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Abstract
The construction of high-order structure-preserving numerical schemes to solve hyperbolic
conservation laws has attracted a lot of attention in the last decades and various different
ansatzes exist. In this paper, we compare several completely different approaches, i.e. deep
neural networks, limiters and the application of polynomial annihilation to construct high-
order accurate shock capturingfinite difference/volume (FD/FV) schemes.We further analyze
their analytical and numerical properties. We demonstrate that all techniques can be used and
yield highly efficient FD/FV methods but also come with some additional drawbacks which
we point out. Our investigation of the different strategies should lead to a better understanding
of those techniques and can be transferred to other numerical methods as well which use
similar ideas.

Keywords Hyperbolic conservation laws · Structure-preserving · Finite difference/volume ·
Machine learning · Polynomial annihilation · Limiters

Mathematics Subject Classification 65M08 · 65M06

1 Introduction

Hyperbolic conservation laws play a fundamental role within mathematical models for vari-
ous physical processes, including fluid mechanics, electromagnetism and wave phenomena.
However, since especially nonlinear conservation laws cannot be solved analytically, numer-
ical methods have to be applied. Starting already in 1950 with first-order finite difference
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methods (FD), the development has dramatically increased over the last decades including
finite volume (FV) andfinite element (FE) ansatzes [6, 19, 53]. Tousemodern computer power
efficiently, high-ordermethods are nowadays constructed and are used to obtain accurate solu-
tions in a fast way. However, the drawback of high-order methods is that they suffer from
stability issues, in particular after the development of discontinuities which is a natural fea-
ture of hyperbolic conservation laws/balance laws. Here, first-order methods are favourable
since their natural amount of high dissipation results in robust methods. In addition, many
first-order methods have also the property that they preserve other physical constraints like
the positivity of density or pressure in the context of the Euler equations of gas dynamics. In
contrast, high-order approaches need additional techniques like positivity preserving limiters,
etc. [67]. Due to those reasons, researchers have combined low-order methods with high-
order approaches to obtain schemeswith favourable properties as applied already in [30]. The
high-order accuracy of the method in smooth regions is kept, while also the excellent stabil-
ity conditions and the preservation of physical constraints of the low-order methods near the
discontinuities remain. Techniques in such context are e.g. Multi-dimensional Optimal Order
Detection (MOOD) [9, 13], subcell FV methods [31, 60] or limiting [26, 39, 40] strategies
to name some. In the last two approaches, mostly free parameters are selected/determined
which mark the problematic cells where the discontinuity may live. Here, the low-order
method is used whereas, in the unmarked cells, the high-order scheme still remains. To select
those parameters, one uses either shock sensors [44, 47] or constraints on physical quantities
(entropy inequality, the positivity of density and pressure, etc.). As an alternative to those
classical ansatzes, the application of machine learning (ML) techniques as shock sensors and
to control oscillations have recently driven a lot of attention [7, 10, 18, 66]. ML can be used
for function approximation, classification and regression [15]. In this manuscript, we will
extend those investigations in various ways.
In [37], the author has proposed a simple blending scheme that combines a high-order entropy
conservative numerical flux with the low-order Godunov-type flux in a convex combination.
The convex parameter is selected by a predictor step automatically to enforce that the under-
lying method satisfies the Dafermos entropy condition numerically. We focus on this scheme
and extend the investigation from [37] in various ways. First, we propose a second blending
stage to enforce the preservation of other physical constraints, e.g. the positivity of density
and pressure. Further, we investigate the application of forward neural networks (NN) to
specify the convex parameter. As the last approach, we apply polynomial annihilation (PA)
operators described in [25]. Our investigation of the different limiting strategies should lead
to a better understanding of those techniques and can be transferred to alternative approaches
based on similar ideas. Finally, all of our extensions will lead to highly efficient numeri-
cal methods for solving hyperbolic conservation laws. The rest of the paper is organized as
follows:

In Sect. 2, we present the one-dimensional blending scheme from [37], introduce the
notation and repeat its basic properties. We further demonstrate that a fully discrete cell
entropy inequality will be satisfied under certain constraints on the blending parameter.
In Sect. 3, we specify the parameter selection not only taking the entropy condition into
account but also other physical constraints. Here, we concentrate on the Euler equation
of gas dynamics and demand the positivity of density and pressure. In Sect. 4, we repeat
forward NN and how we apply them to determine the convex parameter in the extended
blending scheme to obtain a highly efficient numerical scheme. In Sect. 5, the polynomial
annihilation operators are finally explained and how they are used in our framework to select
the blending parameter. In Sect. 6, we test all presented methods and limiting strategies and
compare the results with each other. Here, we focus on the most common benchmark test
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cases. We discuss the advantages and disadvantages of all the presented methods and give
finally a summary with a conclusion.

2 Numerical Method for Hyperbolic Conservation Laws

2.1 Notation

We are interested in solving hyperbolic conservation laws

∂tu(x, t) + ∂x f (u(x, t)) = 0, x ∈ Ω ⊂ R, t > 0, (1)

where u : R × R → R
m are the conserved variables and f is the flux function. In this

manuscript, we restrict ourselves to the one-dimensional setting for simplicity. In the case of a
scalar equation,we use u instead ofu. Equation (1)will be later equippedwith suitable bound-
ary and initial conditions. Since hyperbolic conservation laws may develop discontinuities
even for smooth initial data,weak solutions are considered but they are not necessarily unique.
Motivated by physics, one narrows down the number of possible solutions by demanding the
entropy inequality

∂tU (u) + divF(u) ≤ 0 (2)

with convex entropy U and entropy flux F for admissible solutions. We are working in the
framework of FD/FV methods, therefore different kinds of numerical fluxes are used in the
paper. Please note that our methodology can be interpreted in either a finite difference (FD)
or finite volume (FV) framework, depending on how the data is initialized and evaluated.
However, to avoid any confusion, we will only use FV in this paper, as our schemes are
based on the preliminary work introduced in [37], where the author presented his scheme in
the context of FV and we will follow his notation. We denote a general numerical flux of
f with f num. It has two or more arguments in the following, i.e. f num(uk−p+1, . . . ,uk+p).
If we apply an entropy stable flux, e.g. the Godunov flux, we denote this numerical flux
by g : R

m × R
m → R

m . Using g in a classical FV methodology results in a low (first)
order method. Contrary, h : R

m×2p → R
m denotes an entropy conservative and high-

order accurate numerical flux, cf. [42, 63]. Please be aware that g and h even without the
superscript " num " denote always in this paper numerical fluxes. The entropy-entropy flux
pairs (U , F) are designated using uppercase letters and the notation of numerical entropy
fluxes are the same as above. The numerical entropy flux G : Rm × R

m → R is associated
with a dissipative numerical flux g, also h. We use further the standard abbreviation, i.e.
g(u(xk, t),u(xk+1, t)) = g(uk(t),uk+1(t)) = gk+ 1

2
(t) generalizing xk as a way of referring

to the center of cell k and xk+ 1
2
to the right cell boundary, cf. Fig. 1.

The same procedure is used for grid points in time in the fully discrete setting, i.e.
g(u(xk, tn),u(xk+1, tn)) = g(un

k ,un
k+1) = gn

k+ 1
2
. Please note that a 2p point numeri-

cal flux at position k + 1
2 uses the points uk−p+1, . . . ,uk+p , e.g. for p = 2 we have

h(un
k−1,u

n
k ,un

k+1,u
n
k+2) = hn

k+ 1
2
. One can express the combination of numerical fluxes

in a convex manner as:

f n
α

k+ 1
2

= αk+ 1
2

gn
k+ 1

2
+
(
1 − αk+ 1

2

)
hn

k+ 1
2
.

Working with reconstruction-free FV methods, the numerical solution in the cell is con-
stant in space at a certain time, in short form i.e. f n

k = f (un
k ) = f (u(xk, tn)) for instance.
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Fig. 1 The subdivision of a cell in space, initialized with the mean value of the old cell

Sometimes cells are cut in half at position xk as described in Fig. 1. Therefore there
exist cell interfaces at xk−1, xk− 1

2
, xk, xk+ 1

2
and xk+1 in this case. The middle points are

xk− 3
4
, xk− 1

4
, xk+ 1

4
, xk+ 3

4
. These subcells are initialized with the value of the old cell. We

use a uniform mesh with cell length Δx = xk+ 1
2

− xk− 1
2
and constant length time-steps

Δt = tn+1 − tn . The mesh ratio is defined by λ = Δt
Δx .

