
Journal of Scientific Computing (2023) 96:89
https://doi.org/10.1007/s10915-023-02313-3

AMeshfree Collocation Scheme for Surface Differential
Operators on Point Clouds

Abhinav Singh1,2,3 · Alejandra Foggia1,2,3 · Pietro Incardona1,2,3 ·
Ivo F. Sbalzarini1,2,3,4

Received: 12 February 2023 / Revised: 19 July 2023 / Accepted: 25 July 2023 /
Published online: 7 August 2023
© The Author(s) 2023

Abstract
Wepresent ameshfree collocation scheme to discretize intrinsic surface differential operators
over scalar fields on smooth curved surfaces with given normal vectors and a non-intersecting
tubular neighborhood. The method is based on discretization-corrected particle strength
exchange (DC-PSE), which generalizes finite difference methods to meshfree point clouds.
The proposed Surface DC-PSE method is derived from an embedding theorem, but we
analytically reduce the operator kernels along surface normals to obtain a purely intrin-
sic computational scheme over surface point clouds. We benchmark Surface DC-PSE by
discretizing the Laplace–Beltrami operator on a circle and a sphere, and we present conver-
gence results for both explicit and implicit solvers. We then showcase the algorithm on the
problem of computing Gauss and mean curvature of an ellipsoid and of the Stanford Bunny
by approximating the intrinsic divergence of the normal vector field. Finally, we compare
Surface DC-PSE with surface finite elements (SFEM) and diffuse-interface finite elements
(DI FEM) in a validation case.

Keywords Surface differential operators · Meshfree methods · Collocation · Partial
differential equations on surfaces · Intrinsic calculus

This work was funded by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft)
under grants FOR-3013 (“Vector- and tensor-valued surface PDEs”) (author A.F.), GRK-1907 (“RoSI:
role-based software infrastructures”) (author A.S.), and SB-350008342 (“OpenPME”) (author P.I.), and by
the Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF)
under funding code 031L0160 (project “SPlaT-DM – computer simulation platform for topology-driven
morphogenesis”) (author I.F.S.).

B Ivo F. Sbalzarini
ivos@mpi-cbg.de

Abhinav Singh
absingh@mpi-cbg.de

1 Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany

2 Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany

3 Center for Systems Biology Dresden, Dresden, Germany

4 Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-023-02313-3&domain=pdf
http://orcid.org/0000-0003-4414-4340

89 Page 2 of 19 Journal of Scientific Computing (2023) 96 :89

Mathematics Subject Classification 65M06 · 65D25 · 35R01

1 Introduction

Partial differential equations (PDEs) on curved surfaces and differentiable manifolds are an
important tool in understanding and studying physical phenomena such as surface flows [25,
36] and active morphogenesis [21]. Analytically solving intrinsic PDEs in curved surfaces,
however, quickly becomes impossible for nonlinear PDEs or for surfaces that do not possess a
global parameterization. Therefore, numerical methods for solving intrinsic PDEs on curved
surfaces are important, and a wide variety of both embedded and embedding-free schemes
have been developed to consistently discretize intrinsic differential operators over scalar
fields on surfaces.

Embedding-free methods require a (at least local) parameterization of the surface in order
to discretize the differential operators via coordinate charts or a local basis of the mani-
fold [37]. This includes methods based on local moving frames [6], a concept originally
developed in continuous group theory, where the surface geometry is locally represented by
intrinsic orthonormal bases. This has been used to solve surface PDEs over meshfree point
clouds using moving least squares (MLS) approximations [19]. The concept of local moving
frames has also been combined with discontinuous Galerkin discretization, e.g., to solve
shallow-water equations on arbitrary rotating surfaces [7]. Other embedding-free Finite Ele-
ment Methods (FEM) include intrinsic surface FEM (ISFEM), which discretizes differential
operators on a triangulation of the surface [2, 14], and methods based on Discrete Exterior
Calculus (DEC) [24].

Embedding methods discretize the surface problem in an embedding space of co-
dimension 1 and use projections to restrict the differential operators computed in the
embedding space to the surface manifold. This includes methods that use explicit tracer
points to represent the surface, but interpolate to an embedding mesh to evaluate differ-
ential operators [18], diffuse-interface methods based on phase-field representations of the
surface [23], embedding FEM such as TraceFEM [26] and diffuse-interface FEM [17, 30],
narrow-band level-set methods based on orthogonal extension of the surface quantities [4, 9],
level-set methods based on the closest-point transform [20, 29], and volume-of-fluidmethods
for surface PDE problems [16].

While each of these methods has its specific strengths, embedding methods usually gener-
alize better to complex-shaped or arbitrary surfaces [29]. However, they tend to have higher
computational cost, because computations are done in the higher-dimensional embedding
space and additional extension (for level sets), right-hand-side evaluation (for phase fields),
or interpolation (for closest-point transforms) steps are required, albeit specific optimizations
are available, e.g., for level sets [27]. Embedding-free methods are usually more accurate,
because they avoid the interpolation and projection errors arising when the discretization of
the embedding space does not trace the surface exactly, but they tend to be more difficult to
implement and harder to generalize to complex-shaped or moving/deforming surfaces.

Here, we present a meshfree collocation method for PDEs on smooth and orientable
curved surfaces with non-intersecting tubular neighborhood. The method combines elements
from embedding and embedding-free approaches. It is algorithmically embedding-free in the
sense that surface quantities are represented on tracer points that are contained in the surface.
This also discretizes and represents the surface itself as a point cloud. But the method is
mathematically related to embedding approaches, since the stencils used to approximate

123

Journal of Scientific Computing (2023) 96 :89 Page 3 of 19 89

differential operators at the surface points are computed in the embedding space by a reduction
operation along the local normal vector, which needs to be known or computed. Intuitively,
this projects the discrete operators, rather than projecting the flux vectors as typically done
in embedding methods. The resulting method therefore shares properties of moving frame
approaches, such as the low dimensionality (and hence low computational cost) and the
meshfree character [6, 19]. It combines these with properties of embedding methods, such as
their flexibility in generalizing to complex surfaces [29], and their ability to compute extrinsic
differential-geometric quantities.

Our method is based on the Discretization-Corrected Particle Strength Exchange (DC-
PSE) collocation scheme for arbitrary (surface) point clouds. DC-PSE is related to
Generalized Finite Difference Methods (GFDM) [35] and to MLS [32]. Given the local
surface normal n, we derive intrinsic discrete operators by first creating an embedding
narrow-band and placing collocation points along the normal from each surface point. We
then determine the regular DC-PSE operator kernels in the embedding space. These kernels
are subsequently reduced under the condition of orthogonal extension ∇ f · n = 0 for any
(sufficiently) differentiable scalar field f (x) ∈ R to derive intrinsic kernels at the surface
points x. This is possible due to the kernel nature of DC-PSE, and it preserves the information
from the embedding space in a scheme that only requires computation over surface points.

This paper is organized as follows: Sect. 2 recollects the DC-PSE method for convenience
and introduces the notation. In Sect. 3, we describe the Surface DC-PSE scheme for numer-
ically consistent discretization of surface differential operators. We present validation and
convergence result in Sect. 4 and conclude in Sect. 5.

