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Abstract
Based on the Fenchel duality we build a primal-dual framework for minimizing a general
functional consisting of a combined L1 and L2 data-fidelity term and a scalar or vectorial
total variation regularisation term. Theminimization is performed over the space of functions
of bounded variations and appropriate discrete subspaces. We analyze the existence and
uniqueness of solutions of the respective minimization problems. For computing a numerical
solution we derive a semi-smooth Newton method on finite element spaces and highlight
applications in denoising, inpainting and optical flow estimation.

Keywords Non-smooth optimization · Fenchel duality · Combined L1/L2 data-fidelity ·
Image reconstruction · Optical flow estimation · Finite element discretization

Mathematics Subject Classification 90C46 · 90C25 · 65N30 · 94A08

1 Introduction

We aim to minimize a non-smooth functional consisting of a combined L1/L2 data fidelity
term and a total variation term. Let Ω ⊆ R

d be an open, bounded and simply con-
nected domain with Lipschitz boundary, where d ∈ N denotes the spatial dimension, e.g.
d = 1 for signals or d = 2 for images. Further, we denote by g ∈ L2(Ω) the given data,
T : L2(Ω)m �→ L2(Ω) a bounded linear operator, where m ∈ N denotes the number of
channels, e.g. m = 1 for grey-scale images or m = d for motion fields, and α1, α2, λ ≥ 0
adjustable weighting parameters. Then we consider the so-called L1-L2-TV model

inf
u∈L2(Ω)m∩BV (Ω)m

α1‖Tu− g‖L1(Ω) + α2
2 ‖Tu− g‖2L2(Ω)

+ λ

∫
Ω

|Du|F , (1)
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which was first proposed in a slightly more general form in [36] for the scalar-valued case
m = 1. Here BV (Ω)m denotes the space of m-vector-valued functions with bounded varia-
tion, i.e. BV (Ω)m := {u ∈ L1(Ω)m : ∫

Ω
|Du|F < ∞}, where ∫

Ω
|Du|F denotes the total

variation of u in Ω defined by
∫

Ω

|Du|F := sup
{ ∫

Ω

u · div v dx : v ∈ (C∞
0 (Ω))d×m,

|v(x)|F ≤ 1 for μ − almost every (a.e.) x ∈ Ω
}
.

(2)

The operator div : (C∞
0 (Ω))d×m �→ C∞

0 (Ω)m describes the divergence with respect
to d (i.e. column-wise), while | · |F : R

d×m �→ R denotes the Frobenius norm. For
u ∈ H1(Ω)m the total variation becomes

∫
Ω
|∇u|F dx, see [7, Section 10.1] or Proposi-

tion 3.4 below in a more general setting. The space BV (Ω)m equipped with the norm
‖u‖BV (Ω)m := ‖u‖L1(Ω)m + ∫

Ω
|Du|F is a Banach space [7, Theorem 10.1.1]. Note that

choosing | · |F leads to rotational invariance of the total variation in both the domain (change
of coordinates) and the range (global rotation of vector field) of u. We refer to [30] for a
short overview of other ways to define the total variation for vector-valued functions. In all
of these definitions the topological properties remain the same. If we replace the pointwise
norm | · |F in the definition of the total variation above with any other matrix norm, the
defined total variation may be different but the resulting space BV (Ω)m will be topologi-
cally equivalent. Indeed, since any two norms | · |a, | · |b : R

m → [0,∞) are equivalent,
i.e. c|x|b ≤ |x|a ≤ C |x|b for all x ∈ R

m for constants c,C > 0, we observe for any
1-homogeneous functional F : C∞

0 (Ω)d×m → R, i.e. F(cp) = cF(p) for any c > 0, that

1
C sup

|p(x)|b≤1
F(p) ≤ 1

C sup
1
C |p(x)|a≤1

F(p) = sup
|p(x)|a≤1

F(p)

≤ sup
c|p(x)|b≤1

F(p) = 1
c sup
|p(x)|b≤1

F(p).

Consequently, the corresponding norms ‖ · ‖a := ‖ · ‖L1(Ω)m + ∫
Ω
|D · |a and

‖ · ‖b := ‖ · ‖L1(Ω)m + ∫
Ω
|D · |b on BV (Ω)m are equivalent and BV (Ω)m carries the same

topology as e.g. the space of bounded variation from the extensive work [6].
It is demonstrated in [36, 43, 45] that optimization problem (1) is well suited to the task

of removing a mixture of Gaussian and impulse noise. Moreover it is easy to see that (1) is a
generalization of two well-known total variation models. For α1 = 0 in (1) we obtain the so-
called L2-TV model, which has been successfully used to remove Gaussian noise in images,
see e.g. [20], for α2 = 0 we get the so-called L1-TV model which is proposed, see e.g. [5,
47, 48], to remove impulse noise. Moreover, these two special instances have been used for
calculating the optical flow in image sequences, cf. [24]. In the literature modifications of the
L1-L2-TVmodel have been presented, see e.g. [31, 46]. In [31] the total variation is replaced
by ‖Wu‖L1 withW being awavelet tight frame transform. The second order total generalized
variation [16] has been used as regularization term in [46], where also box-constraints are
incorporated to assure that the reconstruction lies in the respective dynamic range.

In this paper we derive a primal-dual semi-smooth Newton method, cf. [34], in order to
find an approximate solution of (1) on a finite element grid. Such Newton methods have been
already used for the L2-TVmodel [39, 44] and L1-TVmodel [25, 42] in image reconstruction,
i.e. m = 1. We extend the approach of semi-smooth Newton methods to a vector-valued
setting and to the full L1-L2-TVmodel. In particular, dualization results for the scalar models
in [35] and [37] need to be adjusted to our vector-valued setting. In comparison to the primal-
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dual methods in [25, 39, 42, 44], where the dualization is performed either on smooth or on
discrete function spaces, our dualization-setting allows for non-smooth solutions, in particular
for solutions in L2(Ω)m ∩ BV (Ω)m . We rigorously analyze the existence and uniqueness of
solutions of the respective optimization problems.

Further, our proposed algorithm is compared with the primal-dual method of [21] in a
finite element setting. Note that based on the method in [21] finite element discretizations
of the L2-TV model have been considered in [10–12, 50] and of the L1-L2-TV model with
T being the identity in [3]. We refer the reader to [22] for an overview of finite element
discretization techniques of the total variation. Our comparison demonstrates numerically
that the proposed Newton method tremendously outperforms the method in [21].

The rest of the paper is organized as follows: In Sect. 2 we describe the functional-analytic
setting used in this paper and formulate the mathematical problem. Conditions for the exis-
tence and uniqueness of a solution of the problem are analyzed for different function space
settings. A regularized model is considered in Sect. 3 for which a pair of primal-dual prob-
lems is derived and analyzed based on Fenchel duality. We prove that this regularized model
Γ -converges to the non-regularized model of Sect. 2. In Sect. 4 the primal-dual semi-smooth
Newton algorithm based on the pair of primal-dual problems of Sect. 3 is introduced and its
well-posedness is analyzed. We present in Sect. 5 the discretization of the considered prob-
lem using finite element spaces. Numerical experiments demonstrate the applicability of the
proposed algorithm in a finite element setting in Sect. 6.

2 Preliminaries

2.1 Basic Terminology

For a Banach space V we write its corresponding norm as ‖ · ‖V , while | · | describes the
Euclidean norm onRn , n ∈ N. Further, the expression V ∗ denotes the continuous dual space
of V , i.e. the space of bounded linear functionals V → R, and we use 〈 · , · 〉V ,V ∗ for the
duality pairing. For a bounded linear operator Λ : V → W between two Banach spaces V
and W we use ‖Λ‖ := ‖Λ‖L(V ,W ) for the operator norm and denote the adjoint operator by
Λ∗ : W ∗ → V ∗.

For V = L2(Ω)n , n ∈ N, i.e. the Hilbert space of square-integrable
vector-valued functions, we denote the associated inner product by brackets
〈 · , · 〉V : (

(uk)nk=1, (vk)
n
k=1

) �→ ∑n
k=1 〈uk, vk〉L2(Ω), where 〈 · , · 〉L2(Ω) is the standard L2

inner product. Apart from notational convenience, we treat amatrix-valued space L2(Ω)d×m ,
m ∈ N, as equivalent to L2(Ω)dm using the numbering (i, j) �→ ( j−1)·d+i , i ∈ {1, . . . , d},
j ∈ {1, . . . ,m} of the respective components. Moreover, for any L2 function space we may
use the inner product shorthand notations 〈 · , · 〉L2 := 〈 · , · 〉V and similarly ‖ · ‖L2 := ‖ · ‖V
for the norm.

Often operations are applied in a pointwise sense, such that for a vector-valued function
u : Ω → R

m , m ∈ N the expression |u| denotes the function |u| : Ω → R, x �→ |u(x)|.
Similarly |u| ≥ 1 would denote a predicate w : Ω → {true, false} evaluating to true

where |u(x)| ≥ 1 for x ∈ Ω and to false otherwise. For such a predicate w we define the
indicator χw ∈ R as

χw :=
{
0 if w(x) is true for a.e. x ∈ Ω,

∞ else.
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Thus χ|w|≤1 would evaluate to ∞ if and only if |w| is greater than 1 on a set of non-zero
measure.

A function f : V → R := R ∪ {+∞} is called proper if f (u) < ∞ for one u ∈ V and
f (u) > −∞ for all u ∈ V . Further f is called coercive, if for any sequence (vn)n∈N ⊆ V
we have

‖vn‖V → ∞ �⇒ F(vn) → ∞.

A bilinear form a : V × V → R is called V -elliptic or coercive, if there exists a constant
c > 0 such that a(v, v) ≥ c‖v‖2V for all v ∈ V .

For a convex functional f : V → R, we define the subdifferential of f at v ∈ V , as the
set valued function ∂ f (v) = ∅ if f (v) = ∞, and otherwise as

∂ f (v) = {v∗ ∈ V ∗ 〈v∗, u − v〉V ∗,V + f (v) ≤ f (u) ∀u ∈ V }.
Let us recall the notion of Γ -convergence and Γ -limit, see [15]: a sequence ( f j ) j of

functions f j : V → R Γ -converges in V to its Γ -limit f : V → R (we write shortly
f = Γ - lim j→∞ f j ), if for all v ∈ V we have

1. f (v) ≤ lim inf j→∞ f j (v j ) for every (v j ) j ⊆ V converging to v;
2. f (v) ≥ lim sup j→∞ f j (v j ) for some (v j ) j ⊆ V converging to v.

