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Abstract
With the aim to continue developing a hybridizable discontinuous Galerkin (HDG) method
for problems arisen from photovoltaic cells modeling, in this manuscript we consider the
time harmonic Maxwell’s equations in an inhomogeneous bounded bi-periodic domain with
quasi-periodic conditions on part of the boundary. We propose an HDG scheme where quasi-
periodic boundary conditions are imposed on the numerical trace space. Under regularity
assumptions and a proper choice of the stabilization parameter, we prove that the approxi-
mations of the electric and magnetic fields converge, in the L2-norm, to the exact solution
with order hk+1 and hk+1/2, resp., where h is the meshsize and k the polynomial degree of
the discrete spaces. Although, numerical evidence suggests optimal order of convergence
for both variables. An a posteriori error estimator for an energy norm is also proposed. We
show that it is reliable and locally efficient under certain conditions. Numerical examples are
provided to illustrate the performance of the quasi-periodic HDG method and the adaptive
scheme based on the proposed error indicator.
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1 Introduction

Photovoltaic cells have been intensively studied in nanoscience and nanotechnology
researchs, due to the possibility of obtaining electrical energy from the sunlight, which is
consider as a green energy choice. This renewable resource of energy can be used in place
of fossil fuels, in order to achieve lower harmful emissions into the atmosphere, a reduced
carbon footprint and fewer air pollutants.

For some decades, the search of new sustainable sources of electrical energy has encour-
aged projects whose main goals consist on improving the capability to collect sunlight of the
photovoltaic cells with periodic surface-relief gratings and increasing the electrical energy
generation. In fact, one of the strategies to increase the efficiency of light harvesting by solar
cells, is the use of plasmonic structures that enhance the intensity of the electromagnetic
field [32]. The key idea is to texture the surface of the metallic back-reflector of a thin-film
solar cell by periodic corrugations of size proportional to the wavelength. Under some con-
ditions [32], this configuration produces an excitement of the electrons placed on the surface
of the metal, generating a wave that propagates through the surface called surface plasmon
polariton (SPP) wave. For instance, this occurs when the propagation constant βSPP of a SPP
wave and the propagation constant β inc of the incident wave satisfy βSPP = β inc + 2nπ ,
for some n ∈ Z in the transverse magnetic (TM) polarization, see Sections 2.1 and 2.2
of [32]. In the same direction, multiple SPP waves can be generated by placing a periodic
multi-layered isotropic dielectric material on top of the metallic back-reflector [19]. Fur-
thermore, structures involving different type of materials have been considered in order to
optimize the performance of the cells, see for example [46] and references therein. In those
cases, it is possible to maximize the spectrally averaged electron hole pair density and the
solar-spectrum-integrated power-flux density [4, 19, 37, 45]. This optimization process is
expensive from the computational point of view since the functionals to maximize depend on
the solution to Maxwell’s equations and also on geometric and optical parameters. This fact
motivates the development and analysis of new methods able to reduce the computational
costs. In this regards, some authors have used numerical techniques in order to state and
approximate the solution of boundary value problems, in which the effect of unpolarized or
polarized incident plane waves on the surface of the cell and a wide range of geometrical
and optical parameters in the frequency-domain Maxwell’s equations, have been considered.
Among them, we highlight the exact modal method [23], the moment method (MoM) [33],
the rigorous coupled-wave approach (RCWA) [37, 46], the finite-difference time-domain
(FDTD) method [27], the finite element method (FEM) [5, 26, 35, 36, 42, 46], and hybridiz-
able discontinuous Galerkin (HDG) methods [10, 11, 13, 14, 20, 39, 47]. We focus our study
on the latter.

Perhaps, from the numerical analysis point of view, three main challenges arise from
the model: the complex-valued electric permittivity, the quasi-periodic boundary condition
and the outgoing radiation condition above and below the solar cell structure. Most of the
known studies assume a positive electric permittivity and consider prescribed boundary data.
Under that assumption, in [20] anHDGmethod to study the three-dimensional time harmonic
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Maxwell’s equations coupled with the impedance boundary condition was proposed, in the
case of high wave numbers. The stability and error estimates for the method were deduced
by employing the constraint κh ≤ 1. Based on the reliable results showed in the above work
and in [14, 39], some authors considered complex-valued permittivities [10, 35, 47] and not
perfect conducting boundary conditions. More precisely, in [47] a high-order HDG scheme
for Maxwell’s equations augmented with the hydrodynamic model, for the conduction-band
electrons in noble metals, is stated. The radiation conditions can be handled by boundary
element methods [24], absorbing boundary conditions (ABCs) [38], Dirichlet-to-Neumann
(DtN) tecniques, based on Fourier expansions [1] and by the perfectly matched layer (PML)
technique, [8, 15, 41].

Inspired in the application described above, in this work we consider a problem in which
the time harmonic Maxwell’s equations are defined in a bounded domain � ⊂ R

3 occupied
by one period of a bi-periodic structure, illuminated by an incident electromagneticwave. Our
heterogeneous domain � corresponds to the disjoint union between the region �d , occupied
by an isotropic dielectric material with positive real relative permittivity and ametallic region
denoted�m , whose relative permittivity is a complex-valued number with negative real part,
see [10]. On the top and bottom boundaries of the unit cell, we consider Dirichlet type
conditions and impose quasi-periodic conditions on the vertical walls of �. Quasi-periodic
conditions can be added to the system of equations defined in symmetric or asymmetric
domains with periodic characteristics, see Sections 3.1 and 3.3 of [26] and Section 2 of [48].
These kind of boundary conditions differ by a complex exponential factor or Bloch phase,
on the parallel walls of the domain. In order to carry out an a priori error analysis of our
3D problem subjected to Dirichlet and quasi-periodic conditions, we based on the analysis
developed in [10]. Even though we are not considering exactly the original model since we
impose Dirichlet boundary condition at the top and bottom walls instead of dealing with the
outgoing radiation condition, this “simplified” problem posses several challenges that must
be addressed first. Therefore, we consider the analysis that we will present in this manuscript
constitutes as a key stepping stone towards the goal of studying the full model.

On the other hand, the change of material across the non-smooth metallic interface, might
produce singularities near the corners. Moreover, as previously discussed, the magnitude of
electromagnetic field is high near the metal surface due to the plasmonic effect. Therefore, in
that region, the finite elementmeshmust be fine enough to capture this phenomena accurately.
This can be efficiently achieved by an adaptive scheme able detect where to localize the mesh
refinement based on an error indicator.

In the case of an a posteriori error indicator for Maxwell’s equations, one of the main
challenges are the non-coercivity of the bilinear form and the low regularity of the exact
solution. Residual based a posteriori error estimates for Maxwell’s equations in electromag-
netic scattering problems were introduced in [7, 34]. The author in [34] showed how an a
posteriori error indicator can be derived using an adjoint equation approach and also the
fact that there is a limit on the maximum diameter of the elements in a grid, imposed by
the non-coercivity of the bilinear form. Later, [43] proved the reliability of the residual error
estimators on Lipschitz domains, which had been proposed and analyzed in [7]. In [28],
the authors derived an hp-type a posteriori error estimate for the time-harmonic Maxwell’s
equations and, in [31], carried out an a posteriori error analysis for the time-dependent
Maxwell’s equations. For the steady state coercive Maxwell’s equations, the authors in [13]
provided a computable residual-based a posteriori error estimator, which is independent of
the regularity parameter of the solution and it is based on the error measured in terms of a
mesh-dependent energy norm. On the other hand, by using hierarchical basis, [6] proposed
a hierarchical error estimator for quasi-magnetostatic eddy current problem discretized by
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means of lowest order curl-conforming finite elements on tetrahedral meshes. They provided
a saturation assumption in order to guarantee the reliability and efficiency of the estimator.

In this manuscript, we extend the residual-based a posteriori error estimator for the coer-
civeMaxwell’s equations, developed in [13]. We will establish reliability and local efficiency
of the error estimator proposed for our HDG scheme, by using approximation properties of
continuous functions, Helmholtz decompositions, the Scott-Zhang interpolation operator and
a standard localization technique, based on element and face bubble functions [2]. Moreover,
in the context of discontinuousGalerkinmethods, it is crucial the use of a continuous approxi-
mation of a discontinuous piece-wise polynomial function [29, 30], sometimes calledOswald
interpolant inspired in the work by [40] for piecewise linear approximations. This interpolant
has been employed in the deduction of a posteriori error estimators for HDGmethods [3, 12,
16, 17]. In our case, we modify this operator in such a way that it preserves quasi-periodic
boundary conditions (see Appendix A.2).

The rest of this paper is organized as follows. In Sect. 2 we define the truncated domain
and introduce the boundary value problem. In Sect. 3, we propose an HDGmethod and prove
it is well posed. Then, we briefly describe the stability analysis and the error analysis for the
method. The residual-based a posteriori error estimator for our HDG method is developed
and analyzed in the fourth section. Finally, in Sect. 5 we show some numerical results by
using uniform refined meshes and adaptive refined meshes.

2 Problem Statement

Through the manuscript we will use standard simplified terminology for Sobolev spaces
and norms, where vector-valued functions are bold-faced. In particular, if O is a domain
in R

3, � is an open or closed Lipschitz surface, and s ∈ R, we set Hs(O) := [Hs(O)]3,
Hs(�) := [Hs(�)]3 and their corresponding norms ‖·‖s,O for Hs(O) andHs(O); and ‖·‖s,�
for Hs(�) andHs(�). In the case s = 0, we write L2(O), L2(O), L2(�) and L2(�) instead
of H0(O), H0(O), H0(�) and H0(�), respectively; and in the notation for their norms, the
first subindex will not be included. For s > 0, we write | · |s,O for the Hs- andHs-seminorms.
From ahead, Pk(O) denotes the space of complex-valued polynomials of degree less or equal
than k ≥ 0, Pk(O) := [Pk(O)]3 and by (·, ·)O and 〈·, ·〉∂O , we denote the L2(O) and L2(∂O)

inner products, respectively.
In addition, we introduce the following spaces

H(divε;O) := {w ∈ L2(O) : ∇ · (εw) ∈ L2(O)},
H(div0ε;O) := {w ∈ L2(O) : ∇ · (εw) = 0},
H0(div;O) := {w ∈ H(div;O) : w · n|∂O = 0},
Hϑ(div;O) := {w ∈ H(div;O) : w · n|ϑ = 0},
H(curl;O) := {w ∈ L2(O) : ∇ × w ∈ L2(O)},
H0(curl;O) := {w ∈ H(curl;O) : w × n|∂O = 0},
Hϑ(curl;O) := {w ∈ H(curl;O) : w × n|ϑ = 0},

where ϑ ⊂ ∂O and n denotes the outward unit normal vector to ∂O. For a vector-valued
function w defined on a face F , we denote by wt := (n × w) × n and wn := (w · n)n its
tangential and normal components, respectively. It follows that w := wt +wn and wt ×n =
w × n.
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Fig. 1 Example of a domain �: a dielectric region �d placed on top of a metallic backreflector �m

Furthermore, to avoid proliferation of unimportant constants, the expression A ≤ CB, for
some C > 0 independent of the meshsize, will be replaced by A � B.

