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Abstract
This work addressesmodel order reduction for complexmoving fronts, which are transported
by advection or through a reaction–diffusion process. Such systems are especially challenging
for model order reduction since the transport cannot be captured by linear reduction meth-
ods. Moreover, topological changes, such as splitting or merging of fronts pose difficulties
for many nonlinear reduction methods and the small non-vanishing support of the underly-
ing partial differential equations dynamics makes most nonlinear hyper-reduction methods
infeasible. We propose a new decomposition method together with a hyper-reduction scheme
that addresses these shortcomings. The decomposition uses a level-set function to parame-
terize the transport and a nonlinear activation function that captures the structure of the front.
This approach is similar to autoencoder artificial neural networks, but additionally provides
insights into the system, which can be used for efficient reduced order models. In addition
to the presented decomposition method, we outline a tailored hyper-reduction method that is
based on the reduced integration domain method. The capability of the approach is illustrated
by various numerical examples in one and two spatial dimensions, including an advection–
reaction–diffusion system with a Kolmogorov–Petrovsky–Piskunov reaction term and real
life application to a two-dimensional Bunsen flame.
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1 Introduction

This article addressesmodel order reduction for reactiveflows.Theseflowsoften exhibit sharp
fronts, like flames, which makes their simulation computational expensive. This suggests
applying model reduction for reducing simulation costs. However, classical model order
reduction methods fail [1] due to the sharp, moving fronts, that pose challenges for reducing
and predicting new system states. This manuscript addresses these issues by presenting a
new decomposition method together with efficient strategies to evaluate the dynamics of the
reduced system. For our study we use advection–reaction–diffusion systems (ARD) with
a nonlinear Kolmogorov–Petrovsky–Piskunov (KPP) reaction term, as the complex front
dynamics with topology changes of such systems feature essential difficulties for model
order reduction, while the analysis is simplified because the reacting quantity is scalar and
bounded.

Model order reduction (MOR) has been studied for various ARD systems [2–6], including
those related to self-ignition from coal [2], wildland fires [3], combustion systems [4, 5, 7,
8] and financial risk marketing [6]. In this study we focus on systems that exhibit locally
one-dimensional traveling fronts. The compact support of the moving fronts is challenging
for linear reduced basis methods, such as the proper orthogonal decomposition (POD). The
POD approximates a set of snapshots q(x, ti ), with i = 1, . . . , Nt , by separation of variables

q(x, t) ≈
r∑

k=1

âk(t)ψ̂k(x), (1)

with help of time amplitudes âk(t) and spatial modes ψ̂k(x), computed by a singular value
decomposition (SVD). Based on (1), (Petrov–)Galerkin methods (see for a review [9, 10]) are
then used to project the original dynamics of the system onto a lower dimensional subspace to
obtain a reducedordermodel (ROM)of only a fewvariables that enable an efficient evaluation.
In parametric MOR (pMOR) this is referred to as a two-stage offline–online procedure [9].
In the offline step, the reduced basis is built from a large number of trajectories that have
been simulated for a predefined set of parameters using the full order model (FOM/offline).
Thereafter, in the online step, any new parameter can be simulated efficiently using the ROM.

Unfortunately, moving fronts with sharp gradients significantly slow down the conver-
gence of (1), thereby limiting the use of pMOR. This has been numerically investigated for
reactive flows in [1]. The reducibility, i.e. the smallest approximation error that is obtained
using an r -dimensional linear subspace (1), can be theoretically quantified by theKolmogorov
width [11] or equivalently by the Hankel singular values as shown in [12]. While an expo-
nential decay of the Kolmogorov width is necessary for the success of classical MOR, it
was shown in [13, 14] that for typical transport-dominated systems the Kolmogorov width
decays only with∼ 1/

√
r , where r is the dimension of the subspace. The slow decay is often

referred to as the Kolmogorov barrier [15].
Currently, three different groups of methods can be identified in the literature that attempt

to break the Kolmogorov barrier:

1. Transport compensating methods. These methods improve the convergence of (1) by
compensating the transport, for which many authors use coordinate transformations [16–
24] to align the front onto a reference frame in which the moving front is stationary. This
allows to efficiently decompose the temporal variation of the front shape into few basis
functions. Similarly, ideas have been applied to parameter-dependent shock positions
[25–27] or fluid–structure interaction with parametrized geometries [28, 29]. Often these
methods make assumptions that limit their applicability to the specific problem at hand.
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For example the shifted POD assumes multiple wave like structures, where the transport
dependent movement is known n[16, 18] or at least a sufficiently smooth function in
time [17], which is easy to parametrize and itself independent of x. First attempts to
automate the generation of the transforms have been introduced in [17, 30, 31]. Similarly
[28, 29] construct mappings that are based on the knowledge of the parametrization of
the deformation or movement of the structures that interacts with the flow. Other authors
[23] for example make use of knowledge of the advection speed/characteristics in the
system. Although these methods have already been applied to reactive flows, as in [3]
for a wildland fire model or in [7, 18, 32] for detonation combustion, they were studied
for 1D systems only. Essential for transport compensating methods is a mapping from a
transformed domain on the simulation domain, which is often assumed to be a smooth
bijection. This complicates their applicability to complex transports with topological
changes as they often appear in reactive flows.

2. Artificial neural networks. A common dimension reduction method uses artificial neu-
ral networks. Although the specific implementations differ, most authors [33–36] rely
on a so-called autoencoder (AE) structure. This structure is a composition of affine lin-
ear and non-linear functions that squeezes the input data through a small informational
bottleneck, which is then mapped back to its input dimension by a decoder. After the
network has been trained to approximate its input data, the decoder can be used for model
order reduction. However, in contrast to the transport compensating methods, AE-based
dimension reduction does not make explicit use of the underlying transport. It is therefore
more general in the sense that transport can also be handled where an alignment of the
transported quantities is difficult. Examples are systems that feature topological changes
like splitting and merging flame fronts or multi-phase flows. Unfortunately, the resulting
AE descriptions lack structural insights and interpretability. Here, an optimal approxi-
mation is not guaranteed and it is not clear which structures or features are identified
by an AE. Existing feature interpretation methods are usually based on first-order linear
approximations around a given input. However, they may fail if the inputs are perturbed
[37–39].

3. Adaptive basis methods. Adaptive basis methods such as the dynamic low rank approx-
imation [40], the adaptive basis and adaptive sampling discrete empirical interpolation
method (AADEIM) [41], the reduced basismethodwith adaptive time partitioning [42] or
the online adaptive basis refinement and compressionmethod [43] break the Kolmogorov
barrier since they exploit the time-local low-rank structure of transport-dominated fluid
systems. This is achieved by adapting the dominant modes to the solution locally in
time. Here, [42, 43] build on an offline–online procedure. However, to account for the
time-local structure [42, 43], either assign a basis to each sub-intervals in time that is
switched during the online stage [42] or locally refine a hierarchical basis according to
an online error estimator [43]. In contrast, DLRA and AADEIM do not require an offline
stage since they compute the reduced basis during the online stage. Dynamical low-rank
approximation [40] decomposes the PDEs solution with help of a low-rankmatrix factor-
ization and derives evolution equations to update the factors of the solution in time. These
evolution equations are determined by minimizing a residual, that arises from projecting
the solution onto the manifold of low-rank matrices. The AADEIMmethod [41], updates
the basis using an adaptive version (ADEIM [44]) of the discrete empirical interpolation
method [45]. Since the underlying description of the adaptive basis methods does not
make explicit assumptions on the transport, they can be readily applied to ARD systems,
as shown for 1D premixed flames in [41, 46]. Nevertheless, as recently observed in [47]
for hyperbolic shallow water moment equations, an offline–online procedure can lead to
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substantially faster ROMs during the online stage compared to an adaptive basis method
[40], as the offline–online procedure does not require expensive online updates.

In this work, we build on the idea of transport compensation together with the classical
offline–online model order reduction procedure. However, in contrast to previous works
[16–21], where the authors aim for a simple coordinate transformation and compensate with
a couple of modes, we use a single mode to describe the front, but use a transformation
that is only locally defined. To this end, we make use of an auxiliary field φ(x, t), which
parameterizes the transport efficiently, together with a shape function f to retain the front
shape:

q(x, t) ≈ f (φ(x, t)) s. t. φ(x, t) =
r∑

k=1

ak(t)ψk(x). (2)

The auxiliary field φ : Rd × [0, T ] → R allows to embed the local one-dimensional front
movement into a d-dimensional transport. Since the transport is only parameterized locally,
changes in the topology of the front surface can be captured. A similar approach was intro-
duced in [4], where φ was constructed with help of a signed distance function and the front
function f was determined from a fit to the reacting front. While improving the approxima-
tion, this was found to be not optimal, since the obtained signed distance function does not
have to be of low rank. Here, we follow a similar approach, but we formulate an optimization
problem to compute φ. The resulting description (2) is called Front Transport Reduction
(FTR) in the remainder of this manuscript. Due to the nonlinearly activated linear space
created by the span of {ψk(x)}k=1,...,r , this approach shows many parallels to artificial neu-
ral networks. It can be seen as the decoder part of a shallow autoencoder structure. While
shallow autoencoders have been used in previous studies [36], we are explicitly incorporat-
ing the underlying physical assumptions and thereby obtain interpretable results of reduced
variables.