A sequence (v j ) j is called (weakly) V -convergent, if it converges (weakly) in the space V .
A function f : V → R is called lower semi-continuous (l.s.c.) if for all u ∈ V we have that
lim infk→∞ f (vk) ≥ f (u) for any sequence (vk)k → u as k → ∞. In a Banach space we
have the following important set-based characterization of lower semi-continuity.

Proposition 2.1 [15, Remark 1.3] Let V be a Banach space. A function F : V → R is
lower semi-continuous if and only if all level sets La := {v ∈ V : F(v) ≤ a}, a ∈ R are
sequentially closed.

Further, for convex functions lower semi-continuity with regard to weak convergence coin-
cides with lower semi-continuity.

Lemma 2.1 Let V be a Banach space and F : V → R be a convex function. Then F is lower
semi-continuous if and only if it is weakly lower semi-continuous.

Proof Since F is convex, the level sets La , a ∈ R of F are convex. Then due to [27, Corollary
8.74] all La , a ∈ R are closed if and only if they are weakly closed. The characterization of
lower semi-continuity due to Proposition 2.1 finalizes the argument. ��

Finally, lower semi-continuity propagates to the supremum.

Lemma 2.2 [15, Remark 1.4 (ii)] Let V be a Banach space and Fk : V → R, k ∈ I for
some index set I be lower semi-continuous functions. Then the supremum F : V → R,
F(v) := supk∈I Fk(v) is lower semi-continuous.

The conjugate function (or Legendre transform) of a convex function F : V → R is
defined as F∗ : V ∗ → R with

F∗(v∗) = sup
v∈V

{〈v, v∗〉V ,V ∗ − F(v)}.

If F is separable, i.e. F(v1, v2) = F1(v1) + F2(v2) for functions F1 : V1 → R and
F2 : V2 → R, then so its conjugate F∗:

F∗(v∗1 , v∗2) = F∗
1 (v∗1) + F∗

2 (v∗2),
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see [28, III, Remark 4.3]. We present a specific version of the Fenchel duality theorem which
will be convenient to us for the type of minimization problem we are considering in this
paper.

Theorem 2.1 (Fenchel duality, [28,Remark III.4.2]) Let V andW be reflexiveBanach spaces,
A : V → W beacontinuous linear operator and F : V → R, G : W → Rbeproper, convex,
lower semi-continuous functions such that there exists v0 ∈ V with F(v0) + G(Av0) < ∞
and G continuous at Av0. Then the following holds:

inf
v∈V F(v) + G(Av) = sup

w∗∈W ∗
−F∗(A∗w∗) − G∗(−w∗). (3)

The problem on the right hand side in (3) has at least one solution. In addition v̂ ∈ V ,
ŵ∗ ∈ W ∗ are solutions to both optimization problems if and only if

A∗ŵ∗ ∈ ∂F(v̂), and − ŵ∗ ∈ ∂G(Av̂).

2.2 Problem Formulation

The intended application lies in imaging and hence we want to allow for discontinuous
solutions. To this aim the space of interest is BV (Ω)m , i.e. the space of functions of bounded
variations; cf. (1). In this paper we use m = 1 for denoising (T being the identity) and
inpainting (T being the characteristic function of a subset of Ω) of greyscale images and
m = 2 for determining the optical flowbetween a series of two greyscale images (see Sect. 6.4
below for the choice of T ). We will not deal with other choices ofm likem = 3 which might
be of use to treat color images as three separate channels.

In order to derive a primal-dual semi-smooth Newton method, we consider the following
penalized version of (1)

inf
u∈V α1‖Tu− g‖L1 + α2

2 ‖Tu− g‖2L2 + β
2 ‖Su‖2VS

+ λ

∫
Ω

|Du|F , (4)

where β ≥ 0 is an optional penalization parameter, typically chosen very small such that
problem (4) is a close approximation of (1), V ⊆ L2(Ω)m is a continuously embedded
Hilbert space, and S : V → VS is a bounded linear operator for some Hilbert space VS .
We note that searching for solutions u ∈ V in (4) instead of in the space V ∩ BV (Ω)m as
in (1) does not affect the original problem in its intended purpose. Indeed, once λ > 0 any
u ∈ V ⊆ L2(Ω)m ⊆ L1(Ω)m for which the energy in (4) is finite needs to have a finite total
variation and therefore is an element of BV (Ω)m .

For the operator S and its related spaces we will restrict ourselves to the choices

(S.i) S = I : V → VS with the normed subspaces (V , ‖ · ‖V ) and (VS, ‖ · ‖L2) where
V ⊆ L2(Ω)m is weakly closed, ‖ · ‖V := ‖ · ‖L2 , VS ⊆ L2(Ω)m , ‖ · ‖VS := ‖ · ‖L2

or
(S.ii) S = ∇ : V → VS with the normed subspaces (V , ‖ · ‖V ) and (VS, ‖ · ‖L2) where

V ⊆ H1(Ω)m is weakly closed, ‖ · ‖V := ‖ · ‖H1 and VS ⊆ L2(Ω)d×m (the
boundedness of S follows due to ‖∇v‖L2 ≤ ‖v‖H1 ), ‖ · ‖VS := ‖ · ‖L2 ,

which we will refer to as Setting (S.i) and Setting (S.ii) respectively. Note that Setting (S.ii)
has V ⊆ H1(Ω)m , which restricts u ∈ V to allow for weak derivatives, while Setting (S.i)
does not. However, in Setting (S.i) V ⊆ H1(Ω)m ⊆ L2(Ω)m is possible as long as V is
weakly closed in L2(Ω)m , which is not the case for V = H1(Ω)m . We emphasize that since
every finite dimensional subspace of a normed vector space is closed [40, Corollary 5.34] and
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convex, it is also weakly closed [27, Corollary 8.74]. In particular, Setting (S.i) and Setting
(S.ii) cover the case of discrete subspaces V ⊆ L2(Ω)m or V ⊆ H1(Ω)m respectively.

We are aware that setting S = ∇ in (4), i.e. Setting (S.ii), adds regularity to the solution
space V . As we are interested in solutions which may have discontinuities, this might indeed
be a disadvantage of this setting. Neverthelesswe still consider Setting (S.ii) for the following
reasons: (i) To the best of our knowledge until now in a continuous setting primal-dual
semi-smooth Newton methods have only been presented in the literature for total variation
minimization with S = ∇ [26, 38, 39, 44]. In this vein Setting (S.ii) naturally extends the
existing approaches to the L1-L2-TV case. (ii) It allows us to compare Setting (S.i) and
Setting (S.ii), see for example Fig. 5 for a numerical comparison in image inpainting.

2.3 The Bilinear Form aB

To describe the differentiable part of (4) it is convenient to define the symmetric bilinear
form aB : V × V → R by

aB(u,w) := α2〈Tu, Tw〉L2 + β〈Su, Sw〉L2 = 〈Bu,w〉V ∗,V (5)

with B : V → V ∗ denoting the operator B := α2T ∗T + βS∗S. Thus Bu = v for u ∈ V ,
v ∈ V ∗ if and only if

aB(u,w) = 〈v,w〉V ∗,V (6)

for all w ∈ V . The bilinear form aB( · , · ) induces a respective energy norm defined by

‖u‖2B := aB(u,u) for u ∈ V .

Since T and S are bounded linear operators, it is easy to see that aB is bounded (i.e.
continuous) as well. In particular, we have

|aB(v,w)| ≤ α2‖T ‖2L(L2,L2)
‖v‖L2‖w‖L2 + β‖Sv‖L2‖Sw‖L2

≤ (α2‖T ‖2L(L2,L2)
+ β)‖v‖V ‖w‖V

for any v,w ∈ V .

Remark 2.1 Note that a continuous bilinear form aB is coercive, i.e. there exists cB > 0
such that aB(v, v) ≥ cB‖v‖2V , for all v ∈ V if and only if aB is strongly convex, i.e. the
functional F : V → R defined as F(u) := aB(u,u) is strongly convex. Assuming that
the bilinear form aB is continuous and coercive, the Lax-Milgram Lemma, see e.g. [23,
Theorem 1.1.3], implies that the inverse B−1 : V ∗ → V exists and that it is bounded through
‖B−1v∗‖V ≤ c−1

B ‖v∗‖V ∗ for all v∗ ∈ V ∗ where cB denotes the coercivity constant of aB ,
cf. [23, Remark 1.1.3].

The definition of aB allows us to give the following simple condition for existence and
uniqueness of (4).

Proposition 2.2 If aB is coercive, then (4) has a unique solution û ∈ V . If additionally λ > 0,
then û ∈ V ∩ BV (Ω)m.

Proof Wedenote by F the functional from (4) and aim to apply the directmethod, see e.g. [13,
Theorem 2.1]. Since it is clear that F is proper by having a lower bound of 0 and satisfying
F(0) < ∞, it remains to check that F is coercive and weakly lower semi-continuous.
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Since T : V → L2(Ω) is bounded, V → R,u �→ α1‖Tu − g‖L1 + α2
2 ‖Tu − g‖2

L2

is continuous and due to convexity weakly lower semi-continuous, see Lemma 2.1 (or
[29, Proof of Theorem 1, p. 525]). By the same argument, since S is bounded, V → R,

u �→ β
2 ‖Su‖2L2 is weakly lower semi-continuous. The total variation is weakly lower

semi-continuous on L1(Ω)m , see [6, Remark 3.5, p. 119], and in particular on V , because
V ⊆ L2(Ω)m ⊆ L1(Ω)m is assumed to be a continuously embedded subspace of L2(Ω)m .
In total, F : V → R is weakly lower semi-continuous.

Observe that

F(u) ≥ α2

2
‖Tu− g‖2L2 + β

2
‖Su‖2L2

= α2

2
‖Tu‖2L2 − α2〈Tu, g〉L2 + α2

2
‖g‖2L2 + β

2
‖Su‖2L2

≥ 1
2aB(u,u) − α2‖T ‖L(L2,L2)‖u‖L2‖g‖L2 + α2

2
‖g‖2L2 .

Since aB is coercive, i.e. there exists cB > 0 such that aB(v, v) ≥ cB‖v‖2V for all v ∈ V ,
and ‖u‖L2 ≤ ‖u‖V from the latter inequality we obtain

F(u) ≥ ‖u‖V
(cB
2
‖u‖V − α2‖T ‖L(L2,L2)‖g‖L2

)
+ α2

2
‖g‖2L2 .

Hence for ‖u‖V → ∞ we have F(u) → ∞, which shows the coercivity of F .
Since V is reflexive and weakly closed in L2(Ω)m (Setting (S.i)) or in H1(Ω)m (Setting

(S.ii)), the existence of a minimizer û ∈ V now follows from [13, Theorem 2.1] and [13,
Remark 2.2].