Now, let us characterize our simply connected domain � := (0, L) × (0, L) × (0, M),
with L, M > 0 with polyhedral connected boundary 
 := 
1 ∪ 
2 ∪ 
3 ∪ 
4 ∪ 
B ∪ 
T.
Here,


1 : = {(0, y, z) : y ∈ (0, L), z ∈ (0, M)}, 
2 : = {(L, y, z) : y ∈ (0, L), z ∈ (0, M)},

3 : = {(x, 0, z) : x ∈ (0, L), z ∈ (0, M)}, 
4 : = {(x, L, z) : x ∈ (0, L), z ∈ (0, M)},

B : = {(x, y, 0) : x ∈ (0, L), y ∈ (0, L)}, 
T : = {(x, y, M) : x ∈ (0, L), y ∈ (0, L)}.
In applications arising from solar cell modeling,� corresponds to one period of a bi-periodic
array, where the unit cells are joined through quasi-periodic boundary conditions, which are
imposed on the vertical walls of �, 
1-
2 and 
3-
4. In this phenomenon, after the sunlight
illuminates the top boundary 
T, outgoing and evanescent waves are generated, below the
bottom boundary 
B and above 
T, as well. In this work we assume that the data on 
B and

T are prescribed, but we consider quasi-periodic boundary conditions on 
1-
2 and 
3-
4.

The domain � is divided in two subdomains. A dielectric region �d with permittivity
εd ∈ R

+ and a metallic region �m with electric permittivity εm ∈ C, satisfying Re(εm) < 0
and Im(εm) > 0, as it was shown in Fig. 1.

Given J ∈ H(div0;�) and ĝ ∈ γt
(
H(curl;�) ∩ H(div0ε;�)

)
, where γt denotes the

tangential trace operator, we look for E and H such that

∇ × E = i ω μ0 H, in �, (1a)

∇ × H = J − i ω ε0 ε E, in �, (1b)

E × n = ĝ, on 
B ∪ 
T, (1c)

E(L, y, z) = eiαLE(0, y, z), y ∈ (0, L), z ∈ (0, M), (1d)

E(x, L, z) = eiβLE(x, 0, z), x ∈ (0, L), z ∈ (0, M), (1e)

where E denotes the electric field, H the magnetic field and J the current density, which
satisfy an implicit e−iωt dependence of time at frequencyω > 0. The other parameters are the
permeability of free spaceμ0, the electric permittivity of free space ε0, the electric permittivity
ε, the relative permittivity ε0ε, the free-space wavenumber κ := ω

√
ε0μ0, the free-space

wavelength λ0 := 2π/κ and the intrinsic impedance of the free space η0 := √
μ0/ε0.

Furthermore, μ0 = 4π × 10−7 Hm−1, ε0 = 8.854 × 10−12 Fm−1, n denotes the outward
unit normal to
 and the permittivity is defined as ε = εm in�m and ε = εd in�d . According
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to the theory that appears in Section 1.3 of [35], the solutions of (1) exist and have the form
of a plane wave. A plane wave is defined as an electromagnetic wave whose polarization,
A, satisfies the property A · (α, β, γ ) = 0, for α := κ sin θ cosφ, β := κ sin θ sin φ and
γ := κ cos θ , with θ ∈ [0, π ] and φ ∈ [0, 2π ]. Based on the form of the solutions it is
possible to characterize the quasi-periodic boundary conditions, which in this problem were
added by the Eqs. (1d) and (1e).

Let us introduce in (1) the change of variable u := ε
1/2
0 E, v := iκμ

1/2
0 H. By a Lagrange

multiplier p, we impose the incompressibility condition∇ · (εE) = 0, which can be deduced
from the second equation. For a more detailed description of (1), we refer to [35]. Then, we
obtain the following problem: Find u, v and p such that

v − ∇ × u = 0, in �, (2a)

∇ × v − κ2εu + ε∇ p = f, in �, (2b)

∇ · (εu) = 0, in �, (2c)

u × n = g, on 
B ∪ 
T, (2d)

u (L, y, z) = eiαLu (0, y, z) , y ∈ (0, L), z ∈ (0, M), (2e)

u (x, L, z) = eiβLu (x, 0, z) , x ∈ (0, L), z ∈ (0, M), (2f)

p = 0, on 
, (2g)

where f := iκμ
1/2
0 J, g := ε

1/2
0 ĝ and ε is the complex conjugate of ε. In order to simplify

notation, we define 
0 := 
B ∪ 
T and 
QP := 
1 ∪ 
2 ∪ 
3 ∪ 
4.
Now, let us introduce the spaces

HQP(curl;�) :=
{
w ∈ H(curl;�) : w |
2= eiαLw |
1 ,w |
4= eiβLw |
3

}
,

HQP

0

(curl;�) :=
{
w ∈ HQP(curl;�) : w × n|
0 = 0

}
,

XQP := HQP

0

(curl;�) ∩ H(div0ε;�),

Xg
QP :=

{
w ∈ HQP(curl;�) ∩ H(div0ε;�) : w × n|
0 = g

}
,

endowed with the H(curl;�)-norm, ‖w‖H(curl;�) := (‖w‖2� + ‖∇ ×w‖2�)1/2. With respect
to the existence and uniqueness of the solutions of (2), we have the following Lemma.

Lemma 1 If κ2εd is not an eigenvalue of ∇ × ∇× in �d , then (2) has a unique solution
(v,u, p) ∈ H(curl;�) × Xg

QP × H1
0(�).

Proof By tailoring the proofs showed in Section 5 of [9], we can guarantee the existence
of a unique solution, when g = 0, for the following variational formulation: Find (u, p) ∈
XQP × H1

0(�) such that

(∇ × u,∇ × w)� − κ2(εu,w)� = (f,w)�,

(ε ∇ p,∇q)� = (f,∇q)�,
(3)

for all (w, q) ∈ XQP × H1
0(�).

In the case g = 0, we have that if g ∈ γt (H(curl;�) ∩ H(div0ε;�)) then, there exists
a unique ϕ ∈ H(curl;�) ∩ H(div0ε;�), such that γt (ϕ) = g. Moreover, by noting that
u − ϕ ∈ XQP is a solution of (3), we can conclude the uniqueness of u; from which the
existence and uniquenes of the solution of (2) is deduced. ��
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3 The HDGMethod

Let us begin by setting a shape-regular simplicial tetrahedrization Th of �, such that each
◦
K ∈ Th is completely contained in �m or �d . Then, T m

h and T d
h will denote the sets of

tetrahedra lying in �m and �d , respectively. Furthermore, we define ∂Th := {∂K : K ∈ Th}
and Eh := EI ∪ E
 , where EI and E
 denote the interior and boundary faces induced by Th ,
respectively. Due to the definition of 
, we will denote by E0 and EQP the set of faces lying on

0 and 
QP, respectively. We assume Th does not have hanging nodes. Moreover, let us also
suppose conformity between the discretization of the periodic boundaries 
1-
2 and 
3-
4.
More precisely, if F1 = {(0, y, z)} is a face of 
1, we assume that F2 := {(L, y, z)} is a face
of 
2. Similarly for 
3 and 
4. In addition, we set ‖ · ‖Th := (·, ·)1/2Th

and ‖ · ‖∂Th := 〈·, ·〉1/2∂Th
,

with

(·, ·)Th
:=

∑

K∈Th

(·, ·)K , 〈·, ·〉∂Th :=
∑

K∈Th

〈·, ·〉∂K ,

where (·, ·)D and 〈·, ·〉G denote standard L2-complex inner products over regions D ⊂ R
3

and G ⊂ R
2, respectively.

For a vector-valued function w, we define the tangential jump across F ∈ EI by �w�F :=
w+ × n+ + w− × n−. If F ∈ E0, we set �w�F := w × n. We will drop the subscript F ,
when there is no confusion. Let us now explain the jump operator acting on a face of a
quasi-periodic boundary. If F ⊂ 
1, we define �w�QP := (eiαLw × n) |
1 +(w × n) |
2 . In
other words, if w is quasi-periodic on 
1, then �w�QP = 0. Similarly, if F ⊂ 
3, we define
�w�QP := (eiβLw × n) |
3 +(w × n) |
4 . For a scalar-valued function p, the jump across a
face F ∈ EI is denoted by �q� := q+ − q−, whereas for a boundary face F ∈ E
 , we write
�q� := q .

Considering the above tetrahedrization of�,we define the following approximation spaces

Qh := {
q ∈ L2(�) : q |K ∈ Pk(K ), ∀ K ∈ Th

}
,

Mh := {
� ∈ L2(Eh) : � |F ∈ Pk(F), ∀ F ∈ Eh

}
,

Vh := {
w ∈ L2(�) : w |K ∈ Pk(K ), ∀ K ∈ Th

}
,

Mt
h := {

ρ ∈ L2 (Eh) : ρ |F ∈ Pk(F), (ρ · n) |F = 0, ∀ F ∈ Eh
}
,

Mg
QP :=

{
ρ ∈ Mt

h : ρ|
2 = eiαLρ|
1 , ρ|
4 = eiβLρ|
3 , ρ|
0 × n = PMt
h
g
}

where PMt
h
is L2-projections over Mt

h .

The HDG scheme associated to (2) seeks the approximation (vh,uh, ph, ûth, p̂h) ∈ Vh ×
Vh × Qh × Mg

QP × Mh of the exact solution (v,u, p,ut |Eh , p|Eh ), satisfying
(vh,w)Th

− (uh,∇ × w)Th
− 〈

ûth,w × n
〉
∂Th

= 0, (4a)

(vh,∇ × z)Th
+ 〈

v̂th, z × n
〉
∂Th

− κ2 (εuh, z)Th
− (ph,∇ · (εz))Th

+ 〈 p̂h, εz · n〉∂Th
= (f, z)Th

, (4b)

− (ε uh,∇q)Th
+ 〈̂ε unh · n, q〉∂Th = 0, (4c)

〈
n × v̂th, ρ

〉
∂Th

= 0, (4d)

〈̂ε unh · n, �〉∂Th\ 
 = 0, (4e)

〈 p̂h, �〉
 = 0, (4f)
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for all (w, z, q, ρ, �) ∈ Vh × Vh × Qh × M0
QP × Mh , where the numerical fluxes v̂th and

ε̂unh defined on ∂Th are given by

n × v̂th := n × vth + τ(uth − ûth), (4g)

ε̂unh · n := εunh · n + τn(ph − p̂h). (4h)

The stabilization parameters τ and τn are complex-valued that satisfy Re(τ ) ≥ 0, Im(τ ) ≤
0, Re(τn) ≥ 0 and Im(τn) ≥ 0. These conditions ensure well-posedness of the scheme in
agreement with Section 3 of [10].

We notice that, since the test function ρ belongs toM0
QP, (4d) implies the quasi-periodicity

of the numerical flux v̂th . In fact, taking ρ = 0 on 
1 ∪
2 and ρ = 0 otherwise, we have that
〈
n × v̂th, ρ

〉

1

+ 〈
n × v̂th, ρ

〉

2

= 0,

for all ρ ∈ Pk(
1), due to the fact that ρ|
2 = eiαLρ|
1 . Now, if we denote by ϕ the bijective
mapping that transforms a face in 
2 into its corresponding face in 
1, it holds

0 = 〈
n × v̂th, ρ

〉

1

+
〈
(n × v̂th) ◦ ϕ, eiαLρ

〉


1
=

〈
n × v̂th + (n × v̂th) ◦ ϕe−iαL , ρ

〉


1
,

for all ρ ∈ Pk(
1), from which,

0 = (n × v̂th + (n × v̂th) ◦ ϕe−iαL)|
1 = n × v̂th |
1 + n × v̂the
−iαL |
2 .

Remark 1 We emphasize that ûth and v̂
t
h are “single-valued” on any face F ∈ Eh\EQP. More-

over, for faces in EQP, the numerical fluxes are also single-valued, but in a “quasi-periodic
sense”, namely, �̂uth�QP = 0 and �̂vth�QP = 0.

