutions of (3.5) (left) and predictions for two test cases (right) using Algorithm 2
with functions from the model M3

α with α = (2, 0, 1) of degree ≤ 2.5. The values of λ are 4 for subfigure
(a) and 8 for (b)

Algorithm 2, namely the averages, ranges, and standard deviations of the relative �2 error
over the 10 experiments with 20 test cases each. Here the relative �2 error for one test case
with true solution R and predicted solution P is defined as

E = ‖R − P‖�̄2

‖R‖�̄2
, ‖R‖2

�̄2
:= 1

201 × 512

∑

(t,x)

|R(t, x)|2

(the sum is over the observed grid points OT × OX ⊂ [0, 10] × [−8, 8]).
Figure 5 shows the heat-maps for the true and predicted solutions drawn from two test

cases with greater than average error (heat-maps for test cases with error close to the average
error appeared indistinguishable to the naked eye; even for Fig. 5a, where the error of 5.9%
is above the average, the two solutions appear similar).
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Fig. 6 Heat-maps for the solutions of (3.5) (left) and predictions for two test cases (right) using Algorithm 2
with 1% error in observed samples. The values of λ are 2 for subfigure (a) and 8 for (b)

We furthermore tested Algorithm 2 on noisy data. We added a 1% error (resp. 3%) to the
observed data in the following way. Instead of observing the solution u of (3.5), we observe

ũ(t, x) = u(t, x) + ε(t, x)‖u‖l̄1 , (3.6)

where ‖u‖�̄1 = 1
201×512

∑
(t,x) |u(t, x)| (the sum is over the observed grid pointsOT ×OX ⊂

[0, 10]×[−8, 8]) and ε(t, x) are i.i.d. normal random variables with zero mean and standard
deviation 0.01 (resp. 0.03) for each (t, x) for the training data and for (t, x) = (0, x) for the
test data. The corresponding errors, over 10 experiments, are presented in Table 5. In Fig. 6
we give two examples of heat-maps with varying relative �2 error for 1% noise and in Fig. 7a
we give an example with 3% noise.

Finally, we ran Algorithm 2 using models in which the viscosity parameter ν in Defini-
tion 3.1 is estimated from the data (the true value being ν = 0.2). We estimate ν by simply
linearly regressing the discrete time derivative of u against the discrete second derivative in
space for u ∈ U obs. To be more precise, we use ordinary least squares to determine the best
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Fig. 7 Heat-maps for the solutions of (3.5) (left) and predictions for two test cases (right) with 3% noise on
observed data. Subfigure a is for Algorithm 2 and subfigure b is for PDE-FIND. The values of λ are 8 for
subfigure (a) and 4 for (b)

Table 6 Estimated viscosity ν̃ via
linear regression over 10
experiments

Average Range Standard deviation

0.177 0.171–0.182 0.003

ν̃ that fits

(ut1(x) − ut0(x))/δ = ε + ν̃∂2x ut0(x), u ∈ U obs, x ∈ D,

where ∂2x is computed using central finite difference. Such an estimate does not require
any knowledge of the non-linearity. (One could further use cross-validation to find a better
estimate for ν from the interval [ν̃ − a, ν̃ + a] for some a > 0, although we did not do this.)
The average, range, and standard deviation of the estimated viscosity over the 10 experiments
is recorded in Table 6.
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Table 7 Estimated parameters a and −b in (3.7) via PDE-FIND

a −b
Average Range SD Average Range SD

No noise 0.212 0.203–0.246 0.012 0.984 0.979–0.987 0.002

1% noise 0.115 0.085–0.139 0.016 0.902 0.742–0.952 0.058

3% noise 0.027 0.021–0.038 0.005 0.733 0.640–0.796 0.045

The true values are a = 0.2 and −b = 1

We record the errors in Table 5 for Algorithm 2 with these estimated viscosities. We find
that the results are essentially the same as those with the correct viscosity ν = 0.2 (and in
fact have tiny improvements over the latter).

