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Abstract
Currently, when the Reynolds-Averaged Navier–Stokes (RANS) equations are solved using
turbulence modelling, most often the one-equation model of Spalart and Allmaras is used.
Then, it is only necessary to solve the RANS equations in conjunction with a single transport
equation for modeling turbulence. For this model, considerable assessment and analysis has
been performed, allowing the possibility of a reliable solution method for an eddy viscosity
required to compute the Reynolds stresses in the RANS equations. Such evaluation along
with analysis has not been performed for similar performance with two-equation models of
the k-ω type. The primary objective of this paper is to present and discuss the components
of an effective numerical algorithm for solving the RANS equations and the two transport
equations of k-ω type turbulence models. All the important details of the turbulence model as
actually implemented are given, which is sometimes not done in various papers considering
such modeling. The viability and effectiveness of this solution algorithm are demonstrated
by solving both two-dimensional and three-dimensional aerodynamic flows. In all applica-
tions, a linear rate of convergence without oscillations or other evidence of unstable behavior
is observed. This behavior is also particularly true when the proposed algorithm is applied
to systematically refined mesh sequences, which is generally not observed with algorithms
solving more than one transport equation. Thus numerical integration errors are systemati-
cally reduced, allowing for a significantly more reliable assessment of the effectiveness of the
model itself. Additionally, in this paper analysis of the solution algorithm, including linear
stability, is also performed for a particular flow problem.
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1 Introduction

In the field of Computational Fluid Dynamics (CFD) there has been a significant effort to
develop numerical algorithms for solving theRANS equations in conjunctionwith turbulence
models. This effort has continued with the objective to extend the viability of CFD to perform
a complete design of complex aircraft configurations. Thus, the convergence and reliability of
a solvermust be verified. Extensive data assessments of solution accuracy are clearly required.
Prominent examples of these data assessments are the numerous Drag Prediction (see for
example [1–4]) and High Lift Prediction Workshops (see for example [5–7]), which are
carried out regularly.

Assertions about uncertainties and errors from computed numerical data are clearly a
requirement to use data obtained by numerical simulations in the aerodynamic certification
processes. When designing new aircraft using numerical data, this data must be proven to
be reliable. Using past AIAA workshops as a guide, different CFD computer codes typically
yield a wide spread in results, even when ostensibly solving the same equations. Reasons for
the wide spread are difficult to determine. Considering the fact that all participants assume
that they solve the same equations with a consistent and convergent method, differences in
the results must disappear as the degrees of freedom increase. For some codes and some
test cases this behavior can actually be observed. However, for simulations at the border of
the flight envelope or if two-equation turbulence models are used, there are often significant
deviations in the results shown at the workshops. Even statistical analyses are carried out
to quantify the uncertainties [2–4]. Since convergence histories are rarely shown for these
applications, this suggests that convergence may not be achieved; and hence, the results may
be severely modified by numerical errors.

Significant improvements have been achieved in the last several years for the Spalart-
Allmaras (SA) turbulence model [8, 9]. The improved solvability of the single transport
equation of the model using the SA negative form is a major factor for the subtantial increase
in using this turbulencemodel.Considering the results of theAIAADragPrediction andHigh-
Lift workshops of the last few years, there are more computer codes appearing using this
model that can also converge several orders ofmagnitude. In some cases, even fully converged
solutions (i.e., solutions inwhich the residuals are reduced to nearmachine zero) are achieved.
Perhaps, this is at least part of the reason for the focus on introducing correction terms (e.g.,
streamline curvature and rotation effects) in the SA model [10, 11]. Such correction terms
can provide improvement in representation of the flow physics.

During roughly the same time period as for the SA model, a number of improvements
were also made for two-equation turbulence models of the k-ω type (i.e., Wilcox model
and Menter SST model). Also, there was some effort to improve the solver for the RANS
and two-equation models. There is a need for improvements in the convergence behavior
and reliability. Thus, solving the RANS equations with such models is frequently avoided
due to high difficulty in achieving reliable convergence. Typically, to converge the RANS
equations in combination with k-ω type models is a much more difficult task compared to a
one-equation model.

Such two-equation turbulence models have been successfully applied to airfoil flows with
small to moderate separation (e.g., see Menter [12], Swanson [13]). However, the difficulty
of simulating a broad range of separated flows, including onset and extent of separation, still
remains with this class of two-equation models, as well as other eddy viscosity models. Due
to the demands on the data required for a certification process together with the observations
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from the workshops, it is clear that there is still a great need for the development of solution
methods for the RANS equations, in particular for two- equation turbulence models.

From the perspective of the authors of this paper, to design such a numerical method
providing both sufficiently accurate data together with a quantifiable bound on the error, the
following four points are a minimum standard one has to consider:

(a) The full differential or integral formulation of the equations together with the turbulence
modelling equations is given.

(b) Its exact implementation is documented.
(c) A solution algorithm that is able to compute for a given number of degrees of freedom a

solution free of numerical integration errors.
(d) The solution algorithm works for systematic mesh refinement, that is, one can obtain

mesh converged results.

As soon as one of these criteria is not satisfied, certain doubts about the assertions made from
approximate solutions computed with the considered numerical method arise.

From the four criteria mentioned above, obviously the first two criteria are the simplest
to satisfy. Straightforwardly, one simply has to write down the actual implementation of
the equations. Nothing should be hidden such as cut-off values for certain variables. This
fact is mentioned here explicitly, though often not mentioned, because a significant number
of implementations use certain strategies to cut-off or to restrict several of the variables.
As examples we refer to the technical documentations [14, 15]. A final solution is then
generally not examined with respect to activity of such limiting processes. To assess the
impact corresponding to such limitings, there must be transparency of the solutions. Since
often authors do not discuss or do not even mention these intrusions into the equations,
only conjectures about the reasons for discrepancies between the approximate solution and
experimental data can be made. One conjecture of relevance is that c) mentioned above is
not independent of b).

The reason for this, which is possibly the major issue in constructing a reliable algorithm
to approximately solve the RANS equations and the two transport equations of k-ω type
turbulence models, is to ensure positivity of the turbulence kinetic energy k and the energy
dissipation rate ω. Perhaps, the most relevant publications dealing with this topic are [16–
19]. They apply an implicit algorithm to solve the RANS equations and the two equations
of a k-ω model in a loosely coupled manner. The advantage of this approach is that only the
Jacobian matrix for the turbulence equations is manipulated such that it is an M-matrix for
each time step. Hence, starting with a positive k and ω, all successive values of these two
dependent variables remain positive throughout the iteration process. Another idea to ensure
positivity of k and ω uses variable subtitution (logarithmic form), which was suggested by
Ilinca et al. [20]. A number of other finite element methods (FEMs), not only Continuous
Petrov-Galerkin methods but also Discontinuous Galerkin (DG) methods, also employ this
approach (e.g., [21–23]). In some FEMs realizability conditions are also imposed [21, 22]. As
a consequence, it is not obvious if the transformed boundary-value problem is still equivalent
to the original one. As discussed in [24], there are possible effects due to smoothness of the
solution as well as the modified boundary condition that may have an impact on the resulting
boundary-value problem. In this article, we suggest a rather simple algorithm to deal with
this positivity issue.