2 Discretization-Corrected Particle Strength Exchange (DC-PSE)

DC-PSE is a numerical method for discretizing differential operators on irregular distribu-
tions of collocation points [32]. The method was originally derived as an improvement over
the classic Particle Strength Exchange (PSE) [12] scheme, reducing its quadrature error on
irregularly distributed collocation points, but mathematically amounts to a generalization
of finite differences [32]. The PSE/DC-PSE class of collocation methods uses mollification
with a symmetric smoothing kernel ηε(·) to approximate (sufficiently smooth) continuous
functions f (x) ∈ R, x ∈ � ⊆ R

d ,

f (x p) ≈ fε(x p) =
∫

�

f (x) ηε(x p − x) dx, (1)

where fε(x p) is a regularized approximation of the function f at location x p ∈ � of collo-
cation point p. The scalar ε is the smoothing length (or the kernel width) of the mollification.
Linear differential operators in Rd ,

Dα = ∂ |α|

∂xα1
1 ∂xα2

2 · · · ∂xαd
d

, (2)

defined by the multi-index α = (α1, . . . , αd) ∈ Z
d with |α| = ∑d

i=1 αi are approximated
by Taylor series expansion to find a discrete operator

Qα f (x p) = Dα f (x p) + O
(
h(x p)

r) (3)

at collocation point x p . The order of approximation r depends on the kernel ηε used in
Eq. (1), and h(x p) is the average distance between collocation point p and its neighbors

123

89 Page 4 of 19 Journal of Scientific Computing (2023) 96 :89

Fig. 1 a Illustration of the DC-PSE method. The collocation points xq (blue) within the symmetric operator
supportN (x p) of radius rc around the center point x p (red) are used to approximate the differential operator
at x p . The average distance between points in the operator support, h(x p) defines the accuracy of the approx-
imation. b Illustration of the Surface DC-PSE method. The intrinsic differential operator at a point x p (red)
on the surface S is evaluated over neighboring surface points xs (blue). The operator kernel is constructed in
the tubular neighborhood of radius rc (circle) with 2Nn points xn (yellow) replicated along the local surface
normal n at distances δn. Point labels are used in the main text for the illustrative example (Color figure online)

within the kernel support. We use the arithmetic mean of the L1-distances to compute h, but
since all norms are equivalent, the convergence order (but not the actual error magnitude) is
independent of the choice of average. The Taylor expansion yields integral constraints (also
known as continuous moment conditions), which the kernel ηε needs to fulfill in order to
reach a certain convergence order r [12].

DC-PSE uses different kernels η
p
ε (·, ·) for different collocation points p and directly acts

on a given quadrature of Eq. (1) with collocation points xq ∈ �, resulting in the discrete
operator:

Qα
h f (x p) = 1

ε(x p)|α|
∑

xq∈N (x p)

(
f (xq) ± f (x p)

)
ηp

ε (x p, xq), (4)

whereN (x p) are all collocation points in the neighborhood (of a certain radius rc defined by
the kernel width) around point x p , as illustrated in Fig. 1a. The positive sign in the parenthesis
is used for odd |α|, the negative sign for even |α|. This renders the operator conservative on
symmetric collocation point distributions, i.e., when η

p
ε (x p, xq) = η

q
ε (xq , x p). In DC-

PSE, the kernels η
p
ε are thus not determined from continuous moment conditions, as in

PSE, but directly from the discrete moment conditions that result from substituting Eq. (4)
into the quadrature of Eq. (1) [32] for a given set {xq}Nq=1. This adapts the kernels to the
specific distribution of collocation points (hence the name “discretization-corrected”) and
avoids the quadrature error of PSE [12], leading to a scheme that is consistent with order r on
almost1 arbitrary collocation point sets. Thismeans that at each collocation point, a potentially
different kernel is used for the same differential operator if the neighboring collocation points
within the kernel support are distributed differently. Evaluating such a kernel at the locations

1 The collocation point distribution must not be degenerate in the sense that the Vandermonde matrix of the
kernel system must have full rank [5]. A trivial example: placing all points along a line and then asking for an
approximation of the derivative in the perpendicular direction cannot work.

123

Journal of Scientific Computing (2023) 96 :89 Page 5 of 19 89

of the collocation points yields a generalized finite-difference stencil, which reduces to the
classic compact finite differences on regular grid arrangements of points [32].

DC-PSE kernels are determined at runtime by solving a small system of linear equations
for each collocation point, resulting from the discrete moment conditions in its kernel neigh-
borhood. For this, one can choose the function space such that the kernels are compact and
symmetric. A frequent choice are polynomials windowed by truncated exponentials [33]

ηp
ε (x p, xq) = ηp

ε

(
x p − xq
ε(x p)

)
:=

⎛
⎝|α|+r−1∑

|γ |=βmin

aγ (x p)

(
x p − xq
ε(x p)

)γ
⎞
⎠ e

−
∣∣∣ x p−xq

ε(x p)

∣∣∣2
(5)

of finite radius rc. The polynomial coefficients aγ are determined for a given α and given
collocation points xq ∈ N (x p), such that the following discrete moment conditions are
satisfied:

Zβ
h =

⎧⎪⎪⎨
⎪⎪⎩

(−1)|α|α!, β = α

0, β �= α, βmin ≤ |β| ≤ |α| + r − 1, βmin =
{
0, |α| odd
1, |α| even

< ∞, |β| = |α| + r

(6)

where

Zβ
h (x) = 1

ε(x p)d

∑
xq∈N (x p)

(x p − xq)β

ε(x p)|β| ηp
ε

(
x p − xq
ε(x p)

)
(7)

is the discrete moment of order β of the kernel ηα
ε , and βmin is the parity of |α|, because the

zerothmoment Z0
h vanishes for even operators. Under these conditions, DC-PSE is consistent

with order r as long as
h(x p)

ε(x p)
∈ O(1), (8)

i.e., the kernel width ε scales proportionally with the average inter-point distance h around
x p [32].

3 Surface DC-PSE

We generalize DC-PSE to surface differential operators based on the following classic
result [22, 29]: Let S ⊂ R

d be a differentiable manifold that possesses a tubular neigh-
borhood T and is orientable2 and f : S → R. Define F : T → R, such that the restriction
F |S = f , and F is constant along the normal direction n of S, i.e., ∇F · n = 0. Then, on
the surface S,

∇S f = (∇F)|S , (9)

where∇S f is the intrinsic surface gradient. A similar result is true for the intrinsic divergence
operator (∇S ·) and for tangential vector field that is extended by constant extension to all
surfaces displaced along the normal of S [22, 29].

Given this result, it is straightforward to see the advantages of a meshfree discretization:
it allows for conforming discretization of the surface and for exact constant orthogonal
extension by simply copying points along the normal. This creates an embedding narrow-
band of exact closest-point function values within the tubular neighborhood T without a

2 Every boundary-less smooth surface embedded in R
d has a tubular neighborhood, and the orientability

condition is not restrictive when considered locally [22].

123

89 Page 6 of 19 Journal of Scientific Computing (2023) 96 :89

need for interpolation. If T is non-intersecting with a radius of at least rc everywhere, the
conditions of the result in Eq. (9) are satisfied in the constructed embedding. Analogous to
the closest-point method [29], one can then discretize differential operators in the embedding
space. Due to the additive kernel nature of DC-PSE, the discrete operators in the embedding
space can be reduced to only the surface points.