Asmentioned above, to select the physicalmeaningful solution (2) has to be fulfilled. In terms
of our numerical approximation, the determined solution has been constructed to imitate (2)
semi-discretely or discretely, i.e. in the context of first-order FV/FD this means

U n+1
k − U n

k

Δt
+

Gn
k+ 1

2
− Gn

k− 1
2

Δx
≤ 0

for an entropy stable numerical flux g with entropy flux G while the high-order method
satisfies

dU (uk(t))

dt
≤

Hn
k− 1

2
− Hn

k+ 1
2

Δx
.

If the approximated solution satisfies for all entropy pairs the corresponding inequalities, we
call the scheme entropy stable and entropy dissipative if it is only fulfilled for one specific
entropy pair. In the last years, many researchers have worked on the construction of entropy
conservative and dissipative schemes based either on FD, FV or FE ansatzes, cf. [1, 4, 5, 11,
12, 22–24, 40, 45, 51, 52]. Here, the entropy condition is fulfilled locally.

2.2 FVMethod

To explain our blending scheme, we start with the classical FVmethod. An FVmethod results

from integrating the conservation law over a rectangle
[
xk− 1

2
, xk+ 1

2

]
× [

tn, tn+1
]

un+1
k =

∫ x
k+ 1

2

x
k− 1

2

u(x, tn+1)

Δx
dx

=
∫ x

k+ 1
2

x
k+ 1

2

u(x, tn)

Δx
dx + 1

Δx

∫ tn+1

tn
f
(
u
(

xk− 1
2
, τ
))

− f
(
u
(

xk+ 1
2
, τ
))

dτ

≈ un
k + Δt

Δx

(
f n,num
k− 1

2
− f n,num

k+ 1
2

)
.

(3)

123



Journal of Scientific Computing (2023) 97 :13 Page 5 of 31 13

Taking the limit limΔt→0
1
Δt in (3) results in a system of ordinary differential equations

(ODEs) which can be solved using e.g. Runge–Kutta (RK) schemes [58, 59]. Here, one
splits between the space and time discretization also referred to as the method of lines
ansatz (MOL). If only the PDE is discretized in space, we call the scheme in semi-discrete
form. A different approach is based on the assumption that a numerical flux for timesteps
Δt = tn+1 − tn could be devised based on knowledge of the conservation law and the
local time evolution of the solution. The Cauchy Kowaleskaya expansion follows this line of
thought, utilized by [28] to provide a high-order time-stepping method. The drawback of the
Cauchy Kowaleskaya approach is that it typically results in lengthy calculations, complex
implementations and/or implicit methods where nonlinear solvers are needed. However,
we distinguish between the semi-discrete and the fully discrete schemes in the following
sections. In (3) the coupling between neighbouring cells has been done via numerical fluxes
f n,num
k− 1

2
to ensure the conservation property. A vast amount of numerical fluxes is known in

the literature [29, 35, 41, 50, 54] and even selecting a flux is a nontrivial task [50]. Some
fluxes, like the Godunov, Lax–Friedrichs, Roe and HLL fluxes, that can be interpreted by
exact or approximate Riemann problem solutions, are meant to approximate the flux through
some cell boundary over time Δt , i.e. being the mean value of the flux over this period.
Numerical fluxes that have only a semidiscrete interpretation need some sort of high-order
time integration method, and we use the family of strong stability preserving Runge–Kutta
(SSPRK)methods for time integration [58]. To describe themethod, we follow [37]where the
considered blending FV scheme has been proposed. The method fulfills Dafermos’ entropy
condition [16]:

Definition 1 (Dafermos’ Criteria) Let u be a weak solution of (1) and U an entropy. The
total entropy in the domain Ω is given by

Eu(t) =
∫

Ω

U (u(x, t))dx .

A Dafermos entropy solution u is a weak solution that satisfies

∀t > 0 : ∂t Eu(t) ≤ ∂t Eũ(t) (4)

compared to all other weak solutions ũ of the conservation law (1). In essence, the entropy
of the selected solution decreases faster than the entropy of all other solutions.

Definition 2 The blending scheme is based on the FV approach in a conservative form.
Instead of using classical numerical fluxes in (3), a convex combination between a classical
Godunov-type flux and a high-order entropy conservative flux is used instead. The combined
flux, called GT-flux, is given by

f n
α

k+ 1
2

:= αk+ 1
2

g
(
un

k ,un
k+1

) +
(
1 − αk+ 1

2

)
h
(
un

k ,un
k+1

)
, (5)

where αk+ 1
2

∈ [0, 1] is the convex parameter.

Definition 3 While the h flux is only second-order accurate, a high-order extension can be
constructed using a linear combination [42]. The corresponding linear combination of fluxes
of order 2p is given by

f n
α

k+ 1
2

:= cp
1

(
αk+ 1

2
g
(
un

k ,un
k+1

) +
(
1 − αk+ 1

2

)
h
(
un

k ,un
k+1

))

+
p∑

r=2

cp
r
(
h
(
un

k−r ,u
n
k+1

) + . . . + h
(
un

k−1,u
n
k+r

)) (6)
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Example 1 To give a concrete example, using the explicit Euler method for the time, the
scheme is given by

un+1
i = un

i + Δt

Δx

(
f n
α

k+ 1
2

− f n
α

k− 1
2

)
. (7)

To obtain higher order in time, RK methods can be used instead.

The properties of the scheme highly depend on the selected fluxes and the convex parameter
αk+ 1

2
. The value of αk+ 1

2
= α(uk−p+1, . . . ,uk+p) itself depends on ui which takes the

high-order stencil into account. Before we describe how α has to be selected to ensure that
our scheme fulfils additionally Dafermos’ criteria (4), we want to summarize the following
basic properties of the scheme and the numerical fluxes:

• The GT-flux, the blending of Godunov’s and Tadmor’s flux, is consistent and local
Lipschitz continuous [37, Lemma 1].

• The GT-flux with Tadmor’s entropy conservative flux or the high-order modification
from [42] satisfies as well the semidiscrete cell entropy inequality locally for the selected
entropy pair used in the construction of the flux for all α ∈ (0, 1] [37, Theorem 1].

• Due to the conservation form of (7) and the convex combination of the flux, the scheme
is locally conservative and the Lax–Wendroff theorem is valid due to the applications of
the results from [57].

As we mentioned before, the parameter selection of α is essential for the properties of
the underlying method and we repeat from [37] the following definition where also some
motivation can be found:

Definition 4 We call α : R2p×m → [0, 1] an entropy inequality predictor with a (2p) point
stencil if

lim
Δx→0

α(uk−p+1, . . . ,uk+p)

=
{
0 ∃x ∈ [xk − (p − 1)Δx, xk + pΔx] : ∂U

∂t + ∂ F
∂x < 0

1 ∀x ∈ [xk − (p − 1)Δx, xk + pΔx] : ∂U
∂t + ∂ F

∂x = 0

holds for the complete stencil. We will call the entropy inequality predictor slope limited if

|αk − αk+1| < M with αk = α(uk−p+1, . . . ,uk+p)

holds for some M < 1 and all i .

In [37], a slope entropy inequality predictor was constructed starting from a Godunov-
type flux and demonstrated that it is slope limited. The predictor is given by αn =

Hsm

⎛
⎝

sn
k

sre f
−a

b

⎞
⎠ � ĥ, where sn

k is the entropy dissipative rate from the classical Godunov

scheme

sn
k (t) = G

(
un

k+1,u
n
k

) − G
(
un

k ,un
k−1

)

Δx
+

U
(
un+1

k

)
− U

(
un

k

)

Δt
.
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sre f its minimum value, ĥ the cut hat function (h(x) = max(0,min(1, 2x + 2,−2x + 2)),
H ∈ C2 the smooth step function

Hsm(x) =

⎧
⎪⎨
⎪⎩

0 x ≤ 0

6x5 − 15x4 + 10x3 0 ≤ x ≤ 1

1 1 ≤ x,

and � denotes the discrete sup-mollification

( f � g)|[i/n,(i+1)/n] = max
j∈{0,...,n−1} f j gi− j for i = 0, . . . , n − 1

and step functions f , g.