3.3.1 Comparison with PDE-FIND Algorithm

We use a version of PDE-FIND algorithm from [38] to learn the non-linearity first instead
of learning the solution. We use linear regression to find the best coefficients a, b such that

∂t u(tk, x) = a∂2x u(tk, x) + bu(tk, x)∂xu(tk, x), (3.7)

for u ∈ U obs, k = 0, . . . N − 1, and x ∈ D, where ∂t u(tk, x) := u(tk+1,x)−u(tk ,x)
δ

is a discrete
time derivative, ∂x is discrete space derivative and x ∈ D are the observed points.

We then use finite difference method with the estimated (a, b) (estimating these coeffi-
cients separately for each experiment) starting from initial conditions from U pr in order to
construct the predicted solution on the full domain [0, 10] × D. Note though that in this
finite difference we can discretise time on a finer grid. In fact, we take 2001 points on [0, 10]
which is the same number of time points that is used to construct solution to (3.5).We cannot,
however, discretise the spatial domain [−8, 8] to a finer grid than 512 points because these
are the only points observed for the initial conditions from U pr.

The estimated coefficients a, b are recorded in Table 7. The resulting errors for the pre-
dicted solutions after repeating the experiment 10 times with 20 test cases as before are
recorded in Table 5. We notice that the performance of Algorithm 2 (with and without esti-
mated viscosity) is similar to that of PDE-FIND, althoughAlgorithm 2 yields a slightly larger
average error, but a slightly lower maximum average error and total error.

We furthermore performed the same experiments but with 1% noise and 3% noise on
observed samples as for Algorithm 2. Here, instead of direct linear regression, we follow the
proposal in [38] and perform polynomial interpolation: for each space–time point z, we fit a
polynomial of degree 4 that best matches the observed function in a neighbourhood of radius
20 points around z, and then estimate a, b in (3.7) by taking derivatives of these polynomials
and applying linear regression. This is made in order to avoid taking explicit derivatives of
ũ via the finite difference method since the noisy data is not differentiable. The resulting
errors and estimates for a, b are recorded in Tables 5 and 7 respectively. On 1% noise, the
two methods are again comparable (with PDE-FIND demonstrating a slightly lower average
error).

However, with 3% noise, we found that there is a noticeable difference. First, the estimated
viscosity a in Table 7 is between 0.02 and 0.04, which is significantly lower than the true
value 0.2. This caused the predicted solution to blow up on some test cases (due to numerical
instability in our finite difference method): in each of the 10 experiments, between 0 and 7
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of the 20 test cases blew up (the two extreme values were attained only for one experiment
each, and the most common number of blow-ups was 1). Figure7b shows heat-maps for a
non-blow-up test case with 3% noise using PDE-FIND, wherein one can see the effect of the
low estimated viscosity. In comparison, no test cases for Algorithm 2 blew up.

In Table 5 we only report errors from test cases where PDE-FIND did not blow up—the
errors are expected to be even larger if all test cases were included by solving the associated
equation with a more sophisticated numerical scheme. Even after removing the test cases for
which PDE-FIND blew up, we see a mild advantage of Algorithm 2 over PDE-FIND with
polynomial interpolation.

Finally, the reader may wonder if it is fair to compare Algorithm 2 to PDE-FIND given
that we input into Algorithm 2 the true viscosity 0.2, while PDE-FIND is required to estimate
it. We point out, however, that Algorithm 2 has no knowledge of the non-linearity u∂xu in
(3.5) (though the parameters m, q are chosen with the motivation that the non-linearity is at
most quadratic with ∂xu possibly appearing), while in our implementation of PDE-FIND we
do input u∂xu as the only possible non-linearity. Furthermore, on noiseless data, the viscosity
estimated from the data gives results for Algorithm 2 that are comparable to PDE-FIND (see
Table 5). We also point out that Algorithm 2 was approximatively 20 times faster to run
with a fast Fourier transform method of computing models than PDE-FINDwith polynomial
interpolation.

4 Summary and Discussion

To summarise, we proposed a new model feature vector (MFV) of a space–time signal that
extends to multi-dimensional space the notion of a path signature. We further proposed two
regression algorithms, which reveal that MFVs may contain important information about the
underlying signal.