Given the wide range of applications for which solutions to the RANS equations are
required, it is desirable that a computer code should meet the following requirements:

• It works for a large variety of parameters defining the boundary-value problem to solve,
such as
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– a variety of geometries,
– a large number of inflow conditions, which includes a range from very low Mach

number to hypersonic flows,
– a broad range of Reynolds numbers,
– a large number of different boundary conditions;

• It works for a broad range of parameters determining the actual solution method, such as

– variation in CFL number,
– inner linear solution methods,
– linear and nonlinear multigrid as well as cycling strategies;

• It always converges to a steady-state solution, if a steady state solution exists;
• It does not show significant loss in convergence rates with systematic mesh refinement

studies, for example, an increase in the number of degrees of freedom are considered.

From the point of view of the authors, at this time, the design of a solution method for the
RANS equations satisfying all these conditions is an open problem. It can be assumed that
various interventions (using cutoff values or restriction of variables) into several solution
methods have been incorporated to be in a position to compute steady-state solutions, at least
for a small number of problems with a specific choice of parameters.

Considering this background, the primary objective of this paper is to propose a numeri-
cal algorithm that efficiently solves the RANS equations in combination with two-equation
models of the k-ω type on structured and unstructured meshes. Numerical examples demon-
strate that the number of nonlinear iterations is comparable to state-of-the art methods for
one-equation models. In this regard, we refer to [25–31], where a similar number of nonlin-
ear iterations is required using similar methods for the one-equation model of Spalart and
Allmaras. We illustrate that a relibale behavior of the solution algorithm, that is without
oscillations or a deterioration in the final convergence rate is not only possible for basic 2-D
test cases but also for 3-D transonic test cases at the design point and for a 3-D high lift con-
figuration. Beyond the pure heuristics and test cases, an analysis is performed in particular
for the two-equation turbulence model, which reveals some of the special characteristics of
these models and what one needs to consider in order to implement them successfully.

In Sects. 2 and 3 of the paper, the integral form of the RANS equations and the turbulence
modeling equations, respectively, are defined. This includes the boundary conditions neces-
sary for a well defined boundary-value problem. Section4 considers the components of the
numerical algorithm, which are the focus of the paper. Then, in Sect. 5, analysis of properties,
including linear stability, of the solution algorithm is considered. Both two-dimensional (2-
D) and three-dimensional (3-D) examples of applications of the numerical solution algorithm
are shown and discussed in Sect. 6. Concluding remarks of the paper are made in Sect. 7.

2 Governing Equations of Fluid Flow

To describe flow behavior we consider for the domain G ⊂ R
m , m = 2, 3, i.e., an open

and connected set, and an interval [0, T ) ⊂ R, T > 0, the conservative form of the RANS
equations is expressed in integral form by

0 = d

dt
VG (W ) (t)

+R∂G (W ) (t) , t ∈ [0, T ) , (1a)
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where the integral operators VG and R∂G are given by

VG (W ) (t) :=
∫
G
W (x, t) dx (1b)

Rc,∂G (W ) (t) :=
∫

∂G
〈 fc (W (y, t)) , n(y)〉 ds(y), (1c)

Rv,∂G (W ) (t) :=
∫

∂G
〈 fv (W (y, t)) , n(y)〉 ds(y), (1d)

R∂G := Rc,∂G − Rv,∂G , (1e)

and W : G × [0, T ) → R
m+2,

W (x, t) := (ρ(x, t), ρ(x, t)u

(x, t), ρ(x, t)E(x, t))T , (2)

denotes the vector field of conserved variables and n is the unit outward normal on ∂G. The
terms fc and fv describe the convective and viscous contributions

fc (W ) :=

⎛
⎜⎜⎜⎜⎜⎝

ρu
ρu1u + pe1

...

ρumu + pem
ρHu

⎞
⎟⎟⎟⎟⎟⎠

,

fv (W ) :=

⎛
⎜⎜⎜⎜⎜⎝

0
τ1 (W )

...

τm (W )

θ (W )

⎞
⎟⎟⎟⎟⎟⎠

, m = 2, 3.

Here ei is the i th unit vector. The quantities ρ, u = (u1, . . . , um)T , E and

H := E + p/ρ (3)

are the density, the velocity, the specific total energy, and the enthalpy of the fluid. The
equation of state

p = (γ − 1)ρ

(
E − ‖u‖22

2

)
(4)

defines the pressure p, and γ is the gas dependent ratio of specific heats, which is 1.4 for
air. Assuming that an effective viscosity μeff := μeff (W ) = μeff (W (x, t)) is given and
using Stoke’s hypothesis, the bulk viscosity vanishes and the second coefficient of viscosity
λ = −2/3μeff . Then, the viscous stress tensor is given by

τ (W ) := μeffS + λ div(u)Id = 2μeffS, S := S − 1

3
div(u)Id, (5)

and S denotes the mean strain-rate tensor, which is given by the symmetric part of the total
derivative of flow velocity vector u,

S := 1

2

(
du

dx
+

(
du

dx

)T
)

, i.e.,
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Si j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. (6)

Throughout the paper Id(x) = x denotes the identity operator. The viscous flux term for the
energy equation is given by

θ (W ) := τ (W ) u + q (W ) , (7a)

q (W ) := κeff grad T . (7b)

The effective viscosity μeff and effective conductivity κeff are computed by

μeff := μl + μt , κeff := κl + κt , (8)

and the laminar viscosity is given by Sutherland’s law

μl (W ) := μl,∞
(

T

T∞

)3/2 T∞ + T̄

T + T̄
, μl,∞ := ρ∞u∞L

Re
, (9)

κl (W ) := cpμl (W )

Prl
and

cp := 	 γ

γ − 1
, (10)

whereby T∞ > 0, ρ∞ > 0 and u∞ > 0 denote some constant reference temperature, density
and velocity, L > 0 is some constant reference length scale, Re > 0 is the corresponding
Reynolds number, T̄ := 110.4◦K is Sutherland’s constant, 	 is the universal gas constant
and the laminar Prandtl number is given by Prl := 0.72.

In this article, we restrict consideration to linear, two equation turbulence models, repre-
sented by differential or integral equations stated in Sect. 3. The solutions of these equations
reveal additional quantities in the considered fluid. These occurring variables extend the
degrees of freedom given by the conservative variables W by a further unknown function

Wt : G × [0, T ) → R
2.

The additional variables are used to determine the eddy viscosity,

μt = μt (Wt (x, t) ,W (x, t))

≥ 0 for all (x, t) ∈ G × [0, T ) ,

required for (8). Given the eddy viscosity μt the turbulent thermal conductivity is described
by the algebraic relation

κt := cp
μt

Prt
, Prt := 0.9. (11)

The dependent variables of the turbulence models are the turbulence kinetic energy per
unit mass k and the dissipation rate ω of the turbulence kinetic energy. Before we state the
two transport equations for k and ω, we define t = (

ti j
)
1≤i, j≤m and the Reynolds stress

tensor τRS =
(
τRSi j

)
1≤i, j≤m

, using the strain-rate tensors S and S, given in (6) and (5), and

the mean molecular stress tensor, t = (
ti j

)
1≤i, j≤m . Then,

t = 2μeffS, ρτRS

= 2μtS − 2

3
ρkId. (12)
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Additionally, we define the mean rotation tensor 
, which is the skew-symmetric part of the
total derivative of flow velocity u,


 := 1

2

(
du

dx
−

(
du

dx

)T
)

, i.e. 
i j

= 1

2

(
∂ui
∂x j

− ∂u j

∂xi

)
. (13)

3 Two-Equation TurbulenceModels of k-! Type

The principal elements of the k-ω type turbulence models being considered are described
in this section. The emphasis is on the 1988 and 2006 Wilcox models and the 2003 Menter
Shear Stress Transport (SST)model. Presentation and extensive discussion of thesemodels is
given in references [32–34] and [12, 35–37]. An additional resource providing information
on these and other turbulence models is NASA’s Turbulence Modeling Resource (TMR)
website [38]. Important details of these models, such as parameters and closure coefficients,
can be found in the TMR or in the original publications.