Remark 1 Instead of working with the classical Godunov flux in (2), we use approximated
Riemann solvers. In [37], the local Lax–Friedrich flux (LLF) (Rusanov) has been used and
shows good results. Due to that, we apply always the LLF flux in the numerical Sect. 6
to obtain a more efficient method. Finally, via a tensor-structure ansatz, an extension of the
approach to two or three dimensions is straightforward and all of the results transfer.

As demonstrated in [37], the formal order of the scheme depends on the used high-order flux
and the behaviour of α. If the high-order flux is of order 2p and α tends for a smooth solution
to zero (respectively with order 2p or higher), the hybrid scheme has order 2p.

2.3 Local Entropy Inequality

In the following subsection, we extend the investigation of [37]. We demonstrate that a
hybrid scheme constructed with a discrete entropy dissipative flux g and any consistent flux
h satisfies a fully discrete entropy inequality locally under certain restrictions on α. Inside
the definitions, we refer again to Fig. 1 for the nomenclature. Let

pn
k := H

(
uk−p+1, . . . ,uk+p

) − H
(
uk−p, . . . ,uk+p−1

)

Δx
+

U
(
un+1

k

)
− U

(
un

k

)

Δt

be the entropy production of our high-order scheme on cell k. We may divide cell k into two
subcells centerd around xk− 1

4
and xk+ 1

4
and can now define the entropy production inside

these subcells via

sn
k+ 1

4
:= G

(
un

k+1,u
n
k

) − F(un
k )

Δx
2

+
U

(
un+1

k+ 1
4

)
− U

(
un

k+ 1
4

)

Δt

pn
k+ 1

4
:= H

(
uk−p+1, . . . ,uk+p

) − F(un
k )

Δx
2

+
U

(
un+1

k+ 1
4

)
− U

(
un

k+ 1
4

)

Δt

We can now define Condition F :

Definition 5 The parameter α is said to satisfy Condition F for cell k if

αk+ 1
2
sn

k+ 1
4

+
(
1 − αk+ 1

2

)
pn

k+ 1
4

≤ 0 and αk− 1
2
sn

k− 1
4

+
(
1 − αk− 1

2

)
pn

k− 1
4

≤ 0

holds for the left and right interfaces.
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We can prove:

Lemma 1 Condition F is fulfilled for cell k if one of the following conditions is satisfied on
each interface, i.e. for k + 1

4 and k − 1
4 .

1. It holds sn
k+ 1

4
≤ 0 and pn

k+ 1
4

≤ 0, α ∈ [0, 1] is arbitrary.

2. It holds sn
k+ 1

4
≤ 0 and pn

k+ 1
4

> 0 and α ≥
pn

k+ 1
4

pn
k+ 1

4
−sn

k+ 1
4

.

Proof The first condition is obvious. For the second one the following calculation

αs + (1 − α)p ≤ 0 ⇐⇒ α(s − p) + p ≤ 0 ⇐⇒ α ≥ p

p − s
≥ 0

with suppressed indices shows the result. �

If one can guarantee that sn
k+ 1

4
< 0, we can calculate a lower bound on α to enforce

Condition F and we can prove the following theorem which combines ideas of [62] and
[37]:

Theorem 1 We consider the hybrid scheme

un+1
k = un

k + λ

(
f n
α

k− 1
2

− f n
α

k+ 1
2

)
(8)

with numerical flux f n
α

k+ 1
2

= αk+ 1
2

gn
k+ 1

2
+
(
1 − αk+ 1

2

)
hn

k+ 1
2
. If αk+ 1

2
fulfils Condition F

for both cell boundaries and the CFL restriction is half that of the minimum of either flux,
the scheme (8) satisfies a discrete cell entropy inequality with the numerical entropy flux

Fnum(uk−p+1, . . . ,uk+p) = αk+ 1
2

G(uk,uk+1) +
(
1 − αk+ 1

2

)
H(uk−p+1, . . . ,uk+p)

Proof We first state that the cell mean un+1
k can be written as the average value

un+1
k = un

k + λ

(
f n,num
α

k− 1
2

− f n,num
α

k+ 1
2

)

=
un

k + 2λ

(
f n,num
α

k− 1
2

− f
(
un

k

)) + un
k + 2λ

(
f
(
un

k

) − f n,num
α

k+ 1
2

)

2

=
αk− 1

2

(
un

k + 2λ

(
gn

k− 1
2

− f
(
un

k

))) +
(
1 − αk− 1

2

)(
un

k + 2λ

(
hn

k− 1
2

− f
(
un

k

)))

2

+
αk+ 1

2

(
un

k + 2λ

(
f
(
un

k

) − gn
k+ 1

2

))
+
(
1 − αk+ 1

2

)(
un

k + 2λ

(
f
(
un

k

) − hn
k+ 1

2

))

2

=
un+1

k− 1
4

+ un+1
k+ 1

4

2
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of two schemes. Finally, we can conclude that the entropy of cell k satisfies

U (un+1
k ) − U (un

k ) + λ(Fn
α

k+ 1
2

− Fn
α

k− 1
2

) ≤
U

(
un+1

k− 1
4

)
+ U

(
un+1

k+ 1
4

)

2

− U
(
un

k

) + λ

(
Fn

α
k+ 1

2

− Fn
α

k− 1
2

)

=
U

(
un+1

k− 1
4

)
− U

(
un

k

) + 2λ

(
Fn

k − Fn
α

k− 1
2

)

2
+

U

(
un+1

k+ 1
4

)
− U

(
un

k

) + 2λ

(
Fn

α
k+ 1

2

− Fn
k

)

2

≤
αk− 1

2

2

(
U

(
un

k + 2λ

(
gn

k− 1
2

− f
(
un

k

))) − U (un
k ) + 2λ

(
Fn

k − Gn
k− 1

2

))

+
1 − αk− 1

2

2

(
U

(
un

k + 2λ

(
hn

k− 1
2

− f
(
un

k

))) − U (un
k ) + 2λ

(
Fn

k − Hn
k− 1

2

))

+
αk+ 1

2

2

(
U

(
un

k + 2λ

(
f
(
un

k

) − gn
k+ 1

2

))
− U (un

k ) + 2λ

(
Gn

k+ 1
2

− Fn
k

))

+
1 − αk+ 1

2

2

(
U

(
un

k + 2λ

(
f
(
un

k

) − hn
k+ 1

2

))
− U (un

k ) + 2λ

(
Hn

k+ 1
2

− Fn
k

))

=
αk− 1

2

2
sn

k− 1
4

+
1 − αk− 1

2

2
pn

k− 1
4

+
αk+ 1

2

2
sn

k+ 1
4

+
1 − αk+ 1

2

2
pn

k+ 1
4

≤ 0,

because U is convex. �
If one can enforce Condition F , we obtain a fully discrete entropy dissipative scheme by
choosing an appropriate α. Note that the bound is sufficient but not necessary. We will now
focus on the Euler equation of gas dynamics. There, we can apply the same technique to
enforce also the positivity of pressure and density. Note that the above proof works for any
combination of a discrete entropy stable flux and another flux. There is no need for two-point
fluxes and we can use a high-order flux for h.

3 Positivity of Pressure and Density for the Euler Equations

Instead of focusing on the entropy inequality, we can apply the same mechanism to enforce
positivity of pressure (internal energy) and/or density for numerical solutions of the Euler
equations of gas dynamics [27]:

u = (ρ, ρv, E)T , f (ρ, ρv, E) =
⎡
⎣

ρv

ρv2 + p
v(E + p)

⎤
⎦ , p = (γ − 1)

(
E − 1

2
ρv2

)
, (9)

where ρ denotes the density, v the velocity, E the total energy, p the pressure and γ > 1 the
adiabatic constant. This system is equipped with the following entropy-entropy flux pair

U (ρ, ρv, E) = −ρS F(ρ, ρv, E) = −ρvS S = ln(pρ−γ ). (10)

One can define the set of admissible states including density,momentumand total energy. This
set is convex under standard assumptions on the thermodynamics variables. Due to this, the
pressure is obviously a concave function. We are interested in preserving the positivity of the
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pressure and density. Therefore, we can equally enforce the negativity of the negative pressure
and negative density. Indeed, this task is equivalent to enforce upper bounds on convex
functionals. It is well-known [48, 67] that Godunov and (local) Lax–Friedrichs schemes are
positivity preserving under a suitable CFL number. In the following g will stand for the
flux of a positivity preserving dissipative scheme and our convex functionals that should be
enforced are denoted by c1(u) = −p(u) and c2 = −ρ(u). The counterparts of Condition
F are Condition ρ and Condition P .