The second part of thismanuscript addresses dynamical ROMpredictions ofARD systems
using the FTR ansatz (2). Here, many different methods have been applied to ARD systems
in combination with the POD (1), which can be categorized into intrusive (based on the initial
set of equations) [1, 48, 49] or non-intrusive (based on data of the system state) [5, 50, 51]
reduced order models. Intrusive models project the original equation system on the reduced
manifold, which is nonlinear in our approach. For non-linear reduced mappings, so-called
manifold Galerkin methods have been used in combination with neural networks in [52]
and with dynamical transformed modes in [53]. Unfortunately, manifold Galerkin methods
require special hyper-reduction schemes to gain speedups in the resulting ROM. Examples
of these methods are the extended-ECSW scheme proposed by [54], the gappy-POD based
GNAT procedure [52] first introduced for nonlinear manifolds in [36] or the shifted DEIM
[3]. The idea of all of these methods is to evaluate the nonlinear dynamics of the underlying
system for a small number of points to determine the evolution of the parameters in the
reduced space. Unfortunately, the extended-ECSW scheme [54] and the GNAT procedure
[36, 54], cannot be used for ARD systems with sharp advected fronts, since they preselect
a fixed set of points, but the dynamics are localized only near the moving front. As already
noted by [55–57] for linear projection-based model order reduction of nonlinear equations,
the choice of sampling points is crucial for the accuracy and complexity of the resultingROM.
We discuss this problem and state a practical solution using a special hyper-reduction scheme,
based on the reduced integration domain (RID) method [58]. Furthermore, we examine the
ability of the FTR mapping to predict new system states with the help of a non-intrusive
method introduced by [59].

123



Journal of Scientific Computing (2023) 96 :28 Page 5 of 34 28

Structure of the Article

The remainder of the article is structured into three parts. The first part, Sect. 2, is dedicated to
the FTR decomposition, where we motivate the decomposition and introduce two algorithms
to solve the corresponding high dimensional optimization problem. While the first algorithm
is based on iterative thresholding of singular values (see Sect. 2.2), the other algorithm uses
artificial neural networks (see Sect. 2.3). The algorithms are applied and compared for two
synthetic examples in Sect. 2.4 and one example of a two-dimensional (2D) ARD system
with topology change in Sect. 2.5. In the second part, Sect. 3, we use the low dimensional
description of the FTR to predict new system states via non-intrusive MOR (Sect. 3.1) and
intrusive MOR (Sect. 3.2). For the latter, we propose a special hyper-reduction method. The
resulting ROM is tested for 1D and 2D ARD systems in Sect. 3.4. Finally, we summarize
our results in the last part, Sect. 4.

Nomenclature

Matrices are denoted in capital letters with straight, bold font A ∈ R
M×M and vectors

are denoted by x ∈ R
M . Whenever a scalar function f : R → R is applied on a vector

valued quantity x, we assume element-wise operation on the entries of x = (x1, . . . , xM ), if
not stated otherwise, and write f (x) instead of ( f (x1), . . . , f (xM )), similarly for matrices
f (A). The Hadamard product � is defined by the element-wise multiplication of matrix
entries. Furthermore, if q(x, t, μ) ∈ R is the solution of a scalar PDE, its (discrete space)
ODE counterpart is denoted by a vector q(t, μ) ∈ R

M containing the spatial values of q
in its components. Correspondingly, the snapshot matrix Q contains all time and parameter
snapshots in its columns: Q = [q(t1, μ1), q(t2, μ1), . . . , q(tNt , μP )]. Partial derivatives in
space and time are denoted by ∂x = ∂

∂x , ∂t = ∂
∂t , ∂xx = ∂2

∂x2
and q̇ = ∂q

∂t . The Laplacian of

a function q is defined by: ∇2q = ∑d
i=1

∂2

∂x2i
q, where we make use of the nabla operator:

∇ =
(

∂
∂x1

, . . . , ∂
∂xd

)
.

2 Dimension ReductionMethods for ComplexMoving Reaction Fronts

In this section, we introduce the front transport reduction (FTR) andmotivate why our special
nonlinear reduction method is advantageous when decomposing reactive flows. We present
two FTR decomposition approaches, that are based on iterative thresholding (Sect. 2.2) and
a special autoencoder network (Sect. 2.3).

2.1 A Nonlinear Decomposition Approach for Moving Fronts

Tomotivate our decomposition approach,we consider advection–reaction–diffusion systems:

∂q

∂t
= u · ∇q + κ∇2q + R(q). (3)

with a Kolmogorov–Petrovsky–Piskunov (KPP) [60] reaction term R(q) = μqα(q−1)with
α > 0, μ > 0. This systems describes how a quantity or reactant q(x, t) spreads in space
x ∈ Ω ⊂ R

d , d > 0 over time t ∈ [0, T ]. This spread can be caused by the advection with
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Fig. 1 Illustration of the basic idea of the front transport reduction method (Example 1). a The FTR replaces
the sharp traveling front structure q (blue curves), by a level set function φ̂ (orange lines) and a nonlinear front
function f̂ (indicated by the red arrow). Both quantities share locally the same transport (shift). However, the
level set field φ̂(x, t) is of low rank and can be therefore parameterized with only a few POD basis functions
(here: {x, 1}). b Comparison of the singular values of the snapshot matrices �,Q ∈ R

101,101. The snapshot
matrices �̂i j = φ̂(iΔx, jΔt), Qi j = q(iΔx, jΔt) are computed from (6) using Δx = 10Δt = 0.1 and
μ = 0.2 (Color figure online)

velocity u ∈ R
d or an interplay between diffusion ∇2q and reaction processes R(q). KPP-

systems exhibit traveling or pulsating fronts [61–64] that are locally one-dimensional. Locally
one-dimensional means that the spatial variable x = (x1, x2, . . . , xd) of the reactant q can be
transformed to x̂ = (φ̂, x̂2, . . . , x̂d), where x̂2, . . . , x̂d are on a hyperplane tangential to the
front of the traveling wave. On this hyperplane, all gradients in the equation vanish relative
to the φ̂-terms that are normal to the traveling wave. The resulting equation is therefore only
dependent on one spatial variable φ̂ (see [65, p. 87], for details). Therefore, we can assume
that the solution of (3) can be transformed into

q(x, t) = f̂ (φ̂(x, t), t). (4)

where the front-profile of the traveling wave is described by f̂ : R2 → R and φ̂ : Ω×R → R

determines the location of the front. Note, that this is not a special property for KPP-systems,
but a general property shared by other reaction or combustion systems [65–67].

Example 1 (One dimensional KPP-system) We consider the one-dimensional reaction–
diffusion system taken from [68]

∂t q = ∂xxq + 8

μ2 q
2(q − 1) (5)

with μ > 0. A special solution in form of a traveling wave is

q(x, t) = 1

2

(
1 + tanh

(
x − 2t/μ

μ

))
. (6)

If we identify φ̂(x, t) = x−2t/μ
μ

as a local distance to the front and the time constant front

profile f̂ (x, t) = 1
2 (1 + tanh(x)) we exactly recover the form (4). The relation between the

analytical solution q , the front function f̂ and the transport field φ̂ are shown in Fig. 1a.

As shown in Fig. 1 the transport field φ̂ is usually smooth and slowly varying compared to
q , thus we assume it to be of low rank. For the Example 1 this is visualized by the comparison
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of the normalized singular values when decomposing the snapshot matrices �̂i j = φ̂(xi , t j )
and Qi j = q(xi , t j ) with help of the SVD.

Our decomposition approach exploits this observation. For given snapshot data Q ∈
R

M×Nt withQi j = q(xi , t j ) and a time constant front function f , the approach decomposes
the data with help of the nonlinear mapping

q(x, t) ≈ q̃(x, t) = f (φ(x, t)) s. t. φ(x, t) =
r∑

k=1

ak(t)ψk(x), r 
 Nt (7)

and a low rank field �i j = φ(xi , t j ), that allows to embed the local one-dimensional front
movement into a d-dimensional transport. Since the transport is only parameterized locally,
changes in the topology of the front surface can be captured. The profile of the wave f can
be analytically computed with help of perturbation theory after transforming (3) into the
co-moving frame (see for example [69]) or by fitting the front profile [4]. Unlike (4) the
ansatz (7) drops the time dependence of the front function since it can be attributed to φ.
Note, that additionally to the truncation errorR = φ̂ −φ the approach (7) introduces another
error Δ f = f̂ − f (see for further details [4]). Thus even for vanishing truncation error the
overall error is limited by the so-called approximation error Δ f of the non-linear function,
which is known from machine learning (see Section 5.2 in [70]). This error is caused by the
choice of the unknown function class, that is describing the front.