The authors in [10] analyzed the well-posedness and provided the error estimates for
an HDG scheme similar to (4), but considered a prescribed boundary data g in the entire
boundary 
. In our case, quasi-periodic boundary conditions are imposed on the vertical
walls. This quasi-periodicity is imposed strongly on the space Mg

QP for the numerical trace
ûth and implies the quasi-periodicity of the flux v̂th , as it was explained before. These facts
make possible to cancel out the contribution of the terms on 
1 and 
2 (
3 and 
4), during
the deduction of the stability estimates of the scheme. Therefore, the same error analysis
performed in [10] holds for (4). Even more, the analysis in it implies the following result for
s ∈ (0, 1) and s ≤ t chosen as in section 3.2 of the same reference.

Corollary 1 Let (v,u, p) ∈ Hlu+1(Th)×Hlv+1(Th)×Hl p+1(Th) and
(
vh,uh, ph, ûth, p̂h

) ∈
Vh ×Vh ×Qh ×Mg

QP×Mh be the solutions of (2) and (4), respectively, for lv, lu, l p ∈ [0, k].
If τ and τn are purely imaginary, s ∈ (0, 1) and s ≤ t , there hold

‖v − vh‖Th � hmin{s,1/2} (hlv |v|lv+1,Th + hlu |u|lu+1,Th + hlp |p|l p+1,Th

)

‖ε(u − uh)‖Th � hs
(
hlv |v|lv+1,Th + hlu |u|lu+1,Th + hlp |p|l p+1,Th

)
,

when |τ | and |τn | are of order one. If |τ | is of order h−1 and |τn | is of order h, then

‖v − vh‖Th � hlv+min{1,t}|v|lv+1,Th + hlu+min{0,t−1}|u|lu+1,Th + hlp+min{s+1,t} |p|l p+1,Th

‖ε(u − uh)‖Th � hlv+min{1,t}|v|lv+1,Th + hlu+min{s,t−1}|u|lu+1,Th + hlp+1+min{s,t−1} |p|l p+1,Th
.

In addition, if τ and τn are not purely imaginary, then there exists h0 > 0 such that for all
h < h0, the same result holds.
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Remark 2 The numerical experiments reported in [10] show an experimental order of con-
vergence better than the one predicted by the theory. More precisely, for smooth solutions
and stabilization parameters with modulus proportional to one, the experimental rate of con-
vergence is hk+1 for the L2-error of the approximations of u, v and p.

4 A Posteriori error analysis

In this section assuming that |τ | and |τn |withmodulus proportional to one, we propose ‘under
some circumstances’ a reliable and locally efficient error estimator for the energy-type error

Eh := ‖v − vh‖Th + ‖∇ × (u − uh)‖Th + h−1/2

‖τ 1/2(uth − ûth)‖∂Th

+h−1/2‖τ 1/2n (ph − p̂h)‖∂Th + ‖∇(p − ph)‖Th + ‖u − uh
‖Th + ‖p − ph‖Th .

(5)

According to Remark 2, the order of convergence of Eh is hk when the solution is sufficiently
smooth.

We base our analysis on the techniques presented in [13], but keeping in mind that, in
our context � is occupied by an heterogeneous material because the relative permittivity is
a complex-valued function.

Let us begin by defining the global error indicator:

η :=
∑

K∈Th

(

η2K +
∑

F⊂∂K

η2F,1 + η2F,2 + η2F,3

)

+
∑

F∈EI

η2F,4,

where ηK , ηF,1, ηF,2, ηF,3 and ηF,4 correspond to the local a posteriori error indicators,
specified as follows.

For each K ∈ Th ,

ηK ,1 := hK ‖f − ε∇ ph + κ2εuh − ∇ × (∇ × uh)‖K , (6a)

ηK ,2 := hK ‖∇ · f + κ2ε∇ · uh − ∇ · (ε ∇ ph)‖K , (6b)

and for F ⊂ ∂K ,

ηF,1 := h−1/2
F ‖τ 1/2(uh − ûth) × n‖F , (6c)

ηF,2 := h−1/2
F ‖τ 1/2n (ph − p̂h)‖F , (6d)

ηF,3 := h1/2F ‖(vh − ∇ × uh) × n‖F . (6e)

Moreover, for each F ∈ EI ,

ηF,4 := h1/2F

∥∥∥∥

�

ε
∂ ph
∂n

�∥∥∥∥
F

. (6f)

In order to state the main result, we denote by �V and �Q the L2-projections over Vh

and Qh , see [18].
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Theorem 1 Let (v,u, p) ∈ H(curl;�) × Xg
QP × H1

0(�) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×
Vh×Qh×Mg

QP×Mh be the solutions of (2) and (4), respectively. Then, there exist C1,C2 > 0
such that

Eh ≤ C1η ∧ C2η ≤ Eh + oscf + osc∇·f ,

where oscf :=
∑

K∈Th

osc(f, K ), osc(f, K ) := hK ‖f − �Vf‖K , osc∇·f :=
∑

K∈Th

osc(∇ · f, K )

and osc(∇ · f, K ) := hK ‖∇ · f − �Q(∇ · f)‖K .
In the forthcoming sections we will derive a sequence of results that will lead to the proof

of Theorem 1. We will employ approximation properties for discontinuous functions and
bubble functions.

4.1 Reliability

One of the main tools, usually employed in the context of DG methods is the conform-
ing approximation of a piecewise polynomial function. In this direction, we obtained the
following lemmas by using Proposition 4.5 of [25] and Theorem 2.2 of [29].

Lemma 2 Letw ∈ Vh and g̃ be the tangential trace of a function inVc
h := Vh ∩H(curl;�).

Then, there exists wc ∈ Vc
h with wc × n|
0 = g̃, such that

‖w − wc‖Th � ‖h1/2�w�‖Eh\E0 + ‖h1/2(w × n − g̃)‖E0 , (7a)

‖∇ × (w − wc)‖Th � ‖h−1/2�w�‖Eh\E0 + ‖h−1/2(w × n − g̃)‖E0 . (7b)

Moreover, there existswQP ∈ Vc
h with tangential trace g̃ on
0 and quasi-periodic conditions

on 
QP, such that

‖w − wQP‖Th � ‖h1/2�w�‖EI + ‖h1/2�w�QP‖EQP + ‖h1/2(w × n − g̃)‖E0 , (7c)

‖∇ × (w − wQP)‖Th � ‖h−1/2�w�‖EI + ‖h−1/2�w�QP‖EQP + ‖h−1/2(w × n − g̃)‖E0 .
(7d)

In addition, let q ∈ Qh. There exists qc ∈ Qc
h := Qh ∩ H1

0(�), such that

‖∇(q − qc)‖Th � ‖h−1/2�q�‖EI � ‖h−1/2(q − �)‖∂Th , (7e)

for any singled-valued function � defined over Eh, such and �|
 = 0.

The estimates (7a) and (7b) were proven in Proposition 4.5 of [25], whereas the proof of (7e)
can be found in Theorem 2.2 of [29]. The results in (7c) and (7d) are consequence of (7a)
and its proof will be postponed to the appendix (Appendix A.2).

In addition, we will employ the Scott-Zhang interpolant �SZ : H1
ϑ(�) → Qh ∩ H1

ϑ(�),
where H1

ϑ(�) := {φ ∈ H1(�) : φ|ϑ = 0}with ϑ ⊆ 
. Note that if φ ∈ H1
0(�) then�SZφ ∈

Qc
h . In the literature, it is known that it satisfies the following approximation properties [cf.

[44]].

Lemma 3 Let K ∈ Th and F ∈ Eh. For any φ ∈ H1
ϑ(�), there hold

‖φ − �SZφ‖K � hK |φ|1,ωK ,

‖φ − �SZφ‖F � h1/2F |φ|1,ωF ,

where ωK := ∪{K ′ ∈ Th : K ′ ∩ K = ∅} and ωF := ∪{K ′ ∈ Th : K ′ ∩ F = ∅}.
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Now, we are in position to prove an upper bound for the L2 and broken H1- error on the
pressure. As we will see, this bound depends on some of the terms of the error estimator and
also on the L2-error of the electric field. For the sake of simplicity in the exposition, from
now on we assume that g is the tangential trace of a function in Vc

h . Otherwise, oscillatory
terms related to g would appear.

Lemma 4 For (v,u, p) ∈ H(curl;�) × Xg
QP × H1

0(�) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×
Vh × Qh × Mg

QP × Mh the solutions of (2) and (4), respectively, there hold

‖p − ph‖Th � ‖∇(p − ph)‖Th + ‖h−1/2 (ph − p̂h)‖∂Th , (8a)

‖∇(p − ph)‖Th �
∑

K∈Th

ηK ,2 +
∑

F∈EI

ηF,4 + κ2‖ε(u − uh)‖Th + ‖h−1/2(ph − p̂h)‖∂Th .

(8b)

Proof By the discrete Poincaré inequality ( [18], Corollary 5.4) and the fact that p̂h is single-
valued and vanishes at the boundary, we have that

‖p − ph‖Th � ‖∇(p − ph)‖Th + ‖h−1/2 �ph�‖EI + ‖h−1/2 ph‖E


� ‖∇(p − ph)‖Th + ‖h−1/2 �ph − p̂h�‖EI + ‖h−1/2(ph − p̂h)‖E


� ‖∇(p − ph)‖Th + ‖h−1/2 (ph − p̂h)‖∂Th ,

from which (8a) follows. Now, in order to bound ‖∇(p − ph)‖Th , we employ the result in
Lemma 2. More precisely, for ph ∈ Qh there exists pch ∈ Qc

h such that

‖∇(ph − pch)‖Th � ‖h−1/2(ph − p̂h)‖∂Th . (9)

On the other hand, by substituting f [cf. (2b)] in (4b) we obtain the next error equation

(v − vh,∇ × z)Th +〈vt − v̂th, z × n〉∂Th − κ2(ε(u − uh), z)Th

+(ε∇(p − ph), z)Th + 〈ph − p̂h, εz · n〉∂Th = 0

∀z ∈ Vh . (10)

Let φ := p − pch ∈ H1
0(�), by taking z := ∇�SZφ in (10), it follows that

−κ2(ε(u − uh),∇�SZφ)Th +(ε∇(p − ph),∇�SZφ)Th +〈ph − p̂h, ε∇�SZφ · n〉∂Th = 0,

since ∇ × ∇�SZφ = 0 and 〈vt − v̂th,∇�SZφ × n〉∂Th = 0. Then, if we rewrite
(∇(p− ph), ε∇φ)Th by using the above expression and the Green’s identity of H(divε; Th),
we obtain that

(∇(p − ph), ε∇φ)Th = (∇(p − ph), ε∇(φ − �SZφ))Th

+ (∇(p − ph), ε∇�SZφ)Th

= (∇(p − ph), ε∇(φ − �SZφ))Th

+ κ2(ε(u − uh),∇�SZφ)Th

− 〈ph − p̂h, ε∇�SZφ · n〉∂Th

= −(∇ · (ε∇(p − ph)), φ − �SZφ)Th

+ 〈ε∇(p − ph) · n, φ − �SZφ〉∂Th

− κ2(∇ · (ε(u − uh)),�SZφ)Th

+ κ2〈ε(u − uh) · n,�SZφ〉∂Th

− 〈ε(ph − p̂h),∇�SZφ · n〉∂Th .
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Moreover, by Eq. (2b), we deduce that

(∇(p − ph), ε∇φ)Th = (∇ · f + κ2∇ · (εuh) − ∇ · (ε∇ ph),�SZφ − φ)Th

+ 〈ε∇(p − ph) · n, φ − �SZφ〉∂Th

− κ2(∇ · ε(u − uh), φ)Th

+ κ2〈ε(u − uh) · n,�SZφ − φ〉∂Th

+ κ2〈ε(u − uh) · n, φ〉∂Th − 〈ε(ph − p̂h),∇�SZφ · n, 〉∂Th

= (∇ · f + κ2∇ · (εuh) − ∇ · (ε∇ ph),�SZφ − φ)Th

+ 〈ε∇(p − ph) · n, φ − �SZφ〉∂Th + κ2(ε(u − uh),∇φ)Th

+ κ2〈ε(u − uh) · n,�SZφ − φ〉∂Th − 〈ε(ph − p̂h),

∇�SZφ · n − ∇�0
Qφ · n〉∂Th , (11)

where �0
Q is the L2-projection over P0(Th).