This reduction becomes clear from the formulation of the DC-PSE method. Indeed, we
realize that the constant normal extension can be made internal to the operator evaluation
by accumulating the kernel coefficients along the normals. To see this, consider the DC-PSE
operator in Eq. (4) in the embedding space. The neighborhoodN for the summation contains
both surface points xs and normally extended points xn , as shown in Fig. 1b. Because the
f (xn) are identical copies of the values of the respective surface points, we note that the pre-
factors

(
f (xs) ± f (x p)

)
in the summation of Eq. (4) are the same for all extended normal

points and the corresponding surface point xs . Hence, for each given pair of a center point
x p and another surface point xs , the interactions with the corresponding normally extended
points can be factored out from the kernel summation:

f (xs) ± f (x p)

ε(x p)|α|
∑

xq={xs ,xn :(xn−xs)||n(xs)}
ηp

ε

(
x p − xq
ε
(
x p

)
)

= f (xs) ± f (x p)

ε(x p)|α| ηS(x p, xs), (10)

defining the surface kernels ηS(x p, xs). These can be evaluated over only the surface points
xs = NS(x p) in the in-surface neighborhood NS(x p) around the surface point x p , see
Fig. 1b, yielding the Surface DC-PSE operator:

Qα
S f (x p) = 1

ε(x p)|α|
∑

xs∈NS (x p)

(
f (xs) ± f (x p)

)
ηS(x p, xs). (11)

Importantly, the surface kernels ηS(x p, xs), summed over all orthogonally extended points,
can directly be computedwhen determining the kernelweights andwithout explicitly creating
or storing the normally extended points xn .

Evaluating a SurfaceDC-PSE operator involves only the neighboring points on the surface
and requires no narrow band or normally extended grid, even though the construction of the
operators uses an embedding. This leads to a corresponding reduction in computational com-
plexity for operator evaluation, as computations are only performed on a (d−1)-dimensional
surface embedded in d-dimensional space. In comparison, the cost of operator evaluation for
embedding methods such as the closest-point method is O(k(d − 1)), where k > 1 is the
narrow-band width, which scales proportionally with the order of convergence.

3.1 Surface DC-PSE Kernel Construction

Surface DC-PSE requires two algorithms that are not part of the standard, flat-space DC-
PSE method: an algorithm to create the intrinsic neighborhood of a surface point p, and an
algorithm to determine the surface kernels ηS at a surface point p. We follow the example
of Ref. [5] and use explicit component notation and a concrete example in order to directly
relate to implementations in computer code.

Figure 1b illustrates a piece of the tubular neighborhood of radius rc (circle) of a curved
surface S embedded in R

2. The red point p at position x p on the surface is the “center”
collocation point at which we derive the discrete Surface DC-PSE operator Qα

S f (x p) for

123

Journal of Scientific Computing (2023) 96 :89 Page 7 of 19 89

Algorithm 1 Surface DC-PSE: construction of neighborhood of a point p.
Input:

1. Point set P on the surface S
2. Cutoff radius for the operator support rc
3. Indices NS of surface points in the neighborhood of p
4. Optional: spacing δn between the normally extended points. Default: average embedding-space distance

between surface points
5. Optional: Number of normal copies of each surface point to be used during operator construction Nn

(symmetric to either sides of the surface). Default: Nn = round(rc/δn)

Output: List of distances between point p and all surface si and normal ni points in its neighborhoodN (x p):
Ndist(x p)

Require: |nsi | = |np | = 1
1: Ndist = [], k = 0
2: for all si ∈ NS do
3: Ndist.append([])
4: for i ∈ [−Nn , Nn] do
5: dni = x p − xsi − iδn · nsi
6: if |dni | ≤ rc then
7: Ndist[k].append(dni /εp) � Add to set of the corresponding si .
8: end if
9: end for
10: k += 1
11: end for

12: Ndist.append([])
13: for i ∈ [−Nn , Nn]\{0} do � Normal points to p.
14: dni = −iδn · np
15: if |dni | ≤ rc then
16: Ndist[k].append(dni /εp) � Create a new set containing all points along np .
17: end if
18: end for

a scalar surface field f . Points in light blue are surface points within the embedding-space
neighborhood of radius rc (circle) of x p , and the yellow points are the orthogonal extensions
xn . By default, the spatial separation δn between adjacent orthogonal extensions of the
surface point p is the arithmetic mean of the distances between p and the other surface
points within the kernel support, measured in the embedding space. This favors isotropic-
resolution neighborhoods and, thus, low condition numbers of the DC-PSE kernel system
matrix. The number of orthogonally extended points should be Nn ≈ round(rc/δn) to either
side of the surface, which is the default. Only surface points are actually allocated and stored.

In order to determine theDC-PSE kernel ηp
ε in the embedding space, the distances between

x p and all collocation points in its embedding-space neighborhood N are required. In the
example of Fig. 1b, the neighborhood (circle) includes the surface points NS = {s1, s2} and
the normally extended points {ni }10i=1. The two pale-yellow points are not part of the neigh-
borhood. Algorithm 1 constructs the neighbor set along with the corresponding distances.
Surface normals at a given point are indexed by the point index for better readability, i.e.,
n(x p) := np . In the example of the figure, this results in the output

Ndist(x p) = [[ds1 , dn1 , dn2 , dn3], [ds2 , dn4 , dn5 , dn6], [dn7 , dn8 , dn9 , dn10]],

where dq is the distance between the collocation points p and q in the embedding space in
units of εp := ε(x p).

123

89 Page 8 of 19 Journal of Scientific Computing (2023) 96 :89

Using this neighborhood data structure, the embedding-space DC-PSE operator at point
p in the example of the figure reads:

Qα
S f (x p) = f (xs1) ± f (x p)

ε(x p)

(
ηp

ε (ds1) + ηp
ε (dn1) + ηp

ε (dn2) + ηp
ε (dn3)

)

+ f (xs2) ± f (x p)

ε(x p)

(
ηp

ε (ds2) + ηp
ε (dn4) + ηp

ε (dn5) + ηp
ε (dn6)

)

+ f (x p) ± f (x p)

ε(x p)

(
ηp

ε (dn7) + ηp
ε (dn8) + ηp

ε (dn9) + ηp
ε (dn10)

)
. (12)

Since the embedding-space kernels are evaluated at concrete distances, the η
p
ε (dq) are just

scalar numbers. All kernel values that share the same pre-factor f (xq)± f (x p)

ε(x p)
are thus summed

to the surface kernels ηS(x p, xq), q ∈ NS , obtaining:

Qα
S f (x p) = f (xs1) ± f (x p)

ε(x p)
ηS(x p, xs1) + f (xs2) ± f (x p)

ε(x p)
ηS(x p, xs2)

+ f (x p) ± f (x p)

ε(x p)
ηS(x p, x p). (13)

For even differential operators, i.e., derivatives with even |α|, the third term vanishes identi-
cally and can be skipped in the calculations. But this is not the case for odd-order derivatives.
With this rearrangement, each evaluation of the operator at a point p only requires three ker-
nel evaluations instead of the 12 that would be required in the embedding case. In addition,
the normally extended points never need to be allocated and stored, as all kernel computa-
tions can happen on the fly. Algorithm 2 details the procedure for Surface DC-PSE operator
construction. For the example from Fig. 1b, this results in the surface DC-PSE kernel values:

KS = [ηS(x p, xs1), ηS(x p, xs2), ηS(x p, x p)],
which can directly be used in Eq. (11) to evaluate surface differential operators.