Definition 6 The parameter α for cell k is said to satisfy

• Condition P if

c1

(
un

k + 2λ

(
f n,num
α

k− 1
2

+ f (un
k )

))
≤ 0, c1

(
un

k + 2λ

(
f n
k − f n,num

α
k+ 1

2

))
≤ 0.

• Condition ρ if

c2

(
un

k + 2λ

(
f n,num
α

k− 1
2

+ f (un
k )

))
≤ 0, c2

(
un

k + 2λ

(
f n
k − f n,num

α
k+ 1

2

))
≤ 0.

We can derive similar conditions to ensure the positivity of pressure and density using the
technique from Subsection 2.3. We demonstrate it here for the pressure (usingCondition P).
The same steps lead also to a condition for the density. First, we obtain an equivalent lemma
to Lemma 1:

Lemma 2 Condition P is fulfilled if one of the following conditions is satisfied for k + 1
4 and

k − 1
4 :

1. It holds c1

(
un

k + 2λ

(
hn

k+ 1
2

− f n
k

))
≤ 0 and α ∈ [0, 1] is arbitrary.

2. It holds c1

(
un

k + 2λ

(
hn

k+ 1
2

− f n
k

))
> 0 and

α ≥
c1

(
un

k + 2λ

(
hn

k+ 1
2

− f n
k

))

c1

(
un

k + 2λ

(
hn

k+ 1
2

− f n
k

))
− c1

(
un

k + 2λ

(
gn

k+ 1
2

− f n
k

))

.

Proof A dissipative scheme implies c1

(
un

k + 2λ

(
gn

k− 1
2

− f n
k

))
≤ 0. We get

c1

(
un

k + 2λ( f n,num
α

k− 1
2

− f n
k )

)

=c1

(
α

(
un

k + 2λ

(
gn

k− 1
2

− f n
k

))
+ (1 − α)

(
un

k + 2λ

(
hn

k− 1
2

− f n
k

)))

≤αc1

(
un

k + 2λ

(
gn

k− 1
2

− f n
k

))
+ (1 − α)c1

(
un

k + 2λ

(
hn

k− 1
2

− f n
k

))
≤ 0

(11)

due to the convex combination.We obtain the same forαk+ 1
2
. The second part follows directly

from (11). �

Lemma 3 Under Condition P, we get p

(
un

k + λ

(
f n,num
α

k− 1
2

− f n,num
α

k+ 1
2

))
≥ 0.

123



Journal of Scientific Computing (2023) 97 :13 Page 11 of 31 13

Proof Due to the convexity, we obtain

−p
(

un+1
k

)
= c1

(
un+1

k

)
= c1

(
un

k + λ

(
f n,num
α

k− 1
2

− f n,num
α

k+ 1
2

))

= c1

⎛
⎜⎜⎝
un

k + 2λ

(
f n,num
α

k− 1
2

− f n
k

)
+ un

k + 2λ

(
f n
k − f n,num

α
k+ 1

2

)

2

⎞
⎟⎟⎠

≤ 1

2

(
c1

(
un

k + 2λ

(
f n,num
α− 1

2
− f n

k

))
+ c1

(
un

k + 2λ

(
f n
k − f n,num

α+ 1
2

)))

≤ 0.

�
As mentioned above, we obtain similar results for the density, actually for every convex

functional that is bounded by the low order scheme.
Finally, we like to mark that conditions on the physical constraints are not new and used

in many different approaches, cf. [40, 55].

4 Limiting via Neural Networks

4.1 Basics of Feedforward Networks

In this section, we explain how we select our numerical flux using feed-forward neural
networks (FNN). The network is used to determine the local indicator α which steers our
convex combination inside the numerical flux and to determine if the high-order or low-order
part of the scheme is used at a certain point. Further, it is clear if the solution is not entropy
conservative, it is also not continuous. It is a generic example of a high-dimensional function
interpolation. We further assume that the parameter depends continuously on the input space
and then the theoretical foundation for our approach is based on the following result1 from
[15]:

Theorem 2 Let σ : R → R be a sigmoidal function. Then the finite sum of the form A ◦
G(x) = ∑N

j=1 α jσ(
〈
y j , x

〉 + b j ) are dense in (C(In), ‖·‖∞).

This theorem motivates the usage of FNN to approximate any function

C ⊂ C(Rn,R). (12)

To explain the approach, we give a short presentation of the general theory of neural networks
(NN). Our FNN is on a particular example and it is set up in a sequence of layers containing a
certain amount of neurons (computing units). The first layer (input/source layer) is handling
the input data/signal to the network. The output layer (last layer) uses the information from
the NN and build output data, e.g. function expressions which are used in the following, e.g.
α in our case. Hidden layers are laid in between where all calculations are done. A FNNwith
depth K contains K − 1 hidden layers and one output layer. What happens in the network is
the following operation: For an input signal X ∈ R

n , we have the output:

Ỹ = F ◦ Gk ◦ A ◦ Gk−1A ◦ Gk−2 ◦ · · · ◦ G1(X), (13)

1 We refer also to [49] for more intricate results on the approximation properties of neural networks.
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where Gk denotes the affine transformation of the k−layer on a vector Z ∈ R
Nk−1 with

Gk(Z) = WkZ + bk, Wk ∈ R
Nk×Nk−1 , bk ∈ R

Nk . (14)

Wk are the weights matrices and bk are the bias vectors. Both contain trainable parameters.
Further, in (13),As are non-linear activation functions and F is a non-linear output function
that transforms the output data into a suitable form. There are a number of different activation
functions for different problems, cf. [20] for a survey and an overview. In our manuscript, we
restrict ourselves to the currently popular Exponential Linear Units (ELU) function [14]

ELU(t) =
{

x, x > 0,

γ (exp(x) − 1), else.
(15)

We set γ ≡ 1 in our numerical simulations.
To approximate finally (12) with our network (13), we must train the parameters using

our training data. Therefore, we first create a set of training data with NT samples

T = {(Xi ,Yi ) : Yi = C(Xi )∀i = 1, . . . , NT } .

Then, we define a suitable cost/loss function that measures the discrepancy between the
actual result vector Y and the predicted result vector Ỹ. We apply always the mean square

error L(Y , Ỹ ) =
∑NT

i=1(Yi −Ỹi )
2

NT
, as loss function. To train the network, we minimize the

loss function concerning the parameters {Wk,bk}k over the set of training data. For the
minimization process, we use an iterative optimization algorithm in our case the ADAM
minimizer [36].

Remark 2 (Overfitting and Dropout Layer) As mentioned inter alia in [18], the training set
has to be selected quite carefully to avoid over-fitting. In such a case, the network performs
poorly on general data since it is highly optimized for the training set. To avoid this problem,
a regularization technique is used. A popular regularization strategy is using a drop-out layer
[61]. During each optimization update step in the training phase of the network, a dropout
layer in front of the k-th layer randomly sets a predefined fraction of the components of the
intermediate vector computed by the k-th layer to zero. The advantages of this technique are
that the training is not biased towards a specific network architecture, additional stochasticity
is injected into the optimization process to avoid getting trapped in local optima, and a sparsity
structure is introduced into the network structure.

4.2 Data Driven Scheme for Conservation Laws

Our method using neuronal nets is based on the following approach. We use neuronal nets
as building blocks to approximate unknown real maps in the following recipe:

1. Select a random set of initial conditions I = {u1, u2, . . . , uN } of Riemann problems.
2. Calculate high quality numerical solutions v to this set I.
3. Determine projections u of these solutions v to a low resolution finite volume mesh.
4. Calculate the flux of v over the given mesh boundaries and in a suitable time interval to

high accuracy.
5. Infer suitable values for the convex combination parameter α for the high order

extension (6).
6. Use this database to train a NN as a predictor for the unknown map α(u,Δt).
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The high-quality numerical solution v was calculated using classic FVmethods on fine grids.
The projection of these solutions to a low-resolution mesh is given by

uk = 1

Δx

∫ x
k+ 1

2

x
k− 1

2

v(x, t)dx with v(x, t) =
∑

k

vk(t)χωk (x).