Now, let us bound each term on the right hand side of (11). We apply the Cauchy-Schwarz
inequality, the approximation properties in Lemma 3, inverse inequality and the continuity
of ε∇ p ·n, which is derived from the second equation of (2) and the fact that f ∈ H(div0;�).
More precisely, for the first term, it holds

(∇ · f + κ2∇ · (εuh) − ∇ · (ε∇ ph),�SZφ − φ)Th

� h ‖∇ · f + κ2∇ · (εuh) − ∇ · (ε∇ ph)‖Th‖φ‖1,Th

and for the second term,

〈ε∇(p − ph) · n, φ − �SZφ〉∂Th � h1/2‖ε∇(p − ph) · n‖∂Th‖φ‖1,Th

� ‖h1/2�ε∇ ph · n�‖EI ‖φ‖1,Th .

Similarly, we derive the following bounds for the third, fourth and fifth terms

κ2(ε(u − uh),∇φ)Th � κ2‖ε(u − uh)‖Th‖φ‖1,Th ,

κ2〈ε(u − uh) · n,�SZφ − φ〉∂Th � κ2‖ε(u − uh)‖Th‖φ‖1,Th ,

〈ε(ph − p̂h), (∇�SZφ − ∇�0
Qφ) · n〉∂Th �

∑

K∈Th

‖ε(ph − p̂h)‖∂K ‖(∇�SZφ − ∇�0
Qφ) · n‖∂K

�
∑

K∈Th

‖ε(ph − p̂h)‖∂K h
−1/2
K ‖∇�SZφ − ∇�0

Qφ‖K

�
∑

K∈Th

h−3/2
K ‖ε(ph − p̂h)‖∂K ‖�SZφ − �0

Qφ‖K

� ‖h−1/2ε(ph − p̂h)‖∂Th‖φ‖1,Th .

By replacing all the above bounds in (11), noticing that

‖∇(p − pch)‖2Th
� |(∇(p − ph), ε∇φ)Th | + |(∇(ph − pch),∇φ)Th |,

considering Lemma 3 and using Poincaré inequality applied to ‖φ‖Th , we deduce that

‖∇(p − pch)‖Th � ‖h (∇ · f + κ2∇ · (εuh) − ∇ · (ε∇ ph)
) ‖Th + ‖h1/2�ε∇ ph · n�‖EI

+ κ2‖ε(u − uh)‖Th + ‖h−1/2(ph − p̂h)‖∂Th + ‖∇(ph − pch)‖Th .

Finally, writing ∇(p − ph) = ∇(p − pch) + ∇(pch − ph), using triangle inequality, (9) and
the last expression, we obtain (8b). ��
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In the next result, it is presented an upper bound for the L2-error of the electric field that
depends on the L2-error of an approximation of its curl and the penalty terms. The former
will be bounded later, by a computable quantity.

Lemma 5 Let (v,u, p) ∈ H(curl;�)×Xg
QP×H1

0(�) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh ×
Qh × Mg

QP × Mh be the solutions of (2) and (4), respectively. There holds

‖ε(u − uh)‖Th �‖∇ × (u − uQPh )‖Th + h1/2‖τn(ph − p̂h)‖∂Th + ‖h1/2(uh − ûth) × n‖∂Th

(12)

where uQPh is given by Lemma 2 for uh ∈ Vh.

Proof First of all, thanks to Lemma 2, foruh ∈ Vh there existsu
QP
h ∈ Vc

h withu
QP
h ×n |
0= g

such that

‖uh − uQPh ‖Th � ‖h1/2�uh�‖EI + ‖h1/2�uh�QP‖EQP + ‖h1/2(uh × n − g)‖E0 ,
Evenmore, the facts that �̂uth� = 0 on EI , �̂uth�QP = 0 on
QP (cf. Remark 1) and ûth×n |
0=
g, imply that

‖uh − uQPh ‖Th � ‖h1/2�uh − ûth�‖EI + ‖h1/2�uh − ûth�QP‖EQP + ‖h1/2(uh − ûth) × n‖E0 ,
therefore, since ε is a bounded function, we have that

‖ε(uh − uQPh )‖Th � ‖h1/2(uh − ûth) × n‖∂Th . (13)

and, by the triangle inequality

‖ε(u − uh)‖Th � ‖ε(u − uQPh )‖Th + ‖h1/2(uh − ûth) × n‖∂Th . (14)

Now, let us see the deduction of a bound for the term ‖ε(u − uQPh )‖Th . For this purpose,
we will use a Helmholtz decomposition, which will be demonstrated in the Appendix A.1.
For u − uQPh ∈ L2(�) there exist ψ ∈ H1,QP


0
(�) and us ∈ H
QP (div

0;�), such that

u − uQPh = ∇ψ + us (15)

and ‖u − uQPh ‖2� = ‖∇ψ‖2� + ‖us‖2� (see Proposition 1). Moreover, according with [21,
Theorem 8.4], since � is simply connected and us ∈ H
QP (div

0;�) there exists a unique
z̃ ∈ H
0(div

0;�) ∩ H
QP (curl;�) such that ∇ × z̃ = us and it satisfies

‖̃z‖H(curl;�) � ‖us‖�. (16)

In the next part of the proof, we bound ‖us‖� and ‖∇ψ‖�. First, we note that (u − uQPh ) ×
n |
0= 0, since u ∈ Xg

QP and g is the tangential trace of uQPh . By considering the orthogonal
decomposition (15) and integrating by parts, we note that

‖us‖2� = (us,u − uQPh − ∇ψ)� = (∇ × z̃,u − uQPh )� − (us,∇ψ)�

= (̃z,∇ × (u − uQPh ))� + 〈(u − uQPh ) × n, z̃t 〉

+ (∇ · us, ψ)� − 〈us · n, ψ〉
 = (̃z,∇ × (u − uQPh ))�
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where the first boundary term vanishes due to the fact that u − uQPh ∈ H
0(curl;�), z̃ ∈
H
QP (curl;�) and the other terms because us ∈ H
QP (div

0;�) and ψ |
0 = 0. Therefore,
by the Cauchy-Schwarz inequality and (16), it holds

‖us‖2� � ‖us‖�‖∇ × (u − uQPh )‖�,

thus

‖us‖� � ‖∇ × (u − uQPh )‖Th . (17)

Now, in order to bound ‖∇ψ‖�, we also employ the aforementioned orthogonal decompo-
sition and the addition and subtraction of uh , as follows

‖∇ψ‖2� = (u − uQPh − us , ∇ψ)� = (u − uQPh , ∇ψ)� = (ε−1ε(u − uh + uh − uQPh ),∇ψ)Th ,

in order to conclude that,

‖∇ψ‖2� � |(ε(u − uh),∇ψ)Th | + |(ε(uh − uQPh ),∇ψ)Th |. (18)

Then, taking into account (2c) and (4c), we deduce the following error equation

−(ε(u − uh),∇q)Th + 〈(εu − ε̂unh) · n, q〉∂Th = 0,

for all q ∈ Qh . From which, after applying the Green’s identity of H(div; Th), it is obtained
that

(∇ · ε(u − uh), q)Th + 〈(εuh − ε̂unh) · n, q〉∂Th = 0 ∀q ∈ Qh . (19)

Now, ifwe integrate by parts in the first termof (18), add and subtract (∇·ε(u−uh),�SZψ)Th ,
integrate by parts (∇ · ε(u − uh),�SZψ)Th , use the fact that u ∈ H(div0ε;�) and choose
q = �SZψ ∈ Qh in (19), we can get that

(ε(u − uh),∇ψ)Th = −(∇ · ε(u − uh), ψ)Th + 〈ε(u − uh) · n, ψ〉∂Th

= (∇ · ε(u − uh),�SZψ − ψ)Th

− (∇ · ε(u − uh),�SZψ)Th + 〈ε(u − uh) · n, ψ〉∂Th

= (∇ · (εuh), ψ − �SZψ)Th + 〈(εu − ε̂unh) · n,�SZψ〉EQP
+ 〈ε(u − uh) · n, ψ − �SZψ〉∂Th\(EQP∪E0),

where in the last step we have made use of the fact that 〈(εu− ε̂unh) · n,�SZψ〉∂Th\EQP = 0,

due to �SZψ ∈ H1

0

(�), the continuity of the normal trace of εu and the fact that ε̂unh is
a single-valued function. We also used the fact that �SZψ − ψ = 0 on EQP ∪ E0. By the
Cauchy-Schwarz inequality, the the definition of �·�QP and the approximation properties of
the Scott-Zhang projector in Lemma 3, it follows that

|(ε(u − uh), ∇ψ)Th | ≤ |(∇ · (εuh), ψ − �SZψ)Th | + |〈ε(u − uh) · n, ψ − �SZψ〉∂Th\(EQP∪E0)|
+ |〈(εu − ε̂unh) · n, �SZψ − ψ〉EQP | + |〈(εu − ε̂unh) · n, ψ〉EQP |

≤ ‖∇ · (εuh)‖Th‖ψ − �SZψ‖Th + ‖ε(u − uh) · n‖∂Th\(EQP∪E0)‖ψ − �SZψ‖∂Th

+
∥
∥
∥�(εu − ε̂unh) · n�QP

∥
∥
∥
EQP

∥
∥�ψ�QP

∥
∥
EQP

�
(
h‖∇ · (εuh)‖Th + h1/2‖ε(u − uh) · n‖∂Th\(EQP∪E0)

) |ψ |1,�
�

(
h‖∇ · (εuh)‖Th + h1/2

∥
∥�ε(u − uh) · n�

∥
∥
EI

)
|ψ |1,�,

(20)
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where we have made use of the fact that �ψ�QP = 0 because ψ ∈ H1,QP

0

(�). Taking into

account that εu ∈ H(div;�), ε̂unh is single-valued and (4h), we have

‖�ε(u − uh) · n�‖EI = ‖�(εuh − ε̂unh) · n�‖EI =
∑

F∈EI

∥
∥
∥�(εuh − ε̂unh) · n�

∥
∥
∥
F

=
∑

F∈EI

‖�τn(ph − p̂h)�‖F ≤ ‖τn(ph − p̂h)‖∂Th .
(21)

Recalling that ∇ · (εu) = 0, taking q := ∇ · (εuh) in (19), by using the Cauchy-Schwarz
inequality, the discrete trace inequality and (4h), there holds

‖∇ · (εuh)‖2Th
= 〈(εuh − ε̂unh) · n, ∇ · (εuh)〉∂Th ≤ ‖(εuh − ε̂unh) · n‖∂Th ‖∇ · (εuh)‖∂Th

≤ ‖(εuh − ε̂unh) · n‖∂Th h
−1/2‖∇ · (εuh)‖Th ≤ h−1/2‖τn(ph − p̂h)‖∂Th ‖∇ · (εuh)‖Th

thus

‖∇ · (εuh)‖Th � h−1/2‖τn(ph − p̂h)‖∂Th . (22)

Therefore, by using the Cauchy-Schwarz inequality in (18), from (20), (21), (22) and (13),
it follows that

‖∇ψ‖� � h1/2‖τn(ph − p̂h)‖∂Th + ‖h1/2(uh − ûth) × n‖∂Th . (23)

Finally, (12) follows by combining (14), (15), (23) and (17). ��

In the following lemma, let us proceed to obtain a computable upper bound for the L2-error
of the curl of the electric field and its quasi-periodic approximation.