3.1 Wilcox k-!Model

In this article we consider k-ω models of the form

∂ (ρk)

∂t
+ div (ρku) = div ((μl + σkμt ) grad k) + ρQk,(k,ω), (14a)

∂ (ρω)

∂t
+ div (ρωu) = div ((μl + σωμt ) grad ω) + ρQω,(k,ω). (14b)

The presented and used 1988 and 2006 models of Wilcox are named as ”Wilcox1988”
and ”Wilcox2006” on NASA’s (TMR) website [38]. The eddy viscosity in these models is
computed by

μt = μt (W , k, ω) = ρk/z (W , k, ω) (15)

with a given function z. For example, in the 1988 and 2006 models of Wilcox, we have

z (W , k, ω) = ω, (1988 model), (16)

z (W , k, ω) = max

{
ω,Clim

√
2
 : 


β∗

}
, (2006 model). (17)

The symbol : denotes a double dot tensor product. The source terms for the k andω equations
include production (Pr ) and destruction (De) terms. A cross-diffusion term (Di) is also
included in the source term of the ω equation for the 2006 Wilcox model ( = 1), the 1988
model does not have such a term ( = 0),

Qk,(k,ω) := P̃rk,(k,ω) − Dek,(k,ω), Qω,(k,ω)

:= Prω,(k,ω) − Deω,(k,ω) + Diω,(k,ω), (18)

where

Prk,(k,ω) := τRS : du
dx

, Dek,(k,ω) := β∗kω (19a)
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Prω,(k,ω) := α
ω

k
τRS : du

dx
, Deω,(k,ω) := βω2. (19b)

Diω,(k,ω) := σd
1

ω
〈grad k, grad ω〉 . (19c)

In the 1988Wilcoxmodel, the production termof the k equation is generally limited according
to

P̃rk,(k,ω) := min
{
Prk,(k,ω), 20Dek,(k,ω)

}
, (20)

so as to prevent very large Pk during the initial phases of a calculation. An example to
demonstrate the impact and influence of (20) on possible solutions was demonstrated in [24,
Section 7]. This change is not included in the 2006 Wilcox model due to the introduction
of a stress limiter. This stress limiter can have a significant effect on a shock location. The
effect of varying the stress limiter on the shock location for the RAE 2822 airfoil (Case 10)
is shown in Swanson and Rossow [39].

3.2 Menter k-!Model (SSTModel)

The presented and usedmodel ofMenter is named as ”SST-2003” onNASA’s (TMR)website
[38] with the only difference that (20) is used, that is the 20 was not replaced by 10. In the
2003 Menter SST model the constants σk and σω in the two transport equations (14a) and
(14b) are replaced with blending functions �k and �ω. These blending functions depend on
the values σk and σω in the k-ω and k-ε models. The source terms are also changed due to
blending functions for the k-ω and k-ε models. The eddy viscosity is determined from (15)
with z (W , k, ω) given by

z (W , k, ω) = 1

min
{
1
ω
, a1
F2

√
2S:S

}

= max

{
ω,

F2
√
2S : S
a1

}
. (21)

Here, F2 is a blending function defined by

F2 := tanh
(
(max {�1, 2�3})2

)
(22)

where

�1 := C�1νl

d2ω
,

�3 :=
√
k

β∗ωd
, β∗ := 0.09, (23)

and d is the distance to the closest no-slip wall, and νl is the kinematic viscosity. According
to [12], the constants are a1 = 0.31 and C�1 = 500. The source terms, having the same
components as in (18), are given by

Qk,SST = P̃rk,SST − Dek,SST,

Qω,SST = Prω,SST − Deω,SST + Diω,SST, (24)

where

Prk,SST := τRS : du
dx

, Dek,SST := β∗kω, (25a)
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Prω,SST := �γ

1

νt
τRS : du

dx
, Deω,SST := �βω2, (25b)

Diω,SST := 2 (1 − F1) σω2

1

ω
〈grad k, grad ω〉 . (25c)

The blending of the SST model is controlled by a function � = � (x; ε1, ε2). This function
is designed to detect the edge of the boundary layer, such that the SST model behaves inside
the boundary layer like a k-ω model and outside like a k-ε model, exploiting the convex
combination � : [0, 1] → [ε1, ε2],

�(F1; ε1, ε2) := F1ε1 + (1 − F1) ε2. (26)

3.3 Simplifications of k-!Models

Although these models are formulated in their compressible form (14), their actual imple-
mentation and usage is often based on their incompressible version. In fact, this occurs even
when they are used with respect to compressible flow. Then, one assumes

div (u) = 0, (27)

yielding for the equation of mass conservation 0 = ∂ρ
∂t + 〈grad ρ, u〉, and hence

∂ (ρk)

∂t
+ div (ρku) = ρ

(
∂k

∂t
+ div (ku)

)
, (28)

∂ (ρω)

∂t
+ div (ρωu) = ρ

(
∂ω

∂t
+ div (ωu)

)
. (29)

Inserting (28) and (29) into (14) gives

∂k

∂t
+ div (ku) = 1

ρ
div ((μl + σkμt ) grad k) + Qk,(k,ω), (30a)

∂ω

∂t
+ div (ωu) = 1

ρ
div ((μl + σωμt ) grad ω) + Qω,(k,ω), (30b)

and the independent variablesWt = (ρk, ρω) are replaced byWt = (k, ω). To be consistent
using assumption (27) we have

ρτ = 2μtS. (31)

In a second step, assumption (27) can be integrated into (31). This yields S = S and finally

ρτ = 2μtS. (32)

Remark
Often, it is not indicated if the assumption (27) is included into the formulation of the

turbulence model, that is, if (31) or (32) is used for the formulation of the production terms.
For the implementation considered here we chose (31).

3.4 Integral Form of k-!Models

When integrating the diffusive terms in (30) over a control volume, they cannot be rewritten
as a surface integral because of division with density ρ. Hence, a further approximation is
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introduced,

1

ρ
div ((μl + σkμt ) grad k) ≈ div ((νl + σkνt ) grad k) , (33a)

1

ρ
div ((μl + σωμt ) grad ω) ≈ div ((νl + σωνt ) grad ω) . (33b)

Integration of (30) using the approximation of (33) gives the integral equation

VG
(
Q(k,ω) (Wt ,W )

)
(t)

= d

dt
VG (Wt ) (t)

+R∂G,(k,ω) (Wt ,W ) (t) , (34)

where the integral operators are R∂G,(k,ω) := Rc,∂G,(k,ω) − Rv,∂G,(k,ω), and

Rc,∂G,(k,ω) (Wt ,W ) (t)

:=
∫

∂G

〈
fc,(k,ω) (Wt (y, t) ,W (y, t)) , n(y)

〉
ds(y),

Rv,∂G,(k,ω) (Wt ,W ) (t)

:=
∫

∂G

〈
fv,(k,ω) (Wt (y, t) ,W (y, t)) , n(y)

〉
ds(y).