For uniqueness, we note that F is strongly convex since aB is coercive and we may write
F(u) = 1

2aB(u,u) + α1‖Tu − g‖L1 − α2〈Tu, g〉L2 + ‖g‖2
L2 + λ

∫
Ω
|Du|F with all terms

being convex.
Since 0 ∈ V has finite energy F(0), for the minimizer û we have F(û) < ∞ and in

particular
∫
Ω
|Dû|F < ∞ if λ > 0. In this case we conclude û ∈ V ∩ BV (Ω)m since

û ∈ V ⊆ L1(Ω)m . ��
Specifically for our twomain choices S ∈ {I ,∇}we can describe coercivity of the bilinear

form aB in slightly more explicit terms as given by the following proposition.

Proposition 2.3 The bilinear form aB : V × V → R is coercive in any of the following
cases:

(i) α2 > 0 and T = I ,
(ii) β > 0 and S = I ,
(iii) β > 0, S = ∇ and 1 /∈ ker T .

Proof (i) For T = I with α2 > 0 we immediately have

aB(v, v) = α2‖T v‖2L2 + β‖Sv‖2L2 ≥ α2‖v‖2V
for all v ∈ V .

(ii) For S = I with β > 0, as before, we directly obtain

aB(v, v) = α2‖T v‖2L2 + β‖Sv‖2L2 ≥ β‖v‖2V
for all v ∈ V .
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(iii) Now we have S = ∇ which implies that we are in Setting (S.ii). Hence we need to
show coercivity in H1(Ω)m from which coercivity of the subspace V follows imme-
diately. We split u ∈ H1(Ω)m into u = v + w with wi := 1

|Ω|
∫
Ω
ui (x) dx being the

componentwise mean and v ∈ H1(Ω)m such that
∫
Ω

vi (x) dx = 0 for i = 1, . . . ,m.
Due to the Poincaré-Wirtinger inequality, see e.g. [7, Corollary 5.4.1], we have

‖u‖2H1(Ω)m
= ‖v + w‖2L2 + ‖∇v‖2L2

≤ ‖v‖2L2 + 2‖v‖L2‖w‖L2 + ‖w‖2L2 + ‖∇v‖2L2

≤ 2‖w‖2L2 + 2‖v‖2L2 + ‖∇v‖2L2 ≤ 2‖w‖2L2 + c1‖∇v‖2L2

(7)

for a constant c1 > 0, where we used (a + b)2 ≤ 2(a2 + b2), a, b ≥ 0, to obtain the
second inequality. Because the operator T cannot annihilate constant functions, there
is a constant cT > 0 independent of w such that ‖Tw‖L2 ≥ cT ‖w‖L2 . This means that
if ‖w‖L2 ≥ 2c−1

T ‖T ‖L(L2,L2)‖v‖L2 , then

‖Tu‖L2 = ‖Tw + T v‖L2 ≥ cT ‖w‖L2 − ‖T ‖L(L2,L2)‖v‖L2 ≥ cT
2 ‖w‖L2 .

This together with (7) yields

‖u‖2H1(Ω)m
≤ 2‖w‖2L2 + c1‖∇v‖2L2 ≤ 8

c2T
‖Tu‖2L2 + c1‖∇u‖2L2 ≤ c2aB(u,u)

for some constant c2 > 0.
If on the other hand ‖w‖L2 < 2c−1

T ‖T ‖L(L2,L2)‖v‖L2 then (again using the Poincaré-
Wirtinger inequality) we have

‖w‖L2 < 2c−1
T ‖T ‖L(L2,L2)‖v‖L2 ≤ c3‖∇v‖L2

for some constant c3 > 0 and hence

‖u‖2H1(Ω)m
≤ 2‖w‖2L2 + c1‖∇v‖2L2 ≤ (c1 + 2c23)‖∇u‖2L2 ≤ c1+2c23

β
aB(u,u)

which concludes coercivity of aB for Item (iii).
��

In the sequel we will assume that aB is coercive and hence, due to Remark 2.1, the
invertibility of B = α2T ∗T + βS∗S : V → V ∗.

(A1) The bilinear form aB : V × V → R is coercive.

While this assumption is not required for dualization in itself, it will allow us to state the dual
problem to (4) in amore explicit form inTheorem2.2 and (11) using the inverse of B. Namely,
we introduce on V ∗ the dual norm ‖u∗‖2

B−1 := 〈u∗, B−1u∗〉V ∗,V for u∗ ∈ V ∗. Coercivity of
aB will also be useful later in showing other uniqueness properties as in Theorems 3.2 and
4.1.

2.4 Dualization in H1(Ä)m

In this subsection we fix Setting (S.ii) with V = H1(Ω)m and aim to derive the dual
problem to (4) which will later motivate the regularized predual formulation (11) in a
more general setting. We recall that for this choice of V the total variation reduces to∫
Ω
|Du|F = ∫

Ω
|∇u|F dx.
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Theorem 2.2 Let V = H1(Ω)m and W = W1 × W2 = L2(Ω) × L2(Ω)d×m. Then the
problem

inf
p=(p1,p2)∈W ∗

1
2‖T ∗ p1 + ∇∗p2 + α2T

∗g‖2B−1

− α2
2 ‖g‖2L2 − 〈g, p1〉L2 + χ|p1|≤α1 + χ|p2|F≤λ,

(8)

is dual to (4). Furthermore, solutions u ∈ V and p ∈ W ∗ to (4) and (8) respectively are
characterized by

T ∗ p1 + ∇∗p2 = Bu− α2T
∗g,

|Tu− g| p1 = −α1(Tu− g), |p1| ≤ α1,

|∇u|F p2 = −λ∇u, |p2|F ≤ λ. (9)

The proof of this statement follows standard arguments. However for completeness it is stated
in “Appendix A”.

Note that (9) is a relation in the dual space V ∗ and the term ∇∗ may be understood as
∇∗ : L2(Ω)d×m → V ∗,p �→ (w �→ 〈p,∇w〉L2). Further, equation (9) can be rewritten
using the bilinear form aB from equation (5) as

〈p1, T v〉L2+〈p2,∇v〉L2 = aB(u, v) − l(v) ∀v ∈ V , (10)

where l(v) := α2〈g, T v〉L2 .

3 RegularizedModel

The dual problem (8) is convex but does not necessarily have a unique solution due to the
nontrivial kernel of∇∗. To be able to enforce a unique solution, we slightly modify the objec-
tive function in (8) by adding terms γ1

2α1
‖p1‖2L2 and

γ2
2λ‖p2‖2L2 with γ1, γ2 ≥ 0. Additionally,

compared to the motivation by Theorem 2.2 in a smooth setting, we will generalize the space
V to allow for discontinuous functions as originally intended by (4).

3.1 Predual Problem and Dualization

We aim to choose W as a Hilbert space such that the linear operator Λ := (T ,∇) :
V → W = (W1,W2), corresponding to A in the proof of Theorem 2.2, remains bounded. In
particular we restrict ourselves to closed subspaces W1 ⊆ L2(Ω) equipped with ‖ · ‖L2 and
the following settings for ∇ : V → W2 and its corresponding spaces:

(∇.i) V ⊆ H1(Ω)m , allowing for Settings (S.i) and (S.ii), and the normed subspace
(W2, ‖ · ‖L2) with W2 ⊆ L2(Ω)d×m being closed,

(∇.ii) V ⊆ H1
0 (Ω)m , allowing for Settings (S.i) and (S.ii), and the normed subspace

(W2, ‖ · ‖L2) with W2 ⊆ L2(Ω)d×m being closed,
(∇.iii) V ⊆ L2(Ω)m with Setting (S.i) and the normed subspace (W2, ‖ · ‖(Hdiv

0 )∗) with

W2 ⊆ (Hdiv
0 (Ω)m)∗ closed by defining ∇ : u �→ (p �→ 〈u,− div p〉L2).

Note that for Setting (∇.iii) we have ∇∗ = − div due to vanishing boundary terms, while for
Settings (∇.i) and (∇.ii) this is not necessarily true, as in these settings the scalar product
associated to the Hilbert space V is not the L2-scalar product [41].
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Using γ1, γ2 ≥ 0 we propose the following regularized dual problem:

inf
p=(p1,p2)∈W ∗

{
1
2

∥∥Λ∗p− α2T
∗g

∥∥2
B−1 − α2

2 ‖g‖2L2 + 〈g, p1〉L2

+ χ|p1|≤α1 + γ1
2α1

‖p1‖2L2 + χ|p2|F≤λ + γ2
2λ‖p2‖2L2 =: D(p)

}
,

(11)

Note that if α1 = 0, then it follows immediately that p1 = 0 due to the box-constraint
χ|p1|≤α1 . Analogously if λ = 0, then p2 = 0. In these cases we use the convention that the
terms γ1

2α1
‖p1‖2L2 and

γ2
2λ‖p2‖2L2 vanish respectively. This convention both makes sense as a

continuous extension of the limit process α1, λ → 0 and agrees with setting α1, λ = 0 prior
to dualization.

Theorem 3.1 The dual problem to (11) reads

inf
u∈V

{
F∗
1 (Tu) + α2

2 ‖Tu− g‖2L2 + β
2 ‖Su‖2L2 + F∗

2 (∇u) =: E(u)
}

(12)

where F∗
1 , F

∗
2 are the convex conjugates to F1 : W ∗

1 → R, F2 : W ∗
2 → R given by

F1(p1) := 〈g, p1〉L2 + χ|p1|≤α1 + γ1
2α1

‖p1‖2L2 ,

F2(p2) := χ|p2|F≤λ + γ2
2λ‖p2‖2L2 .

Furthermore, solutions p = (p1,p2) ∈ W ∗, u ∈ V of (11) and (12) respectively are
characterized by

0 = Λ∗p− α2T
∗g + Bu,

Tu ∈ ∂F1(p1),

∇u ∈ ∂F2(p2).

(13)

Proof We use the Fenchel duality from Theorem 2.1, choosing F : W ∗ → R, G : V ∗ → R

and A : W ∗ → V ∗ as follows

F(p) := F1(p1) + F2(p2)

= 〈g, p1〉L2 + χ|p1|≤α1 + χ|p2|F≤λ + γ1
2α1

‖p1‖2L2 + γ2
2λ‖p2‖2L2 ,

G(Ap) := 1
2‖Ap− α2T

∗g‖2B−1 − α2
2 ‖g‖2L2 , Ap := Λ∗p = T ∗ p1 + ∇∗p2.