Lemma 6 Let (v,u, p) ∈ H(curl;�)×Xg
QP×H1

0(�) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh ×
Qh × Mg

QP × Mh be the solutions of (2) and (4), respectively. Then,

‖∇ × (u − uQPh )‖Th � ‖h−1/2(uh − ûth) × n‖∂Th + h�−1
∑

K∈Th

ηK ,1 + h�‖h−1/2τ (̂uth − uth)‖∂Th

+h�−1
∑

K∈Th

∑

F∈∂K

ηF,3 + h1/2‖τn(ph − p̂h)‖∂Th + h�−1/2‖ph − p̂h‖∂Th

(24)

where uQPh is given by Lemma2 for uh ∈ Vh and � ∈ (0, 1) such that the continuous
embedding
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H
QP (div
0
ε;�) ∩ H
0(curl;�) ↪→ H�(�) (25)

holds.

Proof LetuQPh ∈ Vc
h be the quasi-periodic approximation ofuh withu

QP
h ×n |
0= g provided

in Lemma 2. Let us consider the Helmholtz decomposition of u − uQPh ∈ L2(�) (Appendix
A.1):

u − uQPh = ∇ϕ + vs, (26)

with ‖u − uQPh ‖2� = ‖∇ϕ‖2 + ‖vs‖2, where ϕ ∈ H1,QP

0

(�) and vs ∈ H
QP (div
0
ε;�). In

addition, since (u − uQPh ) × n = 0 on 
0 and ∇ϕ × n|
0 = curl|
0ϕ = 0, we conclude that
vs ∈ H
0(curl;�). Thus, for vs ∈ H
QP (div

0
ε;�) ∩ H
0(curl;�) there exists � ∈ (0, 1)

such that vs ∈ H�(�) and ‖vs‖�,� � ‖vs‖H(curl;�), thanks the continuous embedding
H
QP (div

0
ε;�) ∩ H
0(curl;�) ↪→ H�(�) (see Remark 8.7 in [21]).

Then, adding and subtracting uh , it follows that

‖∇ × (u − uQPh )‖2Th
= (∇ × (u − uQPh ),∇ × (∇ϕ + vs))Th

= (∇ × (u − uh),∇ × vs)Th + (∇ × (uh − uQPh ),∇ × vs)Th .

For the second term, according to (7d), we have that

(∇ × (uh−uQPh ),∇ × vs)Th ≤ ‖∇ × (uh − uQPh )‖Th‖∇ × vs‖Th

�
(
‖h−1/2�uh�‖EI + ∥∥h−1/2�uh�QP

∥∥
EQP + ‖h−1/2(uh × n − g)‖E0

)
‖∇ × vs‖Th

�‖h−1/2(uh − ûth) × n‖∂Th‖∇ × vs‖Th ,

(27)

where in the last step, we have used the facts that �̂uth� = 0 on EI , �̂uth�QP = 0 on EQP
(Remark 1) and ûth × n = g on 
0. Thus, since ∇ × vs = ∇ × (u − uQPh ) and apply the
Young inequality, as follows

‖∇ × (u − uQPh )‖2Th
� (∇ × (u − uh),∇ × vs)Th + ‖h−1/2(uh − ûth) × n‖2∂Th

. (28)

Now, if we use the L2-projector over P0(Th), �0
V (see [35]), in the first term of (28), apply

the Green’s identity of H(curl; Th), use (2a) and (2b), it follows that

(∇ × (u−uh),∇ × vs)Th

= (∇ × (u − uh),∇ × (vs − �0
Vvs))Th

= (∇ × ∇ × (u − uh), vs − �0
Vvs)Th

− 〈(∇ × (u − uh))t , (vs − �0
Vvs) × n〉∂Th

= (f − ε∇ p + κ2εu − ∇ × ∇ × uh, vs − �0
Vvs)Th

− 〈(v − ∇ × uh)t , (vs − �0
Vvs) × n〉∂Th .

(29)

Now, by taking z := �0
Vvs in (10) and applying the Green’s identity of H(div; Th) to the

fourth term of the obtained equation, we have

0 = (v − vh,∇ × �0
Vvs)Th + 〈vt − v̂th,�

0
Vvs × n〉∂Th − κ2(ε(u − uh),�0

Vvs)Th

−(p − ph,∇ · (ε�0
Vvs))Th + 〈p − p̂h, ε�

0
Vvs · n〉∂Th ,
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from which,

0 = 〈vt − v̂ t
h,�

0
Vvs × n〉∂Th − κ2(ε(u − uh),�0

Vvs)Th + 〈p − p̂h, ε�
0
Vvs · n〉∂Th ,

(30)

thanks to the fact that ε is a piecewise constant. Then, by using (30), let us rewrite the second
term on the right hand side of (29), thus

〈(v − ∇ × uh)t , (vs − �0
Vvs) × n〉∂Th

=〈vt , vs × n〉∂Th − 〈vt ,�0
Vvs × n〉∂Th − 〈(∇ × uh)t , (vs − �0

Vvs) × n〉∂Th

=〈vt , vs × n〉∂Th − 〈̂vth,�0
Vvs × n〉∂Th − κ2(ε(u − uh),�0

Vvs)Th

+ 〈p − p̂h, ε�
0
Vvs · n〉∂Th − 〈(∇ × uh)t , (vs − �0

Vvs) × n〉∂Th .

Let us note that the first term on the right hand side vanishes, since vs ∈ H
0(curl;�), u,
uQPh and ϕ satisfies quasi-periodic conditions. In fact, by using the definitions of v [cf. (2a)]
and vs [cf. (26)], we have that

〈vt , vs × n〉∂Th =〈vt , vs × n〉∂Th\
 + 〈vt , vs × n〉
0 + 〈vt , vs × n〉
QP

=〈vt , vs × n〉
QP = 〈(∇ × u)t , vs × n〉
QP

=〈(∇ × u)t , (u − uQPh ) × n〉
QP − 〈(∇ × u)t , ∇ϕ × n〉
QP

=〈(∇ × u)t , (u − uQPh ) × n〉
1∪
2 + 〈(∇ × u)t , (u − uQPh ) × n〉
3∪
4

=〈(∇ × u)t , (u − uQPh ) × n〉
1 − |eiαL |〈(∇ × u)t , (u − uQPh ) × n〉
1

+ 〈(∇ × u)t , (u − uQPh ) × n〉
3 − |eiβL |〈(∇ × u)t , (u − uQPh ) × n〉
3 = 0.

In addition, if we add 0 = 〈̂vth, vs × n〉∂Th in the second term, it is obtained that

〈(v − ∇ × uh)t , (vs − �0
Vvs) × n〉∂Th = −〈̂vth, (�0

Vvs − vs) × n〉∂Th

−κ2(ε(u − uh),�0
Vvs)Th + 〈p − p̂h, ε�

0
Vvs · n〉∂Th − 〈(∇ × uh)t , (vs − �0

Vvs) × n〉∂Th .

Then, after replacing the above expression in (29), add 0 = 〈p − p̂h, εvs · n〉∂Th and by
adding and subtracting κ2εuh and ε∇ ph in the first term, we can form the residual associated
to (2b), as follows

(∇ × (u − uh),∇ × vs)Th = (f − ε∇ ph + κ2εuh − ∇ × ∇ × uh, vs − �0
Vvs)Th

−κ2(ε(u − uh), vs)Th

−〈̂vth − (∇ × uh)t , (vs − �0
Vvs) × n〉∂Th

+〈p − p̂h, ε(vs − �0
Vvs) · n〉∂Th

−(∇(p − ph), ε(vs − �0
Vvs))Th ,

using Green’s identity and recalling that ε(vs − �0
Vvs) is divergence free on each element,

it is obtained that

(∇ × (u − uh),∇ × vs)Th = (f − ε∇ ph + κ2εuh + ∇ × ∇ × uh, vs − �0
Vvs)Th

−κ2(ε(u − uh), vs)Th

−〈̂vth − (∇ × uh)t , (vs − �0
Vvs) × n〉∂Th

+〈ph − p̂h, ε(vs − �0
Vvs) · n〉∂Th
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Now, if we use (26) to rewrite vs in the second term, adding and subtracting vth in the third
term and taking account the numerical flux (4h), it holds

(∇ × (u − uh),∇ × vs)Th = (f − ε∇ ph + κ2εuh − ∇ × ∇ × uh, vs − �0
Vvs)Th

− κ2(ε(u − uh),u − uQPh )Th

+ κ2(ε(u − uh),∇ϕ)Th + 〈ph − p̂h, ε(vs − �0
Vvs) · n〉∂Th

+ 〈τ (̂uth − uth), vs − �0
Vvs〉∂Th

+ 〈vth − (∇ × uh)t , (vs − �0
Vvs) × n〉∂Th .

Since −κ2(ε(u − uh),u − uQPh )Th = −κ2‖ε1/2(u − uh)‖2Th
− κ2(ε(u − uh),uh − uQPh )Th ,

from the above equality we obtain that

κ2‖ε1/2(u − uh)‖2Th
+ (∇ × (u − uh),∇ × vs)Th

= (f − ε∇ ph + κ2εuh − ∇ × ∇ × uh, vs − �0
Vvs)Th

− κ2(ε(u − uh),uh − uQPh )Th

+ κ2(ε(u − uh),∇ϕ)Th + 〈ph − p̂h, ε(vs − �0
Vvs) · n〉∂Th

+ 〈τ (̂uth − uth), vs − �0
Vvs〉∂Th + 〈vth − (∇ × uh)t , (vs − �0

Vvs) × n〉∂Th .

(31)

In what follows, we bound each term on the right hand side of (31), by applying the
Cauchy-Schwarz inequality, the definitions of the error indicators (6a), (6e), the relation
(4g), the approximation properties of �0

V and the inverse inequality, we have

�:

(f − ε∇ ph + κ2εuh − ∇ × ∇ × uh, vs − �0
Vvs)Th ≤

∑

K∈Th

h−1
K ηK ,1‖vs − �0

Vvs‖K

�
∑

K∈Th

h−1
K ηK ,1 h

�
K ‖vs‖�,K

≤ h�−1‖vs‖�,�

∑

K∈Th

ηK ,1,

�:

〈τ (̂uth − uth), vs − �0
Vvs〉∂Th � h�‖vs‖�,� ‖h−1/2τ (̂uth − uth)‖∂Th

�:

〈vth − (∇ × uh)t , (vs − �0
Vvs) × n〉∂Th = 〈n × (vh − ∇ × uh), vs − �0

Vvs〉∂Th

≤
∑

K∈Th

‖n × (vh − ∇ × uh)‖∂K ‖vs − �0
Vvs‖∂K

≤
∑

K∈Th

‖n × (vh − ∇ × uh)‖∂K h−1/2
K ‖vs − �0

Vvs‖K

�
∑

K∈Th

(

h�−1/2
K ‖vs‖�,K

∑

F∈∂K

‖n × (vh − ∇ × uh)‖F
)

≤
∑

K∈Th

(

h�−1/2
K ‖vs‖�,K

∑

F∈∂K

h−1/2
F ηF,3

)

� h�−1‖vs‖�,�

∑

K∈Th

∑

F∈∂K

ηF,3

123



Journal of Scientific Computing (2024) 98 :7 Page 19 of 32 7

�:

(ε(u − uh),uh − uQPh )Th ≤ ‖ε(u − uh)‖Th‖uh − uQPh ‖Th

� h1/2‖ε(u − uh)‖Th‖(uh − ûth) × n‖∂Th ,

�:

〈ε(�0
Vvs · n − vs · n), ph − p̂h〉∂Th � h�−1/2‖vs‖�,� ‖ph − p̂h‖∂Th .