Here the convective fc,(k,ω) and viscous fv,(k,ω) contributions as well as the source
terms Q(k,ω) are summarized by

fc,(k,ω) (Wt ,W ) :=
(
ku
ωu

)
, (35a)

fv,(k,ω) (Wt ,W ) :=
(

(νl + σkνt ) grad k
(νl + σωνt ) grad w

)
, (35b)

Q(k,ω) (Wt ,W ) :=
(

Prk,(k,ω) − Dek,(k,ω)

Prω,(k,ω) − Deω,(k,ω) + Diω,(k,ω)

)
. (35c)

3.5 Nondimensionalization

For a numerical implementation a suited scaling and nondimensionalization is often crucial.
Due to the no-slip wall boundary condition (see [24]) for ω,

lim
h→0+ ω (x − hn(x)) h2 = 6νl

β
, x ∈ ∂Dno−slip, (36)

typically the values for ω related to k and the other conservative variables (2) may differ in
orders of magnitude. For this reason, a scaling of ω is introduced.

Throughout this subsection, we denote dimensional variables using the sign ,̂ for example
dimensional density is denote by ρ̂. To nondimensionalize k̂ and ω̂ we choose as reference
values

kref = u2ref and ωref = uref
L ref

. (37)

Then the nondimensional variables are given by

k = k̂

u2ref
and
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ω = ω̂

ωscωref
,

ωsc = Re√
γ M∞L

, (38)

where ωsc denotes the additional scaling for ω. Such scaling may be motivated by the fol-
lowing argumentation. Boundary condition (36) is realized by

ωno−slip
(
pi,bdry

)

= 60νl
(
W (pi,bdry)

)
β
∥∥pi,bdry − pi,n

∥∥2
2

,

pi,bdry ∈ ∂Dno−slip, (39)

where pi,bdry denotes the point on the no-slip wall and pi,n the closest, next discrete point
in direction −n

(
pi,bdry

)
. Obviously, with respect to possible mesh refinements the distance

to the closest wall satisfies

dh,i ≈ ∥∥pi,bdry − ph,i,n
∥∥
2 → 0, h → 0,

and hence possibly numerical instabilities emerge due to a significant increase in the boundary
values ωno−slip. The above choice of ωsc serves a some normalization such that the largest
values for ω are in a range of the other variables. Naturally, a choice of ωsc = 1 or any other
reasonable choice is also possible.

To obtain an equivalent system of equations, this scaling parameter needs to be correctly
incorporated in all terms and equations. For a detailed study we refer to [40, 41], here we
just report the results. For example, to obtain the scaled, nondimensional version of the eddy
viscosity (15) together with (21) for the SST model we have

μt = 1

ωsc
ρkmin

{
1

ω
,

ωsca1

F2
√
2
 : 


}
.

Then, introducing (37) into (35a), (35b) and (35c), we compute

fc,(k,ω)

(
Ŵt , Ŵ

)
= uref

(
kref 0
0 ωrefωsc

)
fc,(k,ω) (Wt ,W ) , (40)

fv,(k,ω)

(
Ŵt , Ŵ

)
= uref

( kref
ωsc

0
0 ωref

)
f̃v,(k,ω) (Wt ,W ) , (41)

where

f̃v,(k,ω) (Wt ,W ) :=
(

(�(T ) + σkνt ) grad k
(�(T ) + σωνt ) grad ω

)
, �(T ) = T 3/2

(
1 + Csuth

T + Csuth

)
,

and Csuth denotes Sutherland’s constant. For the source terms (35c) we obtain

Prk,(k,ω)

(
Ŵt , Ŵ

)
= u3ref

L refωsc
Prk,(k,ω) (Wt ,W ) , (42a)

Dek,(k,ω)

(
Ŵt , Ŵ

)
= u3refωsc

L ref
Dek,(k,ω) (Wt ,W ) , (42b)

Prω,(k,ω)

(
Ŵt , Ŵ

)
= = u2ref

L2
ref

Prω,(k,ω) (Wt ,W ) , (42c)
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Deω,(k,ω)

(
Ŵt , Ŵ

)
= u2refω

2
sc

L2
ref

Deω,(k,ω) (Wt ,W ) , (42d)

Diω,(k,ω)

(
Ŵt , Ŵ

)
= u2ref

L2
ref

Diω,(k,ω) (Wt ,W ) . (42e)

Introducing the mapping g : D → D̂, x �→ L ref x , which maps the computational domain D
to its physical domain D̂, and application of substitution formulae

∫
D̂

v(x)dx = Lm
ref

∫
D

v(g(y))dy, (43a)
∫

∂ D̂
〈v(y), n(y)〉 ds(y) = Lm−1

ref

∫
∂D

〈v(g(y)), n(y)〉 ds(y). (43b)

integral equation (34) turns into using (40), (41) and (42a)– (42e),
(

L2
refu

3
ref

ωsc

∫
D Prk,(k,ω)dy − L2

refu
3
refωsc

∫
D Dek,(k,ω)dy

L refu2ref
∫
D Prω,(k,ω)dy − L refu2refω

2
sc

∫
D Deω,(k,ω)dy + L refu2ref

∫
D Diω,(k,ω)dy

)

=
(
L2
refu

3
ref 0

0 ωscL refu2ref

){
d

dt
VD(Wt )(t) + Rc,∂G,(k,ω) (Wt ,W ) (t)

}

−
( 1

ωsc
L2
refu

3
ref 0

0 L refu2ref

)∫
∂D

〈
f̃v,(k,ω) (Wt ,W ) , n

〉
ds(y).

Multiplication of the whole systemwith the diagonal matrix diag

(
1

L2
refu

3
ref

, 1
ωsc

1
Lrefu2ref

)
gives

the mathematically equivalent system of equations
(

ω−1
sc

∫
D Prk,(k,ω)dy − ωsc

∫
D Dek,(k,ω)dy

ω−1
sc

∫
D Prω,(k,ω)dy − ωsc

∫
D Deω,(k,ω)dy + ω−1

sc

∫
D Diω,(k,ω)dy

)

= d

dt
VD(Wt )(t) + Rc,∂G,(k,ω) (Wt ,W ) (t)

−
(

ω−1
sc 0
0 ω−1

sc

)∫
∂D

〈
f̃v,(k,ω) (Wt ,W ) , n

〉
ds(y). (44)

The system of equations (44) is the actual system of equations which is implemented and
solved. For a closed formulation of the complete boundary-value problem we refer to [24].

4 Solution Algorithm

4.1 Multigrid and Implicit Smoother

The discretization strategy followed is based on a finite-volume formulation. The inviscid
terms are discretized using a central difference scheme with an added matrix-valued artificial
viscosity [29]. A first-order upwind scheme is applied to the convective part of the turbulent
flowequations.Gradients required for the viscous terms and for the source terms are computed
using a Green-Gauss formulation (see [42]). For a detailed description of the discretization
strategy and boundary conditions applied, we refer to [29, 30, 40]. To clarify that we deal
now with the discretized equations we use bold letters from now on.
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The discretization of the mean flow equations (1) together with the turbulent flow equa-
tions (34) yields the system of ordinary differential equations

d

dt

(
W(t)
Wt (t)

)
=

(−M−1
meanRmean (W(t),Wt (t))

−M−1
turbRturb (W(t),Wt (t))

)
, (45)

where

Mmean := diag (diag (vol (
i ))) ∈ R
5Nelem×5Nelem

Mturb := diag (diag (vol(
i ))) ∈ R
2·Nelem×2·Nelem

denote the mass matrix for mean and turbulent flow equations. To approximately solve (45)
we assume that the mean flow equations depend only onW, andWt acts only as a parameter
here, whereas the turbulent flow equations depend only on Wt , and W acts as a parameter.
Hence, we rewrite system (45) as

d

dt
W(t) = −M−1

meanRmean (W(t);Wt (t)) (46a)

d

dt
Wt (t) = −M−1

turbRturb (Wt (t);W(t)) . (46b)

Equations (46a) and (46b) are then solved in a loosely coupled manner (see loosely and fully
coupled methods [43]).