For G∗ we get by the definition of the convex conjugate

G∗(u) = sup
v∈V ∗

{
〈v,u〉V ∗,V − 1

2

〈
v − α2T

∗g, B−1(v − α2T
∗g)

〉
V ∗,V + α2

2 ‖g‖2L2

}
,

where the supremum is attained whenever

0 = ∂v
(〈v,u〉V ∗,V − G(v)

) = u− B−1(v − α2T
∗g),

which implies v = Bu+ α2T ∗g. Hence we have
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G∗(u) = 〈Bu+ α2T
∗g,u〉V ∗,V − 1

2 〈B−1Bu, Bu〉V ,V ∗ + α2
2 ‖g‖2L2

= 〈u, Bu〉V ,V ∗ + 〈u, α2T
∗g〉L2 − 1

2 〈u, Bu〉V ,V ∗ + α2
2 ‖g‖2L2

= 1
2 〈u, (α2T

∗T + βS∗S)u〉V ,V∗ + 〈u, α2T
∗g〉L2 + α2

2 ‖g‖2L2

= α2
2 〈Tu, Tu〉L2 + β

2 〈Su, Su〉L2 + α2〈Tu, g〉L2 + α2
2 ‖g‖2L2

= α2
2 ‖Tu+ g‖2L2 + β

2 ‖Su‖2L2 .

For F∗, since F is separable in p1 and p2, we only apply the separability property [28, III,
Remark 4.3] without resolving F∗

1 and F∗
2 explicitly. The optimality conditions in Theorem

2.1 correspond to Λu ∈ ∂F(p) and −u = B−1(Λ∗p− α2T ∗g) which yield (13). ��
Theorem 3.1 established the duality of (11) and (12) based on the predual formulation

(11) similar to the approach of [35]. It is, however, interesting to note that the spaces V and
W used for dualization are reflexive and thus the Fenchel duality from Theorem 2.1 may be
used to equivalently establish the duality of (12) and (11) based on the primal formulation
(12) (the only difference being a change in sign as can be seen when comparing (8) with
(11)).

Next we analyze the existence and uniqueness of a solution of (12) and start by showing
the lower semi-continuity of E .

Lemma 3.1 (Sequential lower semi-continuity) The functional E defined in (12) is lower
semi-continuous with regards to weak V -convergence.

Proof We show lower semi-continuity of each summand of E :

(i) The term F∗
1 (Tu) is by definition given by the supremum

F∗
1 (Tu) = sup

p1∈L2(Ω)
|p1|≤α1

{
〈Tu− g, p1〉L2 − γ1

2α1
‖p1‖2L2

}
.

Since the supremum of lower semi-continuous functions is lower semi-continuous due
to Lemma 2.2, it suffices to show that F̃1 :V →R, F̃1(u) :=〈Tu−g, p1〉L2− γ1

2α1
‖p1‖2L2

is V -weakly lower semi-continuous for every fixed p1 ∈ L2(Ω), |p1| ≤ α1. This is
imminent since both T : V → L2(Ω) and the inner product are V -weakly continuous.

(ii) Similarly, the term F∗
2 (∇u) is given by the supremum

F∗
2 (∇u) = sup

p2∈W ∗
2|p2|F≤λ

{
〈u,∇∗p2〉V ,V ∗ − γ2

2λ‖p2‖2L2

}

and we conclude by the same argument.
(iii) Since the terms ‖Tu− g‖2

L2 and ‖u‖2L2 are both convex and continuous in u ∈ V , they
are also weakly lower semi-continuous.

(iv) For the term ‖Su‖2
L2 we distinguish both possible choices of S. If S = I : V → VS ,

V = VS ⊆ L2(Ω)m , then u �→ ‖u‖2
L2 is weakly continuous since it is both convex

and continuous. If S = ∇ : V → VS , V ⊆ H1(Ω)m , then u �→ ‖∇u‖2
L2 is weakly

continuous with the same argument since ∇ : H1(Ω)m → L2(Ω)d×m is a continuous
operator. ��

Proposition 3.1 If aB is coercive, then (12) has a unique solution û ∈ V . If additionally
λ > 0, then û ∈ V ∩ BV (Ω)m.
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Proof The proof is similar to the one of Proposition 2.2. Coercivity of E is shown as in
Proposition 2.2, while we use Lemma 3.1 for weak lower semi-continuity.

Since C∞
0 (Ω)m ⊆ W ∗

2 , we have∫
Ω

|Du|F − c ≤ sup
p2∈C∞

0 (Ω)d×m

|p2|F≤1

{
〈u, div p2〉L2 − γ

2 ‖p2‖2L2

}

≤ sup
p2∈W ∗

2|p2|F≤λ

{
〈u,− div p2〉L2 − γ2

2λ‖p2‖2L2

}
= F∗

2 (∇u)

for come constant c > 0 and hence we obtain the existence of a unique solution û with
û ∈ V ∩ BV (Ω)m if λ > 0, cf. Proposition 3.4. ��

To examine existence and uniqueness of the dual model (11) we utilize the following
lemma for p = 2.

Lemma 3.2 The set M := { f ∈ L p(Ω) : | f | ≤ α} ⊆ L p(Ω), 1 ≤ p ≤ ∞ is (weakly)
closed, convex and bounded for any α ∈ L p(Ω).

Proof It is easy to see that M is convex by a pointwise consideration of the constraint and
bounded in L p(Ω) by α. For showing closedness let (pn)n∈N ⊆ M, pn → p ∈ L p(Ω)

be a convergent sequence in M. Due to [2, Theorem 13.6] there exists a subsequence
(qn)n∈N ⊆ (pn)n∈N with qn → p pointwise almost everywhere. In particular we have
|p| ≤ supn∈N |qn | ≤ α almost everywhere and therefore conclude p ∈ M. Finally, since a
closed convex subset of a Banach space is weakly closed [27, Corollary 8.74] we find that
M is weakly closed as well. ��

Theorem 3.2 Problem (11) has at least one solution p ∈ W ∗, which is unique if γ1, γ2 > 0.

Proof Similarly as in the proof of Proposition 2.2 we apply the direct method, see e.g.
[13, Theorem 2.1], using the weak topology on W ∗. That is, we show that the functional
D : W ∗ → R is proper, weakly l.s.c. and coercive.

The functional D is proper since it is bounded from below and admits a finite value, e.g.
D(0) < ∞.

Further, since the linear operator Λ∗ : W ∗ → V ∗ is bounded and B−1 : V ∗ → V is
bounded as well due to coercivity of aB , see Remark 2.1, the term p �→ ‖Λ∗p−α2T ∗g‖2

B−1

is continuous and due to convexity also weakly lower semi-continuous, see Lemma
2.1. Similarly, the terms p �→ −α2

2 ‖g‖2L2 + 〈g, p1〉L2 + γ1
2α1

‖p1‖2L2 + γ2
2λ‖p2‖2L2

are weakly lower semi-continuous. By an application of Lemma 3.2 the set
K̃ := {p ∈ L2(Ω) × L2(Ω)d×m : |p1| ≤ α1, |p2|F ≤ λ} is weakly closed in
L2(Ω) × L2(Ω)d×m and in particular K̃ ∩ (L2(Ω) × Hdiv

0 (Ω)m) is weakly closed in
L2(Ω) × Hdiv

0 (Ω)m .
Since the subspace W ∗ is closed and convex and therefore weakly closed in

L2(Ω) × L2(Ω)d×m or L2(Ω) × Hdiv
0 (Ω)m , the set K := K̃ ∩W ∗ must be weakly closed

in W ∗. Noticing that K defines the only non-trivial levelset of p �→ χ|p1|≤α1 + χ|p2|F≤λ we
conclude by Proposition 2.1 that this term is weakly lower semi-continuous and as such D
in total as well.

Nowwe show that D : W ∗ → R is coercive.Due to the box-constraintsχ|p1|≤α1+χ|p2|F≤λ

it is easy to see that ‖p‖L2 → ∞ implies D(p) → ∞. It therefore remains to check in the

123



Journal of Scientific Computing (2023) 96 :24 Page 13 of 33 24

case of Setting (∇.iii) with W ∗
2 ⊆ Hdiv

0 (Ω)m when ‖ div p2‖V ∗ = ‖ div p2‖L2 → ∞. Since
aB is coercive with coercivity constant cB > 0, we have

‖v‖2V ∗ ≤ ‖B‖2‖B−1v‖2V ≤ ‖B‖2
cB

aB(B−1v, B−1v)

≤ ‖B‖2
cB

〈BB−1v, B−1v〉V ∗,V = ‖B‖2
cB

‖v‖2B−1

for any v ∈ V ∗, which allows us to bound

D(p) ≥ 1

2
‖T ∗ p1 − div p2 − α2T

∗g‖2B−1 + c1

≥ 1

2

(‖ div p2‖B−1 − ‖T ∗ p1 − α2T
∗g‖B−1

)2 + c1

≥ 1

2
(c2‖ div p2‖V ∗ − c3)

2 + c1 → ∞
for some constants c1 ∈ R, c2, c3 > 0 independent of p2, which shows coercivity of the
functional D. The direct method, see for example [13, Theorem 2.1], then concludes the
existence of a solution p ∈ W ∗.

Uniqueness in case γ1, γ2 > 0 follows from strict convexity in the terms γ1
2α1

‖p1‖2L2 and
γ2
2λ‖p2‖2L2 similar to the proof of Proposition 2.2. ��

For special choices of V the regularized terms in the primal problem (12) may be for-
mulated in a more explicit way. They form integral expressions similar to those of the
non-regularized primal problem (4) but include a pointwise so-called Huber-smoothing of
the integrand.

Proposition 3.2 The terms F∗
1 (Tu) and F∗

2 (∇u) from Theorem 3.1 are called Huber-
regularized L1 and Huber-regularized total variation respectively and depending on V can
be given explicitly by

(i) F∗
1 (Tu) = α1

∫
Ω

ϕγ1(|Tu− g|) dx if V ∈ {H1(Ω)m, L2(Ω)m},
(ii) F∗

2 (∇u) = λ
∫
Ω

ϕγ2(|∇u|F ) dx if V = H1(Ω)m,

where the Huber-function ϕγ : R → [0,∞) for γ ≥ 0 is defined by

ϕγ (x) :=
{

1
2γ x

2 if |x | ≤ γ,

|x | − γ
2 if |x | > γ.

(14)

In particular, if V = H1(Ω)m, then the optimality conditions (13) may be written as

0 = Λ∗p− α2T
∗g + Bu,

0 = p1 max{γ1, |Tu− g|} − α1(Tu− g), |p1| ≤ α1,

0 = p2 max{γ2, |∇u|F } − λ∇u, |p2|F ≤ λ,

(15)

where max denotes the pointwise maximum.