�:

(ε(u − uh), ∇ϕ)Th ≤ ‖ε(u − uh)‖Th‖∇ϕ‖Th

� ‖ε(u − uh)‖Th

(
h1/2‖τn(ph − p̂h)‖∂Th + ‖h1/2(uh − ûth) × n‖∂Th

)
,

Where in the last inequality, we have used (23) forψ in place of ϕ. Using Young’s inequality
in the above equations and replacing in (31), we get

κ2‖ε(u − uh)‖2Th + (∇ × (u − uh),∇ × vs)Th � δ2‖ε(u − uh)‖2Th +
⎛

⎝h�−1
∑

K∈Th
ηK ,1

⎞

⎠

2

+
(
h�‖h−1/2τ (̂uth − uth)‖∂Th

)2 +
⎛

⎝h�−1
∑

K∈Th

∑

F∈∂K

ηF,3

⎞

⎠

2

+
(
h1/2‖τn(ph − p̂h)‖∂Th

)2

+
(
‖h1/2(uh − ûth) × n‖∂Th

)2 +
(
h�−1/2‖ph − p̂h‖∂Th

)2 + ‖vs‖2�,�.

According with the continuous embedding, we rewrite vs by using (26) and (23), we have

‖vs‖2�,� � ‖vs‖2� + ‖∇ × vs‖2� = ‖u − uQPh − ∇ϕ‖2Th
+ ‖∇ × (u − uQPh )‖2Th

� ‖∇ϕ‖2� + ‖u − uQPh ‖2Th
+ ‖∇ × (u − uQPh )‖2Th

�
(
h1/2‖τn(ph − p̂h)‖∂Th

)2 + (‖h1/2(uh − ûth) × n‖∂Th

)2

+ ‖ε(u − uh)‖2Th
+ ‖ε(uh − uQPh )‖2Th

+ ‖∇ × (u − uQPh )‖2Th

�
(
h1/2‖τn(ph − p̂h)‖∂Th

)2 + (‖h1/2(uh − ûth) × n‖∂Th

)2 + ‖ε(u − uh)‖2Th

+ ‖∇ × (u − uQPh )‖2Th

thus

‖ε(u − uh)‖2Th
+ (∇ × (u − uh),∇ × vs)Th � δ̂2‖ε(u − uh)‖2Th

+
⎛

⎝h�−1
∑

K∈Th

ηK ,1

⎞

⎠

2

+
(
h�‖h−1/2τ (̂uth − uth)‖∂Th

)2

+
⎛

⎝h�−1
∑

K∈Th

∑

F∈∂K

ηF,3

⎞

⎠

2

+ (
h1/2‖τn(ph − p̂h)‖∂Th

)2

+ (‖h1/2(uh − ûth) × n‖∂Th

)2

+
(
h�−1/2‖ph − p̂h‖∂Th

)2 + ‖∇ × (u − uQPh )‖2Th
.
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Finally, replacing in (28), we conclude

‖∇ × (u − uQPh )‖2Th
� ‖h−1/2(uh − ûth) × n‖2∂Th

+
⎛

⎝h�−1
∑

K∈Th

ηK ,1

⎞

⎠

2

+
(
h�‖h−1/2τ (̂uth − uth)‖∂Th

)2

+
⎛

⎝h�−1
∑

K∈Th

∑

F∈∂K

ηF,3

⎞

⎠

2

+ (
h1/2‖τn(ph − p̂h)‖∂Th

)2

+ (‖h1/2(uh − ûth) × n‖∂Th

)2 +
(
h�−1/2‖ph − p̂h‖∂Th

)2

+ δ̂2‖ε(u − uh)‖2Th
.

Then, choosing δ̂ small enough and using the fact that 0 < h < 1, (24) is deduced from the
last inequality. ��
Lemma 7 Let (v,u, p) ∈ H(curl;�)×Xg

QP×H1
0(�) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×Vh ×

Qh × Mg
QP × Mh be the solutions of (2) and (4), respectively. There holds

‖∇ × uh − vh‖Th � h−1/2‖(uth − ûth) × n‖∂Th . (32)

Proof By testing (2a) with w, apply the Green’s identity and subtracting (4a), we obtain the
next error equation

(v − vh,w) − (u − uh,∇ × w)Th − 〈ut − ûth,w × n〉∂Th = 0 ∀w ∈ Vh

apply the Green’s identity to the second term and using again (2a), it follows

(v − vh ,w)Th − (∇ × (u − uh),w)Th + 〈(u − uh)t ,w × n〉∂Th − 〈ut − ûth ,w × n〉∂Th = 0

(∇ × uh − vh ,w)Th − 〈(uth − ûth) × n,w〉∂Th = 0.

Afterwards, by defining w := ∇ × uh − vh , applying the Cauchy-Schwarz inequality and
the inverse inequality ( [18], Lemma 1.46), we obtain (32). ��

Finally, gathering together all the previous results, we deduce the following upper bound
for the error in terms of the error estimator and the index � appearing in the continuous
embedding (25).

Corollary 2 Let (v,u, p) ∈ H(curl;�) × Xg
QP × H1

0(�) and (vh,uh, ph, ûth, p̂h) ∈ Vh ×
Vh ×Qh ×Mg

QP×Mh be the solutions of 2 and 4, respectively. If the stabilization parameters
satisfy |τ | and |τn | to be proportional to one, then

Eh � h�−1η1 + η2 + h�η∂
1 + η∂

2 + h�−1η∂
3 + η∂

4 ,

where the terms on the right hand side have the following form η1 := ∑
K∈Th

ηK ,1,

η2 := ∑
K∈Th

ηK ,2, η∂
1 := ∑

K∈Th

∑
F∈∂K ηF,1, η∂

2 := ∑
K∈Th

∑
F∈∂K ηF,2, η∂

3 :=
∑

K∈Th

∑
F∈∂K ηF,3 and η∂

4 := ∑
F∈EI \
 ηF,4.

The above estimates imply that error estimator is reliable, i.e., Eh � η when � = 1. This
happens, for instance, when 
 = 
0 (see for instance Section 3.4 [22]). In our setting 
 is
the union of two disjoint sets 
QP and 
0, therefore it is not possible to guarantee � = 1 in
(25). However, the numerical experiments in Sect. 5 suggest that the estimator is still reliable
even in this case.
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4.2 Local Efficiency

In this sectionwewant to studywhether or not our a posteriori error estimator shows local effi-
ciency, based on the techniques devised by Verfürth, applying some properties of the bubble
functions. Given an element K , a bubble function is defined as BK := (d + 1)d+1 ∏d+1

i=1 λi ,
where λi is a linear nodal function in the i vertex of K . Hence, supp(BK ) ⊂ K , BK = 0
on ∂K and BK ∈ [0, 1]. If the function is built on a face F , then BF := dd

∏d
i=1 λi , for

i vertex of F . In this case, supp(BF ) ⊂ {K ∈ Th : F ⊂ ∂K }, BF = 0 on ∂K\F and
BF ∈ [0, 1]. Now, let us introduce the properties of the bubble functions, which were proved
in [2], Theorems 2.2 and 2.4.

Lemma 8 For given K ∈ Th, F ⊂ ∂K, φ ∈ P(K ) and ψ ∈ P(F), it holds

C−1‖φ‖2K ≤ ‖B1/2
K φ‖2K ≤ C‖φ‖2K ,

C−1‖ψ‖2F ≤ ‖B1/2
F ψ‖2F ≤ C‖ψ‖2F ,

C‖ψ‖2F ≤ ‖B1/2
F L(ψ)‖2K ≤ C‖ψ‖2F ,

where L : C(F) → C(K ), L(ϕ) ∈ P(K ) and L(ϕ)|F = ϕ, for all ϕ ∈ P(F).

In the following Lemma we will employ the properties stated in Lemma 8, in order to
study the efficiency of our estimator.

Lemma 9 For all K ∈ Th, it holds

ηK ,1 � osc(f, K ) + ‖p − ph‖K + κ2hK ‖ε(u − uh)‖K + ‖∇ × (u − uh)‖K , (33a)

ηK ,2 � osc(∇ · f, K ) + ‖∇(p − ph)‖K + κ2‖ε(u − uh)‖K . (33b)

Proof If we define Rh := f − ε∇ ph + κ2εuh − ∇ × ∇ × uh , the proof follows the same
steps as the proof of Lemma 6.4 in [13]. ��
Lemma 10 For all K ∈ Th and F ∈ ∂K, there holds

ηF,3 � ‖vh − ∇ × uh‖K .

Proof The bound is deduced by the definition of ηF,3 and the discrete trace inequality. ��
Lemma 11 For all F ∈ EI , there holds

ηF,4 � osc(∇ · f, ωF ) + osc(f, ωF )

+κ2‖ε(u − uh)‖ωF + κ2hωF ‖τn(ph − p̂h)‖∂ωF + ‖∇(p − ph)‖ωF

where ωF := ∪{K ∈ Th : K ∩ F = ∅}.

Proof Let F ∈ EI , for a given w ∈ H1
0(ωF ), we consider the product between

�

ε
∂ ph
∂n

�

and

w. Then, after applying integration by parts and using the divergence of (2b), we obtain that

〈�
ε
∂ ph
∂n

�

, w

〉

F
= (∇ · f − �Q∇ · f, w)ωF + (�Q(∇ · f + κ2∇ · (εuh) − ∇ · (ε∇ ph)), w)ωF

− κ2(∇ · (εuh), w)ωF + (ε∇(p − ph), ∇w)ωF ,
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from which, using the Lemma 8, the properties of the extension operator L, choosing w :=
BFL

(
�ε ∂ ph

∂n �
)
, applying Cauchy-Schwarz inequality and inverse inequality it follows that

∥
∥
∥
∥

�

ε
∂ ph
∂n

�∥
∥
∥
∥

2

F
�

(‖∇ · f − �Q∇ · f‖ωF + ‖�Q(∇ · f + κ2∇ · (εuh) − ∇ · (ε∇ ph))‖ωF

+κ2‖∇ · (ε∇ ph)‖ωF + h−1
ωF

‖ε∇(p − ph)‖ωF

)
∥
∥
∥
∥BFL

(�

ε
∂ ph
∂n

�)∥
∥
∥
∥

ωF

where, by using the Lemma 8 again, we get
∥
∥
∥
∥BFL

(�

ε
∂ ph
∂n

�)∥
∥
∥
∥

ωF

� h1/2F

∥
∥
∥
∥

�

ε
∂ ph
∂n

�∥
∥
∥
∥
F

.

Thus, from (22)

h1/2F

∥
∥
∥
∥

�

ε
∂ ph
∂n

�∥
∥
∥
∥
F

� hF‖∇ · f − �Q∇ · f‖ωF + hF‖∇ · f + κ2∇ · (εuh) − ∇ · (ε∇ ph)‖ωF

+κ2h1/2F h1/2ωF
‖τn(ph − p̂h)‖∂ωF + h1/2F h−1/2

ωF
‖ε∇(p − ph)‖ωF .

Hence, we conclude the proof from definitions of ηF,4, ηK ,2 and from (33b). ��

Proof of Theorem 1 It follows from Corollary 2, Lemmas 9 and 11.

5 Numerical Results

The numerical experiments were carry out by adapting the routines that we used for the
implementation of the proposed HDG method in [10].

The stabilization parameters are set to be τ = −i , τn = i in all the experiments and
therefore, a rate of convergence of order hk+1 in the L2 norm is expected for smooth solutions.