Here, ωk denotes the cell k of the fine grid and vk the mean value of the solution as approx-
imated by an FV method. The calculation of an accurate numerical flux approximation
f n,precise at the interfaces of the coarse grid is based on numerical quadrature in time, i.e.

f n,precise
k+ 1

2
= It

n+1

tn g

(
v

(
x−

k+ 1
2
, ·
)

, v

(
x+

k+ 1
2
, ·
))

≈
∫ tn+1

tn
f (v(x, t))dt .

In our numerical tests, we use low-order quadraturemethods aswe are especially interested in
flux values for non-smooth u. Therefore, there is no need for high-order quadrature rules. Our
next problem consists of finding a suitable and well-defined αk+ 1

2
that satisfies f n,neural

α
k+ 1

2

≈
f n,precise
k+ 1

2
. We define

f n,neural
α

k+ 1
2

:= min
f ∈conv

(
hn

k+ 1
2
,gn

k+ 1
2

)
∥∥∥∥ f − f n,precise

k+ 1
2

∥∥∥∥
2

= P
conv

(
hn

k+ 1
2
,gn

k+ 1
2

) f n,precise

of the target value of the neural network GT flux as the solution of a constrained optimization
problem. It is the projection (denoted by P) of the flux to the convex hull of the dissipative low-
order and non-dissipative high-order fluxes. This formulation is usable in scalar conservation
laws as well as for systems2. Since the domain is convex as well as the objects, the above
minimization problem has a unique solution. However, the situation is worse if we focus on

α = argmin
α̃∈[0,1]

∥∥∥∥ f n,num
α̃

− f n,precise
k+ 1

2

∥∥∥∥
2
.

instead. Obviously, for g = h which occurs u = const., we do have not a unique solution.
We make use of the following ansatz

α = max

(
argmin
α̃∈[0,1]

∥∥ f n,num
α̃

− f n,precise
∥∥
2

)

to select the most dissipative value of α in the degenerate case. The numerical solution using
the 2-norm is based on the application of the Penrose inverse b = f n,precise − g, A =
h − g, β = min(1,max(0, A†b)), α = 1 − β.

The affine-linear map

Mk+ 1
2

: R → R
m, β �→ βhk+ 1

2
+ (1 − β)gk+ 1

2
= gk+ 1

2
+ α(hk+ 1

2
− gk+ 1

2
) = w + Aα

can be expressed in the standard basis using thematrix Ak+ 1
2

= hk+ 1
2
−gk+ 1

2
and the support

vector wk+ 1
2

= gk+ 1
2
. The value β controls an affine combination, where β = 1 − α yields

the identical value as before using the blending scheme. We finally get

argmin
∥∥∥w + Aβ − f n,precise

∥∥∥
2

= argmin

∥∥∥∥∥∥
Aβ − ( f n,precise − w)︸ ︷︷ ︸

b

∥∥∥∥∥∥
2

= A†b

2 A different norm or a different convex functional could be also used instead. Such investigations will be left
for future research.
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for the projection of f n,precise onto the subspace ran M . As the Penrose inverse is not only
the least squares but also the least norm solution. It has also the smallest absolute value, i.e.
β = 0 in the case that A is degenerate. The distinction between α and β was made to enforce
α = 1 for degenerate A. We are interested in the projection of f n,precise onto Mk+ 1

2
([0, 1]).

If the unconstrained minimizer lies outside of the image of [0, 1] under M , the constrained
minimizer must be on one of the edges and in fact, the edge lying nearer to the unconstrained
minimizer. This yields the given formula for the minimizer.

5 Polynomial Annihilation Based Scheme

In this chapter, we want to propose another possibility to approximate the blending parameter
α. We apply polynomial annihilation (PA) operators. First, we explain their construction in
one spatial dimension. These operators approximate the jump function of a given sensing
variable. We use them to select α.

5.1 Polynomial Annihilation-Basic Framework

The general idea of PA operators proposed in [8] is to approximate the jump function

[s](x) = s(x+) − s(x−) (16)

for a given s : Ω → R called sensing variable. We want to construct an operator Lm[s](ξ)

approximating [s](ξ) with m-th order of accuracy. For a given ξ ∈ Ω , we first choose a
stencil of m + 1 grid points around ξ . It is Sξ = (xk, . . . , xk+m) with xk ≤ ξ ≤ xk+m . In the
next step, the annihilation coefficients c j are defined implicitly by

∑
x j ∈Sξ

c j (ξ)pl(x j ) = p(m)
l (ξ). (17)

Here, {pl}m
l=0 is any selected basis of the space of polynomials with degree ≤ m.

Finally, a normalization factor qm is calculated by qm = ∑
x j ∈S+

ξ
c j (ξ),with S+

ξ = {x j ∈
Sξ |x j ≥ ξ}. For a fixed choice of Sξ , qm is constant Finally, we can define the PA operator
of order m by

Lm[s](ξ) := 1

qm

∑
x j ∈Sξ

c j (ξ)s(x j ). (18)

In [8], it was shown that

Lm[s](ξ) =
⎧⎨
⎩

[s](x̃) + O
(

h̃(ξ)
)

, if x j−1 ≤ ξ, x̃ ≤ x j ,

O
(
(h̃(ξ))min(m,l)

)
, if s ∈ Cl([xk, xk+m]),

where x̃ denotes a jump discontinuity of s and h̃(ξ) := max{|xi − xi−1| | xi , xi−1 ∈ Sξ }. To
demonstrate the behaviour of (18), we give the following example from [8]:

Example 2 We are considering the function

f (x) =
{
cos(3πx), −1 ≤ x < 0,

2
1+3 exp(−50x+25) − 1, 0 < x ≤ 1. (19)
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Fig. 2 Reference function f an two approximations of the corresponding jump function with m = 3 and
m = 5

and visualize the PA operator Lm[ f ] using 100 randomly chosen points. It is supposed to
approximate the corresponding jump function

[ f ](x) ≈
{

−2, x = 0,

0, else.
(20)

In Fig. 2, the function f (left picture) and the PA operators with order m = 3 (middle
picture) and m = 5 (right picture) are presented. It can be recognized that the jump is
approximated fine. However, we have an overshoot in both cases around x = 0.5.

5.2 Scheme Based on Polynomial Annihilation

Based on the above-presented framework, we construct the convex parameter α. In regions
with a smooth solution, α should be zero whereas in cells with a discontinuity, α should be
one. This can be achieved by PA operators which are not constructed to give the location of
a discontinuity but to approximate the height of the jump at that location. Hence, we need to
normalize the operator by a factor approximating the height of a typical jump, i.e. 1

z L2q [s]
with a normalization factor z ≈ [s](x̃). Here, the PA operator is used on the 2q-point stencil
(xk−q+1, . . . , xk+q) and the corresponding mean values (un

k−q+1, . . . , un
k+q) for a given n.

This normalization factor z is also provided by a PA operator. Therefore, we apply L2q to the
idealized values (un

max, . . . , un
max, un

min, . . . , un
min) based on the same 2q-point stencil with

un
max = max{un

k−q+1, . . . , un
k+q}, un

min = min{un
k−q+1, . . . , un

k+q}. Using this normaliza-

tion factor, the natural selection of α is α = L2q [u]
z . However, this choice does not fulfil the

beforementioned recommended property since the normalization gives amuchmore accurate
approximation of the jump height. By using L2q [u] on (un

k−q+1, . . . , un
k+q) instead,we obtain

an approximation of the jump function with a lower total height. Another occurring problem
is that the normalization factor z vanishes. It is equal to zero if un

max = un
min. A possible

solution for both issues can be obtained by simple regularization. We choose αn = c1L2q [u]
z+c2

,

with c2 > 0. Our experiments will show that c1 = 10 is an appropriate choice to compensate
for the difference between the accuracies of the approximations. The regularization is picked

as c2 = ‖u‖1/μ(Ω) with discrete L1-norm ‖un‖1 = ∑N
i=1

|un
i |

N μ(Ω). In the numerical sec-
tion, we select PA operators using q = 4 and in the system case, we determine the value of
αn by the maximum of the separately calculated values of each conserved quantity. Finally,
we apply a sup-mollification to define the predictor α̃n := αn �max

{
1 − 1

3

∥∥ x
Δx

∥∥ , 0
}
. The

final step is motivated by the fact that the PA operator may introduce overshoots even in
smooth regions, as demonstrated already in Fig. 2. By applying mollification, we observed a
reduction in their impact and achieved more precise results.
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6 Numerical Experiments

In the following part, we determine the blending parameter by the techniques described in
Sect. 2.3–5. We investigate and compare the different methods and focus especially on the
following questions:

• Which order of accuracy can we expect from our schemes?
• Are the schemes able to capture strong shocks and are they oscillation free?
• Do we obtain the structure-preserving properties?
• Is there a most efficient technique which should be applied?