Algorithm 2 Surface DC-PSE: construction of surface kernel at a point p.
Input:

1. List of neighbor distances Ndist for each pair x p,q , with q ∈ N (x p), as constructed by Algorithm 1

Output: Surface kernel values for each pair x p,s , with s ∈ NS : KS

1: KS = zeros(si ze(NS) + 1)
2: η = DCPSE(p) � Determine embedding-space DC-PSE kernel at p
3: for all (i, j) ∈ Ndist do
4: Kemb[i][j] = η(Ndist[i][j])
5: end for
6: for i ∈ [1, si ze(NS) + 1] do
7: for all j ∈ Kemb[i] do
8: KS [i] += Kemb[i][j]
9: end for
10: end for

123

Journal of Scientific Computing (2023) 96 :89 Page 9 of 19 89

4 Results

We validate and benchmark the Surface DC-PSE method. First, we verify its convergence
in test cases with known analytical solution. Then, we show applications to cases with more
general surfaces where no analytical solution is available. Finally, we compare with surface
finite-element methods (SFEM) in a validation study.

In all cases, orthogonal extension is exact, copying surface points along the knownnormals.
Therefore, ∇F · n in Eq. 9 is always zero by construction. Numerically evaluating this term
requires approximating the gradient ∇F , which we confirmed to converge with the order of
accuracy of the discretization scheme used.

4.1 Laplace–Beltrami Operator on a Circle and a Sphere

We start by verifying convergence for the Laplace–Beltrami operator on the unit circle S1.
The collocation points are distributed regularly using equi-angular spacing. We use a normal
spacing of δn = 3/(Np − 1) to compute the surface operators in Eq. (11) in a narrow band
with Nn = 4 layers on each side of the surface. Np is the number of surface points xs . We
choose rc = 4.1δn as the operator support and r = 2 as the desired order of convergence.
The Laplace–Beltrami operator is characterized by the multi-index α = (2, 0)+ (0, 2). Note
that this multi-index is 2-dimensional, despite the circle being one-dimensional, since the
operators are constructed in the embedding space, but evaluated intrinsically.

We test the numerical approximation of the surface operator on the function

f (θ) = sin(θ) + cos(θ) (14)

in polar coordinates. The error is computed against the analytical solution

�S f (θ) = ∇S · (∇S f (θ)) = ∇2
θ f (θ) = −(sin(θ) + cos(θ)). (15)

The visualization of the numerical solution and the convergence plot of the absolute errors
are shown in Fig. 2a, c. We observe second-order convergence to the analytical solution, as
expected for r = 2.

We further test the method on the unit sphere S2. The collocation points are distributed
using the Fibonacci sphere technique [13]. We use a normal spacing of δn = 0.8/(3

√
Np −1)

to determine the surface operators in Eq. (11) in a narrow band with Nn = 2 layers on each
side of the surface. Np is the number of points on the sphere. We choose rc = 2.9δn as the
operator support and r = 2 and r = 4 as the desired orders of convergence. The Laplace–
Beltrami operator is characterized by the three-dimensional multi-index α = (2, 0, 0) +
(0, 2, 0) + (0, 0, 2). We test the numerical approximation of the surface operator on the
scalar spherical harmonic function

f (θ, φ) = Yl,m (16)

in spherical coordinates for the mode l = 4, m = 0 (Fig. 3a). The error is computed against
the analytical solution

�S f = ∇S · (∇S f (θ, φ)) = −l(l + 1)Yl,m (17)

and is plotted in Fig. 3c.
We also use this test case to benchmark against the Closest Point (CP) method [29] with

L2 and L∞ errors plotted in Fig. 3c. While Surface DC-PSE is less accurate than the CP

123

89 Page 10 of 19 Journal of Scientific Computing (2023) 96 :89

Fig. 2 Visualization and convergence of the Laplace–Beltrami operator on the unit circle. a Visualization of
�S (sin(θ) + cos(θ)) computed using second-order accurate Surface DC-PSE operators. b Visualization of
the solution of the Poisson equation �S f = 4 sin(2θ) solved using second-order accurate Surface DC-PSE
operators. cConvergence plot of the Laplace–Beltrami operator in (a). L∞(•) and L2(�) norms of the absolute
errors are computed against the analytical solution in Eq. (15) for increasing numbers of points on the circle.
d Convergence plot of the Poisson equation solution in (b). L∞(•) and L2(�) norms of the absolute errors
are computed against the analytical solution in Eq. (19) for increasing numbers of points on the circle

method for second-order operators, it outperforms for fourth-order operators, which is likely
due to the better condition numbers of the small linear systems to be solved for each point.

Finally, we perform a strong scaling benchmark of the computation time with increas-
ing numbers of CPU cores with both codes implemented in the parallel computing library
OpenFPM [15, 34] in C++ and run on the same hardware. We plot the parallel efficiency
(i.e., the speed-up divided by the number of cores) in Fig. 3b for both the construction and
the evaluation of the operators of both methods. We further report the absolute wall-clock
times on one and 24 cores in the inset table. These times show that evaluating the Surface
DC-PSE operators over all points in the domain is about one order of magnitude faster than
evaluating the CP transform [29]. In addition, Surface DC-PSE scales better with increasing
numbers of parallel CPU cores. This is due to the simpler kernel evaluation of DC-PSE.3

3 Up to 8 cores, the measured parallel efficiency of Surface DC-PSE was larger than 1.0, due to cache effects
when storing the kernel coefficients.

123

Journal of Scientific Computing (2023) 96 :89 Page 11 of 19 89

Fig. 3 Visualization and convergence of the Laplace–Beltrami operator on the unit sphere. a Visualization of
the spherical harmonic function Y4,0. b Results of a strong scalability test for the computation of �SY4,0
for average spacing h = 0.05 using Surface DC-PSE operators (•,�) and the Closest Point (CP) method
(◦,♦) [29] on increasing numbers of CPU cores.We separately show the parallel efficiency for the construction
of Surface DC-PSE operators (•) and of the CP representation (◦), and for their evaluation to approximate
�SY4,0 across the entire domain using Surface DC-PSE (�) and the CP method (♦). The absolute wall-clock
times for one time step are shown in the inset table for 1 and 24 cores. cConvergence plot of�SY4,0 for Surface
DC-PSE (L∞(•), L2(�)) and the CP method (L∞(◦), L2(♦)) using second-order (black) and fourth-order
(gray) approximations. Norms of the absolute errors are computed against the analytical solution in Eq. (17)
for increasing numbers of points (decreasing average spacing h). d Convergence plot for the solution of the
Poisson equation �S f = −20Y4,0 across the entire domain using second-order (black) and fourth-order
(gray) operators. L∞(•) and L2(�) norms of the absolute errors are computed against the analytical solution
in Eq. (21) for increasing numbers of surface points

Eventually, the efficiency for both methods drops, as is expected for strong scaling with con-
stant communication overhead. The time required to construct the Surface DC-PSE operators
with Nn = 2, however, is about two orders of magnitude larger than that for constructing
the CP representation in a narrow band of radius 5 as required by the regression support.
However, it still scales better with increasing CPU core count. For Eulerian simulations,
where collocation points do not move, the kernels have to be determined only once at the
beginning of a simulation, or they can be loaded from files for standard point distributions,
potentially leading to an overall lower computational cost of Surface DC-PSE.