Proof We have

F∗
1 (q1) = sup

p1∈W ∗
1

{
〈p1, q1〉W ∗

1 ,W1
− 〈p1, g〉L2 − χ|p1|≤α1 − γ1

2α1
‖p1‖2L2

}
.

A function p1 is a supremum of this set if in an a.e. sense either |p1| < α1 with
0 = q1 − g − γ1

α1
p1 or |p1| = α1 with 0 = q1 − g − μp1 − γ1

α1
p1 for any μ ≥ 0.
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In the former case we have p1 = α1
γ1

(q1 − g) and |q1 − g| < γ1, while in the latter we have

μ = 1
α1

(|q1 − g| − γ1) ≥ 0, therefore |q1 − g| ≥ γ1 and p1 = q1−g
μ+ γ1

α1

= α1
q1−g
|q1−g| . We thus

deduce

F∗
1 (q1) =

∫
|q1−g|<γ1

α1
2γ1

|q1 − g|2 dx +
∫
|q1−g|≥γ1

α1|q1 − g| − α1γ1
2 dx

= α1

∫
Ω

ϕγ1(|q1(x) − g(x)|) dx.

For the conjugate F∗
2 of F2 we get

F∗
2 (q2) = sup

p2∈W ∗
2

{
〈p2,q2〉W ∗

2 ,W2
− χ|p2|F≤λ − γ2

2λ‖p2‖2L2

}
.

After scaling with 1
λ
, i.e. substituting w := p2

λ
, we obtain

F∗
2 ((∇∗)∗u) = F∗

2 (∇u) = λ sup
w∈W ∗

2|w|F≤1

{ ∫
Ω

∇u · w − γ2
2 |w|2F dx

}
. (16)

The pointwise constrained maximization problem on the right hand side yields the Karush-
Kuhn-Tucker (KKT) conditions

∇u− γ2w − 2μw = 0, |w|2F − 1 ≤ 0,

μ(|w|2F − 1) = 0, μ ≥ 0.

Assuming γ2 > 0 implies γ2 + 2μ > 0 and hence we have w = ∇u
γ2+2μ . If |w|F < 1 then

μ = 0 and hence we obtain w = ∇u
γ2

. Inserting this in (16) yields the integrand 1
2γ2

|∇u|2F . If
|w|F = 1 then we observe that 1 = |w|F = 1

γ2+2μ |∇u|F which leads to γ2 + 2μ = |∇u|F
and thus w = ∇u

|∇u|F . Inserting in (16) yields the integrand |∇u|F − γ2
2 . Summarizing our

findings we arrive at the integrand

ϕγ2(|∇u|F ) =
{

1
2γ2

|∇u|2F if |∇u|F < γ2,

|∇u|F − γ2
2 else

and thus

F∗
2 (∇u) = λ

∫
Ω

ϕγ2(|∇u|F ) dx.

If γ2 = 0, a similar argument shows that

F∗
2 (∇u) = λ

∫
Ω

|∇u|F dx = λ

∫
Ω

ϕ0(|∇u|F ) dx.
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To show that (13) can be written as in (15) if V = H1(Ω)m , we derive from
L2(Ω)d×m � ∇u ∈ ∂F2(p2) for γ2 > 0 that necessarily |p2|F ≤ λ and pointwise

∇u ∈
{
{ γ2

λ
p2} if |p2|F < λ,

{μp2 : μ ≥ 0} if |p2|F = λ,

⇐⇒ p2 =
{

λ∇u
γ2

if |∇u|F < γ2,

λ ∇u
|∇u|F if|∇u|F ≥ γ2,

= λ ∇u
max{γ2,|∇u|F } .

For γ2 = 0 the same argument applies, except for ∇u = 0, in which case only |p2|F ≤ λ

holds. In any case, we can summarize for γ2 ≥ 0 that ∇u ∈ ∂F2(p2) is indeed equivalent to

0 = p2 max{γ2, |∇u|F } − λ∇u, |p2|F ≤ λ.

For the representation Tu ∈ ∂F1(p1) one may proceed analogously. ��
We note that in general, e.g. for discrete subspaces V , the terms F∗

1 (Tu) and F∗
2 (∇u)may

not have such a simple explicit form as in Proposition 3.2.

3.2 Dual Characterization of the Huber-TV-Functional

In Proposition 3.2 we have seen the pointwise representation of the regularized primal total
variation term F∗

2 (∇u) for V = H1(Ω)m by utilizing the Huber-function (14). We will now
extend this representation to V = L2(Ω) by means of a more generally defined Huber-TV
functional, cf. Definition 3.1. This functional has been used in [49] for regularization and
its relation with the dual studied in [18]. It is recognized to reduce the staircasing effect of
the total variation [18]. We state some elementary properties of the Huber function and the
Huber-TV functional and provide their proofs.

Proposition 3.3 The Huber-function (14) satisfies the following properties:

(i) 0 ≤ γ− ≤ γ+ �⇒ ∀x ∈ R : ϕγ−(x) ≥ ϕγ+(x),
(ii) ∀x ∈ R : limγ→0+ ϕγ (x) = ϕ0(x) = |x |.
(iii) ∀x ∈ R : |ϕ′

γ (x)| ≤ 1,

(iv) limγ→0+
∫
Ω

ϕγ ( f (x)) dx = ∫
Ω
| f (x)| dx for any f ∈ L2(Ω).

Proof (i) We distinguish depending on x ∈ R the cases

|x | ≤ γ− ≤ γ+ : 1
2γ+ x

2 ≤ 1
2γ− x

2,

γ− ≤ |x | ≤ γ+ : 1
2γ+ x

2 ≤ 1
2 |x | ≤ |x | − γ−

2 ,

γ− ≤ γ+ ≤ |x | : |x | − γ+
2 ≤ |x | − γ−

2 .

(ii) For x = 0 it is clear that ϕγ (x) = |0|. Otherwise one has ϕγ (x) = |x | − γ
2 → |x | for

any small 0 < γ < |x | and x ∈ R.
(iii) We derive for x ∈ R directly

ϕ′
γ (x) =

{
1
γ
x if |x | ≤ γ,

sgn(x) if |x | > γ.

In any case |ϕ′
γ (x)| ≤ 1 for every x ∈ R.

123



24 Page 16 of 33 Journal of Scientific Computing (2023) 96 :24

(iv) Due to Item (ii) by the Monotone Convergence Theorem [29, Appendix E, Theorem 4]
we have limγ→0+

∫
Ω

ϕγ ( f (x)) dx = ∫
Ω
limγ→0+ ϕγ ( f (x)) dx. Then the statement

follows by Item (i). ��
Definition 3.1 (Huber-TV-Functional, cf. [49]) For u ∈ L2(Ω)m and γ ≥ 0 we denote by∫

Ω

ϕγ (|Du|F ) := sup
w∈C∞

0 (Ω)d×m

|w|F≤1

{
〈u,− divw〉L2 − γ

2 ‖w‖2L2

}
(17)

the γ -regularized Huber-TV functional.

In Definition 3.1, similarly to the total variation from (2), the supremum over pointwise
constrained functions in C∞

0 (Ω)d×m are taken, while F∗
2 does so over Hdiv

0 (Ω)m in Setting
(∇.iii), see proof of Proposition 3.2. Though C∞

0 (Ω)d×m is a dense subset of Hdiv
0 (Ω)m ,

the equivalence of F∗
2 and (17) is non-trivial in view of the pointwise constraints, cf. [37].

This kind of equivalence was first claimed in [35], while the necessary argument was only
sufficiently established later in [37].

We have the following density result.

Theorem 3.3 Let W ∗
2 ∈ {Hdiv

0 (Ω)m, L2(Ω)d×m}, λ > 0 and denote

Kλ := {p ∈ W ∗
2 : |p|F ≤ λ}.

Then Kλ ∩ C∞
0 (Ω)d×m

‖ · ‖W∗
2 = Kλ.

Proof The proof may be carried out analogously to the proof of [37, Theorem 1]. For the
decomposition into appropriate star-shaped domains necessary in that proof, we additionally
refer the reader to [19, Proposition 2.5.3 and 2.5.4]. ��
Corollary 3.1 The term F∗

2 (∇u) from Theorem 3.1 is called Huber-regularized total variation
and may take on the following explicit form

F∗
2 (∇u) = λ

∫
Ω

ϕγ2(|Du|F )

if V ∈ {H1(Ω)m, L2(Ω)m}.
Proof Using notation W ∗

2 ∈ {L2(Ω)d×m, Hdiv
0 (Ω)m} respectively from Theorem 3.1, by

definition of the convex conjugate and using the set density result from Theorem 3.3 we have

F∗
2 (∇u) = sup

p2∈W ∗
2|p2|F≤λ

{
〈∇u,p2〉W2,W ∗

2
− γ2

2λ‖p2‖2L2

}

= sup
p2∈C∞

0 (Ω)d×m

|p2|F≤λ

{
〈∇u,p2〉L2 − γ2

2λ‖p2‖2L2

}

= λ sup
p̃2∈C∞

0 (Ω)d×m

|p̃2|F≤1

{
〈u,− div p̃2〉L2 − γ2

2 ‖p̃2‖2L2

}
= λ

∫
Ω

ϕγ2(|Du|F ),

where the last equality is the definition of the Huber-TV functional, see (17). ��
If u ∈ H1(Ω)m , the Huber-TV functional degrades to the Lebesgue integral over Ω of

the Huber function term ϕγ2(|∇u|F ) as we see in the following proposition.
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Proposition 3.4 The Huber-TV functional (17) satisfies the following properties

(i) u ∈ BV (Ω)m ⇐⇒ ∫
Ω

ϕγ (|Du|F ) < ∞ for any γ ≥ 0,
(ii) If u ∈ H1(Ω)m, then

∫
Ω

ϕγ (|Du|F ) =
∫

Ω

ϕγ (|∇u|F ) dx,

where ϕγ , γ ≥ 0 in the second integral is the Huber-function (14).
(iii) 0 ≤ γ− ≤ γ+ �⇒ ∫

Ω
ϕγ−(|Du|F ) ≥ ∫

Ω
ϕγ+(|Du|F ),

(iv) limγ→0
∫
Ω

ϕγ (|Du|F ) = ∫
Ω
|Du|F .

Proof (i) Since w is box-constrained in the supremum from Definition 3.1 we can bound∫
Ω

ϕγ (|Du|) from above and below:
∫

Ω

|Du|F − c ≤ sup
w∈C∞

0 (Ω)d×m

|w|F≤1

{
〈u, divw〉L2 − γ

2 ‖w‖2L2

}
≤

∫
Ω

|Du|F ,

where c := γ
2 |Ω| < ∞.