We test our schemes on the Euler equations of gas dynamics (9). To analyze the accuracy
of the schemes, we consider the smoothly connected density variation from [37]. For the
more advanced simulations, we concentrate on some well-known benchmark problems from
literature [58, 59, 64].We consider in detail: Sod’s shock tube, the second shock tube problem,
123-problem, the Woodward–Colella blast wave and the Shu–Osher test case.
We compare different hybrid schemes with each other. Especially, the selection of α is
essential. In preliminary experiments, we have recognized that the constraints on pressure and
density as developed in Sect. 3 have the lowest effect on the blending parameter compared
to the other choices, e.g. cell entropy, Dafermos entropy condition, NN or PA operators.
However, to ensure the positivity of pressure and density from Condition P and Condition
ρ, we use αρ and αP as lower bounds. We set α = max(αρ, αp, αi ) where αi is calculated
by one of the above mentioned techniques. Inside the schemes, we use for the high-order
fluxes a fourth-order entropy conservative flux with SSPRK(3,3) if nothing else is said. The
low order flux in (6) is the local Lax–Friedrichs flux. We consider the following schemes:

1. A data-driven scheme denoted by DDLFT: α is determined using FNN. We use α =
max(αρ, αp, αDD) where αDD is the output of our FNN.

2. A polynomial annihilation based scheme called PALFT: α is determined through the
technique described in Sect. 5. Once more, it is α = max(αρ, αp, αPA).

3. A cell entropy dissipative scheme (DELFT): α is determined through the technique
described in Sect. 2.3. Unluckily in our numerical simulations, we have realized that by
the selection of fluxes and time integration, we obtain always an order reduction. One
can possibly avoid and circumvent this using additional techniques like additional shock
detectors and FV subcell limiting strategies, cf. [46], etc. but this is not part of the current
paper where we stress also the drawbacks out. We adapted the method (fluxes, time-
integration) and the scheme uses an SSPRK(2,2) Predictor-Corrector time integration,
written as flux, and two-point fluxes, cf. Appendix 8. This setting gives us a second-
order scheme which demonstrates the promising results in our test cases. It’s worth
noting that the observed order reduction is not surprising since it was already explained
in [56] that enforcing a local entropy inequality yields such behaviour. Our scheme is
consistent with the method described in [56], as it also requires an extended stencil. We
get α = max(αρ, αp, αη). This α is sup-mollified using a hat function with a radius of 2
cells.

4. The Dafermos hybrid scheme denoted by DALFT: α is determined through the technique
described in (4). The value of α is taken as the maximum α = max(αρ, αp, αDaf ).

Before comparing our schemes, we explain how we generate our training data for DDLFT.
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Table 1 Used network structure with drop-out rate 0.2 during training

Layer Input 2 3 4 5 Output

Activation ELU ELU ELU ELU ELU x → x

Number of Neurons 40 80 80 80 80 1

Calculation of Training Data

As explained before, the training data for the NN was taken out of the simulation using an
ENO scheme. Special care had to be taken to select initial data that leads to simulations where
a representative amount of features of typical solutions to the Euler equations are visible. We
decided therefore to use

u0(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

u1 x ≤ 2.5

u2 x ≤ 5

u3 x ≤ 7.5

u4 x ≤ 10.0

as initial condition on the interval [0, 10]with periodic boundary conditions. The four constant
states ui between the three resulting Riemann problems were randomly selected as

ρi = Aρri,1 + ερ, vi = 2Av

(
ri,2 − 1

2

)
, pi = Apri,3 + εp.

Here, ri, j denotes a random number in the interval [0, 1]. The constants Aρ, Av, Ap control
the upper bounds of the selected random values and are chosen as Aρ = Av = Ap = 4.0.
To ease the solution of these initial conditions the parameters ερ = εp = 1

100 result in
strictly positive initial density and pressure. 100 of these initial conditions were solved up to
T = 2.5 by an ENO scheme with 4000 points. The high-fidelity solution was subsequently
sampled at 400-time slices within the interval [0, 2.5] and utilized as outlined in Sect. 4.2.
This procedure, using 200 cells on the coarse grid, 3 conserved variables and 400 time slices
results in roughly 244 MB training data. Please note that when used for training enough
consecutive cells from this data pile are presented to the network, i.e. in total 8 · 106 samples
are available for training. Finally note that even if we start with different Riemann problems
our training data will contain as well purely smooth data at some time slices.

Layout and Training of the Network

We use a neural network built out of six layers whose dimensions are given in Table 1. In all,
but the last layer, the E LU activation function is applied. The inputs are the values of the
conserved variables and the pressure of five cells left and right to the cell boundary where
α has to be determined. Our network for the prediction of α was trained using the ADAM
optimizer [36] with parameters scheduled as given in Table 2.We use the Flux library in Julia
to train our network [32, 33]. The resulting loss curve is printed in Fig. 3. The training took
circa 20 minutes on 8 cores of an AMD Ryzen Threadripper 5900X at 3.7 GHz.
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Table 2 Overview of used training parameters

Section 1 2 3 4 5 6 7

Epochs 25 25 25 25 25 25 25

Batchsize 32 256 1024 4096 4096 4096 4096

Stepsize 0.001 0.001 0.001 0.001 0.0001 0.00001 0.000001

Fig. 3 Training loss of NN

6.1 Numerical Experiments

For the benchmark problems 6.1.2–6.1.4, we use always 100 cells on the interval [0, 10].
For the rest, we use either 400 or 800 cells. For simplicity, the CFL number is set to 0.5
for all test cases. If nothing is said about the boundary conditions, we use inflow–outflow
conditions. The reference solutions are always calculated using ENO2 with 10000 cells. We
use the code from [37] for the Dafermos scheme whereas the other schemes can be found in
the corresponding repository.3 We give only the numerical results for the density profiles for
simplicity. The other profiles show similar behaviours.

6.1.1 Smooth Density Variation

To determine the experimental order of convergence, we simulate the smooth transport of a
density variation under pressure equilibrium used in [37] up to T = 1.5. The initial condition
is given by

ρ0(x, 0) = 3.857153 + ε(x) sin(2x), v0(x, 0) = 2.0, p0(x, 0) = 10.33333,

ε(x) = e(x−3)2 .
(21)

and periodic boundary conditions are considered. The analytical solution for this test problem
is

ρ(x, t) = 3.857153 + ε(x − 2t) sin(2x − 4t), v(x, t) = 2.0, p(x, t) = 10.33333.

3 https://github.com/simonius/ddsolver.
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Fig. 4 Convergence plots for (21) (left schemes: DDLFT, PALFT, DELFT) (right: Dafermos scheme from
[37])

To obtain the optimal order of accuracy, we use in this test case for the time integration
the SSPRK(10,4) method (4th-order, strong-stability preserving Runge–Kutta methods with
10 stages) in the high-order flux. The L1-errors of the schemes are shown in Fig. 4. The
PALFT scheme converges with fourth-order accuracy in this specific test. Given the ability
to construct entropy conservative fluxes up to any desired order and the capability to create
polynomial annihilation operators that eliminate smooth solution components up to any
desired order, it can be proven that PALFT schemes are also theoretically capable of achieving
arbitrary high-order of accuracy.Nevertheless, this falls outside the scope of our investigation.
We further see a slide decrease in order for the DDLFT for fine grids. This is due to the fact
that the NN can not keep up with the DDLFT scheme itself on fine grids, i.e. for a smooth
solution is αk+ 1

2
= O (

(Δx)3
)
not satisfied.4 The entropy dissipative scheme converges

with the second order of accuracy as expected. The convergence plot in Fig. 4 (right) for
the Dafermos scheme seems a little bit surprising. However, the mollification process is not
adapted in all of our test cases and we have a big jump in the accuracy when it is working
more adequately. Then, we obtain also the fourth order of accuracy. For a more detailed
description of the Dafermos entropy scheme, we refer to [37] where formally high-order of
accuracy was analytically and numerically proven.