123

89 Page 12 of 19 Journal of Scientific Computing (2023) 96 :89

4.2 Poisson Equation on a Circle and a Sphere

Surface DC-PSE operators can also be used for implicit equations by solving a linear system
of equations with a system matrix constructed using the Surface DC-PSE operators. We test
this by solving the Poisson equation on the unit circle S1:

�S f = 4 sin(2θ) θ ∈ � = S1\(1, 0) (18)

with Dirichlet boundary condition at one point (1, 0) conforming to the analytical solution

f (θ) = sin(2θ) θ ∈ � ∪ (1, 0). (19)

We use the same Surface DC-PSE operators as in the previous subsection to construct the
system of equations, which is then solved using the KSPGMRES solver from PETSc [3].
Figure 2b, d show the solution f and the convergence plot of the absolute error with respect
to the analytical solution.

Next, we test the method in three dimensions by solving the Poisson equation on the
sphere S2:

�S f = −20Y4,0 (20)

with Dirichlet boundary condition along the great circle parallel to the y−z plane conforming
to the analytical solution

f = Y4,0. (21)

We solve the resulting linear system with KSPGMRES from PETSc [3] without precon-
ditioning. The convergence plots for orders r = 2 and r = 4 are shown in Fig. 3d. The
collocation points on the sphere were constructed using the Fibonacci sphere technique [13].
While this generates pseudo-regular point distributions on the sphere, their average spacing
does fluctuate a bit, explaining the slight waviness of the curve especially for the fourth-order
operators.

4.3 Mean and Gauss Curvature Computation

We further verify Surface DC-PSE by computing the mean curvature H and Gauss curvature
K of an ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= 1 (22)

with a = 1, b = 0.8, c = 0.75 and parameterization (u, v)

x = a cos u sin v, y = b sin u sin v, z = c cos v. (23)

We compute both curvatures from the embedded shape tensor ∇Sn, i.e., the extension of
the intrinsic shape operator to the embedding space. We numerically compute this tensor in
Cartesian coordinates as the 3 × 3 matrix

∇Sn =
⎛
⎝∇Sn1

∇Sn2
∇Sn3

⎞
⎠ ,

where n = (n1, n2, n3) are the components of the analytically given normal vectors at the
collocation point.All intrinsic derivatives over the scalar fieldsn1, n2, n3 are approximated by
Surface DC-PSE operators. Mean curvature H is then computed as the trace of the embedded

123

Journal of Scientific Computing (2023) 96 :89 Page 13 of 19 89

Fig. 4 Gauss and mean curvature computation using Surface DC-PSE. a Visualization of the mean and Gauss
curvatures of an ellipsoid, numerically computed as the trace of the embedded shape tensor −0.5∇S · n =
−0.5Tr(∇Sn) of the surface normal vector field n and the product of the non-zero eigenvalues of ∇Sn,
respectively, using second-order accurate Surface DC-PSE operators. b Visualization of the relative errors in
the computed curvatures from (a) on 32258 surface points in comparisonwith the analytical solution inEq. (24).
They range from about 10−7 to 10−3. c Convergence plot of the mean and Gauss curvature computations.
L∞(•, +) and L2(�, ×) absolute errors for mean and Gauss curvatures, respectively, are computed against
the analytical solutions in Eq. (24) for decreasing average collocation point spacing h. d Visualization of
the mean curvature computed on the Stanford bunny with 2960 points using second-order accurate Surface
DC-PSE operators

shape tensor and Gauss curvature K as the product of its non-zero eigenvalues (principal
curvatures). These numerical computations are verified against the analytical solutions

H = abc[3(a2 + b2) + 2c2 + (a2 + b2 − 2c2) cos(2v) − 2(a2 − b2) cos(2u) sin2 v]
8[a2b2 cos2 v + c2(b2 cos2 u + a2 sin2 u) sin2 v]3/2

K = a2b2c2[
a2b2 cos2 v + c2

(
b2 cos2 u + a2 sin2 u

)
sin2 v

]2 . (24)

We approximate the embedded shape tensor ∇Sn using Surface DC-PSE with δn =
3.0/(Np − 1), rc = 2.9δn, Nn = 2, and r = 2. The results and the convergence plot of
the absolute errors are shown in Fig. 4 a, c. As specified by r , we observe second-order
convergence to the analytical solution when decreasing the average spacing h between the
points. The relative errors are visualized in Fig. 4b. They concentrate around extremal points
of the curvature, as expected.

123

89 Page 14 of 19 Journal of Scientific Computing (2023) 96 :89

Fig. 5 Illustration of the benchmark problem considering a surface S with an isolated “bump” given by the
graph of a function over the two-dimensional domain � = [−2, 2]2. a Top view of the center part with the
initial condition f0 shown by color. The smallest white circle encloses the area where f0 �= 0 (radius σ = 0.2).
The mid-sized white circle encloses the “bump” (radius r = 0.25). The solutions computed by the different
numerical methods are probed and compared at the two surface points above x0 = (−0.5, 0) (green dot) and
x1 = 0.25(−√

2,
√
2) (orange dot). The largest white circle of radius 0.5 and the dotted diagonal line help

locate the point x1 with respect to the “bump”. b Perspective view of the surface with the Surface DC-PSE
solution at final time t = 1 shown by color. For reference, we also show the same circles as shown in (a) for
the initial condition and the “bump”, as well as the probe points x0 and x1 (Color figure online)

Finally, we apply the same mean-curvature computation to an arbitrary surface with no
analytical solution, the Stanford bunny from the Stanford Computer Graphics Laboratory.
We use the down-sampled version of the original data set with 2960 points on the surface,
obtained from https://www.stlfinder.com/model/stanford-bunny-S4kAUsKI/3091553. The
result is visualized in Fig. 4d, showing that the Surface DC-PSE qualitatively works also for
non-algebraic surfaces.

4.4 Comparison with Surface Finite Element Methods

We validate Surface DC-PSE by comparing it with surface Finite Element Methods (FEM)
on a test case specifically developed for benchmarking FEM solutions of surface problems
[1]. The benchmark problem considers a two-dimensional surface S with an isolated “bump”
described by the graph of the function u(x) = αζ(‖x − p‖/r), where α ≥ 0 is the height
of the bump, p = (−0.5, 0) is the position of its center, and r = 0.25 is the bump radius
(see Fig. 5a). The function ζ(d) = exp

(− 1
1−d2

)
for d < 0.975 and 0 otherwise is a cut-off

compressed Gaussian. The surface is thus defined as S = {xS = (x1, x2, u(x1, x2)) ∈
R
3 | x = (x1, x2) ∈ �} over the square � = [−2, 2]2 ⊂ R

2. This surface is asymmetric
along the x direction, containing regions of both positive and negative Gauss curvature (see
Fig. 5b).

We numerically solve the diffusion equation ∂t f (xS , t) = �S f on S with no-flux Neu-
mann boundary conditions at all borders of the domain�. The initial condition is the truncated
Gaussian f0 = f (xS , 0) = σ−2ζ(‖xS‖/σ) centered at xS = (0, 0, 0) with σ = 0.2
(Fig. 5a).