To approximate a steady-state solution, we apply a nonlinear multigrid method (see [44]),
which is called the Full Approximation Scheme (FAS), to the mean flow equation (46a). The
turbulent flow equation (46b) is solved in a single grid mode, only. A multistage diagonally
implicit Runge–Kutta method is used as smoother (see [40])

W(0) := Wn

W( j) = W(0) − α j+1, jP j

(
W( j−1)

)−1
R
(
W( j−1)

)
, j = 1, . . . , s (47)

Wn+1 = W(s),

P j

(
W( j−1)

)
:= (�T )−1 M + dR

dW

[
W( j−1)

]
, �T := diag (diag (�ti )) , (48)

where we have negelected the subindices mean and turb, and �ti denotes the local time step.
To apply (47), the linear equation

Prec−1
j P jx = α j+1, jPrec

−1
j R(W( j−1)). (49)

needs to be solved. Here, Prec j denotes some preconditioner, which is the major ingredient
of the algorithm. To find an approximation of (49), we apply a (left) preconditioned GMRES
method (see for example [45]) with initial guess x(0) = 0:

• Solve (approximately) Prec jr0 = α j+1, jR
(
W( j−1)

)
• Compute β := ‖r0‖2, v1 := 1

β
r0

• for k = 1, . . . ,m

– Solve (approximately) Prec jw = P jvk
– for i = 1, . . . k

∗ hi,k := 〈w, vi 〉
∗ w := w − hi,kvi

– hk+1,k = ‖w‖2, vk+1 = 1
hk+1,k

w
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• V = (v1, . . . , vm) , Hm = (
hi,k

)
1≤i≤k+1,1≤k≤m• Solve ym := argminy‖βe1 − Hmy‖2 by Given’s-rotations

• x(m) := x(0) + Vmym

In the GMRESmethod, the matrix–vector multiplication of the operator given in (49) applied
to a vector is approximated by a finite-difference of the residual operator,

dR
dW

(W)h ≈ 1

2ε
(R (W + εh) − R (W − εh)) .

The choice of a suitable ε > 0 is not trivial, as cancellation and approximation errors need
to be balanced. A possible method can be found in [42, Chapter 6.2.5].

4.2 Construction of Preconditioner

The preconditioner has two contributions:

(a) the linear operator Prec j itself,
(b) an iterative solution method for approximately solving the linear systems

Prec jw = P jvk . (50)

For the construction of the linear operators we follow the approach presented in [29, 40]:

Prec j,mean := (�T )−1 Mmean + εα j j
dR̃comp

mean

dW
, (51)

Prec j,turb := (�T )−1 Mturb + εα j j
dR̃comp,(k,ω)

turb

dWt
. (52)

Here, dR̃comp
prec /dW is a linearization of a residual based on a compact discretization scheme.

For details of Prec j,mean we refer to [29, 40]. To obtain
dR̃comp,(k,ω)

turb
dWt

the upwind scheme is
exactly differentiated. For the derivative of the viscous terms a thin shear layer assumption is
assumed for the gradients. The source terms are also exactly differentiated, also the diffusion
source terms which typically give entries to the off-diagonal entries of the matrix. But, to
realize the preconditioner, the derivatives of the source terms to construct Prec j,turb do not
include the destruction terms

∂Dek,(k,ω)

∂ki
and

∂Deω,(k,ω)

∂ωi
. (53)

The necessity for this modification is discussed in Sect. 5.1. Additionally, the viscosity νt
is also exactly differentiated and the arising terms are completely included. For the Wilcox
1988 model the approach is described in detail in [40, Chapter 4].

4.3 Solving Linear Systems and Truncation Criteria

To realize the preconditioned GMRESmethod approximately solving (49), we need to define
appropriate truncation criteria. To this end, we distinguish two principal implementations
of (47):

(M1) When the number of GMRES steps is 0 and only the preconditioning step is evaluated,
(M2) When the number of GMRES steps is > 0.
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To approximately solve (49) for the mean flow equations we follow both strategies M1 and
M2:

• When choosing M1, we apply either at most 250 symmetric Gauss–Seidel sweeps or
iterate until

‖Prec jr0 − α j+1, jR
(
W( j−1)

) ‖2
‖α j+1, jR

(
W( j−1)

) ‖2 < 10−2.

• When choosing M2, we truncate the GMRES iteration either after at most 20 steps or if

‖P jx(m) − α j+1, jR(W( j−1))‖2
‖α j+1, jR(W( j−1))‖2 < 10−2.

For approximately solving the linear systems (50), we apply five symmetricGauss–Seidel
sweeps.

4.4 Choice of Time Step

To compute the local time steps �ti in (48) for both the mean flow equations and for the
turbulencemodeling equations, we use an approximation to the spectral radius of the diagonal
blocks of dR

dW , that is,

�ti := CFL · vol (Di )

⎡
⎣ ∑

j∈N (i)

svol(ei j )

(
ρ

(
∂H1st,Roe

∂Wi

)

+Cvρ

(
∂
〈
fv
(
Wi ,Wj

)
, nei j

〉
∂Wi

)TSL,μ=const
⎞
⎠
⎤
⎦

−1

, Cv := 8.

The CFL number is chosen according to

CFL = min {CFLinit · f (n),CFLmax} , (54a)

f (n) =
{

1, n < 10,
αn−10, n ≥ 10,

α > 1. (54b)

Typical values are CFLinit = 3 and CFLmax = 1000. For more details we refer to [29, 40,
46].

4.5 Positivity of k and!

To deal with the problem of positivity of k and ω we simply introduced a damping of the
updates. For example, Algorithm (47) gives for the variables ki and ωi , i = 1, . . . , Nelem ,
the updates

k( j)
i = k(0)

i − �ki , (55a)

ω
( j)
i = ω

(0)
i − �ωi , (55b)

where (�ki ,�ωi ) denotes the symbol for i th entry of the solution vector that one obtains by
evaluating

α j+1, jP
−1
j R

(
W( j−1)

)
.
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Direct application of (55) often yields negative values, in particular for k. Most often this is
observed for high-lift test cases, but for almost all test cases negative values show up for k and
ω at least during the starting phase of the iteration. Therefore, we replaced the update (55)
by an application of Algorithm 1.

Algorithm 1 Update for k-ω model
1: procedure Loop over all mesh points to update k and ω

2: for i = 1, . . . , Nelem do
3: sn = 1
4: for n = 1, 2, . . . do
5: knewi = k(0)

i − sn�ki
6: if knewi > 0 then

7: k( j)
i = knewi

8: break
9: else
10: sn+1 = sn

2
11: end if
12: end for
13: end for
14: for i = 1, . . . , Nelem do
15: sn = 1
16: for n = 1, 2, . . . do
17: ωnew

i = ω
(0)
i − sn�ωi

18: if ωnew
i > 0 then

19: ω
( j)
i = ωnew

i
20: break
21: else
22: sn+1 = sn

2
23: end if
24: end for
25: end for
26: end procedure

Algorithm 1 represents a kind of damped Newton method introducing a further effect of
regularization. Expressed in formulae, Algorithm 1 realizes the following condition:

s(k)
n,i = min

n∈N0

{
1

2n

}
such that k( j)

i > 0,

s(ω)
n,i = min

n∈N0

{
1

2n

}
such that ω

( j)
i > 0.