For an unknown w ∈ {v, u, p} the experimental order of convergence is defined as

r(w) = −3
‖w − wh1‖�/‖w − wh2‖�

N1/N2
, (34)

where N1 and N2 are the number of elements of two consecutive meshes of sizes h1 and h2
(h1 > h2), respectively. In the same way we define the experimental order of convergence
r(Eh) for the global error Eh [cf. (5)]. In addition, we recall the global contribution of each
of the local error indicators specified in (6), as follows

η1 :=
⎛

⎝
∑

K∈Th

η2K ,1

⎞

⎠

1/2

, η2 :=
⎛

⎝
∑

K∈Th

η2K ,2

⎞

⎠

1/2

, η∂
1 :=

⎛

⎝
∑

K∈Th

∑

F∈∂K

η2F,1

⎞

⎠

1/2

,

η∂
2 :=

⎛

⎝
∑

K∈Th

∑

F∈∂K

η2F,2

⎞

⎠

1/2

, η∂
3 :=

⎛

⎝
∑

K∈Th

∑

F∈∂K

η2F,3

⎞

⎠

1/2

, η∂
4 :=

⎛

⎝
∑

F∈EI

η2F,4

⎞

⎠

1/2

.

Their respective experimental order of convergence are defined as in (34), where now the
error estimator takes the place of the error.
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Table 1 Rate of convergence and errors of Example 1 with τ = −i and τn = i

k Nelts ‖v − vh‖Th ‖u − uh‖Th ‖p − ph‖Th r(v) r(u) r(p) Eh r(Eh)

1 48 8.99e−01 3.72e−01 2.23e−02 – – – 8.38e+00 –

384 2.88e−01 1.08e−01 6.42e−03 1.64 1.79 1.79 4.56e+00 0.88

3072 7.84e−02 2.83e−02 1.71e−03 1.88 1.93 1.91 2.30e+00 0.99

24,576 2.02e−02 7.15e−03 4.46e−04 1.96 1.98 1.94 1.14e+00 1.01

2 48 1.77e−01 6.50e−02 5.12e−03 – – – 1.86e+00 –

384 2.49e−02 9.04e−03 5.51e−04 2.83 2.84 3.22 4.81e−01 1.95

3072 3.21e−03 1.14e−03 6.97e−05 2.96 2.99 2.98 1.18e−01 2.02

3 48 1.28e−02 6.15e−03 4.96e−04 – – – 2.25e−01 –

384 1.01e−03 4.56e−04 3.06e−05 3.67 3.75 4.02 3.23e−02 2.80

3072 6.74e−05 3.03e−05 2.02e−06 3.90 3.91 3.92 4.18e−03 2.95

Error estimator and its rate of convergence

5.1 Uniform Refinement

Example 1 We consider a unit cube � := [0, 1]3 divided in two regions �d := [0, 1] ×
[0, 1] × [1/2, 1] and �m := [0, 1] × [0, 1] × [0, 1/2], which are discretized by a sequence
of quasi-uniform tetrahedral meshes. Each element of the meshes satisfies that its interior
belongs to either �d or �m . Based on [19], we choose the wavelength λ0 := 4.5 (450 nm)
and recall that κ := 2π/λ0, that is, κ = 1.3963. Moreover, we use the following values
for the relative electric permittivities, εd := 2.7124 and εm := −5.8828 + i 0.6650, which
corresponds to the silicon oxynitride and evaporated silver, respectively. We consider the
exact solution u(x, y, z) := (0, u2(x, y, z), 0)T , where

u2(x, y, z) :=
{
exp

(−iκ
√

εd (z − 0.5)
) + exp

(
iκ

√
εd (z − 0.5)

)
, if z ≥ 0.5,

exp
(−iκ

√
εm (z − 0.5)

) + exp
(
iκ

√
εm (z − 0.5)

)
, if z < 0.5,

assume that p(x, y, z) := 0 and calculate the values of f and g, taking into account the exact
solution. We impose quasi-periodic boundary conditions on the vertical walls.

Example 2 In this examplewe also consider a unit cube� := [0, 1]3 but take as exact solution
the quasi-periodic function

u2(x, y, z) := exp
(−i

[
κx x + κy y − κz(z − 1)

])
,

with κx := κ sin θ cosφ, κy := κ sin θ sin φ, κz := (κ2 −κ2
x −κ2

y )
1/2, θ := π/3 and φ := π .

The boundary conditions on the vertical walls are of quasi-periodic type.

In the history of convergence displayed in Tables 1 and 4, it is observed a rate of conver-
gence of k + 1 for the both unknowns, u and v, which is better than the predicted results
in the Corollary 1. Moreover, we include the error of the a posteriori error estimator and its
associated rate of convergence, which tends to the expected order k.

The error indicators and their rates of convergence appear in Tables 2, 3, 5 and 6. As we
pointed out before, in this case the continuous embedding (25) holds true for � ∈ (0, 1),
therefore Corollary 2 cannot guarantee reliability of the estimator. However, the effectivity
index, eff := η/Eh reported included in Tables 3 and 6 remains bounded for each polynomial
degree.
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Table 2 Rate of convergence and errors of the boundary terms of the error estimator of Example 1with τ = −i
and τn = i

k Nelts η∂
1 η∂

2 η∂
3 η∂

4 r(η∂
1 ) r(η∂

2 ) r(η∂
3 ) r(η∂

4 )

1 48 2.43e+00 2.62e−01 1.41e+01 1.23e+00 – – – –

384 1.43e+00 1.61e−01 7.78e+00 6.55e−01 0.76 0.70 0.86 0.91

3072 7.58e−01 8.70e−02 4.00e+00 3.15e−01 0.92 0.89 0.96 1.06

24,576 3.86e−01 4.50e−02 2.01e+00 1.52e−01 0.97 0.95 0.99 1.05

2 48 4.72e−01 5.21e−02 3.76e+00 6.65e−01 – – – –

384 1.33e−01 1.39e−02 1.02e+00 1.89e−01 1.83 1.90 1.88 1.81

3072 3.43e−02 3.70e−03 2.54e−01 5.23e−02 1.96 1.91 2.01 1.85

3 48 4.49e−02 6.04e−03 6.49e−01 1.65e−01 – – –

384 6.89e−03 8.83e−04 9.60e−02 2.70e−02 2.70 2.77 2.76 2.61

3072 9.13e−04 1.19e−04 1.26e−02 3.75e−03 2.91 2.89 2.93 2.85

Table 3 Rate of convergence and errors of the volumetric terms of the error estimator of Example 1 with
τ = −i and τn = i

k Nelts η1 η2 r(η1) r(η2) η r(η) eff

1 48 7.37e+00 9.87e−02 – – 1.62e+01 – 1.93

384 3.76e+00 2.53e−02 0.97 1.96 8.79e+00 0.88 1.93

3072 1.89e+00 6.68e−03 1.00 1.92 4.50e+00 0.97 1.96

24,576 9.43e−01 1.70e−03 1.00 1.97 2.26e+00 0.99 1.98

2 48 3.08e+00 8.23e−01 – – 4.99e+00 – 2.68

384 8.55e−01 2.63e−01 1.85 1.64 1.38e+00 1.86 2.87

3072 2.17e−01 7.26e−02 1.98 1.86 3.48e−01 1.99 2.94

3 48 8.24e−01 3.07e−01 – – 1.11e+00 – 4.92

384 1.19e−01 5.55e−02 2.79 2.47 1.65e−01 2.74 5.12

3072 1.56e−02 7.72e−03 2.94 2.85 2.18e−02 2.92 5.22

Effectivity index associated to the error estimator

Table 4 Rate of convergence and errors of Example 2 with τ = −i and τn = i

k Nelts ‖v − vh‖Th ‖u − uh‖Th ‖p − ph‖Th r(v) r(u) r(p) Eh r(Eh)

1 48 1.37e−01 2.37e−01 7.38e−02 – – – 7.49e+00 –

384 4.06e−02 1.02e−01 3.49e−02 1.76 1.22 1.08 5.23e+00 0.52

3072 8.00e−03 2.98e−02 7.42e−03 2.34 1.77 2.23 2.84e+00 0.88

24,576 1.46e−03 8.26e−03 1.31e−03 2.46 1.85 2.50 1.44e+00 0.98

2 48 3.28e−02 8.69e−02 9.18e−02 – – – 4.85e+00 –

384 8.52e−03 3.19e−02 1.76e−02 1.95 1.45 2.38 2.15e+00 1.17

3072 1.05e−03 4.13e−03 2.35e−03 3.02 2.95 2.91 5.94e−01 1.85

3 48 2.89e−02 7.58e−02 4.86e−02 – – – 3.60e+00 –

384 2.18e−03 6.73e−03 3.88e−03 3.73 3.49 3.65 6.43e−01 2.45

3072 1.42e−04 4.84e−04 2.66e−04 3.94 3.80 3.87 8.84e−02 2.86

Error estimator and its rate of convergence
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Table 5 Rate of convergence and errors of the boundary terms, that appear in the error estimator of Example 2,
with τ = −i and τn = i

k Nelts η∂
1 η∂

2 η∂
3 η∂

4 r(η∂
1 ) r(η∂

2 ) r(η∂
3 ) r(η∂

4 )

1 48 6.39e−01 8.73e−01 1.90e+00 5.17e+00 – – – –

384 3.23e−01 8.58e−01 1.01e+00 7.76e+00 0.98 0.03 0.92 −0.59

3072 1.44e−01 5.23e−01 3.95e−01 4.97e+00 1.17 0.71 1.35 0.64

24,576 5.61e−02 2.84e−01 1.74e−01 2.74e+00 1.36 0.88 1.18 0.86

2 48 1.94e−01 5.55e−01 1.35e+00 8.83e+00 – – – –

384 8.99e−02 2.88e−01 7.08e−01 4.59e+00 1.11 0.95 0.93 0.94

3072 2.52e−02 8.00e−02 2.22e−01 1.22e+00 1.83 1.85 1.68 1.91

3 48 1.73e−01 3.51e−01 2.13e+00 7.16e+00 – – – –

384 2.60e−02 6.73e−02 3.39e−01 1.73e+00 2.73 2.38 2.65 2.05

3072 3.64e−03 9.56e−03 4.86e−02 2.50e−01 2.84 2.81 2.80 2.79

Table 6 Rate of convergence and errors of the volumetric terms of the error estimator of Example 2 with
τ = −i and τn = i . Effectivity index of the error estimator

k Nelts η1 η2 r(η1) r(η2) η r(η) eff

1 48 9.57e−01 8.48e+00 – – 1.02e+01 – 1.36

384 4.09e−01 5.76e+00 1.23 0.56 9.77e+00 0.07 1.87

3072 1.58e−01 2.88e+00 1.37 1.00 5.78e+00 0.76 2.04

24,576 7.05e−02 1.44e+00 1.17 1.00 3.11e+00 0.89 2.15

2 48 1.21e+00 8.81e+00 – – 1.26e+01 – 2.60

384 6.19e−01 3.10e+00 0.97 1.51 5.63e+00 1.16 2.62

3072 2.63e−01 8.29e−01 1.24 1.90 1.52e+00 1.89 2.56

3 48 2.79e+00 7.57e+00 – – 1.10e+01 – 3.04

384 5.19e−01 1.38e+00 2.43 2.46 2.30e+00 2.26 3.57

3072 7.38e−02 1.99e−01 2.81 2.79 3.32e−01 2.79 3.75

5.2 Adaptive Refinement

The adaptive refinement can be carried out following the next steps:

• Solve the variational problem in a coarse mesh.
• Estimate ηK , for each K ∈ Th .
• Mark each K̃ ∈ Th such that ηK̃ > θ maxK∈Th ηK , for θ ∈ [0, 1].
• Refine the coarse mesh and repeat the algorithm until the established stopping criterion

allows it. In this step, we use the free library TetGen integrated with MATLAB, see
https://wias-berlin.de/software/tetgen/.