The collocation points for Surface DC-PSE are regularly distributed in the flat parts of
the surface, while in the region of the bump ([−0.75,−0.25] × [−0.25, 0.25]) we use the
Fibonacci sphere technique [13] to place the points. This results in a total of Np = 18 439

123

https://www.stlfinder.com/model/stanford-bunny-S4kAUsKI/3091553

Journal of Scientific Computing (2023) 96 :89 Page 15 of 19 89

Fig. 6 Comparison of Surface DC-PSE (SDCPSE) with two different surface Finite Element Methods (SFEM
and DI) on the benchmark described in Fig. 5 and in the main text, solving the diffusion equation on a graph
surface with an isolated “bump” [1]. Orange lines correspond to solutions obtained using Surface DC-PSE,
blue lines correspond to those from DI FEM, and black lines correspond to those using high-resolution SFEM
(reference solution). Solutions for three different bump heights α are displayed by different line styles (see
inset legend). a Plot of the solution f (xS , t) at the bump maximum above the point x0 = (−0.5, 0). b Plot
of the solution on the surface above the point x1 = 0.25(−√

2,
√
2)

points on the surface, of which 16 441 are in the flat parts of the surface. The resulting average
point spacing is h = 0.03125. We use a normal spacing of δn = h to generate the surface
operators with Nn = 3 layers to either side of the surface. We choose rc = 2.9δn as the
operator support and r = 2 as the desired order of convergence. The Neumann boundary
conditions at the edge of the surface are imposed using the method of images [8] with around
3000 “ghost points” outside the domain. Time integration over t ∈ [0, 1] is done using the
explicit fifth-order Dormand–Prince method [10] with a time-step size of δt = 10−4.

We qualitatively compare the solution computed by Surface DC-PSE with those obtained
by Finite ElementMethods using the data reported in Ref. [1] for Surface FEM (SFEM) [11],
Intrinsic Surface FEM (ISFEM) [2], trace FEM (TraceFEM) [26], and diffuse interface (DI)
FEM [17, 30]. We report the results obtained by high-resolution SFEM and DI FEM. The
solutions obtained using a lower-resolution SFEM, as well as using ISFEM and TraceFEM
are visually indistinguishable and reported elsewhere [1].

The comparison is done at two points on the surface above x0 = p = (−0.5, 0) and
x1 = 0.25(−√

2,
√
2) for three different bump heights α ∈ {0, 1, 2} [1]. There is no

analytical solution for this test case, but a high-resolutionSFEMsolution serves as a reference.
This “highRes SFEM” reference solution was obtained using a ten-times finer mesh than
Surface DC-PSE, with the finest space resolution (on the bump) set to h ≈ 0.0027, a time
step size of δt = 10−4, a standard BDF-2 scheme, and a polynomial order of two [1]. Results
are shown in Fig. 6.

We observe excellent agreement between the Surface DC-PSE solution and the “highRes
SFEM” reference solution for α = 0 (dotted lines in Fig. 6). For quantitative comparison, we
report the absolute difference in the peak values of the solutions, epeak. At both probe points,
epeak ≈ 7 · 10−4 for the flat case, which is comparable to the other FEM methods [1].

123

89 Page 16 of 19 Journal of Scientific Computing (2023) 96 :89

For the curved cases (α ∈ {1, 2}), Surface DC-PSE is still in very good agreement with
the reference solution and closer to it than DI FEM (i.e., the L2 difference between highRes
SFEM and Surface DC-PSE is smaller in all cases than between highRes SFEM and DI
FEM). For α = 1 (dashed lines in Fig. 6), the absolute difference in the peak values between
Surface DC-PSE and highRes SFEM is epeak ≈ 2.6 · 10−3 above x0 and epeak ≈ 1.2 · 10−2

above x1. The differences for DI FEM are of the same order. For the highest bump (α = 2,
solid lines in Fig. 6), we observe similar epeak values and overall behavior for all methods.
Consistently, and as expected, the curves have decreasing peak values for increasing α.

5 Conclusions

We have presented a meshfree collocation scheme for consistently approximating intrinsic
differential operators on smooth curved surfaces represented by point clouds. The present
scheme is based on the DC-PSE method for discretizing differential operators on (almost)
arbitrarily distributed collocation points in flat spaces [32]. We have derived the present
surface-intrinsic version by realizing that the kernel evaluations can be factored out across
points created by exact constant orthogonal extension, and that the partial sums over the
kernels can be precomputed and stored on the surface points only, defining effective surface
kernels. This yields a method that is easy to implement and computationally efficient, as it
only requires storing points on the surface. In this sense, Surface DC-PSE combines fea-
tures from embedding methods with features from embedding-free methods. The operators
are determined in an embedding formulation, but result in a surface-intrinsic algorithm for
operator evaluation.

We have verified the method in different test cases with known analytical solutions. This
included evaluating the Laplace–Beltrami operator on the unit circle and the unit sphere,
solving Poisson equations on the unit circle and the unit sphere using an implicit solver,
and computing mean and Gauss curvature of an ellipsoid via approximation of the embedded
shape tensor. In all cases, theSurfaceDC-PSEmethod converged as expected.We then applied
the method to compute the mean curvature of the Stanford bunny, showing an application
to a non-parametric surface. We expect DC-PSE to be more robust (i.e., better conditioned)
than SurfaceMLS in complex geometries [5] and likely computationally more efficient, since
SurfaceMLS uses local moving frames in co-dimension 2, which is different from the present
tubular approach in co-dimension 1. Finally, we validated Surface DC-PSE against two
different Finite Element Methods (FEM) for surface problems, showing excellent agreement
with the reference solution.

Despite its advantages, SurfaceDC-PSE also has a number of limitations: First, the normal
field is required as an input, which can be limiting or introduce additional errors if the
normals need to be numerically approximated. Second, for a given point distribution, the
numerical error is limited by the curvature of the represented surface and depends on the
average spacing between the surface points and the normally extended points (see Figs. 1b
and 4b). The required minimum resolution can be determined based on an approximation
of the curvature. Third, Surface DC-PSE is only correct for orientable surfaces that possess
a non-intersecting tubular neighborhood (i.e., a tubular network) with a radius at least as
large as the kernel radius everywhere. This guarantees that the line segments along which the
surface points are extended never intersect. For surfaces that possess any non-intersecting
tubular neighborhood, this can always be achieved by choosing the resolution h (locally)
sufficiently small, since the tube radius scales with the radius of the DC-PSE kernel. Fourth,

123

Journal of Scientific Computing (2023) 96 :89 Page 17 of 19 89

we limited our discussion to surfaces in co-dimension 1. While it may be possible to extend
Surface DC-PSE to co-dimension 2 (e.g., curves embedded in R

3), the method is likely not
computationally efficient in those cases, as it would require constant orthogonal extension
in the whole two-dimensional normal space of each surface point. Lastly, constructing the
Surface DC-PSE kernels is computationally expensive, as it involves solving a small linear
system of equations at each surface point in order to determine the embedding-spaceDC-PSE
kernels. For Eulerian simulations, where the collocation points do not move, the kernels have
to be determined once at the beginning of the simulation. However, if points move, e.g. in a
Lagrangian simulation or simulations involving deforming surfaces, the kernels need to be
recomputed at each time step. While the corresponding cost may be amortized by a gain in
accuracy and stability [32], it is still significant.