A side effect of this approach is the fact that the updates may become arbitrarily small,
yielding an overall convergence corruption. However, so far, for none of the considered
test cases has a stall of convergence been observed. Compared with many others methods
tried to ensure positivity of k and ω, Algorithm 1 was found to be superior with the present
implementation. The simplicity of Algorithm 1 is another argument for its use. Nevertheless,
Algorithm 1 cannot guarantee convergence. Hence, future work may require focus on other
mechanisms to ensure positivity of k and ω without reformulating the k-ω model itself. On
the other hand, the damping of updates

knewi = k(0)
i − sn�ki

ωnew
i = ω

(0)
i − sn�ωi
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Fig. 1 Number of limitations for the 1988 Wilcox k-ω model

is not a severe restriction and is justified in the following sense. Using in general (47) to
compute the updates, we have

(�ki ,�ωi ) = α j+1, j
[(

(�t)−1M

+α j j
dR
dW

(
W( j−1)

))−1,app

R(W( j−1))

]

i

.

A necessary criterion for convergence is ‖R(W( j−1)‖ → 0, that is in particular
(
R(W( j−1)

)
i
→ 0.

If the solution of the turbulence modeling equations converges, then at some iterate the
updates �ki and �ωi are so small that additional damping is not necessary, and at the same
time, positivity of k and ω is ensured. In this sense, Algorithm 1 is not a severe restriction.

To illustrate the mode of operation of Algorithm 1, a plot of the number of k limitations
and ω limitations is given in Figs. 1 and 2 for the Wilcox model of 1988 and for the SST
model, respectively. To approximate a solution, we performed for each multigrid cycle on
the mean flow equations 20 subiterations on the turbulence modeling equations. The number
of multigrid cycles is plotted on the upper x-axis, the total number of subiterations on the
lower x-axis. From Fig. 1 (left) we can observe that not only the total number of limitations
for k goes to zero, but also within each subiteration the number of limitations is significantly
reduced. For the Wilcox model of 1988, no limitation of the ω variable is required, which is
clearly seen in Fig. 1 (right).

For the considered example, the number of limitations required for the SST-model is
significantly smaller. Moreover, Fig. 2 (right) shows that for the SST-model also limitations
for ω are performed. As expected from considerations above, at some level in convergence
the number of limitations for both the k and ω variables is 0. This means, that discrete,
positive solutions for k and ω are obtained. This confirms numerically that the suggested
limitation given by Algorithm 1 yields discrete solutions satisfying positivity for k and ω if
convergence of the equations is observed. However, as long as one of the functions for k or ω
is locally negative, the algorithm cannot converge.
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Fig. 2 Number of limitations for the Menter SST model

5 Considerations for the k-!Model

In this section, at least for some of the heuristics and arguments previously given, we are
going to present both an analysis for the linear and nonlinear parts of the solution algorithm.

5.1 Analysis of Linear Part

In Sect. 4.1 it is stated that the derivatives of the destruction terms (53) are neglected for
the construction of the preconditioner. To illustrate this necessity, we use that the splitting
method

xm+1 = Mxm + Nb

converges if and only if ρ(M) < 1 (see e.g. [47]). For the Jacobi and Gauss–Seidel method
the iteration matrix M is given by

MJac = D−1 (D − A) and MGS = − (D + L)−1 R.

Using Arnoldi’s method, as in the inner part of the GMRES method [29, 31], we can
aproximate the spectrumof these operators for the preconditioner (52), including and neglect-
ing (53). Figures3 and 4 show the approximated eigenvalue distributions at the beginning
and end of a nonlinear iteration, respectively. For each Figure, (53) is included on the left
and excluded on the right. In particular, at the beginning of the iteration an inclusion of (53)
changes the spectrum of the iteration matrices such that convergence of both the Gauss–
Seidel and the Jacobi methods is not possible, whereas exclusion of (53) gives a converging
method. For the final state the situation improves, but as one can observe in Fig. 4 (left),
there are still a few approximate eigenvalues outside the range of stability. Hence, for the
overall nonlinear iteration process it is necessary and beneficial to neglect (53). Moreover,
when comparing the spectra of the Jacobi and the Gauss–Seidel methods, we observe a more
equally distributed one for the latter one.
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Fig. 3 Eigenvalue distribution of Jacobi and Gauss–Seidel method in the beginning of nonlinear iteration

Fig. 4 Eigenvalue distribution of Jacobi and Gauss–Seidel method for the final nonlinear iteration

5.2 Analysis of Nonlinear Part

To understand if we can expect convergence of the solution for the turbulence modeling
equations for the outer nonlinear iteration, at least in a small neighborhood of a solution(
W†,W†

t

)
, for example,

Rturb

(
W†

t ,W
†
)

= 0.

We assume a small perturbation, that is, ‖Wt‖ < ε of W†
t . Using a Taylor series expansion

and neglecting terms of higher order, we approximate

dW(t)

dt
= d

(
W† + W(t)

)
dt

= −M−1R
(
W† + W

)

≈ −M−1
(
R
(
W†) + dR

dW

(
W†)W

)
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Fig. 5 Range of stability for
multistage schemes and
approximate spectrum for two
equation k-ω model of CASE 9

Linear stability range for one−stage scheme

Approximate eigenvalues
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 1
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Linear stability range for three−stage scheme

Approximate eigenvalues
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Linear stability range for five−stage scheme

Approximate eigenvalues

 0  1  2  3  4  5  6
Re(z)

−4

−3

−2

−1

 0

 1

 2

 3

 4

Im(z)

= −M−1AW(t), A := dR
dW

(
W†) .

Then, the update of the multistage Runge–Kutta scheme (47) can be expressed by a
polynomial expression,

Wn+1 = qs
(
Prec−1,appA

)
Wn,
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qs(z) = 1 +
s∑

j=1

(−1) j z j�s
i=s− j+1αi+1,i . (56)

Thus, the multistage Runge–Kutta scheme (47) is stable, that is, it defines a contracting
operator in a linear sense for all z ∈ C, if |qs(z)| < 1.

To compute approximations to the eigenvalues of P−1,appA, we again exploit the GMRES
method and its connection to the Arnoldi process (see [29, 31]). As a test case, we consider
Case 9 from the experiments ofCook,McDonald and Firmin [48] and a 320×64C-typemesh.
This mesh is a member of a family of meshes used later in Sect. 6 on Numerical Examples. To
transform the spectrum we restrict ourselves to the one-stage scheme with coefficients α21 =
1.0, the three-stage scheme with coefficients α21 = 0.15, α32 = 0.4, α43 = 1 and the five-
stage scheme with coefficients α21 = 0.0695, α32 = 0.1602, α43 = 0.2898, α54 = 0.5060
and α65 = 1.0 (see [25]). Figure5 shows the range of stability of these multistage schemes
together with the approximate spectrum. For this test case and for both the three-stage and
the five-stage schemes, we can expect a stable method, whereas the one stage scheme is
expected to diverge.

6 Numerical Examples

To demonstrate the applicability of the suggested algorithms, we consider some standard 2-D
and challenging 3-D test cases, which have been computed frequently in the literature. The
2-D cases are transonic flows over an airfoil. The 3-D cases include relatively low-speed flow
over a wing-body geometry at a high angle of attack and transonic flow over a wing-body
configuration. For the 2-D cases, we consider both the Wilcox and SST k-ω models. The
SST model is used in the 3-D computations. The density residual is evaluated by

Density residual(n) :=

√√√√√
Nelem∑
j=1

(
R j,mean,ρ

(
WTn

))2
(vol(
 j ))2

/

√√√√√
Nelem∑
j=1

(
R j,mean,ρ (W∞)

)2
(vol(
 j ))2

,

for k-ω model we evaluate both corresponding residuals

k − residual(n) :=

√√√√√
Nelem∑
j=1

(
R j,turb,k

(
kTn , ωTn

))2
(vol(
 j ))2

/

√√√√√
Nelem∑
j=1

(
R j,turb,k (k∞, ω∞)

)2
(vol(
 j ))2

,

ω − residual(n) :=

√√√√√
Nelem∑
j=1

(
R j,turb,ω

(
kTn , ωTn

))2
(vol(
 j ))2

/

√√√√√
Nelem∑
j=1

(
R j,turb,ω (k∞, ω∞)

)2
(vol(
 j ))2

.