The following problem formalizes finding a suitable φ̂ (encoding transport including
change) of Fig. 1 for given snapshots of q and prescribed front shape f . The (non-unique)
field φ would be in the simplest transport of Fig. 1 a linear function with its offset changing in
time, which is a rank two structure. The decomposition goal is formulated as an optimization
problem.

Problem 1 Front Transport Reduction For a given snapshot matrix Q ∈ R
M×Nt with Qi j =

q(xi , t j ) ∈ [0, 1] and nonlinear smooth monotone increasing function f : R → [0, 1], find
a rank r matrix � ∈ R

M×Nt , such that the error ‖Q − Q̃‖2F for Q̃i j = f (�i j ) is minimized.

Remark 1 In Problem 1 we assume that the data Q has been rescaled, which is a common
practice in machine learning to help the convergence of the optimization algorithm (see
Section 25.2 in [70]).

Two possible algorithms that solve the optimization problem 1 are provided in the follow-
ing sections.

2.2 Front Transport Reduction via Iterative Thresholding of Singular Values

A simple iterative algorithm to determine the auxiliary field� ∈ R
M×Nt of the front transport

reduction Problem 1 is stated in Algorithm 1.
Our algorithm is constructed by combining a gradient descent step (line 4) to minimize

‖Q− Q̃‖2F, together with a rank-r projection step of � (line 5). In the gradient descent step,
the FTR residual

LFTR(�) = 1

2
‖Q − Q̃‖2F with Q̃ = f (�) (8)

is minimized in direction of the gradient D�LFTR(�) = f ′(�) � ( f (�) − Q). Here,
f ′(�), f (�) are element-wise operations of f , f ′ on�. Since f is monotonically increasing
and bounded, it is sufficient to replace D�LFTR by R = f (�) − Q in line 4. Neglecting
f ′(�) in the gradient prevents a dying gradient for points where f ′(	) → 0, i.e.

∣∣�i j
∣∣ 
 0.
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Note that replacing the simple gradient descent step by a quasi-Newton method or a line
search would not affect the convergence rate, since it is followed by a projection step (line
5), which is likely to destroy the possible larger step of a more sophisticated method.

Algorithm 1 FTR as iterative thresholding

Require: Q ∈ R
M×Nt data Qi j = q(xi , t j ), τ step size, r rank

1: init k = 0 and �k = 0
2: while not converged do
3: residual R = f (�k ) − Q
4: �k+1/2 = �k − τR
5: decompose and truncate

�k+1 = svd(�k+1/2, r)
6: k ← k + 1
7: end while
8: return �k

The computational costs of Algorithm 1 scale with the complexity of the singular value
decomposition (SVD). For large systems it can be advantageous to use randomized- or
wavelet techniques [71, 72] to compute the SVD. Different initialization of �0 can be used,
which may increase the convergence of the algorithm. For example, �0 might be initialized
with help of a signed distance function since it was found to be a good candidate for a
low-rank decomposition [4]. Other possibilities include using a rank r approximation of
�0 = f −1(Q).

2.3 Front Transport Reduction via Neural Autoencoder Networks

Another way to solve the optimization problem 1 is with the help of neural autoencoder net-
works, which are commonly used in dimensionality reduction [73]. For a general introduction
to neural autoencoder networks, we refer to [74]. Here, we briefly explain the concept and
the specifications of our network.

An autoencoder tries to reproduce the input data while squeezing it through an informa-
tional bottleneck. It consists of two parts, the

Encoder genc : RM → R
r , q �→ a = genc(q), mapping the input data q onto points a in a

learned lower dimensional latent space and the
Decoder gdec : Rr → R

M , a �→ gdec(a) = q̃, mapping the latent representation back to the
input space.

The composition of the two parts

q̃ = gdec(genc(q))

defines the autoencoder. The task of the optimization procedure is now to determine gdec, genc,
such that the reconstruction error over the training data Q = [q1, . . . , qNt

]:

LFTR =
Nt∑

i=1

‖qi − q̃i‖2F =
Nt∑

i=1

‖qi − gdec(genc(qi ))‖2F

is minimized. After the network has been trained, the reduction is achieved as the dimension
r 
 M of the latent variables ai = genc(qi ) ∈ R

r is much smaller than the input dimension
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M . Therefore, the decoder qi ≈ gdec(ai ) represents a reduced map of the high dimensional
data contained in the columns of Q.

In the training procedure, the functions genc, gdec are determined by trainable parameters
of the network, called weights and biases. The networks are constructed by a composition
of layers, genc = L1 ◦ L2 ◦ · · · ◦ LN . Usually, the layers of the network Ln : Ri → R

o

are given by an affine linear mapping x �→ hn(Wnx + bn), with weights Wn ∈ R
o,i and

biases bn ∈ R
o together with a predefined nonlinear function hn . The choice of the input and

output dimension i, o in each layer, the activation function and the number of layers is called
architecture of the network.

As the FTR-autoencoder network (FTR-NN) should implement the structure motivated
in Problem 1, we choose a special architecture. It consists of a single layer decoder, without
bias

q̃ = gdec(a) = f (�a), � ∈ R
M×r ,

which is activated by the physics-dependent front function f . Here, the images of the linear
part φi = �ai , with respect to ai = genc(qi ) correspond to the columns of the discrete
transport field � = [φ1, . . . ,φNt

]. Since the image of the linear part is represented by
� ∈ R

M×r , r 
 M the resulting matrix is at most of rank r .
The encoder network consists of four convolutional layers, each followed by an exponen-

tial linear unit (ELU) and a batch normalization layer [75]. After flattening the output, the
convolutional layers are followed by two linear layers, where the first one is again followed
by an ELU activation and a batch normalization layer. We apply a stride of two in all convo-
lutional layers after the first, to downsample the spatial resolution of the input data. Further
details of the architecture and training procedure can be found in Appendix A.

For the training of the FTR-NN, an additional smoothness constraint is added to the
optimization goal LFTR, which penalizes the non-smoothness of the columns ψn of � ∈
R

M×r

Lsmooth = λsmooth

r∑

n=1

‖Dψn‖2F
‖ψn‖2F

. (9)

Here, D ∈ R
M×M denotes the coefficient matrix of a forward finite difference, which is

implemented as a convolution operation over the columns of �. For the examples in this
manuscript λsmooth = 10−7, was found to be optimal. The additional smoothness constraint
allows for faster convergence of the network in the validation phase. The constraint is rea-
sonable since the columns represent the transport field �i j = φ(xi , t j ), which is assumed to
be smooth.

2.4 Synthetic Examples

In this subsection, we provide two synthetic examples. The first example illustrates the
application of the FTR to linear advection and compares the two decomposition methods
outlined above with previous results [4]. The second example addresses topology changing
fronts. The reduced mappings that are used for the comparisons are summarized in Table 1.
Note that the number of parameters that are determined during the offline stage is different
from the number of time/parameter dependent variables a(t) ∈ R

r . We refer to the latter as
degrees of freedom in the following.
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Table 1 Summary of the different reduced mappings and their number of degrees of freedom (DOF)

Methods Reduced mapping # DOF (denoted by r )

POD q(t) = �PODa(t), �POD ∈ R
M×r Truncation rank of

SVD of Q

FTR q(t) = f (φ(t)), φ(t) = �FTRa(t), ψFT R ∈ R
M×r Truncation rank of �

used in Algorithm 1

FTR–NN q(t) = f (φ(t)), φ(t) = �FTR-NNa(t), �FTR-NN ∈ R
M×r Dimension of the

latent space a ∈ R
r

NN q(t) = gdec(a(t)) Dimension of the
latent space a ∈ R

r

Fig. 2 Data at time t = 0.11 and
its approximation with the Proper
Orthogonal Decomposition
(POD) using r = 3 modes

x

y

data q(x, t)

0.0 0.5 1.0

x

POD q̃(x, t)

0.5 1.0

2.4.1 Linear Advection of a Disc

The first synthetic example is taken from [4]. It illustrates the idea of the FTR in the pure
advection case, without any topological change. The example parameterizes a disc of radius
R = 0.15L , which is moving in a circle:

q(x, t) = f (φ(x, t)) and φ(x, t) = 1

2R
(‖x − x0(t)‖22 − R2) (10)

with circle center x0(t) = L

(
0.5 + 1/4 cos(2π t)
0.5 + 1/4 sin(2π t)

)
. (11)

The snapshot data q(x, t) is generated with the specific level set field φ(x, t) defined in (10),
which is zero at the outer radius of the disc, i.e. location of the front. The front is generated
with help of the function f (x) = (tanh(x/λ)+1)/2, λ = 0.1. One representative snapshot of
the data is shown togetherwith its approximation using the POD inFig. 2.As the authors of [4]
have already pointed out, for this example φ(x, t) = ∑3

k=1 ak(t)ψk(x) can be parameterized
by only three functions and is therefore of low rank, even if the field q(x, t) is not. The basis
functions ψ1, ψ2, ψ3 are shown in the top row of Fig. 4a. They can be interpreted as a
quadratic basis functionψ1(x, y) = (x −0.5L)2 + (y−0.5L)2−R2 + L2/42 that represents
the initial shape of the contour line with constant time amplitude a1(t) = a1 ∈ R, and the
linear transport functions ψ2(x, y) = (x−0.5L), ψ3(x, y) = (y−0.5L) for the shift in x /y-
direction with a2(t) ∼ cos(2π t), a3(t) ∼ sin(2π t). Note, that the arrows in Fig. 4a indicate
∇ψ2(x, y), ∇ψ3(x, y) the direction of the shift.