In future work, we will consider extensions of Surface DC-PSE to Lagrangian problems
involving moving and deforming surfaces. This also includes simulations of deformable sur-
faces, where the surface deformation itself results from intrinsic force-balance equations [21,
31].Wewill also consider coupling SurfaceDC-PSEwith regular DC-PSE in the surrounding
space in order to describe coupled bulk-surface phenomena, as well as adaptive-resolution
Surface DC-PSE with resolution and tube radius locally adjusted to the curvature of the
surface in order to maintain error equi-distribution [28].

In summary, we have extended the meshfree collocation method DC-PSE to scalar-valued
problems on curved surfaces, requiring only intrinsic surface points. Like DC-PSE, also
Surface DC-PSE computes the operator kernels numerically at runtime and is consistent
for any desired order of convergence r . This makes the presented algorithm particularly
attractive for higher-order intrinsic operators, such as the fourth-order operators in Fig. 3,
and for determining the system matrices of implicit equations on surfaces or implicit time
integration schemes.

Acknowledgements We thankDr. Simon Praetorius and Prof. Axel Voigt, both from the Faculty ofMathemat-
ics at Technische Universität Dresden, for providing the benchmark data of the FEMmethods in Sect. 4.4. We
thank Bryce Palmer (Michigan State University & Flatiron CCB) for his useful comments on the manuscript.

Funding OpenAccess funding enabled and organized by Projekt DEAL. This workwas funded by theGerman
Research Foundation (DFG,Deutsche Forschungsgemeinschaft) under grants FOR-3013 (“Vector- and tensor-
valued surface PDEs”) (author A.F.), GRK-1907 (“RoSI: role-based software infrastructures”) (author A.S.),
and SB-350008342 (“OpenPME”) (author P.I.), and by the Federal Ministry of Education and Research
(Bundesministerium für Bildung und Forschung, BMBF) under funding code 031L0160 (project “SPlaT-DM
– computer simulation platform for topology-driven morphogenesis”) (author I.F.S.).

Data Availibility The C++ source code of the Surface DC-PSE implementation is available in the numer-
ics module of the open-source scalable scientific computing library OpenFPM: https://github.com/mosaic-
group/openfpm_numerics. All examples shown in this manuscript are contained in the “example” folder of
theOpenFPMrepository at: https://github.com/mosaicgroup/openfpm_pdata/tree/master/example/Numerics/
Surface_DCPSE.

Declarations

Conflict of interest The authors have no competing interests to declare that are relevantto the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

123

https://github.com/mosaic-group/openfpm_numerics
https://github.com/mosaic-group/openfpm_numerics
https://github.com/mosaicgroup/openfpm_pdata/tree/master/example/Numerics/Surface_DCPSE
https://github.com/mosaicgroup/openfpm_pdata/tree/master/example/Numerics/Surface_DCPSE

89 Page 18 of 19 Journal of Scientific Computing (2023) 96 :89

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bachini, E., Brandner, P., Jankuhn, T., Nestler, M., Praetorius, S., Reusken, A., Voigt, A.: Diffusion of
tangential tensor fields: numerical issues and influence of geometric properties (2022). https://doi.org/
10.48550/arXiv.2205.12581

2. Bachini, E., Farthing, M.W., Putti, M.: Intrinsic finite element method for advection–diffusion–reaction
equations on surfaces. J. Comput. Phys. 424, 109827 (2021). https://doi.org/10.1016/j.jcp.2020.109827

3. Balay, S.,Gropp,W.D.,McInnes,L.C., Smith,B.F.: Efficientmanagement of parallelism inobject-oriented
numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools
for Scientific Computing, pp. 163–202. Birkhäuser, Boston (1997). https://doi.org/10.1007/978-1-4612-
1986-6_8

4. Bergdorf, M., Sbalzarini, I.F., Koumoutsakos, P.: A Lagrangian particle method for reaction–diffusion
systems on deforming surfaces. J. Math. Biol. 61(5), 649–663 (2010). https://doi.org/10.1007/s00285-
009-0315-2

5. Bourantas, G.C., Cheeseman, B.L., Ramaswamy, R., Sbalzarini, I.F.: Using DC PSE operator discretiza-
tion in Eulerian meshless collocation methods improves their robustness in complex geometries. Comput.
Fluids 136, 285–300 (2016). https://doi.org/10.1016/j.compfluid.2016.06.010

6. Chun, S.: Method of moving frames to solve conservation laws on curved surfaces. J. Sci. Comput. 53(2),
268–294 (2012). https://doi.org/10.1007/s10915-011-9570-7

7. Chun, S., Eskilsson, C.: Method of moving frames to solve the shallow water equations on arbitrary
rotating curved surfaces. J. Comput. Phys. 333, 1–23 (2017). https://doi.org/10.1016/j.jcp.2016.12.013

8. Cottet, G.H., Koumoutsakos, P.D.: Vortex Methods: Theory and Practice. Cambridge University Press,
Cambridge (2000)

9. Cottet, G.H., Maitre, E.: A semi-implicit level set method for multiphase flows and fluid–structure
interaction problems. J. Comput. Phys. 314, 80–92 (2016). https://doi.org/10.1016/j.jcp.2016.03.004

10. Dormand, J., Prince, P.: A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6(1),
19–26 (1980). https://doi.org/10.1016/0771-050X(80)90013-3

11. Dziuk, G., Elliott, C.M.: Finite element methods for surface PDEs. Acta Numerica 22, 289–396 (2013).
https://doi.org/10.1017/S0962492913000056

12. Eldredge, J.D., Leonard, A., Colonius, T.: A general deterministic treatment of derivatives in particle
methods. J. Comput. Phys. 180(2), 686–709 (2002). https://doi.org/10.1006/jcph.2002.7112

13. González, Á.: Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices. Math.
Geosci. 42(1), 49–64 (2009). https://doi.org/10.1007/s11004-009-9257-x

14. Grande, J., Olshanskii, M., Reusken, A.: A space-time FEM for PDEs on evolving surfaces. In: 11th
World Congress on Computational Mechanics (WCCM XI), pp. 211–222 (2014)

15. Incardona, P., Leo, A., Zaluzhnyi, Y., Ramaswamy, R., Sbalzarini, I.F.: OpenFPM: a scalable open frame-
work for particle and particle-mesh codes on parallel computers. Comput. Phys. Commun. 241, 155–177
(2019). https://doi.org/10.1016/j.cpc.2019.03.007

16. James, A.J., Lowengrub, J.: A surfactant-conserving volume-of-fluid method for interfacial flows with
insoluble surfactant. J. Comput. Phys. 201, 685–722 (2004). https://doi.org/10.1016/j.jcp.2004.06.013

17. Lehrenfeld, C., Reusken, A.: High Order Unfitted Finite Element Methods for Interface Problems and
PDEs on Surfaces, pp. 33–63. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56602-3_2

18. Leung, S., Zhao, H.: A grid based particle method for moving interface problems. J. Comput. Phys.
228(8), 2993–3024 (2009). https://doi.org/10.1016/j.jcp.2009.01.005

19. Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35(3),
A1461–A1486 (2013). https://doi.org/10.1137/120869730