In the adaptive procedure, the a posteriori error indicators help to identify the elements of
a mesh where the errors are bigger than others. Once those parts are found, the algorithm
refine them to generate a new refined mesh, as we will illustrate in the following example.

Example 3 (L-shaped domain) With the aim to illustrate the adaptive performance of our
HDG scheme, we include an experiment in a L-shaped domain � := [−1, 1] × [−1, 1] ×
[0, 1]\([0, 1] × [−1, 0] × [0, 1]) occupied by a material with relative permittivity ε := 1.
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Fig. 2 Total error Eh versus
number of elements N
(logarithmic scale) of the
approximation of Example 3.
Uniform and adaptive
refinements

Fig. 3 Approximation of the electric field intensity |uh | and corresponding adaptive refinedmesh of Example 3
with k = 1 and N = 41226

As in Section 5 of [14], let us consider the exact solution p(x, y, z) := 0 and u(x, y, z) :=(
∂S

∂x
,
∂S

∂ y
, 0

)T

, where S(r , θ) := r
2n
3 sin

(
2nθ

3

)
is given in terms of cylindrical coordinates

(r , θ) and n is a given number. Moreover, as in the above examples, the source term and
boundary data were derived from the exact solution. This manufactured solution belongs
to [Ht−δ(�)]3 for all δ > 0. The stabilization parameters satisfies |τ | = |τn | = 1 and we
choose n such that 2n

3 = t .

The adaptive refinement of our domain was carried out for k = 1 and we began with a
coarse mesh of 18 elements, in which were marked the tetrahedra K̃ that satisfy the adaptive
criterion ηK̃ > θ maxK∈Th ηK , for θ = 0.1, in order to refine them.

Figure2 depicts the obtained errors versus the number of the elements when t = 1.35,
the meshes are uniformly refined (blue) and by using adaptive criterion (red).

6 Concluding Remarks

In this contribution, we extend our a priori error analysis of the HDG method for Maxwell’s
equations in heterogeneousmediawithDirichlet boundary condition, to a problemwith quasi-
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periodic boundary conditions on the vertical boundaries of the physical domain. Although,
for the real problem it is still necessary to considered transmission conditions on the top and
bottom of the cell, the obtained theoretical and numerical results allow us to classify our
method as suitable for carrying out the numerical approximation of the solution for this type
of boundary value problems (Fig. 3).

With the aim to strengthen our stability estimates, we develop an a posteriori error analysis
for the HDG scheme. Based on the confiability and efficiency proofs of the proposed a
posteriori error estimator, we decide to corroborate the theoretical results by means of some
numerical experiments. In them, we use uniformly refined meshes and depict the history of
convergence in some tables.

The performance of the adaptive case was showed for the HDG method proposed for the
problem with Dirichlet boundary condition [10]. The behavior of the error can be observed
in a graph (Fig. 2), in which it is compared with the obtained error in the case of uniform
refinement.
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A. Appendix

A.1 Helmholtz decomposition

In this appendix we will extend the Helmholtz decomposition given in [21, section 6], for
spaces with quasi-periodic conditions. Let us remark that the boundary 
 = ∂� is split in
two subsets 
0 and 
QP where 
̄0 and 
̄QP are compact Lipschitz submanifold of 
 and �

is simply connected. Let 3 × 3 matrix value function ω satisfying the following symmetry,
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boundedness and ellipticity conditions

ωi j = ω j i ∈ L∞(�) i, j = 1, 2, 3,
3∑

i, j=1

ωi jξiξ j ≥ ω∗‖ξ‖2 a.e. in � ∀ξ ∈ R
3.

Proposition 1 It holds

L2(�) = ∇H1,QP

0

(�) ⊕ H
QP (div
0
ω;�)

and the subspaces of the right-hand are closed and ω-orthogonal in L2(�), where

H1,QP

0

(�) :=
{
ψ ∈ H1


0
(�) : ψ |
2= eiαLψ |
1 , ψ |
4= eiβLψ |
3

}
.

Proof The proof follows similar lines to those in [21, Proposition 6.1] taking into account
that H1,QP


0
(�) is a closed subspace of H1(�). ��

A.2 Proof of Lemma 4.1

In this part we present a sketch of the proof of (7c)–(7d), which is included in Lemma 2, by
tailoring the arguments employed in the deduction of the properties stated in Proposition 4.5
of [25].

To begin, we recall the definitions of themoments for Nédélec’s elements ( [35], Definition
5.30), in a tetrahedron K :

Me(w) :=
{∫

e
(w · te)q ds : for all q ∈ Pk−1(e)

}
, for any edge e of K

MF (w) :=
{

1

area(F)

∫

F
(w · q) dA : for all q ∈ Pk−2(F) ∧ q · n = 0

}
, for any face F of K ,

MK (w) :=
{∫

K
(w · q) dV : for all q ∈ Pk−3(K )

}
,

where te denotes the unit vector in the direction of the edge e. For a given K ∈ Th , let
{ϕ j

K ,e}, {ϕ j
K ,F }, {ϕ j

K ,b} the Lagrange basis functions of Pk(K ) with respect to the moments
for Nédélec’s elements. Then, there existswc ∈ Vc

h that satisfies (7c) and can be decomposed
as

wc|K =
∑

e∈Lh(K )

Ne∑

j=1

α
j
K ,eϕ

j
K ,e +

∑

F∈Eh(K )

NF∑

j=1

α
j
K ,Fϕ

j
K ,F +

Nb∑

j=1

α
j
K ,bϕ

j
K ,b,

where Lh(K ) and Eh(K ) denote the set of edges and faces of K , respectively. Here, Ne, NF

and Nb are the number of basis functions associated to the edges, faces and interior of K ,
respectively; and α

j
K ,e, α

j
K ,F and α

j
K ,b are the coefficients that are uniquely determined.

Based on wc, we build a function in Vc
h that also satisfies quasi-periodic conditions. To

that end, we just modify the degrees of freedom associated to the edges and faces that belong
to 
2 and 
4. More precisely, let L
 j (K ) and E
 j (K ) denote the set of edges and faces of
K , lying on 
 j , j = 1, 2, 3 and 4, respectively. We also write LQP(K ) := ∪4

j=1L
 j (K ) and

EQP(K ) := ∪4
j=1E
 j (K ). Let us now recall that we are assuming conformity between the

discretizations of the periodic boundaries 
1-
2 and 
3-
4. Therefore, for an edge e2 (face
F2) belonging to 
2, there is an edge e1 (face F1) belonging to 
1 “aligned” to e2 (face F2).
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Similarly for the periodic boundary 
3 − 
4. On each K such that K ∩ 
QP = ∅, we set
wQP = wc and, for K such that K ∩ 
QP = ∅, we set

wQP|K :=
Nb∑

j=1

α
j
K ,bϕ

j
K ,b +

∑

e∈Lh(K )\(L
2 (K )∪L
4 (K ))

Ne∑

j=1

α
j
K ,eϕ

j
K ,e

+
∑

F∈Eh(K )\(E
2 (K )∪E
4 (K ))

NF∑

j=1

αK ,Fϕ
j
K ,F

+
∑

F2∈E
2 (K )

NF2∑

j=1

β
j
K ,F2

ϕ
j
K ,F2

+
∑

F4∈E
4 (K )

NF4∑

j=1

β
j
K ,F4

ϕ
j
K ,F4

+
∑

e2∈L
2 (K )

Ne2∑

j=1

β
j
K ,e2

ϕ
j
K ,e2

+
∑

e4∈L
4 (K )

Ne4∑

j=1

β
j
K ,e4

ϕ
j
K ,e4

,

where,

β
j
K ,F2

:= eiαLα
j
K ′,F1 , β

j
K ,e2

:= eiαLα
j
K ′,e1 , β

j
K ,F4

:= eiβLα
j
K ′,F3 β

j
K ,e4

:= eiβLα
j
K ′,e3
(35)

and K ′ is the “neighbor” of K across 
QP.
We notice thatwQP ∈ Vc

h since all the degrees of freedom associated to interior edges and
faces have remained unchanged. Moreover, the continuity of the Lagrange basis function and
the relation (35), between the coefficients, imply that wQP is quasi-periodic. Hence,

(wc − wQP)|K =
∑

F2∈E
2 (K )

NF2∑

j=1

(α
j
K ,F2

− β
j
K ,F2

)ϕ
j
K ,F2

+
∑

F4∈E
4 (K )

NF4∑

j=1

(α
j
K ,F4

− β
j
K ,F4

)ϕ
j
K ,F4

+
∑

e2∈L
2 (K )

Ne2∑

j=1

(α
j
K ,e2

− β
j
K ,e2

)ϕ
j
K ,e2

+
∑

e4∈L
4 (K )

Ne4∑

j=1

(α
j
K ,e4

− β
j
K ,e4

)ϕ
j
K ,e4
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and by using (35), we obtain

∫

K
|wc − wQP|2 � hK

( ∑

F2∈E
2 (K )

NF2∑

j=1

(α
j
K ,F2

− eiαLα
j
K ′,F1)

2

+
∑

F4∈E
4 (K )

NF4∑

j=1

(α
j
K ,F4

− eiβLα
j
K ′,F3)

2

+
∑

e2∈L
2 (K )

Ne2∑

j=1

(α
j
K ,e2

− eiαLα
j
K ′,e1)

2 +
∑

e4∈L
4 (K )

Ne4∑

j=1

(α
j
K ,e4

− eiβLβ
j
K ′,e3)

2
)

.

Then, taking into account the above estimate and the fact that for a functionw, the tangential
trace on a face F is uniquely determined by the degrees of freedom MF (w) and Me(w), we
have that

∫

K
|wc − wQP|2 � hK

( ∑

F2∈E
2 (K )

∫

F2
|n+ × (wc − wQP)|2

+
∑

F4∈E
4 (K )

∫

F4
|n+ × (wc − wQP)|2

+
∑

e2∈L
2 (K )

∫

L
2 (K )

|n+ × (wc − wQP)|2

+
∑

e4∈L
4 (K )

∫

L
4 (K )

|n+ × (wc − wQP)|2
)

� hK

( ∑

F2∈E
2 (K )

∫

F2
|n+ × wc + (n− × eiαLwc)|K ′,F1 |2

+
∑

F4∈E
4 (K )

∫

F4
|n+ × wc + (n− × eiβLwc)|K ′,F3 |2

+
∑

e2∈L
2 (K )

∫

e2
|n+ × wc + (n− × eiαLwc)|K ′,e1 |2

+
∑

e4∈L
4 (K )

∫

e4
|n+ × wc + (n− × eiβLwc)|K ′,e3 |2

)

= hK

( ∑

F2∈E
2 (K )

∫

F2
�wc�QP +

∑

F4∈E
4 (K )

∫

F4
�wc�QP

+
∑

e2∈L
2 (K )

∫

e2
�wc�e2 +

∑

e4∈L
4 (K )

∫

e4
�wc�e4

)
.

Therefore, we deduce that

‖wc − wQP‖Th � ‖h1/2�wc�QP‖
QP = ‖h1/2�w�QP‖
QP .

The last equality since γt (w) = γt (wc) on 
QP.
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Finally, (7c) follows by adding and subtracting w ∈ Vh in ‖wc − wQP‖Th , applying the
triangle inequality together with the above expression and (7a). The estimate (7d) is obtained
using the inverse inequality ‖∇ × (w − wQP)‖Th � h−1‖w − wQP‖Th and (7c).
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