To satisfy near machine zero, a computation is truncated, and the result is accepted as soon
as density residual(n) < 10−14. The computations on unstructured grids were performed in
parallel using MPI and either the C2A2S2E2 or CARA cluster of DLR.

6.1 RAE 2822 Airfoil

The first examples considered correspond to the RAE 2822 airfoil. These examples have
been chosen because they are frequently considered when attempting to validate turbulence
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Table 1 Flow Conditions for
RAE 2822 airfoil

Cases M∞ AoA Re

Case 9 0.73 2.79◦ 6.5 · 106
Case 10 0.75 2.81◦ 6.2 · 106

Table 2 Mesh data for RAE 2822 airfoil

Coarse Medium Fine

Mesh size 320 × 64 640 × 128 1280 × 256

No. of quadrilaterals 20,480 81,920 327,680

No. of cells on the airfoil 256 512 1024

Table 3 Case 9: Computed lift and drag coefficients with 1988 k-ω model

Model Grid CL CD (CD)p (CD)v

kω-1988 320 × 64 0.792254 0.0195732 0.0120721 0.0075010

kω-1988 640 × 128 0.804623 0.0191719 0.0122047 0.0069673

kω-1988 1280 × 256 0.806221 0.0189818 0.0121783 0.0068035

Table 4 Case 9: Computed lift and drag coefficients with SST model

Model Grid CL CD (CD)p (CD)v

SST 320 × 64 0.742041 0.0163938 0.0103164 0.0060774

SST 640 × 128 0.761013 0.0164595 0.0106297 0.0058298

SST 1280 × 256 0.766296 0.0164743 0.0107338 0.0057406

models. There are two cases, Case 9 and Case 10, for transonic flow over the RAE 2822
airfoil [48]. The flow conditions for these cases are given in Table 1. In Case 9 there is a
fairly strong shock wave occurring on the upper surface of the airfoil, whereas in Case 10
there is a sufficiently strong shock on the upper surface to cause significant separation of the
flow behind the shock.

We perform the computations on a sequence of C-type structured meshes described in
Table 2. The meshes have a C-type topology. The finest mesh consists of 1280 cells around
the airfoil (1024 cells on the airfoil) and 256 cells in normal direction. The normal mesh
spacing at the surface of the finest mesh is approximately 3 × 10−6, and the maximum
surface cell aspect ratio is about 560.

Table 5 Case 10: Computed lift and drag coefficients with 1988 k-ω model

Model Grid CL CD (CD)p (CD)v

kω-1988 320 × 64 0.800997 0.0309963 0.0236907 0.0073056

kω-1988 640 × 128 0.814742 0.0300047 0.0232394 0.0068074

kω-1988 1280 × 256 0.815570 0.0298718 0.0232158 0.0066560
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Table 6 Case 10: Computed lift and drag coefficients with SST model

Model Grid CL CD (CD)p (CD)v

SST 320 × 64 0.722263 0.0241748 0.0187140 0.0054608

SST 640 × 128 0.742187 0.0246749 0.0194276 0.0052473

SST 1280 × 256 0.743644 0.0248062 0.0194821 0.0053241

Fig. 6 Convergence histories of solution computed for turbulent flow over RAE 2822 airfoil (Case 9). The
effects of turbulence are represented with the Wilcox k-ω model (1988). A family of grids is considered:
320× 64, 640× 128, and 1280× 256 cells. aMean flow equations, b k-ω equations. (unstructured grid code)

The initial numerical calculations for the two RAE 2822 cases were performed with
the complete solution algorithm of this paper, which includes agglomerative multigrid and
GMRES, in the framework of an unstructured grid computer code. Tables 3, 4, 5, 6 include the
predicted lift and total drag coefficients, including the pressure and skin-friction contributions.
In Figs. 6, 7, 8 and 9, convergence histories using the 1988 version of the Wilcox k-ω and
the 2003Menter SST turbulence models are presented. The final plots, which are included in
Fig. 10, show the computed surface pressure distributions for the two RAE cases compared
with the experimental data of Cook, McDonald and Firman [48].

In the second set of results for Cases 9 and 10, the numerical computationswere performed
using the core of the solution algorithm described previously in the framework of a structured
grid computer code. Results are for both the 2006 version of the Wilcox k-ω and the 2003
Menter SST turbulence models. The convergence history results from these calculations
are displayed in Figs. 11, 12, 13, 14. As shown in these figures, the residuals for both the
RANS equations and the transport equations of the turbulence models indicate a consistent,
reliable linear convergence rate and solutions are attained in only 125 to 150multigrid cycles.
Additional discussion of applications of the structured grid code are given in [13].

6.2 Transonic Turbulent Flow over a Common ResearchModel

The next test case is the first of the two 3-D flow computations in this paper. This first case is
turbulent flow over the CommonResearchModel (CRM). It was considered at the fifth AIAA
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Fig. 7 Convergence histories of solution computed for turbulent flow over RAE 2822 airfoil (Case 10). The
effects of turbulence are represented with the Wilcox k-ω model (1988). A family of grids is considered:
320× 64, 640× 128, and 1280× 256 cells. aMean flow equations, b k-ω equations. (unstructured grid code)

Fig. 8 Convergence histories of solution computed for turbulent flow over RAE 2822 airfoil (Case 9). The
effects of turbulence are represented with the Menter SST model (2003). A family of grids is considered:
320× 64, 640× 128, and 1280× 256 cells. a mean flow equations, b k-ω equations. (unstructured grid code)

Drag Prediction Workshop. The meshes provided by the workshop are block-structured. A
sequence of hybrid meshes was generated from the pure hexahedral meshes. Table 7 provides
information about the grids used in the computations. The relevant physical conditions for
this case are also given. The computed lift and drag coefficients as well as computational
times for both mesh sequences are given in Table 8. There is a detailed description of the
meshes given in [49]. The computations were performed on DLR’s C2A2S2E cluster. For
the L4, L3, L2, and L1 meshes, we used 192, 72, 48 and 24 domains, resp. This corresponds
to about 92000 , 71000, 46000 and 28000 mesh points per domain.

• Geometry: Wing-body configuration, fifth AIAA Drag Prediction Workshop
• Reynolds number: Re = 5.0 · 106
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Fig. 9 Convergence histories of solution computed for turbulent flow over RAE 2822 airfoil (Case 10). The
effects of turbulence are represented with the Menter SST model (2003). A family of grids is considered:
320× 64, 640× 128, and 1280× 256 cells. aMean flow equations, b k-ω equations (unstructured grid code)

Fig. 10 Cp−distribution for Case 9 and Case 10 and comparison with experimental data

• Inflow Mach number: M∞ = 0.85
• Angle of attack 2.15°

It should be pointed out that it is difficult to find reports in the literature in which systematic
mesh refinement studies together with two-equation turbulence models (e.g., the SST-model)
are shown for 3-D turbulent flows and the solution algorithm shows a consistent and reliable
convergence behavior. In this paper the objective is not to perform extensive mesh refinement
studies and attempt to evaluate accuracy, but rather to demonstrate that the algorithmpresented
is effective in reducing residuals well below the truncation error of the numerical algorithm.