20. Macdonald, C.B., Brandman, J., Ruuth, S.J.: Solving eigenvalue problems on curved surfaces using the
closest point method. J. Comput. Phys. 230(22), 7944–7956 (2011). https://doi.org/10.1016/j.jcp.2011.
06.021

21. Mietke, A., Jülicher, F., Sbalzarini, I.F.: Self-organized shape dynamics of active surfaces. PNAS 116(1),
29–34 (2019). https://doi.org/10.1073/pnas.1810896115

22. März, T., Macdonald, C.B.: Calculus on surfaces with general closest point functions. SIAM J. Numer.
Anal. 50(6), 3303–3328 (2012). https://doi.org/10.1137/120865537

23. Nestler, M., Nitschke, I., Voigt, A.: A finite element approach for vector- and tensor-valued surface PDEs.
J. Comput. Phys. 389, 48–61 (2019). https://doi.org/10.1016/j.jcp.2019.03.006

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.48550/arXiv.2205.12581
https://doi.org/10.48550/arXiv.2205.12581
https://doi.org/10.1016/j.jcp.2020.109827
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/978-1-4612-1986-6_8
https://doi.org/10.1007/s00285-009-0315-2
https://doi.org/10.1007/s00285-009-0315-2
https://doi.org/10.1016/j.compfluid.2016.06.010
https://doi.org/10.1007/s10915-011-9570-7
https://doi.org/10.1016/j.jcp.2016.12.013
https://doi.org/10.1016/j.jcp.2016.03.004
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1017/S0962492913000056
https://doi.org/10.1006/jcph.2002.7112
https://doi.org/10.1007/s11004-009-9257-x
https://doi.org/10.1016/j.cpc.2019.03.007
https://doi.org/10.1016/j.jcp.2004.06.013
https://doi.org/10.1007/978-3-319-56602-3_2
https://doi.org/10.1016/j.jcp.2009.01.005
https://doi.org/10.1137/120869730
https://doi.org/10.1016/j.jcp.2011.06.021
https://doi.org/10.1016/j.jcp.2011.06.021
https://doi.org/10.1073/pnas.1810896115
https://doi.org/10.1137/120865537
https://doi.org/10.1016/j.jcp.2019.03.006

Journal of Scientific Computing (2023) 96 :89 Page 19 of 19 89

24. Nitschke, I., Reuther, S., Voigt, A.: Discrete exterior calculus (DEC) for the surface Navier–Stokes equa-
tion. In: Bothe, D., Reusken, A. (eds.) Transport Processes at Fluidic Interfaces, pp. 177–197. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-56602-3_7

25. Nitschke, I., Reuther, S., Voigt, A.: Liquid crystals on deformable surfaces. Proc. R. Soc. A: Math. Phys.
Eng. Sci. (2020). https://doi.org/10.1098/rspa.2020.0313

26. Olshanskii, M., Reusken, A.: Trace finite element methods for PDEs on surfaces. Lect. Notes Comput.
Sci. Eng. 121, 211–258 (2017). https://doi.org/10.1007/978-3-319-71431-8_7

27. Peng, D., Merriman, B., Osher, S., Zhao, H., Kang, M.: A PDE-based fast local level set method. J.
Comput. Phys. 155, 410–438 (1999). https://doi.org/10.1006/jcph.1999.6345

28. Reboux, S., Schrader, B., Sbalzarini, I.F.: A self-organizing Lagrangian particle method for adaptive-
resolution advection–diffusion simulations. J. Comput. Phys. 231(9), 3623–3646 (2012). https://doi.org/
10.1016/j.jcp.2012.01.026

29. Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on
surfaces. J. Comput. Phys. 227(3), 1943–1961 (2008). https://doi.org/10.1016/j.jcp.2007.10.009

30. Rätz, A., Voigt, A.: PDEs on surfaces—a diffuse interface approach. Commun. Math. Sci. 4(3), 575–590
(2006). https://doi.org/10.4310/CMS.2006.v4.n3.a5

31. Salbreux, G., Jülicher, F.: Mechanics of active surfaces. Phys. Rev. E 96(3), 032404 (2017). https://doi.
org/10.1103/PhysRevE.96.032404

32. Schrader, B., Reboux, S., Sbalzarini, I.F.: Discretization correction of general integral PSE operators for
particle methods. J. Comput. Phys. 229(11), 4159–4182 (2010). https://doi.org/10.1016/j.jcp.2010.02.
004

33. Schrader, B., Reboux, S., Sbalzarini, I.F.: Choosing the best Kernel: performance models for diffusion
operators in particle methods. SIAM J. Sci. Comput. 34(3), A1607–A1634 (2012). https://doi.org/10.
1137/110835815

34. Singh, A., Incardona, P., Sbalzarini, I.F.: A C++ expression system for partial differential equations
enables generic simulations of biological hydrodynamics. Eur. Phys. J. E 44(9), 117 (2021). https://doi.
org/10.1140/epje/s10189-021-00121-x

35. Suchde, P., Kuhnert, J., Tiwari, S.: On meshfree GFDM solvers for the incompressible Navier–Stokes
equations. Comput. Fluids 165, 1–12 (2018). https://doi.org/10.1016/j.compfluid.2018.01.008

36. Voigt, A.: Fluid deformable surfaces. J. Fluid Mech. 878, 1–4 (2019). https://doi.org/10.1017/jfm.2019.
549

37. Wang, R., Yang, Z., Liu, L., Chen,Q.: Discretizing Laplace–Beltrami operator fromdifferential quantities.
Commun. Math. Stat. 1(3), 331–350 (2013). https://doi.org/10.1007/s40304-013-0018-2

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-319-56602-3_7
https://doi.org/10.1098/rspa.2020.0313
https://doi.org/10.1007/978-3-319-71431-8_7
https://doi.org/10.1006/jcph.1999.6345
https://doi.org/10.1016/j.jcp.2012.01.026
https://doi.org/10.1016/j.jcp.2012.01.026
https://doi.org/10.1016/j.jcp.2007.10.009
https://doi.org/10.4310/CMS.2006.v4.n3.a5
https://doi.org/10.1103/PhysRevE.96.032404
https://doi.org/10.1103/PhysRevE.96.032404
https://doi.org/10.1016/j.jcp.2010.02.004
https://doi.org/10.1016/j.jcp.2010.02.004
https://doi.org/10.1137/110835815
https://doi.org/10.1137/110835815
https://doi.org/10.1140/epje/s10189-021-00121-x
https://doi.org/10.1140/epje/s10189-021-00121-x
https://doi.org/10.1016/j.compfluid.2018.01.008
https://doi.org/10.1017/jfm.2019.549
https://doi.org/10.1017/jfm.2019.549
https://doi.org/10.1007/s40304-013-0018-2

	A Meshfree Collocation Scheme for Surface Differential Operators on Point Clouds
	Abstract
	1 Introduction
	2 Discretization-Corrected Particle Strength Exchange (DC-PSE)
	3 Surface DC-PSE
	3.1 Surface DC-PSE Kernel Construction

	4 Results
	4.1 Laplace–Beltrami Operator on a Circle and a Sphere
	4.2 Poisson Equation on a Circle and a Sphere
	4.3 Mean and Gauss Curvature Computation
	4.4 Comparison with Surface Finite Element Methods

	5 Conclusions
	Acknowledgements
	References