To show that the singular value thresholding Algorithm 1 (FTR) and the neural network
approach Sect. 2.3 (FTR-NN) can find a similar basis set, we generate 200 equally spaced
snapshots from q in the time interval 0 < t ≤ 1, discretized with 129 × 129 grid points in
the rectangular domain [0, L]2. The data was split into a training and test set, where every
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Table 2 Parameters of
Algorithm 1 for the moving disc
example

Name Value

Number of snapshots Nt = 100

Front function f (x) = sigmoid(x)

Number of iterations 4000

Step size τ = 0.3

Fig. 3 Comparison of POD, FTR, FTR-NN and the symmetrical autoencoder structure labeled with NN. a
compares the relative errors in the Frobenius norm for different degrees of freedom. b visualizes the level-set
field φ together with the approximation of the data q̃ = f (φ) and the deviation from the exact data q − q̃ for
one selected snapshot

second sample is a test sample. After training the neural network on the training samples, it is
compared to the results of the POD and the thresholding Algorithm 1 using the test samples.
All parameters for Algorithm 1 are stated in Table 2. The results are visualized in Figs. 3
and 4. In Fig. 3 we compare the results of both FTR algorithms (FTR, FTR-NN) and a simple
symmetrical autoencoder structure, labeled with NN (for details see Appendix A). The NN
decoder attempts to implement the encoder in an inverse manner (see details Appendix A),
which is a common practice in dimension reduction. The relative errors in the Frobenius norm
are shown in Fig. 3a. The quantitative errors of FTR-NN and the FTR show a significant drop
using r = 3 degrees of freedom (FTR basis functions/latent space dimension), which is in
accordance with the proposed level-set field. In contrast, the POD is showing a much slower
convergence of the relative error. Comparing the two networks NN and FTR-NN regarding
the quantitative errors shows that the additional depth of the NN-decoder compared to the
one-layer decoder in FTR-NN does not influence the minimal relative error. This leads us to
conclude that additional depth is not needed for a better representation. However, note that
the NN needs fewer degrees of freedom to converge to its minimal relative error, which is
due to the higher expressivity of a deeper network [76].

Furthermore, it is important to note that the FTR-thresholding algorithm outperforms both
networks, when increasing the number of degrees of freedom, for this special example.

Remark 2 We will briefly make reference to other transport compensating methods such as
the shifted POD (sPOD) [16] or transport reversal method [23]. In these, the movement
of the disc is described by a two-dimensional shift transformation in x and y, denoted by
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Fig. 4 Visualization of the FTR transport field φ(x, t)= ∑3
i=0 ai (t)ψi (x, y) for the disc moving in a circle

(see Eqs. (11), (10)). Displayed are the expected spatial modes ψi (Fig. 4a), their temporal amplitudes ai
(Fig. 4b) and FTR approximation ψ̃i , ãi , i = 1, 2, 3. The modes have been rescaled by their maximal absolute
value, for better comparison. The arrows in Fig. 4a indicate the direction of the shift. They are computed from
the spatial mean of ∇ψ2(x, y), ∇ψ3(x, y). The corresponding amplitudes a2, a3 parameterize the circular
movement in time

T Δ(t)[q(x, y, t)] = q(x − Δ1(t), y − Δ2(t), t), and one mode ψ sPOD
1 (x, y) = q(x, y, 0)

for representing the structure of the disc in the co-moving frame. Thus, the state q(x, y, t) =
T Δ(t)[ψ sPOD

1 (x, y)asPOD1 (t)] is described by r = 3 DOF (Δ1(t),Δ2(t), asPOD1 (t)), which is
in accordance with the presented FTR approach for this specific example.

For qualitative comparison, Fig. 3b shows the approximation of one snapshot before and
after activation (first and second column), together with the difference in the last column.
Comparing the POD in Fig. 2 to the FTR results shows, that the typical stair casing behavior
(which becomes a blurring of the sharp structures for many snapshots as used here) of the
POD can be overcome with the FTR ansatz that recaptures the sharp front. We observe that
both qualitative and quantitative errors of the FTR-NN and iterative thresholding approach
yield similar results. In this study, we use λsmooth = 10−7 for regularizing the smoothness of
φ at the output of the FTR-NN and NN decoder. As visualized in Appendix A Fig. 14, for
larger smoothness parameter λsmooth > 10−7 the transport field of the FTR-NN is smoothly
continued at areas of no information (no transport), but the additional constraint (9) can cause
a larger overall approximation error. However, the level-set fields of the iterative thresholding
approach and NN are almost identical inside areas where fronts have been transported. This
is due to the special choice of the encoder.

Figure 4 compares the fields ψ1, ψ2, ψ3, obtained by contemplation, to the first three
modes of φ. Similar to the proposed functions, the auxiliary field can be split into a mode
(ψ̃1) responsible for the shape of the disc and two modes that parameterize the transport
(ψ̃2, ψ̃3). As expected for this special case, ã1 is constant and ã2, ã3 ∼ cos(2π t + θ), with
θ ∈ R depends on the alignment (indicated as arrows in Fig. 4a) of the two shifting functions
ψ̃2, ψ̃3. The modes ψ̃2, ψ̃3 only have meaningful values along the trajectories of the front
because the algorithm can not in-paint φ in areas of no transport. This explains that the modes
in Fig. 4 are zero outside the circle.

Comparing the CPU time of the different algorithms is difficult due to various factors that
affect the convergence of the algorithms, especially for neural networks. These factors include
initialization, learning rate, architecture, and others. Moreover, algorithms are typically run
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Table 3 Average CPU/GPU time required to generate the reduced mapping of the moving disc with 3 degrees
of freedom using either Algorithm 1 (FTR) or network training (FTR-NN, NN) was evaluated

Methods GPU-time per iteration (s) CPU-time per iteration (s) # iterations

FTR – 0.7 3401

FTR-NN 0.06 0.2 15,499

NN 0.16 1.3 10,499

Performance tests were conducted on 11th Gen Intel(R) Core(TM) i7-11850H CPUs (8 pro-
cessing units) and a NVIDIA GeForce RTX 3070 Laptop GPU with 8GB of RAM. The number of
iterations was counted until the algorithms reached an error below 1%

on different hardware (CPU/GPU) which can further complicate comparisons. Despite these
caveats, what we can say is that when aiming for a comparable level of accuracy, Algorithm
1 requires less time than neural networks when compared on a CPU. This is likely due to
the fact that neural networks involve optimizing a larger number of parameters during the
minimization process. To illustrate this, we provide the required CPU/GPU time needed by
a modern laptop to reach an error below 1% using r = 3 degrees of freedom in the resulting
reduced mapping in Table 3.

2.4.2 Advection with Topology Change

In this example, we show that our approach is capable of handling transport with topological
changes. Therefore, we introduce the synthetic snapshot data q(x, t) = f (φ(x, t)) build
from the level-set field

ϕ(x, t) =
3∑

k=1

−Ake
−σkrk − t, rk = ‖x − xi‖2, (12)

which we try to approximate. The front f is chosen as above. The level-set field is sampled
equidistantly using 256 × 265 grid points in [0, 10]2, with (A1, A2, A3) = (1, 1.4, 1.2),
(σ1, σ2, σ3) = (0.1, 0.3, 0.5) and x1 = (7.5, 3.5), x2 = (2.5, 5.0), x3 = (5.0, 7.6). Fur-
thermore, 101 equally spaced snapshots with 0 ≤ t ≤ 0.5 are constructed from (12). As
above, we split the samples into a test and training set, where every second sample is used for
testing the autoencoders. After training the networks, they are compared to the reconstruction
errors of the POD and FTR using the test samples. The level-set fields for t = 0 and t = 0.4
are visualized as a surface plot in Fig. 5, together with the resulting snapshots of q as a color
plot. The intersection of φ with the zero plane parameterizes the surface of the front. For
increasing t , the level-set function is shifted vertically and produces an expanding surface of
the front, which is merged from three independent into one single front contour. The merging
of the fronts allows no smooth bijective mapping between the contour lines of the front at
time t = 0 to t = 0.4. This property makes it difficult for most dimension reduction methods,
which can handle transports because these rely on one-to-one mappings between different
time or parameter instances.

As presented in Fig. 6, the FTR approximates the dynamics within two dyadic pairs with
an error smaller than 0.2%, which is expected from the two-term dyadic structure in (12). The
networks approximation errors behave as in the case of the moving disc. The FTR-NN gives
similar results as the FTR, butwith a largerminimal relative error. Due to the additional depth,
the NN only needs one degree of freedom to converge towards its minimal error. Topology
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Fig. 5 Graph of the auxiliary field φ (12) in a, b and its FTR approximation in c, d. The resulting snapshots
q = f (φ) are shown as a color plot in the xy plane. The intersection with the zero level is visualized (Color
figure online)

changes of the zero level-set are nicely recovered as is illustrated in Fig. 5c and d, since the
FTR approach can recover the initial auxiliary field φ in the regions of transport.