6.1.2 Sod’s Shock Tube

The first benchmark is the SOD test problem [64, Problem I, Section 4.3.3]. It is a very mild
test and its solution contains a left rarefaction, a contact discontinuity and a right shock. The
initial conditions are given by

ρ0(x, 0) =
{
1,

0.125,
v0(x, 0) =

{
0,

0,
p0(x, 0) =

{
1.0, x < 5,

0.1, x ≥ 5.

We run the simulation until T = 2.0 and the results for density can be seen in Fig. 5.
All schemes clearly produce correct predictions without unphysical shocks. Sadly oscilla-

tions are visible in the solution calculated by the data-driven scheme, see for example Fig. 5.
These problems are nearly invisible in the PALFT scheme. A further surprising result is the
ability of the DDLFT and PALFT to produce sharp transitions of shocks even without further

4 This condition is necessary to ensure that the contribution of the low-order flux inside the convex combination
(5) does not pollute the high-order accuracy of the entropy conservative method.
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Fig. 5 Density for the first shock tube at T = 2.0 calculated using 100 cells. Data-driven scheme (up left),
polynomial annihilation-based scheme (upright), Dafermos criterion scheme from [37](down left), discrete
entropy stable scheme (down right)

tuning of parameters. The dotted lines in the figure give also the α coefficients in the con-
vex combination of our blending schemes. Furthermore, we may cancel out the oscillation
by additionally demanding the Dafermos criterion (4). Finally, we realize that the αs only
distinguish essentially from zero around the shock for PALFT as the rest of the solution is
smooth. For DDLFT, the lower-order method is also activated in smooth regions (i.e. α > 0).
These effects counter some of our intuition, as the transitions for the data-driven schemes
are sharper than in the PALFT scheme. This could be some effect produced by the desire of
the NN to produce the flux with minimum L2 distance to the exact flux - and it is not clear
that this is the least dissipative flux. Further, we like to point out that the DDLFT resolve the
contact discontinuity at x = 7 best where the other schemes smear it. The DALFT scheme is
performing here worst compare to the other. The DALFT scheme further smears all profiles.
However, this is done already at the beginning of the calculation as can be seen in Fig. 5
at T = 2 α = 0 except around the shock. The smearing comes from the beginning of the
calculation where the low-order scheme is mostly used. Finally, the DELFT gives numerical
approximations in between the DDLFT and PALFT without oscillations, cf. Fig. 5 (down
right). Finally, in Fig. 6 the value of the blending parameter α during the simulation over time
and cells is given for the different schemes. All schemes turn on the entropy dissipation on the
right moving shockwave, while the contact discontinuity also triggers some dissipation in the
DELFT scheme in time. It is important to emphasize that the PALFT scheme exhibits more
smoothing of the contact discontinuity and rarefaction wave compared to other schemes, but
it provides more accurate resolution of the shock. This behavior can be possible explained by
examining Fig. 6, which shows that the low-order scheme is initially activated with greater
diffusion due to a non-zero α value. This is also a possible explanation for these inaccuracies.
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Fig. 6 Value of the blending parameter α during the simulation over time for the three schemes presented
in this publication (Data-driven in the upper left, polynomial annihilation upper right and discretely entropy
dissipative lower centre). All schemes turn on the entropy dissipation on the right moving shock wave, while
the contact discontinuity also triggers some dissipation in the discrete entropy dissipative scheme. This is
astonishing as a contact discontinuity does not dissipate entropy in the exact solution

Later only the shock is detected in the space-time scale. On the other side the entropy dissi-
pative scheme starts with nearly every α value at zero but as longer the simulation progresses
two cones with non-zero α values are developing and further transported: one for the shock
and one for the contact discontinuities. It should be noted that our investigation of Condition
F is sufficient but not necessary, indicating that we are over-activating the low-order scheme,
which is also activated at local maxima at the contact discontinuity.

6.1.3 Second Shock Tube Problem

The second shock tube problem is given by the initial conditions

ρ0(x, 0) =
{
0.445,

0.5,
v0(x, 0) =

{
0.698,

0,
p0(x, 0) =

{
3.528, x < 5.0,

0.571, x ≥ 5.0.

We run the simulations to T = 1.3 and the results for ρ are presented in Fig. 7. The second
benchmark demonstrates similar behaviour as before. The DDLFT scheme performs quite
well but small oscillations can be seen in Fig. 7 (left above picture) which and we assume that
these could be cancelled out by further tuning the network and/or more (specific) training
data. The PA performs as well good. The top plateau only displays a single oscillation point,
and the contact discontinuity is less smeared than it is in the DALFT scheme, but it is still
more smeared than in the DELFT scheme due to the early activation of α �= 0 (not shown
here). The DELFT scheme provides results that lie between those of the DDLFT and PALFT
schemes, and it yields good results. However, it is evident that the low-order part of the
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Fig. 7 Density of the second shock tube problem at t = 1.3

scheme is activated more frequently, even in smooth regions, when compared to the other
schemes considered. This confirms that Condition F overestimates the α value.

6.1.4 123-Problem

Our next test case is the 123 problem [64, Problem II, Section 4.3.3]. The initial condition is
given by

ρ0(x, 0) =
{
1.0,

1.0,
v0(x, 0) =

{
−2.0,

2.0,
p0(x, 0) =

{
0.4, x < 5.0,

0.4, x ≥ 5.0.

The solution contains two strong rarefactions and a trivial stationary contact discontinuity;
the pressure p is very small (close to vacuum) and this can lead to difficulties. The results
are shown in Fig. 8. These results are the only instance where our positivity preserving lower
bounds on α has been activated but only for the DDLFT. It was different from zero. It should
be pointed out that for the DD scheme, the approach using the positivity limiters inside α

is necessary. Without them, we would obtain unphysical negative pressure and density. This
underlines the ability of the data-driven scheme to combine bounds on α for positivity derived
by hand and the educated guess of an optimal α by an FNN. The results look promising and
as before the DDLFT is more accurate than the PALFT scheme. We reach nearly zero in the
DDLFT scheme. It should be pointed out that α, in this case, is also not symmetric around
x = 5. The rest of the schemes do not need this additional requirement of the limiters. We
further recognize that the PALFT scheme is much too dissipative where the DALFT scheme
is in between the DALFT and PALFT schemes. Again the reason is the starting point of the
simulations as before. The DELFT scheme performs again quite well.
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Fig. 8 Density and pressure for the 123 problem t = 1.2 calculated using 100 cells

6.1.5 Woodward–Colella Blast Wave

As a more complex test case the Woodward Colella blast wave problem is considered as
proposed in [65]. The solution contains a collision of two shock waves. We have reflecting
wall boundary conditions. These boundary conditions are implemented in our scheme using
ghost cells u0 and uN+1 placed outside of the domain, with the following values

u0 =
⎛
⎝

ρlg

ρlgvlg

Elg

⎞
⎠ , , u1 =

⎛
⎝

ρl

ρlvl

El

⎞
⎠ , uN =

⎛
⎝

ρr

ρrvr

Er

⎞
⎠ , uN+1 =

⎛
⎝

ρrg

ρrgvrg

Erg

⎞
⎠

A solid boundary is implemented now by setting

ρlg = ρl , vlg = −vl , plg = pl

for the left and

ρrg = ρr , vrg = −vr , prg = pr

for the right boundary. For high-order schemes with wider stencils more ghost cells are added
via symmetry. The initial data is given by the following three initial states

ρ0(x, 0) =

⎧
⎪⎨
⎪⎩

1.0

1.0

1.0

v0(x, 0) =

⎧
⎪⎨
⎪⎩

0.0

0.0

0.0

p0(x, 0) =

⎧
⎪⎨
⎪⎩

103 x ≤ 1.0

10−2 x ≤ 9.0

102 x < 10

.

This test case is significantly more demanding than the test cases before, as the interaction
of two shocks, one moving from the left to the right, and one moving from the right to the
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Fig. 9 Density profiles for the Woodward–Colella blast wave test case at t = 0.38

left part of the domain, has to be calculated. Therefore, we increase the number of cells and
use N = 400. Again, the different density profiles can be seen in Fig. 9.

We like to point out that both the DDLFT and PALFT schemes give good results (above
row) whereas the numerical solution using the DELFT scheme contains some oscillations in
between the shock. The DALFT scheme is too dissipative to catch both shock phases. Here, it
is also surprising that the solution of DDLFT scheme does not show any oscillation different
from the shock tube test cases.