(ii) Using partial integration we get
∫

Ω

ϕγ (|Du|F ) = sup
w∈C∞

0 (Ω)d×m

|w|F≤1

{
〈u,− divw〉L2 − γ

2 ‖w‖2L2

}

= sup
w∈C∞

0 (Ω)d×m

|w|F≤1

{ ∫
Ω

∇u · w − γ
2 |w|2F dx

}
.

Wemay replaceC∞
0 (Ω)d×m by L2(Ω)d×m due to Theorem 3.3. By the same pointwise

consideration as in the proof of Proposition 3.2, we see that the supremum is attained
for the Huber function integrand ϕγ (|∇u|F ).

(iii) There exists a sequence (wn)n∈N ⊆ C∞
0 (Ω)d×m , |wn |F ≤ 1 such that

∫
Ω

ϕγ+(|Du|F ) = lim
n→∞

(
−

∫
Ω

u · divwn dx − γ+
2 ‖wn‖2L2

)

≤ lim
n→∞

(
−

∫
Ω

u · divwn dx − γ−
2 ‖wn‖2L2

)

≤
∫

Ω

ϕγ−(|Du|F ).

(iv) Because of strict monotonicity from (iii), the limit limγ→0
∫
Ω

ϕγ (|Du|F ) is achieved
by the supremum

lim
γ→0

∫
Ω

ϕγ (|Du|F ) = sup
γ>0

sup
|w|F≤1

{
−

∫
Ω

u · divw dx − γ
2 ‖w‖2L2

}

= sup
|w|F≤1

sup
γ>0

{
−

∫
Ω

u · divw dx − γ
2 ‖w‖2L2

}

=
∫

Ω

|Du|F . ��
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3.3 0-Convergence

We will now analyze how minimizers of (12) behave for γ := (γ1, γ2) → 0 by making use
of Γ -convergence.

Lower semi-continuity from Lemma 3.1 together with the properties of the Huber-TV
functional allow us to prove a Γ -convergence result for the functional E .

Lemma 3.3 (Γ -convergence) Let (γ
j
1 ) j∈N, (γ

j
2 ) j∈N > 0 be monotonically decreasing

sequences with lim j→∞ γ
j
1 = lim j→∞ γ

j
2 = 0. Denote E j : V → R the energy func-

tional in (12) for (γ1, γ2) = (γ
j
1 , γ

j
2 ) for j ∈ N and E∞ the functional in (4). Then

Γ - lim j→∞ E j = E∞ with respect to weak V -convergence.

Proof By the monotonicity property of the Huber-TV functional from Proposition 3.4 (iii)
and the Huber-function Proposition 3.3 (i), we observe that E j (u) ≤ E j+1(u) and
E j (u) → E∞(u) pointwise for every fixed u ∈ V . Further for every j ∈ N we have
that E j is (sequentially) weakly lower semi-continuous in V due to Lemma 3.1. According
to [15, Remark 1.40 (ii)] we thus have Γ - lim j→∞ E j = lim j E j = E∞ with respect to
weak V -convergence. ��

The following lemma ensures that the minimizers of E j , j ∈ N are all contained in some
commonweakly compact set K ⊆ V , which is a prerequisite for showing that the minimizers
converge for j → ∞.

Lemma 3.4 (Equi-coercivity) Let λ > 0 and (E j ) j∈N, (γ
j
1 ) j∈N, (γ

j
2 ) j∈N as in Lemma 3.3.

Then the sequence (E j ) j is equi-mildly coercive with regard to weak V -convergence, i.e.
there exists a non-empty sequentially (with regard to weak V -convergence) compact set
K ⊆ V such that infV E j = infK E j for all j ∈ N.

Proof As E j is proper for any j ∈ N, i.e. there exist u ∈ V such that E j (u) < ∞, by
coercivity of aB from Assumption (A1) we obtain the coercivity of E j in V for all j ∈ N.

Denote by L j
a := {u ∈ V : E j (u) ≤ a}, a ∈ R the lower level sets of E j for j ∈ N. The

level sets L j
a , j ∈ N, are bounded due to coercivity of E j shown above.

Since E j ≤ E j+1 due to Proposition 3.4, the level sets L j
a are nested for any fixed a ∈ R,

i.e. L j
a ⊇ L j+1

a for j ∈ N.
Consequently E j ≤ E∞ and since E∞(0) < ∞ we may chose a := E∞(0) to ensure

L j
a �= ∅ for all j ∈ N.
For all j ∈ N the minimizers of E j exist in V (see Proposition 3.1) and are contained

within some non-empty weakly closed ball K ⊇ L j
a in V centred at the origin. Since V is

reflexive K is weakly compact, see e.g. [17, Theorem 3.18], concluding the proof. ��
We are now ready to show our final main result, namely that for γ → 0 minimizers of

(12) approach the minimizer of (4).

Theorem 3.4 Let λ > 0 and u j ,u∞ denote the unique minimizers of E j and E∞ as given
in Lemma 3.3 respectively for j ∈ N. Then u j⇀u∞ for j → ∞ with respect to weak
V -convergence.

Proof As shown in the proof of Lemma 3.4 the minimizers (u j ) j∈N are contained within a
sequentially compact (with regard to weak V -convergence) set K . Then, according to [15,
Theorem 1.21] every weak limit of a subsequence of (u j ) j∈N is a minimum point of E∞.
Since the minimum u∞ of E∞ is unique, we have u j⇀u∞ for j → ∞. ��
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4 Primal-Dual Semi-smooth Newton Algorithm

In this section we derive a primal-dual semi-smooth Newton method, cf. [34], in order to find
an approximate solution of (12). Note that such Newton methods have already been used for
the L2-TV model [26, 38, 39, 44] and L1-TV model [25, 42] in image reconstruction, i.e.
m = 1 (greyscale images). We extend the approach of semi-smooth Newton methods to a
vector-valued setting and to the L1-L2-TV model.

4.1 Derivation

In general (13) has a solution û ∈ V which can be approximated using continuous piecewise
linear finite elements [13, Chapter 10.2]. Since all such discrete functions are elements of
H1(Ω)m , we derive for both settings, i.e. Setting (S.i) and Setting (S.ii), the semi-smooth
Newton system using the spaces V = H1(Ω)m and W ∗ = L2(Ω) × L2(Ω)d×m for the
primal and predual variable respectively. This simplification is sufficient for our discrete
setting in any case, and sufficient for the continuous setting as long as V = H1(Ω)m .

Let us denote for convenience

m1 := m1(u) := max{γ1, |Tu− g|}, χ1 := χ1(u) :=
{
1 if |Tu− g| ≥ γ1

0 else
,

m2 := m2(u) := max{γ2, |∇u|F }, χ2 := χ2(u) :=
{
1 if|∇u|F ≥ γ2

0 else
.

Writing the system of optimality condition (15) as (0, 0, 0) = F(u, p1,p2), the resulting
Newton system (0, 0, 0) = DF(u, p1,p2)(du, dp1 ,dp2) reads as follows:

α2T
∗Tdu + βS∗Sdu + T ∗dp1 + ∇∗dp2 = −

(
∇∗(p2) + T ∗ p1

+ α2T
∗(Tu− g) + βS∗Su

)
,

(18)

χ1
(Tu− g) · Tdu

|Tu− g| p1 − α1Tdu + m1dp1 = −
(
m1 p1 − α1(Tu− g)

)
,

(19)

χ2
∇u · ∇du
|∇u| p2 − λ∇du + m2dp2 = −

(
m2p2 − λ∇u

)
, (20)

where u ∈ H1(Ω)m , p1 ∈ L2(Ω), p2 ∈ L2(Ω)d×m represent the variables from the previous
Newton step and (du, dp1 ,dp2) ∈ H1(Ω)m × L2(Ω) × L2(Ω)d×m is the solution of the
Newton system.

Rearranging (19) and (20) for dp1 and dp2 yields

dp1 = −p1 + α1

m1
(T (u+ du) − g) − χ1

(Tu− g) · Tdu
|Tu− g|2 p1, (21)

dp2 = −p2 + λ

m2
∇(u+ du) − χ2

∇u · ∇du
|∇u|2F

p2. (22)
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Plugging these two equations into (18) leads to

0 = T ∗( α1

m1

(
T (u+ du) − g

) − χ1
(Tu− g) · Tdu

|Tu− g|2 p1
)

+ ∇∗( λ

m2
∇(u+ du) − χ2

∇u · ∇du
|∇u|2F

p2
)

+ α2T
∗(T (u+ du) − g

) + βS∗S(u+ du),

which is to be understood in a weak sense.
Recall aB :H1(Ω)m×H1(Ω)m→R from (5) and define a1, a2 :H1(Ω)m×H1(Ω)m→R

and l : H1(Ω)m → R as follows:

aB(du, ϕ) = α2〈Tdu, Tϕ〉L2 + β〈Sdu, Sϕ〉L2

a1(du, ϕ) :=
〈

α1
m1

Tdu − χ1

m2
1
(Tu− g)(Tdu)p1, Tϕ

〉
L2

,

a2(du, ϕ) :=
〈

λ
m2

∇du − χ2

m2
2
(∇u · ∇du)p2,∇ϕ

〉
L2

,

l(ϕ) := −aB(u, ϕ) − 〈 λ
m2

∇u,∇ϕ〉L2 − 〈 α1
m1

(Tu− g), Tϕ〉L2 + 〈α2g, Tϕ〉L2 .

We then have the following result.

Theorem 4.1 Let V ⊆ H1(Ω)m be a subspace such that there exists cS > 0 with
‖∇u‖L2 ≤ cS‖Su‖L2 for all u ∈ V . If p1 ∈ L2(Ω), p2 ∈ L2(Ω)d×m such that |p1| ≤ α1,
|p2|F ≤ λ holds a.e. in Ω , then the problem

a(du, ϕ) := a1(du, ϕ) + a2(du, ϕ) + aB(du, ϕ) = l(ϕ) ∀ϕ ∈ V (23)

admits a unique solution du ∈ V .

Proof In V we verify the prerequisites for the Lax-Milgram Lemma, see e.g. [23, Theorem
1.1.3], i.e. boundedness of a and l, as well as coercivity of a with regard to ‖ · ‖H1(Ω)m .