2.5 Application to Advection–Reaction–Diffusion Systems

To motivate the FTR approach for more complex examples, we introduce the advection–
diffusion–reaction PDE with a KPP reaction term

{
∂t q = −u · ∇q + κ∇2q − μq2(q − 1)

q(x, 0) = q0(x)
, (13)
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Fig. 6 Comparison of the relative
errors for the advection example
with topology change using the
proper orthogonal decomposition
(POD), the FTR iterative
thresholding algorithm (FTR),
the FTR autoencoder structure
(FTR-NN) and a standard
autoencoder (NN)

Table 4 Parameters of the 2D
ARD simulation of Sect. 2.5

Name Value

FOM—parameters

Simulation time T = 3

Grid resolution M = 512 × 512

Domain size L = 1

Diffusion constant κ = 10−3

Reaction constant μ = 10

Advection of vortex-pair c = 10

ROM—parameters

Number of snapshots Nt = 200

Front function f (x) = sigmoid(x)

Number of iterations 5000

Step size Algorithm 1 τ = 1

on a square, two-dimensional domain Ω = [0, L]2 with periodic boundary conditions and
time interval [0, T ]. The PDE is discretized in space using 6th-order central finite differences,
and in time with an explicit Runge–Kutta method of 5th(4th) order [77]. In the following,
we refer to the discretized system as the full order model (FOM). All simulation parameters
are listed in Table 4.

For our test case we choose a velocity field inspired by the vortex pair example in [78].
Therefore u = ∇ × ω is expressed in terms of the vorticity

ω(x, t) = ω0e
−t2/τ 2(e−r21 (t)/r20 + e−r22 (t)/r20 ), ri (t) = ‖x − xi (t)‖2, (14)

which parameterizes a moving vortex pair x1 = L(0.6− ct, 0.49), x2 = L(0.6− ct, 0.51),
r0 = 5 × 10−4 with an initial amplitude ω0 = 103 decaying slowly in time (decay constant
τ = 3T ). The initial distribution of the reactant q is given by:

q0(x, y) =
{
1, for

√
(x − 0.4L)2 + (y − 0.5L)2 > 0.2L,

0, else.
(15)

The velocity field and initial distribution are tuned to mimic a flame kernel interacting with
a vortex pair, which is a usual phenomenon in turbulence flame inter- actions. During the
simulation, the synthetic vortex pair (14) moves towards burning gas and mixes unburned
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Fig. 7 Qualitative comparison of
the reconstruction errors of the
2D ARD system (13). a Shows a
colorplot at three different time
instances t = 0.0, 0.4, 0.8
(respectively left, middle, right
column). The plot shows the
FOM data (top row) and its
reconstructions using the POD
(middle row) and FTR (bottom
row). For the FTR and POD,
r = 6 degrees of freedom are
used. The color bar is chosen
such that values outside the initial
range of values 0 ≤ q ≤ 1 are
highlighted in black or red. b
Shows a profile of the solution
and the different approximations
along the horizontal line with at
y = 0.5 and t = 0.4 (Color figure
online)

(q = 1) with burned gas (q = 0), such that a small island of unburned gas detaches into
the burned area, creating a topology change in the contour line of the front. We compare the
FTR decomposition of the data with the POD in Fig. 7. The color plot in Fig. 7a shows the
time evolution of the FOM for t = 0.0, 0.4, 0.8 in the top row. In the second and third row,
the FTR and POD are compared using r = 6 degrees of freedom. The POD approximation
shows the typical staircase behavior as oscillations occur before and after the contour line of
the front. The oscillations violate the initial range of values 0 ≤ q ≤ 1, which is depicted as
red and black areas in Fig. 7b. Even for a large number of modes (r = 30) the oscillations
are still visible, as shown by the profile plot in Fig. 7b. Therefore, preservation of physical
structure cannot be expected, which may lead to instabilities in the resulting ROM [56, 57,
79]. Here, the FTR approach gives much better results, restricting the approximation on the
initial range of values due to the range of the sigmoid function f (x) ∈ [0, 1].

3 Galerkin and Data-DrivenModels for Moving Fronts

In the previous sections we have addressed the so-called offline stage of a model order
reduction procedure, in which data is collected and its dimension is reduced. The reduced
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model generated by the FTR algorithm in Sect. 2.2 is nonlinear, which poses additional
challenges for the online stage, to predict and interpolate new system states. This section
is therefore dedicated to online prediction methods. In Sect. 3.1 we use a non-intrusive,
i.e. equation free, approach of [59] and introduce an intrusive approach, the hyper-reduced
Galerkin method in Sect. 3.2 for 1D and 2D ARD systems.

3.1 Data-DrivenMethods

With the rise of data-drivenmethods inmodel order reduction, non-intrusive predictionmeth-
ods of the reduced system, e.g. POD-DL-ROM [34], SINDy [80, 81] or Fourier-Koopman
forecasting [59], have become prominent. Although the methods make specific assumptions
on the system at hand, they can be useful, since they allow rapid evaluation of the reduced
variables with good accuracy. This is especially beneficial if the reduced space is a nonlinear
manifold, which makes any Galerkin-projection approach more complex and costly, as is
shown in the next section.

Following the approach of [59], we can derive new system states and extrapolate in time
with help of the Fourier-Koopman framework implemented in [82]. The Fourier-Koopman
framework imposes the assumption that the reduced state a(t) ∈ R

r is quasi-periodic in t
and can be thus parameterized by:

a(t) = AΩ(t) with Ω(t) =
(
cos(ωt)
sin(ωt)

)
. (16)

Here, A ∈ R
r×p and ω ∈ R

p/2 are determined by solving the optimization problem:

min
ω,A

N−1∑

n=0

‖a(tn) − AΩ(tn)‖22, (17)

in a smart way [59]. Since the dynamical system presented in Sect. 2.4.1 is quasi-periodic,
we can apply the method to the FTR decomposition

q(t) ≈ q̃(t) = f (�a(t)) (18)

using the basis functions � = [ψ̃1, ψ̃2, ψ̃3], shown in Fig. 4 together with the amplitudes
a(t) = (a1(t), a2(t), a3(t)) at the sampled time points {tn = nΔt | n = 0, . . . , N − 1}
Remark 3 The systemsdynamics canbe further reducedby rewriting f (�a(t)) = f (�̃ ã(t)+
b), b ∈ R

M , ã ∈ R
r−1, �̃ ∈ R

M×(r−1). The offset vector b then contains the time-
independent part of the decomposition shown as a constant line in Fig. 8. This can be done
similarly for the POD.

From the sampled data we compute A,ω. To test the resulting model q̃(t) = f (�AΩ(t))
we evaluate it at time instances tn+1/2 = (n+1/2)Δt for n = 0, . . . , 2N −1, that have been
not sampled during the offline phase. Similarly, we can derive an approximation with the
POD. Both results are compared in Fig. 8. Furthermore, the online-prediction error is stated
for r = 2, 4, 6, 8, 10, 12, 15 in Table 6.
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Fig. 8 Predictions using Fourier–Koopman forecasting with three POD modes (a) and three FTR modes (b).
The black circles ( ) in the upper row indicate the predictions of the amplitudes a(t) = (a1(t), a2(t), a3(t))=̂
( ) and the colored crosses mark the training samples. In the lower row, we show the corre-
sponding snapshots at selected time instances t = 0.2, 0.4, 0.6, 0.8 (Color figure online)

Note that after solving (17) in the offline stage, the computational effort is reduced to the
evaluation of q̃(t) = f (�AΩ(t)), which only takes milliseconds.

For a realistic test case, we apply the FTR-Fourier-Koopman procedure to the methane
mass fraction YCH4 of one flame of a multi-slit Bunsen burner simulation analyzed and
studied in [83, 84]. The snapshots are generated with a customized, weakly compressible
version of rhoReactionFOAM from the OpenFOAM software package (see [84, 85]). In
the simulation, a flame is periodically excited by an incoming velocity pulse. The acceleration
of the fuel detaches a burning pocket shown in Fig. 9. The data set.1 consists of 200 snapshots,
with M = 128 × 430 grid points, sampled in a time interval t ∈ [0.01, 0.05] in which the
Bunsen flame is quasi-periodic. Again, we split the data into training (tn = 2Δtn) and test
samples tn+1/2 = (2n + 1)Δt . While we use the training samples to generate the reduced
model usingAlgorithm 1with the parameters that are summarized in Table 2, the test samples
are used to calculate the relative errors stated in Table 5. The flame pinch-off is not a special

1 Data is available for download https://doi.org/10.5281/zenodo.7681268.
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Fig. 9 Online predictions of the Bunsen flame example. a compares the test data in the top row with the FTR-
Koopman and POD-Koopman results using r = 8 degrees of freedom for t = 0.01 and 0.04. The snapshots
show how a burning fuel pocket is detached from the flame at t = 0.04 causing a change in the topology of the
contour line of the front. b visualizes the Fourier–Koopman predictions ( ) for a(t) = (a1(t), a2(t), a3(t))=̂
( )

Table 5 Relative errors
∑2N−1

n=0 ‖q(tn+1/2)− q̃(tn+1/2)‖22/
∑2N−1

n=0 ‖q(tn+1/2)‖22 using Fourier–Koopman
(online) with POD and FTR on the Bunsen flame data

FTR POD

Rank r Offline Online Offline Online

2 4.3e−01 4.3e−01 4.3e−01 4.3e−01

4 7.5e−02 1.2e−01 3.0e−01 3.1e−01

6 2.6e−02 8.9e−02 2.3e−01 2.3e−01

8 1.4e−02 7.0e−02 1.7e−01 1.8e−01

10 9.2e−03 7.2e−02 1.3e−01 1.6e−01

12 5.4e−03 7.5e−02 9.5e−02 1.5e−01

15 3.1e−03 6.9e−02 5.3e−02 1.4e−01

case in combustion systems, but it poses challenges to model order reduction methods, as
described above. Figure9 shows that for the FTR the structure of the solution is well captured
and the physical bound 0 ≤ YCH4 ≤ 1 is preserved.