6.1.6 Shu–Osher

The initial conditions of the Shu–Osther test are given by

ρ0(x, 0) =
{
3.857153

1 + ε sin(5x)
v0(x, 0) =

{
2.629

0
p0(x, 0) =

{
10.333 x < 1

1 x ≥ 1

in the domain Ω = [0, 10]. The parameter ε was set to the canonical value of 0.2 and the
adiabatic exponent was set to γ = 7

5 for an ideal gas. The density profiles are printed in
Fig. 10 for different amounts of cells N = 400, 800. All numerical solutions are describing
the reference solution. All schemes are able to resolve the strong shocks without nonphysical
oscillations. Oscillations also do not appear in the wake of the shock. The amount of points
needed for the transition is small and the wave structure trailing the shock is resolved accu-
rately. Further, we recognize the best convergence inside the different schemes for the PALFT
scheme, where increasing the number of points in the DDLFT scheme has less influence on
the resolution. The same can be seen for the DELFT scheme. The approximated solution of
the DALFT scheme behaves nicely since the shock sensor is optimized for this test problem
as described in [37].
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Fig. 10 Density profiles for the Shu–Osher test case number 8 at t = 1.8

Remark 3 (Computational costs (CPU)) In our simulations, we have recognized that the data-
driven scheme is much more expensive in computational costs compared to the other three
schemes which have roughly the same costs. However, we like to stress that our implemen-
tations are not optimized and a detailed efficiency analysis would also be desirable. In such
an investigation, one should also consider that the data-driven scheme needs less memory to
obtain the same resolution quality as the other schemes. Therefore, the data-driven scheme
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is particularly suitable for GPU calculations. In an efficiency analysis, this has to be taken as
well into account.

7 Summary

In this work, we compared different ways to increase the resolution of high-order finite
volume/finite difference schemes for hyperbolic conservation laws, in particular if disconti-
nuities appear. After giving an introduction and an overview over the underlying numerical
flux based on a convex combination, some physical constraints were concerned. To be more
specific, we gave conditions that assured the cell entropy inequality and/or the positivity of
pressure and density of the numerical solution of the Euler equations. A second possibility
was further constructed using a feedforward neural network. Here, the network was trained
by data which were calculated by a reference scheme.We provided afterwards a choice of the
convex parameter based on polynomial annihilation operators after giving a brief introduc-
tion to their basic framework. In a last step, the resulting schemes were tested and compared
by numerical experiments on the Euler equations. Here, we consider several well-known
benchmark problems. All schemes are combined with the ansatz to keep density and pres-
sure positive. This was especially important for the data-driven scheme since it would violate
this condition and the algorithm would break down (123-problem). Besides this fact, we
further could conclude that the DDLFT scheme shows promising results in all numerical
experiments. We obtain good approximations especially for the blast-wave test case but also
for the shock-tube problems. The PALFT scheme demonstrates good results as well for most
of the cases and seems best on most of them. However, for the 123-problem it was to much
dissipative compared to the other schemes. The cell-entropy scheme had the disadvantage
that only second order of accuracy could be reached for smooth problems if not additional
techniques are applied. For instance, an additional shock detector can be used as a prelim-
inary step. This technique was applied for example in [46] in the DG framework together
with convex limiting.5 Besides this fact, it demonstrates quite well and yield oscillation free
numerical approximations except for the blast wave. The DALFT was quite dissipative in
most of the cases as the α is selected to calculate the most dissipative approximate solu-
tion imaginable. However, by selection the mollification process more suitable like in the
Shu–Osher test case, one obtain as well promising numerical solutions. As a conclusion,
all techniques can be used and the resulting FD/FV schemes are capable to handle strong
shocks and are often oscillation free. The approach can be extended straightforwardly to
two-dimensional (or multi-dimensional) problems using a tensor structure strategy in FD
(or structured quad grids in FV). However, when focusing on unstructured grids, additional
techniques must be developed. This includes the selection of stencils, presentation of data,
and their utilization, which are all essential. In our future work, we plan to continue our
investigation in this direction. Further, it should be noted that to handle complex geometries
with a tensor grid, we can also adopt the approach described in [17]. Extensions tomultiphase
flows are as well planned. Finally, our high-order FD/FV blending schemes can be also the

5 We refer also to the work [38] for a possible explanation about the decrease of accuracy using the convex
limiting strategy with enforcing entropy stability.
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starting point of a convergence analysis for the Euler equations via dissipative weak solutions
[3, 21, 43] which is already work in progress.
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Appendix

For the fully-discrete entropy correction scheme, the high-order time integration is based on a
reinterpretation of predictor-corrector time integration [34, p. 386] as a numerical quadrature
of the numerical flux over a cell boundary. We can proof the following theorem:

Theorem 3 (Predictor–Corrector–Fluxes) Let f num(uk,uk+1) be a numerical flux and uk(t)
on [t, t + Δt] be the exact solution of the scheme

duk(t)

dt
+ f num (uk(t),uk+1(t)) − f num (uk−1(t),uk(t))

Δx
= 0

with uniform cell size Δx. Then, the 4-point numerical flux f num(uk−1,uk,uk+1,uk+2)

defined as

u1k = uk + λ
(

f num(uk−1,uk) − f num(uk,uk+1)
)
,

u1k+1 = uk+1 + λ
(

f num(uk,uk+1) − f num(uk+1,uk+1)
)
,

f num (uk−1,uk,uk+1,uk+2) = f num(uk,uk+1) + f num
(
u1k ,u

1
k+1

)

2

is a second-order6 accurate approximation of 1
Δt

∫ t+Δt
t f num(uk(τ ),uk+1(τ ))dτ, i.e.

∥∥∥∥ f num (uk−1,uk,uk+1,uk+2) − 1

Δt

∫ t+Δt

t
f num (uk(τ ),uk+1(τ )) dτ

∥∥∥∥ = O(Δt)2.

Proof We begin by stating that the intermediate values u1k ,u
1
k+1 are first-order accurate, i.e.

u1k = uk(t + Δt) + O (
(Δt)2

)
u1k+1 = uk+1(t + Δt) + O (

(Δt)2
)

6 Please note that the term p order accurate was coined so that integration via a p order quadrature rule leads
to a p order accurate approximation.
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due to the explicit Euler method. Calculation of the flux between cell uk and uk+1 over
time Δt via the trapezoid rule I (second-order) and the exact solution uk(t) is second-order
accurate, i.e.

I
[

f num(uk(·), uk+1(·))
] =Δt

2

(
f num (uk(t),uk+1(t)) + f num (uk(t + Δt),uk+1(t + Δt))

)

=
∫ t+Δt

t
f num (uk(τ ), uk+1(τ )) dτ + O (

(Δt)3
)
.

Due to the Lipschitz continuity of f num, we have
∥∥ f num (ul(t + Δt),ur (t + Δt)) − f num

(
u1l ,u

1
r

)∥∥
≤ L f

(∥∥ul(t + Δt) − u1l
∥∥ + ∥∥ur (t + Δt) − u1r

∥∥) ,

where ul and ur denote the left and right value at some generic interface. Due to the accuracy
order of u1k and u1k+1, it follows∥∥ f num (uk(t + Δt),uk+1(t + Δt)) − f num

(
u1k ,u

1
k+1

)∥∥ = O (
Δt2

)
.

The combination of these three statements yields that the numerical quadrature of the flux
calculated using the approximate values u1k ,u

1
k+1

Δt f num = Δt

2

(
f num (uk,uk+1) + f num

(
u1k ,u

1
k+1

))

= Δt

2

(
f num (uk,uk+1) + f num (uk(t + Δt),uk+1(t + Δt)) + O(Δt)2

)

= I
[

f num(uk(·),uk+1(·))
] + O(Δt)3

=
∫ t+Δt

t
f num (uk(τ ),uk+1(τ )) dτ + O (

Δt3
)

is a second-order exact approximation and dividing by Δt induces the result. �
The above numerical flux f num (uk−1,uk,uk+1,uk+2) could be also interpreted as the

flux over the given cell boundary if the semidiscrete scheme is used together with the strong
stability preserving (SSP) RK(2,2) method which is equivalent to the deferred correction
method of order 2 [2]. However, higher-order quadrature rules can also be applied in this
context.
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