We verify boundedness of l

|l(ϕ)| ≤ ‖B‖‖u‖L2‖ϕ‖L2 + λ|Ω|‖∇ϕ‖L2 + α1|Ω|‖Tϕ‖L2 + α2‖g‖L2‖Tϕ‖L2

≤ c‖ϕ‖H1(Ω)m

for some constant c > 0, since T and Ω are bounded and u ∈ L2(Ω)m , g ∈ L2(Ω).
Boundedness of a1, a2 follows from

|a1(v,w)| ≤
(
‖ α1
m1

T v‖L2 + ‖ χ1

m2
1
(Tu− g)(T v)p1‖L2

)
‖Tw‖L2

≤ 2α1
γ1

‖T ‖2‖v‖L2‖w‖L2 ,

|a2(v,w)| ≤
(
‖ λ
m2

∇v‖L2 + ‖ χ1

m2
2
(∇u · ∇v)p2‖L2

)
‖∇w‖L2

≤ 2λ
γ2
‖∇v‖L2‖∇w‖L2 .

Since aB is bounded due to T and S being bounded, this implies that
|a(v,w)| ≤ c‖v‖H1(Ω)m‖w‖H1(Ω)m for some constant c > 0.

For Setting (S.ii), i.e. S = ∇, coercivity of aB with regard to ‖ · ‖H1(Ω)m follows directly
from Assumption (A1), while this is not the case for Setting (S.i), i.e. S = I . In Setting
(S.i) Assumption (A1) gives only coercivity of aB with regard to ‖ · ‖L2 . By the additional
prerequisite ‖∇u‖L2 ≤ cS‖u‖L2 for all u ∈ V coercivity of aB with respect to ‖ · ‖H1(Ω)m

follows also in this setting.
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Having ensured the coercivity of aB , it is now sufficient to
show that a1 and a2 are positive semi-definite. Using the vectorization operator
vec : Rd×m → R

dm : X �→ (X
(k−1mod d)+1,� k−1

d �+1)
k=dm
k=1 applied in a pointwise sense

for convenience we see that

a1(v,w) =
〈(

α1
m1

− χ1
p1(Tu−g)

m2
1

)
T v, Tw

〉
L2

=: 〈A1T v, Tw〉L2 ,

a2(v,w) =
〈(

λ
m2

Idm×dm − χ2
vec(p2) vec(∇u)T

m2
2

)
vec(∇v), vec(∇w)

〉
L2

=: 〈A2∇v,∇w〉L2 ,

where Idm×dm ∈ R
dm×dm denotes the unit matrix. It thus remains to show pointwise positive

semi-definiteness for A1 : Ω → R and A2 : Ω → R
dm×dm . We see this by evaluating for

x ∈ R
dm :

A1 ≥ α1
m1

− χ1
|p1|
m1

|Tu−g|
m1

≥ α1
m1

− χ1
α1
m1

≥ 0,

xT A2x ≥ λ
m2

|x|2 − χ2
| vec(p2)|

m2

| vec(∇u)|
m2

|x|2 ≥ (
λ
m2

− χ2
λ
m2

)|x|2 ≥ 0.

This concludes the coercivity of the sum a = a1 + a2 + aB and applying the Lax-Milgram
Lemma yields the required result. ��

Theorem 4.1 proves the solvability of the semi-smooth Newton step and thus ensures
that the following semi-smooth Newton algorithm is well-defined in a general Hilbert space
setting.

Algorithm 1 (Semi-smooth Newton)
Parameters: model parameters α1, α2, λ, β, regularization parameters γ1, γ2 > 0
Input: data g ∈ L2(Ω), initial guesses u0 ∈ V , p0 = (p01,p

0
2) ∈ W ∗

Output: sequence (un,pn) approximating the solution to (15)
for n = 1, 2, . . . do

solve a(du, ϕ) = l(ϕ), ϕ ∈ V from Theorem 4.1 with u := un−1, (p1,p2) := pn−1

assign dp1 ,dp2 according to (21) and (22)
un = un−1 + du
pn = pn−1 + (dp1 ,dp2)

end for

If not otherwise specified, we use for Algorithm 1 the Cauchy stopping criterion

1
|Ω|

(
‖un − un−1‖2L2 + ‖pn1 − pn−1

1 ‖2L2 + ‖pn2 − pn−1
2 ‖2L2

)
< εnewton, (24)

for some specified constant εnewton > 0 and (pn1 ,p
n
2) := pn .

We would like to mention that it is not clear to us how the above derivation of the semi-
smooth Newton method could be extended to the case V = L2(Ω)m . For example in the
weak formulation we require function spaces which allow for derivatives, see the bilinear
form a2 above, and the expression |∇ · |, see e.g. (22), needs to be well defined.

5 Discretization: Finite Elements

In order to implement the proposed semi-smooth Newton method, see Algorithm 1, we
consider a finite dimensional subspace V . More precisely, we use a finite element subspace.
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Fig. 1 Image aligned simplicial grid construction

We will construct the polynomial basis functions over a mesh that consists of triangles. As
stated in the introduction, we intend to apply the method to images and hence we shortly
discuss the alignment of meshes with respect to image pixels.

For two-dimensional computer images given by an array A ∈ [0, 1]n1×n2 define the
domain Ω := [1, n1] × [1, n2]. If not otherwise noted, Ω is triangulated using simplices
with nodes at integer coordinates (x1, x2) ∈ Z

2, 1 ≤ x1 ≤ n1, 1 ≤ x2 ≤ n2 corresponding
to pixel centers as depicted in Fig. 1.

Let T denote the set of cells and Γ the set of oriented facets (i.e. edges for d = 2) of the
simplicial triangulation. For any cell K ∈ T let Pk(K ) be the space of polynomial functions
on K with total degree k ∈ N. We choose finite dimensional subspaces Vh ⊆ H1(Ω)m ⊆ V ,
W ∗

h ⊆ L2(Ω) × L2(Ω)d×m ⊆ W ∗, Zh ⊆ L2(Ω) as follows:

Vh := {u ∈ C(Ω)m : u|K ∈ P1(K )m, K ∈ T },
W ∗

h := {(p1,p2) ∈ C(Ω) × L2(Ω)d×m : p1|K ∈ P1(K ),p2|K ∈ P0(K )d×m,

K ∈ T },
Zh := {g ∈ C(Ω) : g|K ∈ P1(K ), K ∈ T },

(25)

i.e. piecewise linear continuous elements for u, g, p1 and piecewise constant discontinuous
elements for p2.

Returning to problem (12) we note that dualization and discretization do not in general
commute. First restrictingV to a subspaceVh and then constructing the dual problemmay lead
to a different result than vice versa. Indeed, the simple pointwise representations deduced
for the dual problem in Proposition 3.2 do not necessarily hold true for subspaces of V .
For that reason a modified primal discrete energy is introduced in [32], which allows for a
manageable dual representation with direct constraints on the degrees of freedom. Here, we
explore a suitable discretization of the continuous optimality conditions (15) instead. Namely,
in the discrete finite element setting we will search for solutions p = (p1,p2) ∈ W ∗

h , u ∈ Vh
which satisfy

0 = Λ∗p− α2T
∗g + Bu,

0 = p1 max{γ1, |Tu− g|} − α1(Tu− g), |p1| ≤ α1,

0 = p2 max{γ2, |∇u|F } − λ∇u, |p2|F ≤ λ,

(26)

where the last two equations are enforced on vertices only. This is due to the fact, that on
a single cell Tu − g is linear, while the expression |Tu − g| in general is not. To solve
this discrete system of equations, we utilize Algorithm 1 with V = Vh and W ∗ = W ∗

h .
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We note that since the optimality conditions (26) for p are enforced on vertices only, the
updates (21) are carried out in the same way. In the assembly of the system a(du, ϕ) = l(ϕ)

from Theorem 4.1 for terms involving p we use a quadrature formula which only requires
evaluations on vertices. Further, we remark that the proposed semi-smooth Newton method
in a finite element setting is well-defined due to Theorem 4.1. In particular we have the
following statement.

Corollary 5.1 Assume |p1| ≤ α1, |p2|F ≤ λ holds for p = (p1,p2) ∈ W ∗
h . Then the discrete

problem of finding du ∈ Vh such that a(du, ϕ) = l(ϕ) for all ϕ ∈ Vh admits a unique
solution.

Proof If S = ∇, the statement follows immediately from Theorem 4.1 using cS = 1.
Let S = I , then the finite element inverse inequality (see e.g. [23, Theorem 3.2.6] or
[1, Theorem 1.3]) yields

‖∇u‖L2 ≤ ch−1‖u‖L2 = ch−1‖Su‖L2 ,

where h is the smallest cell diameter and c is a constant independent of h. Since in our case
h = √

2, Theorem 4.1 with cS = ch−1 again yields the required result. ��
We start out with an L2-norm estimate of the gradient operator in our finite element setting,

which will be used for chosing the stepsize in Algorithm 2.

Lemma 5.1 Let d = 2. For every cell K ∈ T with diameter ρK and every u ∈ Vh we have
the upper bound

‖∇u‖L2(K ) ≤ 6
√
2

ρK
‖u‖L2(K ).

Proof Let F : K̂ → K , x̂ �→ Ax + b be the affine transformation bijectively mapping the
reference cell K̂ to K and set û := u ◦ F to be u transformed onto K̂ . As in the proof of
[51, Proposition 3.38], since K contains a ball with diameter ρK and K̂ is contained in a ball
with diameter hK̂ , we have

‖∇u‖L2(K )

‖u‖L2(K )

= ‖A−t∇û‖L2(K̂ )

‖û‖L2(K̂ )

≤ hK̂
ρK

‖∇û‖L2(K̂ )

‖û‖L2(K̂ )

=
√
2

ρk

‖∇û‖L2(K̂ )

‖û‖L2(K̂ )

and it remains to bound
‖∇û‖L2(K̂ )

‖û‖L2(K̂ )

. Representing û in local coordinates:

û(x, y) = ax + by + c(1 − x − y), a, b, c ∈ R we explicitly calculate using a computer
algebra system

‖∇û‖2
L2(K̂ )

=
∫ 1

0

∫ 1−x

0
|∇û(x, y)|2 dy dx = 1

2 (a
2 + b2 + 2c2 − 2ac − 2bc),

‖û‖2
L2(K̂ )

=
∫ 1

0

∫ 1−x

0
|û(x, y)|2 dy dx = 1

12 (a
2 + b2 + c2 + ab + ac + bc).