3.2 Manifold Galerkin Methods

After discretizing the ARD system (3) in space, we obtain an ODE system of the form

(FOM)

{
q̇(t, μ) = F(q, t, μ)

q(0) = q0,
(19)

with the discretized non-linear right hand side (RHS) F : RM ×R×R
+. Here, the parameter

μ > 0 denotes the reaction constant. Using a reduced mapping

g : Rr → R
M : a �→ g(a), with Jacobian Jg(a) =

(
∂gi
∂a j

(a)
)

i=1,...,M
j=1,...,r

(20)
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Table 6 Relative error
∑2N−1

n=0 ‖q(tn+1/2) − q̃(tn+1/2)‖22/
∑2N−1

n=0 ‖q(tn+1/2)‖22 using Fourier–Koopman
(online) with POD and FTR on the moving disc data

FTR POD

Rank r Offline Online Offline Online

2 2.7e−01 2.7e−01 3.0e−01 8.5e−01

4 2.9e−03 2.9e−03 2.0e−01 2.0e−01

6 1.0e−03 1.1e−03 1.5e−01 1.5e−01

8 7.1e−04 7.6e−04 1.2e−01 1.2e−01

10 3.1e−04 3.4e−04 1.0e−01 1.0e−01

12 2.5e−03 2.8e−03 8.8e−02 8.8e−02

15 2.0e−04 2.4e−04 7.4e−02 7.4e−02

as approximation q ≈ q̃ = g(a) of the data and plugging it into (19) yields a reducedmodel:

(ROM)

⎧
⎪⎪⎨

⎪⎪⎩

ȧ(t, μ) = argmin
ȧ∈Rr

‖Jg(a)ȧ(t, μ) − F(g(a), t, μ)‖22
a(0, μ) = argmin

a∈Rr
‖q0 − g(a)‖22.

(21)

(22)

Minimizing the continuous time residual (21), yields the optimality condition:

0 = d

dȧ
‖Jg(a)ȧ − F(g(a), t, μ)‖22 (23)

= 2Jg(a)T Jg(a)ȧ − 2Jg(a)T F(g(a), t, μ), (24)

which is uniquely solved by
ȧ = J+

g (a)F(g(a), t, μ), (25)

if the Jacobin has full column rank [35]. Here, J+
g is the Moore-Penrose pseudo inverse of

Jg . In practice the inverse is never formed, but (24) is solved directly. Unfortunately, the
calculation of (24) still depends on the dimension of the FOM, since the full RHS has to be
evaluated. In order to circumvent this, we apply hyper-reduction explained in the following.

3.3 Hyper-Reduction for Moving Fronts

Apart from the slow decaying POD approximation errors, advection–reaction–diffusion
systems pose another difficulty for model order reduction. The dynamics of advection–
reaction–diffusion systems take place at a thin band along the front, which is shown in Fig. 10.
This band is usually much smaller than the size of the domain or the traveling distance of the
front. Hence, the FOM-RHS and its gradient posses only few spatial grid points per time step
with non-vanishing support. Therefore, the hyper-reduction methods for nonlinear manifolds
[36, 54] cannot be applied. For example, the extended-ECSW scheme proposed by [54], or
the gappy-POD based GNAT procedure [52] first introduced for nonlinear manifolds in [36]
cannot be used here, since they preselect a set of sample points, which is fixed for every
time step and all μ ∈ P . This is supported by the observations made in [55, 57], where an
oversampling of the hyper-reduced system is necessary in order to maintain stability of the
resulting ROM. In contrast, the FTR-hyper-reduction approach outlined in Algorithm 2 can
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help to identify the locations of the front to reduce computational complexity, while sustain-
ing an accurate solution and stability. Here, we propose an idea that is similar to the Reduced
Integration Domain (RID) method [58] for finite elements. By imposing a threshold criterion
on each finite element, RID is choosing a reduced number of elements to describe a balance
condition, i.e. to minimize the residual between internal and external forces. Similar to RID,
using a threshold search we selected a number of Mp sampling points s = (s1, . . . , sMp ) that
are sensitive to the residual (24). This corresponds to replacing the Euclidean by a weighted
norm in (24):

0 = d

dȧ
‖Jg(a)ȧ − F(g(a), t, μ)‖2P2

a
(26)

= 2Jg(a)TPT
a PaJg(a)ȧ − 2Jg(a)TPT

a Pa F(g(a), t, μ). (27)

Each of the Mp selected sample points corresponds to an index 0 ≤ si ≤ M , which is
represented as the si th standard basis vector esi ∈ R

M inside the rows of the selection matrix
Pa ∈ R

Mp×M . Thus, the hyper-reduced Jacobian and right hand side PaJg,Pa F are only
computed at Mp sample points. Note that the stencil size of our finite difference scheme

requires computing f (φ) on additional supporting mesh points, contained in P̂a ∈ R
M̂p×M .

In practice, P̂a f (φ),PaJg,Pa F are not computed asmatrix products, but as pointwise evalu-
ations of f (φ), Jg, F at the corresponding sample points. To be precise, in line 5 ofAlgorithm
2we only iterate over the indices s ∈ R

Mp , when computing b ∈ R
Mp . Similarly, we compute

the Jacobian in line 6 of Algorithm 2.

Algorithm 2 Hyper-reduced RHS
Require: dynamic inputs (◦), static inputs (+)

◦ current reduced state ak ∈ R
r ,

◦ time tk at time step k
+ FTR modes � ∈ R

M×r ,
+ RHS function F(q, tk , μ),
+ number of sampling points Mp

+ stencil support mesh indices {Ŝi , i = 1, . . . , M}
- Ŝi is a list of indices that are required for computing differential operators ∇ and ∇2 at the sample
point xi

1: function hyp_rhs(ak ,F(q, tk , μ), Ŝ, �)
2: compute current level set function: φk = �ak ∈ R

M

3: find the indices s = (s1, . . . , sMp ) of the first Mp components of φk = (φk
1 , . . . , φk

M ),
with smallest absolute value:
s = argmin(

∣∣∣φk
∣∣∣ , Mp) ∈ R

Mp with Pa = [es1 , . . . , esMp
]T ∈ R

Mp×M

4: select the stencil points (/indices) ŝ around the minimum points s from the pre-computed lists {Ŝi , i =
1, . . . , M}
ŝ = unique(Ŝs1 , . . . , ŜsMp

) ∈ R
M̂p , P̂a = [eŝ1 , . . . , eŝM̂p

]T ∈ R
M̂p×M

5: compute the RHS at the selected sample points:
b = PaF( f (P̂aφk ), tk , μ) with b ∈ R

Mp

6: compute the Jacobian A = PaJg ∈ R
Mp×r of the mapping at the selected sample points

7: solve Aȧ = b
8: return ȧ

In contrast to RID, the selection matrix Pa : Rr → R
Mp×M is dependent on the state

a(t, μ), which evolves over time (see Fig. 10). However, similar to what RID does for
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Fig. 10 Color plot of the right hand side F(q, t, μ) of the 2D advection–reaction–diffusion system (13) for
two different time instances t = 0.07 (left) and t = 2.85 (right) and the corresponding sample points for a
sample fraction of Mp/M = 0.1. The inset in the right color plot shows a close up of the location of the front
(Color figure online)

external forces, we have to add nodes, i.e. sample points, at which the right hand side does
not vanish. Thus, if all sample points are included for which the RHS does not vanish, we
have an exact equality between the different norms:

‖Jg(a)ȧ − F(g(a), t, μ)‖22 = ‖Jg(a)ȧ − F(g(a), t, μ)‖2P2
a
. (28)

Since for the FTR F is non-vanishing at the locations of the front, i.e. at the roots of the
level-set function, we can perform a time-dependent adaptive thresholding, which defines

Pa. Starting from the sorted entries
∣∣φs1

∣∣ ≤ ∣∣φs2

∣∣ ≤ · · · ≤
∣∣∣φsMp

∣∣∣ ≤
∣∣∣φsMp+1

∣∣∣ · · · ≤
∣∣φsM

∣∣ of the level set vector φ = �a ∈ R
M , the threshold search selects the Mp first

indices s = (s1, . . . , sMp ) ∈ {1, . . . , M}Mp . These are the indices at which we evaluate

P̂a f (φ),PaJg,Pa F. For two time instances, the sample points are visualized in Fig. 10 for
the 2D ARD-system of Sect. 2.5. Note, that the threshold search is a heuristic in order to
perform a cheap minimization of the residual (24) using the relation (28).