Figure 15 shows the convergence histories for the sequence of meshes for the considered
test case. Application of the algorithm presented in Sect. 4 made it possible to reach similar
consistent convergence behavior for both the hexahedral and hybrid sequence of meshes and
the stoppig criterion was met in only a few hundred multigrid cycles. In Fig. 16, the surface
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Fig. 11 Convergence histories of solution computed for turbulent flow over RAE 2822 airfoil (Case 9). The
effects of turbulence are represented with the Wilcox k-ω model (2006). A family of grids is considered:
320 × 64, 640 × 128, and 1280 × 256 cells. a Mean flow equations, b k-ω equations. (structured grid code)
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Fig. 12 Convergence histories of solution computed for turbulent flow over RAE 2822 airfoil (Case 10). The
effects of turbulence are represented with the Wilcox k-ω model (2006). A family of grids is considered:
320 × 64, 640 × 128, and 1280 × 256 cells. a Mean flow equations, b k-ω equations. (structured grid code)

Cp distribution for the Common Research Model using hybrid and hexahedral meshes is
displayed.

6.3 NASATRAPWing

As a final example, to investigate the behavior of the proposed solution algorithm towards
the incompressible limit, we examine the NASA Trap Wing considered at the first AIAA
High-Lift prediction workshop [5]. For this test case, the importance of an adequate low-
speed preconditioner for the governing flow equations must be emphasized, as there are
low-speed regions as well as regions in which the flow is significantly accelerated. The low-
speed preconditioner applied in this algorithm has a numerical dissipation that is a function
of the local Mach number (see [50] for details).
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Fig. 13 Convergence histories of solution computed for turbulent flow over RAE 2822 airfoil (Case 9). The
effects of turbulence are represented with the Menter SST model (2003). A family of grids is considered:
320 × 64, 640 × 128, and 1280 × 256 cells. a mean flow equations, b k-ω equations. (structured grid code)
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Fig. 14 Convergence histories of solution computed for turbulent flow over RAE 2822 airfoil (Case 10). The
effects of turbulence are represented with the Menter SST model (2003). A family of grids is considered:
320 × 64, 640 × 128, and 1280 × 256 cells. a Mean flow equations, b k-ω equations. (structured grid code)

Table 7 Mesh data for DPW5 CRM

Level Hybrid meshes Hexahedral meshes

No. of Tetrahedra No. of Prisms No. of Hexahedrons No. of points

L1 2,555,904 425,984 638,976 660,177

L2 8,626,176 1,437,696 2,156,544 2,204,089

L3 20,766,720 3,301,376 5,111,808 5,196,193

L4 69,728,256 11,261,952 17,252,352 17,441,905
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Table 8 lift and drag coefficient for CRM and SST model and computational times

Hexahedral meshes Hybrid meshes

CL CD Comp. time CL CD Comp. time

L1 0.48636 0.02783 ≈ 5.5h (24 domains) 0.50094 0.03012 ≈ 6h (24 domains)

L2 0.46915 0.02505 ≈ 10h (48 domains) 0.47431 0.02589 ≈ 9.5h (48 domains)

L3 0.46985 0.02470 ≈ 18h (72 domains) 0.47168 0.02494 ≈ 18h (72 domains)

L4 0.47426 0.02467 ≈ 42h (384 domains) 0.47633 0.02488 ≈ 41h (384 domains)

Fig. 15 Convergence histories for DPW5 CRM and SST-model

Fig. 16 Surface Cp distribution for DPW5 CRM and SST-model on L4 hybrid and hexahedral mesh

For the numerical computations, we used two meshes. The meshes were generated using
VGrid and are marked as UH6 in Table 2 of [5]. Characteristics of these meshes are given
in Table 9. Figure17 provides a sense of the gridpoint distribution on the wing-body surface
and symmetry plane for Grid 2. In addition, this figure shows the eddy viscosity contours
corresponding to this grid on the symmetry plane.

The flow conditions for this 3-D example are given by

• Geometry: NASA TRAP Wing
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Table 9 NASA TRAP Wing:
Mesh data

Mesh No. of points No. of elements

Grid 1 3,727,008 10,169,092

Grid 2 11,047,965 38,017,477

Fig. 17 Left: Grid of NASA Trap Wing; Right: Computed eddy viscosity in the symmetry plane with the SST
model

Fig. 18 Convergence histories of mean flow and turbulent flow equations for the NASA Trap Wing and the
SST model

• Reynolds number: Re = 4.3 · 106
• Inflow Mach number: M∞ = 0.2
• Angle of attack 28°

The high angle of attack (α) is an especially important flow condition, due to the numerical
challenge that it represents in achieving a fully converged solution, as evident in the literature.
In addition, high α aerodynamics can introduce numerous complexities into the flow field,
including recirculation, vortical flow regions and various strong viscous types ofinteractions.
Convergence histories for these computations with the SST model are displayed in Fig. 18.
As in the results for the previous examples, these histories also exhibit near machine zero
convergence.
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7 Concluding Remarks

In this paper an effective numerical algorithm for solving the RANS equations and the two
transport equations of k-ω type turbulence models has been presented. The integral form of
the RANS and k-ω equations along with the corresponding boundary conditions for a well
defined boundary-value problem have been presented and described. Details of the k-ω type
two-equation models, which include all elements exactly as implemented, have been given.

It is important to emphasize that the two-equation models considered in the paper have
been implemented according to the original papers of Wilcox [32, 34] and Menter [37].
Consequently, there are no additional limiters on the dependent variables, which are often
used in the application of themodels and not discussed. Furthermore, there are no realizability
conditions being imposed, as seen in some finite-elementmethods (e.g., [21, 22]), which use a
logarithmic variable substitution. While one can certainly argue that changing the turbulence
model for the purpose of what one can call numerical compatibility is appropriate, from the
viewpoint of this paper, this should only be acceptable if the integrity of the model is not
compromised.

To demonstrate the effectiveness and capability of the numerical solution algorithm, sev-
eral examples of aerodynamic applications have been presented. Both 2-D and 3-D flows
have been considered with varying degrees of difficulties due to the complexity of the tur-
bulent flows being considered. In all cases, the convergence histories have been shown. The
computed lift and drag coefficients have also been given.

An analysis of the numerical algorithm is addressed, which reflects some of the properties
and stability of the solution algorithm. An approximate eigenspectrum of the preconditioner
for the inner part of the GMRES method has been determined using Arnoldi’s method. The
impact of the destruction terms, which are part of the source terms of a two-equation turbu-
lence model, using Jacobi and Gauss–Seidel methods has been presented. Neglecting these
terms in the Jacobian of the implicit preconditioner is necessary, in general, and highly ben-
eficial. The distribution of the eigenvalues of the amplification matrix has been obtained for
two-stage, three-stage and five-stage Runge–Kutta schemes with the implicit preconditioner.
The advantage of the present technique with respect to local mode analysis [51] is that the
stability is determined for a specific problem being solved.

As a final remark, in Sects. 3.3 and 3.4 the incompressible version of the consideredmodels
was introduced and finally implemeneted. When comparing with results from other codes
using the original compressible version of the models for subsonic and transonic flow cases,
no major differences between the results were observed. However, at the outset there seem
to be no obvious obstacles to apply the methods proposed in this article also directly to the
compressible version of the models. Future work will address how the methods proposed
here can be directly applied to these compressible versions.
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