We applied Algorithm 1 to both parabolic and hyperbolic equations with forcing and
Algorithm 2 to Burgers’ equation with varying initial conditions. We did an elementary com-
parison of our algorithms with other methods. We compared the performance of Algorithm 1
for the parabolic equation with multiplicative forcing against several off-the-shelf methods
and found a large advantage in favour of Algorithm 1. We further compared Algorithm 2 for
the Burgers’ equation against a version of PDE-FIND [38] (see Sect. 3.3.1). The twomethods
were comparable (with PDE-FIND showing a minor advantage) on noiseless and small noise
data, while Algorithm 2 showed an advantage over PDE-FIND with larger noise data. We
believe the success of Algorithm 2 in this experiment is due to the smoothing properties of
the heat operator, which provides considerable robustness.

In terms of the hyperparameters, the experiments with Algorithm 1 in Sects. 3.1 and 3.2
show that increasing the height of the model gives better predictability. We also found in
Sect. 3.3 that one can effectively estimate the viscosity parameter ν > 0 at no expense in
the error. These experiments demonstrate a potential for the use of MFVs as features for
learning PDEs. A more systematic comparison of our algorithms with other methods as well
as analysis of the effect of hyperparameters is left for future work.

We conclude by discussing several other directions in which this work could be extended.

• Beyond PDEs. An important next step is to investigate the use of models as features
in learning algorithms in contexts beyond PDEs. We believe that natural directions to
investigate include analysis of meteorological data [9, 42], image and remote sensing
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recognition [26, 46], and applications to fluid dynamics [4, 28]. Such extensions would
parallel the current use of signatures in data science well beyond the scope of ODEs.

• Universality. It would be of interest to understand universality properties ofmodels, i.e. in
what sense andunderwhich conditions can one approximate general functions of the input
({u(i)}i∈J , ξ) with linear functions of the model. Beyond their importance in machine
learning, such universality properties are of deep mathematical interest; a celebrated
result is that linear functions of the signature (see Definition 2.3) approximate, uniformly
on compact sets, continuous function of rough paths modulo tree-like equivalence [2,
19].

• Further learning algorithms. It will be important to explore the utility of ‘model features’
when combined with learning algorithms beyond linear regression (the only tool used
in this article), such as with neural networks and random forests. Similarly, it would be
important to kernelise the model feature vector efficiently. This would allow for use of
popular kernel learning methods, such as support vector machines, and of the maximum
mean discrepancy (MMD) of [13] to compare samples drawn from different distributions.
An MMD from the kernelised signature map was used in [11] to define a metric on the
laws of stochastic process indexed by time, and fast signature kernelisation algorithms
were introduced in [25]; extending these results tomodelswould be of significant interest.

• Higher dimensions. In order to apply the ideas in this paper to data in high dimensional
spaces, it would be important to improve the computation of models. It took10 between
0.2 to 0.5 s to compute one model in Sects. 3.1 and 3.2, and approximately 90s to perform
one run of Algorithm 2 in Sect. 3.3. The computation time in higher spatial dimensions
would be significantly longer. In this direction, there are a number of works aiming to
solve high dimensional PDEs with learning algorithms, such as [18, 44]. Since, with the
choice of operator I in our experiments, elements of the models are solutions to special
PDEs, it would be interesting to see if these methods could make it feasible to compute
the model features in high dimensional spaces.

• Operator I hyperparameter. The operator I in the definition of a model is a hyperparam-
eter which needs to be chosen from a very large space (the infinite-dimensional space of
linear operators). In our experiments, we mostly used knowledge of the linear part of the
PDE (heat or wave operators) to choose I . However, if the PDE is completely unknown,
or if the output u does not come from a PDE at all, then one would need a systematic
way to choose this hyperparameter. The same applies to the other hyperparameters, such
as n,m, �, q , but these take values in a smaller space for which standard hyperparameter
tuning (e.g. cross-validation, or sparse linear regression similar to PDE-FIND [38]) is
feasible. Note that the problem of choosing I does not arise in the context of signa-
tures simply because one hardcodes I as convolution with the Heaviside step function
J (t) = 1t>0. We could of course likewise hardcode I , e.g., as the inverse of the heat
operator (2.3), but if one believes the output u should behave like the solution to a wave
equation, this will likely yield poor performance. How to choose I in a general context
is therefore an important theoretical and practical question.
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