Further, it should be noted that in this work we are using explicit time integration schemes,
as they are usually used inside finite difference solvers. Therefore, the aforementioned meth-
ods [36, 54] are not comparable in speedup, since they compare the ROM with implicit time
integration schemes used in the FOM. Nevertheless, applying implicit integration schemes
during the online phase may benefit the stability of the resulting ROM. A promising and effi-
cient method for explicit time integration schemeswas proposed by [3] for reaction–diffusion
systems in one spatial dimension. Although the framework cannot cope with topological
changes, since it relies on a smooth parameterization of the transport, the authors claim
speedups of up to a factor of 130.

In the following section, we will show some numerical examples utilizing the here pre-
sented hyper-reduction approach.

3.4 Numerical Examples

In this section, we numerically investigate the applicability of our framework. Therefore, we
define the offline and online errors:

offline/online err = ‖Qtrain/test − Q̃train/test‖F
‖Qtrain/test‖F . (29)
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Table 7 Parameters of the 1D
reaction–diffusion simulations
and the decomposition procedure
(Algorithm 1)

Property Value

FOM—parameters

Simulation time T 1

Domain Ω [−15, 15]
Grid resolution M 4000

ROM—parameters

FTR algorithm Algorithm 1

Number of snapshots 202

FTR iterations 8000

FTR step width τ 4

front function f (x) 0.5(1 + tanh(x))

Here, Q ∈ R
M×(Nt NP ) is the snapshot matrix containing all snapshots for the Nt time and

NP parameter instances μ ∈ P in its columns. The superscript "train" ("test") belongs to the
snapshots μ ∈ P train (P test) computed during the offline (online) phase.

The approximation Q̃train is therefore either the reconstruction of the training data using
the FTR-ansatz (Algorithm 1) or, in the case of the POD, the projection onto the first r left
singular vectors of Qtrain contained in U ∈ R

M×r , i.e. Q̃train = UTUQtrain.
Q̃test refers to the results evaluating theROM(21) for the given time interval andparameters

μ ∈ P test using the reduced mapping g : Rr → R
M . Specifically, in the case of the POD, the

dynamical ROM predictions use g(a) = Ua as a reduced mapping, whereas g(a) = f (�a)
for the FTR.

Furthermore, we define the projection error:

proj. err = ‖Qtest − Q̃test∗ ‖F
‖Qtest‖F (30)

where Q̃test∗ is the best fit of Qtest with help of our the mapping g.

3.4.1 Reaction–Diffusion System in 1D

First, we test our approach on an analytic test case taken and modified from [68]. The test
case is based on a one-dimensional scalar nonlinear reaction–diffusion equation

∂t q = ∂xxq + 8

μ2 q
2(q − 1) (t, x) ∈ [0, 1] × [−15, 15] (31)

with corresponding analytical solution

q(x, t, μ) = f

( |x | − 2t/μ − 2

μ

)
, (32)

given that f (x) = 1
2 (1+tanh(x)).We discretize (31)with central finite difference of 6th order

and periodic boundary conditions. Furthermore, we use an explicit Runge-Kutta integration
method of 5th(4th) order for adaptive time stepping of the FOM and ROM ODE-system
[77]. The numerical parameters for the FTR-decomposition and discretization are stated in
Table 7.
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Fig. 11 Training and test data of the reaction diffusion system (31) with the FTR-ROM using r = 3 degrees
of freedom

The training data consists of 202 samples, including 101 samples of each training param-
eter μ ∈ P train = {0.2, 1}. The training data is visualized as color plot in Fig. 11 together
with the ROM prediction of the FTR using r = 3 and μ = μtest = 0.3 in (31). The FTR
algorithm (Algorithm 1) is run for 8000 steps using τ = 4 and different truncation ranks
1 < r < 10. After we have computed the reduced mapping q(t, μ) = f (�a(t, μ)) from the
training set, we can compute the starting values a(0, μ), μ ∈ P test to test the ROM (21) by
minimizing the initial condition of the ROM (22), using Gauss-Newton iterations [86]. As an
initial guess for the minimization, we use the set of initial points {(μ, a(0, μ)) | μ ∈ P train}
and interpolate them for any given test parameter μ ∈ P test. Thereafter, the ROM-solution
for all test parameters μ ∈ P test is compared to the analytical solution (32). The results are
reported as online errors in Table 8 together with the offline and projection errors. The online
and projection errors are stated for the cumulated snapshots including the time interval [0, 1]
and all parametersμ ∈ P test = {0.3, 0.4, . . . , 0.9}. Table 8 also compares the results with the
POD-Galerkin approach. The starting values for the POD-Galerkin-ROM are simply given
by the orthogonal projection of q(0, μ) onto the POD modes. It is remarkable to see that the
FTR outperforms the POD by two orders of magnitude.

Next, we are interested in whether the gain in precision can be translated to speedups.
Therefore, we study the performance of the hyper-FTR (Algorithm 2) and compare it to
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Table 8 Offline, online and projection errors for FTR and POD

FTR POD

Rank Offine error Online error Proj. error Online error Proj. error

2 8.2e−03 1.4e−02 3.0e−03 3.6e−01 2.7e−01

3 2.6e−03 2.1e−02 6.6e−03 2.8e−01 2.0e−01

4 6.2e−04 2.7e−03 5.3e−04 2.4e−01 1.4e−01

5 5.3e−04 3.2e−03 7.2e−04 2.3e−01 1.1e−01

6 5.4e−04 2.5e−03 3.7e−04 2.5e−01 9.0e−02

7 5.0e−04 2.6e−03 2.7e−04 3.4e−01 7.3e−02

8 4.4e−04 2.1e−03 1.6e−04 2.7e−01 6.0e−02

9 2.0e−04 1.9e−03 2.2e−04 2.0e−01 5.0e−02

The errors are reported for the cumulated snapshot data of the training and test parameters used in Sect. 3.4.1

Fig. 12 Error versus CPU-time for the accumulated parameter rangeμ ∈ P test. Different ranks r are indicated
as (r) near the markers. The dashed line indicates the CPU time needed for solving the FOM. The sampled
fraction Mp/M in the hyper-reduced FTR-ROM is given in terms of the size M of the FOM. The POD-DEIM
approach of [45] is given for reference. In the POD-DEIM approach (r) denotes the number of DEIM points
p, which is identical to the number of POD modes r = p used

POD-DEIM (see Appendix B for details). Figure12 compares CPU-time and error for Mp =
0.1M, 0.2M, 0.5M and M number of grid points, where M is the dimension of the FOM.
The figure indicates that even without hyper-reduction, speedups can be achieved compared
to the FOM, due to larger step sizes in the reduced coordinates. Comparing the hyper-FTR
with a sample fraction of Mp/M = 0.2 to 1 we see another speedup in CPU-time. For a
reduction below 0.1M grid points, the solution is unstable and can lead to additional time
steps,making the overall simulation slower. Figure12 shows that for the cumulated parameter
range, the POD-DEIM approach is superior to the presented hyper-reduced FTR-ROM, albeit
we expect larger errors when comparing single trajectories for the smallest μ, i.e. steepest
fronts.

3.4.2 Advection–Reaction–Diffusion System in 2D

Finally, we test the online performance of the hyper-FTR on the advection–reaction–
diffusion example of (13), introduced in Sect. 2.5. We build the training/testing data Qtrain
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from 101 equally spaced snapshots (visualized in Fig. 7) with t ∈ [0, 3], μ ∈ P train =
{10, 30, 50, 70, 100} and respectively μ ∈ P test = {20, 40, 60, 80, 90}. The online, offline,
and projection errors of the test case are shown in Fig. 13 together with the speedup gen-
erated by the hyper-reduction scheme. It is visible that the FTR outperforms the POD with
respect to offline and online errors. Furthermore, the utilized hyper-reduction strategy results
in speedups with moderate online errors. Note that reducing the integration domain to about
10% of its original size (see sample points in Fig. 10) does not affect the online error, as
can be seen from Fig. 13a. Unfortunately, for hyper-reduced systems with Mp/M < 0.1
the resulting ROM becomes unstable in the tested parameter range. Figure13b shows, that
for small r , the additional costs (O(rM)) for the matrix multiplication φ(t, μ) = �a(t, μ)

are negligible, compared to the evaluation of F. However, as soon as r becomes large, the
speedups of the hyper-reduction scheme are compensated by the computation of φ inside
Algorithm 2. The balance point at which the additional costs compensate the costs of the RHS
is problem dependent, but computing the sample points from φ is a bottleneck of this method,
since it scales with the FOM dimension. Nevertheless, when aiming for more complex exam-
ples like combustion systems or 3D ARD systems, the outlined hyper-reduction approach
will benefit from a more computationally complex RHS, which will shift the balance point
towards a higher number of modes.

4 Discussion and Conclusion

In this work, we have introduced the front transport reduction (FTR) method to decompose
and simulate transports of complexmoving fronts. The decomposition parameterizes moving
fronts with the help of a transport-dependent auxiliary fieldφ and a function f to approximate
the front profile. Two different decomposition algorithms have been proposed based on
singular value thresholding (Algorithm 1) and artificial neural networks (Sect. 2.3). These
methods are purely data-driven since they only require a set of snapshots q(t, μ) ∈ R

M of the
FOM as input. The resulting approximation q(t, μ) ≈ f (φ(t, μ)) is well suited for model
order reduction of reacting fronts, since φ(t, μ) = �a(t, μ) ∈ R

M can be represented by a
few r 
 M spatial modes collected in � ∈ R

M×r .
We emphasize that the utilized front-structure is inherent for advection–reaction–diffusion

(ARD) systems (see for example [61–64]). Making explicit use of the physical structure has
advantages over other linear and nonlinear dimension reduction methods, for reasons we
discuss in the following: It was shown, that for various ARD systems the FTR requires fewer
modes to decompose the input snapshots comparedwith the proper orthogonal decomposition
(POD), i.e. it has a better compression quality. Regarding artificial autoencoder networks,
the FTR is similar in the sense that it uses a linear layer activated by a problem dependent
nonlinear front function as a decoder. Here, other authors [36] use multiple nonlinear acti-
vated layers q ≈ f ( f . . . f (a)), resulting in costly evaluations of the network itself. This can
limit the overall performance of the ROMwhen evaluating the additional nonlinearities. Fur-
thermore, the autoencoder networks are often difficult to tune and require training on GPUs.
Similar to artificial autoencoder networks, the FTR can approximate topological changes in
the evolution of the contour line of the front since it does not make explicit assumptions on
the mapping. These topological changes cause problems for most of the transport compen-
sating methods [16–24], because they use transformations that are smooth bijections on the
simulation domain.
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Fig. 13 Hyper-FTR results: a relative errors defined in Eqs. (29) and (30) for P test/train using POD and FTR
decomposition. b Speedup versus degrees of freedom for the cumulated parameter range μ ∈ P test. The
speedups are compared for different numbers of sampled grid points Mp ≤ M . The full order model (FOM)
using M = 5122 grid points is marked with a dashed line

The ability of the FTR to predict new system states has been demonstrated for non-intrusive
(Sect. 3.1) and intrusive (Sect. 3.2) ROMs. Since the FTR gives additional insights into the
underlying structure (transport field φ), it allows us to use this information when predicting
new system states. As an example, we heuristically reduced the integration domain during
the online evaluation of the Galerkin projected ODE system, using the knowledge of φ. This
can be seen as an adaptive version of the reduced integration domain method [58]. Other
nonlinear hyper-reduction methods preselect a set of sample points, on which the dynamics
are evaluated. Since for the studied systems, only sample points close to the front are relevant
for the dynamics, such hyper-reduction methods may fail. Although the outlined hyper-
reduction procedure yields speedups in CPU time, it needs a substantially larger number of
sample points Mp than required by the dimensions of the ROM r 
 Mp 
 M . Therefore,
the construction of more efficient hyper-reduction schemes is left open for future research.

To apply our findings to more complex advection–reaction–diffusion systems such as
combustion systems in fluid mechanics with multiple reacting species, the decomposition
has to be extended to allow arbitrary traveling front shapes. Here, the FTR method would
benefit from a generalization or combination with the shifted POD [18], as this would allow
decomposing of multiple traveling wave systems with topological changes. Furthermore,
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it would be interesting to see if our approach can be applied to multi-phase flows, as they
inherit a similar front structure separating the fluids. Here, the similarity with level-set-based
methods like the characteristic mapping method [87] should be exploited.
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ADetailson theAutoencodersNetworkArchitectureand traininghyper-
parameters

In this section we provide detailed information on the architecture and training hyperparam-
eters for the autoencoder networks. For both autoencoder variants (NN and FTR-NN), the
encoder architecture genc : R

M → R
r is the same. Its task is to encode the spatial field

q ∈ R
M into a latent space a ∈ R

r . It consists of four convolutional layers, each followed by
a ELU activation and a batch normalization layer. After flattening the output, two fully con-
nected layers follow, with another ELU activation and batch normalization layer in between.
The output of the second fully connected layer represents the latent space with r degrees of
freedom and is not activated. A summary of the encoder architecture is listed in Table 9. The
decoder, gdec : Rr → R

M maps the latent representation back to the spatial domain.
There are two different decoders used in this paper labeled NN and FTR-NN autoencoder.

The NN decoder mirrors the encoder architecture, using transposed convolutional layers
instead of convolutional layers. TheFTR-NNdecoder consists of only a single fully connected
layer with no bias with M (number of grid points) output channels. It applies a simple Matrix
multiplicationWa, where a is the vectorwith the latent representations andW is the learnable
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Fig. 14 Color plot of one snapshot of the FTR-NN and NN levelset field φ using three degrees of freedom
and different smoothness strength λsmooth. The smoothness parameter λsmooth controls the strength of the
smoothness constraint (9) (Color figure online)

weightmatrix of the layer.Afterwards the resulting outputφ = Wa is reshaped into the spatial
domain. In analogy to the FTR ansatz q ≈ q̃ = f (φ), both networks are activated with the
physics dependent front function f in the output layer. The layer details for both decoder
networks are listed in Table 10.

After splitting the data by taking every other time step into a training set and a test set,
each network was trained using the ADAM optimizer with a learning rate of 0.0025 for
up to 2 · 104 iterations, using all training samples as input batch. Every 500 iterations, the
performance is tested on the test set. The network parameters that yield the best test results
are saved.

B POD-DEIM for the 1D KPP-system

In this section we give additional details on the POD-DEIM approximation of the 1D KPP-
system: {

0 = ∂t q − ∂xxq + 8
μ2 q

2(q − 1)

q(x, t) = f ( |x |−2−t/μ
μ

)
. (33)

In the example we use central finite difference of 6th order with periodic boundary conditions
and an explicitRunge–Kutta integrationmethodof 5th(4th) order for adaptive time steppingof
the FOM and ROMODE-system [77]. The numerical parameters for the FTR-decomposition
and discretization are stated in Table 7.

Discretizing (33) yields the full order model

(FOM)

{
q̇(t, μ) = F(q, t, μ)

q(0) = q0,
(34)
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Table 9 Encoder network details

Layer Details

Input channels Output channels Kernel size Stride

Input of q (M grid points) 1

2D Convolution 1 8 5 1

ELU+2D BatchNorm

2D Convolution 8 16 5 2

ELU+2D BatchNorm

2D Convolution 16 32 5 2

ELU+2D BatchNorm

2D Convolution 32 16 5 2

ELU+2D BatchNorm

Flatten spatialy

Fully connected 16 · M̃ 512

ELU+1D BatchNorm

Fully connected 512 r

Output of latent representation a r

M̃ describes the number of remaining spatial grid points after all convolutional layers are applied. Each convo-
lutional layer reduces the spatial resolution in each spatial direction by Nout = (Nin − kernel size) /stride+1

Table 10 NN decoder network details

Layer Details

Input channels Output channels Kernel size Stride

Input of latent representation a r

Fully Connected r 512

ELU+1D BatchNorm

Fully Connected 512 16 · M̃
ELU

Unflatten Spatialy 16

2D BatchNorm

2D Transposed Convolution 16 32 5 2

ELU+2D BatchNorm

2D Transposed Convolution 32 16 5 2

ELU+2D BatchNorm

2D Transposed Convolution 16 8 5 2

ELU+2D BatchNorm

2D transposed convolution 8 1 5 1

Output of φ (M grid points)
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with the FOM-RHS
F(q, t, μ) = Lq + μN(q), (35)

that consists of a time independent linear operator L ∈ R
M×M and a nonlinear operator

N : RM → R
M . In the POD-Galerkin approach a linear mapping g(a) = Ua for the trial

and test spaces is used. The orthogonal matrixU ∈ R
M×r is computed with help of the POD.

POD-Galerkin is applied in combination with the DEIM [45] to evaluate the non-linear terms
in (33) efficiently. The resulting hyper-reduced system reads:

ȧ = Lr a + μÑ(a) with Lr = UTLU ∈ R
r×r , (36)

and Ñ(a) = UT	(P	)−1PN(Ua). (37)

In our studies the matrices 	 ∈ R
M×p and P ∈ R

p×M are computed with the DEIM
algorithm proposed in [45], setting r = p. Here, 	 contains the p left singular vectors of the
snapshots matrix of the RHS and P corresponds to interpolation point matrix which picks p
points at which N is usually evaluated.
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