Using 0 ≤ 3(a + b + c)2 = 3(a2 + b2 + c2 + 2ab + 2ac + 2bc) and

0 ≤ (
√
2x + c√

2
)2 = 2x2 + c2

2 + 2xc, x ∈ {a, b} we bound

a2 + b2 + 2c2 − 2ac − 2bc ≤ 4a2 + 4b2 + 5c2 + 6ab + 4ac + 4bc

≤ 6a2 + 6b2 + 6c2 + 6ab + 6ac + 6bc
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and infer ‖∇û‖2
L2(K̂ )

≤ 6 · 122 ‖û‖2L2(K̂ )
= 36‖û‖2

L2(K̂ )
. Combining this with the transforma-

tion above, we get

‖∇u‖L2(K )

‖u‖L2(K )

≤
√
2

ρk

‖∇û‖L2(K̂ )

‖û‖L2(K̂ )

≤ 6
√
2

ρk
. ��

6 Numerical Experiments

In the following we present numerical experiments to show that our model together with
Algorithm 1 can indeed be applied in practice to solve image processing tasks such as
denoising, inpainting and the calculation of optical flow fields. The implementation of the
performed algorithms is done in the programming language Julia [14] and can be found at
[33].

We start this subsection by comparing our proposedmethodwith the famous semi-implicit
primal-dual algorithm from Chambolle and Pock [21] with respect to convergence speed.

6.1 Convergence Rate

We apply the accelerated method [21, Algorithm 2] to our problem (12) and in the discrete
case to (26) which yields the following algorithm. A similar method was used in [3] for a
special case of our model.

Algorithm 2 (Semi-implicit primal-dual algorithm, accelerated [21, ALG2])
Parameters: τ0 > 0, σ0 := 1

τ0L2 > 0, 0 ≤ μ ≤ ‖B‖, ‖Λ‖ ≤ L < ∞
Initialization: u0 = u0 ∈ V , (p01,p

0
2) ∈ W ∗

Output: sequence (un) ⊆ V approximating solution to (12)
for n = 0, 1, 2, . . . do

pn+1
1 = proj| · |≤α1

(
(1+ γ1σn

α1
)−1(pn1 + σn(Tun − g))

)

pn+1
2 = proj| · |F≤λ

(
(1+ γ2σn

λ
)−1(pn2 + σn∇un)

)

un+1 = (I + τn B)−1
(
un − τn(T ∗ pn1 + ∇∗pn2 − α2T ∗g)

)

θn = (1+ 2μτn)
− 1

2

τn+1 = θnτn
σn+1 = θ−1

n σn
un+1 = un+1 + θn(un+1 − un)

end for

The non-accelerated variant of Algorithm 2 is obtained by using constant τn := τ0,
σn := σ0 (and thus constant θn) for all n ∈ N. In accordance to (26) for the discrete setting
V = Vh the projections proj| · |≤α1

and proj| · |F≤λ are carried out in a nodal sense.
Note that with the exception of un+1 in Algorithm 2 all steps can be performed locally as

a simple update, whereas for un+1 in general the solution of the variational equality

〈un+1, v〉L2 + τn
(
α2〈Tun+1, T v〉L2 + β〈Sun+1, Sv〉L2

)
= 〈un, v〉L2 − τn

(〈pn1 − α2g, T v〉L2 + 〈pn2,∇v〉L2
) (27)

for all v ∈ V is required.
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Fig. 2 From left to right: 64x64 pixel input image g and respective denoised outputs for semi-implicit, semi-
implicit accelerated and semi-smooth Newton algorithms

Fig. 3 Comparison of steps and energy. The minimal energy Ê is reached by Algorithm 1 in the last step
wherefore the corresponding data point has been excluded from the logarithmic plot.

To numerically observe the asymptotic convergence properties of Algorithm 1, a small
image g as depicted in Fig. 2 has been chosen along with the denoising setting T = I ,
S = I , α1 = 0 α2 = 30, λ = 1, β = 0 and γ1 = 1 × 10−2, γ2 = 1 × 10−3. We

use L = ‖∇‖L2 = maxK∈T 6
√
2

ρK
≈ 8.36 according to Lemma 5.1, τ0 = 1

L , cf. [21],
μ = α2 + β for Algorithm 2. Since here m = 1, V is a scalar-valued function space and
we write u ∈ V instead of u ∈ V (as before). We stop iterating when either the criterion
(24) with εnewton = 1× 10−10 or n ≥ 10, 000 holds true, whichever comes first. The energy
Ê := 112.47 was obtained as the minimal energy over all iterations and algorithms and
assumed by Algorithm 1.

From the step lengths and energies in Fig. 3 one can see the sublinear convergence of
the semi-implicit method and its accelerated variant. The semi-smooth Newton method dis-
plays superlinear convergence, reaches the desired tolerance after only a few iterations and
assumes the minimal energy Ê in the last steps which are excluded from the logarithmic plot.
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Fig. 4 From left to right: original image g̃, noisy input image g, denoised output image u

6.2 Denoising

From the original image g̃ in Fig. 4 we generate an artificially noisy input g := ϕ(g̃ + η),
where η denotes zero mean additive Gaussian noise with variance 0.1 and ϕ(x) ∈ {0, 1, x}
with probability p

2 ,
p
2 , 1− p respectively and p = 2× 10−2.

We denoise (i.e. remove the noise from) g using Algorithm 1 by setting T = I , S = I
and using manually chosen parameters α1 = 0.2, α2 = 8, λ = 1, β = 0, γ1 = 1 × 10−4,
γ2 = 1× 10−4, εnewton = 1× 10−5 to obtain visually pleasing results. The result visible in
Fig. 4 matches the expected behaviour of total variation denoising, i.e. coherent noisy regions
are flattened out, while sharp edges are preserved.

6.3 Combined Inpainting and Denoising

We want to show how the regularization due to S and β affects the output. To that end we
choose the example of combined inpainting and denoising, i.e. m = 1. Inpainting is the task
of restoring a given defected image g ∈ L2(Ω \D) covering the defected (inpainting) region
D ⊆ Ω . Then the operator T := IdΩ\D denotes the masking operator defined by

(IdΩ\Du)(x) :=
{
u(x) x ∈ Ω \ D,

0 x ∈ D,
(28)

The input image in Fig. 5 is generated by first applying the inpainting mask in Fig. 5,
yielding the inpainting region D, to receive a masked image g̃ and then adding noise to arrive
at g := ϕ(g̃+ η), where η denotes zero mean additive Gaussian noise with variance 0.1 and
ϕ(x) ∈ {0, 1, x} with probability p

2 ,
p
2 , 1− p respectively and p = 2× 10−2.

Note that for the application of image inpainting special care has to be taken in our
finite element setting. This is because image interpolation may leak corrupt data from within
the inpainting area if the inpainting mask is not extended to cover this area. In particular,
global interpolation methods, such as L2-projection in the case of cellwise linear continuous
elements, should be avoided and for other interpolationmethods, the inpaintingmask needs to
be extended to cover the area of influence. Since our mesh is image-aligned, i.e. cell vertices
correspond to pixel centres, we use nodal interpolation for g and implement the operator T
for the discrete setting V = Vh in a cell-wise sense to be 0 whenever any of its cells vertices
are masked. An illustration of which cells this affects can be seen in Fig.6.

We execute Algorithm 1 on the original image resolution grid and chose parameters by
visual preference as follows: α1 = 0.2, α2 = 8, λ = 1, γ1 = 1× 10−4, γ2 = 1× 10−4. We
use εnewton = 1× 10−4 in Algorithm 1.

In Fig. 5 we see the results for S = I and S = ∇ respectively. In each case three choices
of β were made: first with β sufficiently large to notice the regularization tradeoff and then
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Fig. 5 Top row: inpainting mask and masked noisy input image g, center row: output for S = I and β =
3× 10−2, β = 0.3 and β = 3 respectively, bottom row: output for S = ∇ and β = 5, β = 50 and β = 500
respectively

Fig. 6 Simplicial grid on 3× 3
image with image inpainting
mask covering the bottom center
pixel and corresponding cell-wise
inpainting mask (horizontally
striped area)

with β reduced by a factor of 10 and increased by a factor of 10. We see that for small β

the outputs for S = I and S = ∇ are visually almost indistinguishable, while for larger β

undesirable features are introduced. Namely for S = ∇ the output image becomes blurry,
while for S = I a general darkening takes place which is dominant in the inpainting area,
where no data term is guiding the output.

6.4 Optical Flow

Theproblemof optical flow is to compute the apparentmotionfield of an image sequence.One
approach, given two grey-scale images f0, f1 : Ω → [0, 1], is to estimate a displacement
field u : Ω → R

m , m = d , which maps points of similar brightness, i.e. for all x ∈ Ω

f0(x) = f1(x + u(x)). (29)
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Here exceeding displacements x+ u(x) /∈ Ω are ignored. Equation (29) is called the bright-
ness constancy assumption. It is usually underdetermined since u is vector-valued while (29)
is scalar, and depending on f0, f1 there might not even exist a solution, e.g. due to occlusion
or brightness change. Nevertheless, (29) may be still applied in a minimization setting as
a data term, e.g. using the L2 residual, together with suitable regularization to arrive at an
approximate motion field u [8].

Assuming smooth f0, f1 and expanding the right hand side of (29) at x+ u0(x) for some
smooth initial guess u0 : Ω → R

2 one arrives at

f0(x) = f1(x + u0(x) + (u− u0)(x))

≈ f1(x + u0(x)) + ∇ f1(x + u0(x)) · (u− u0)(x)

≈ fw(x) + ∇ fw(x) · (u− u0)(x)

= fw(x) + ∇ fw(x) · u(x) − ∇ fw(x) · u0(x),
(30)

where fw , defined as fw(x) := f1(x + u0(x)) is a (backwards-)warped version of f1. Note
that in the derivation sketched above we generally have

∇ fw(x) = (I + u′0(x)T )∇ f1(x + u0(x)) �= ∇ f1(x + u0(x)).

We call (30) the optical flow equation linearized at the initial guess u0. Note that for any
solution u to (30), u + v with ∇ fw · v = 0 is a solution as well, i.e. the linearized optical
flow equation provides flow information only in the image gradient direction, a phenomenon
also known as aperture problem.

We use our model (1) to estimate a solution to (30) by setting

Tu := ∇ fw · u, g := ∇ fw · u0 − ( fw − f0).

The parameters α1, α2, λ in (1) allow to tune the optical flow model. Notable special cases
in the discrete setting include e.g. L1-TV optical flow in [52] and a comparison of L1-TV
and L2-TV in [24].

While the linearized optical flow equation (30) has localized the global condition (29), it
comes at the cost of misrepresenting large displacements. One may alleviate this problem by
repositioning the linearization point as in Algorithm 3.

Algorithm 3 (Optical flow warping algorithm)
Parameters: warping threshold εwarp, parameters for Algorithm 1
Input: images f0, f1, initial guess u0
Output: motion fields (uk)
for k = 1, 2, . . . do

fw,k−1(x) = f1(x + uk−1(x)), x ∈ Ω

find approximate solution uk to (12) using Algorithm 1
end for

The images f0, f1, fw,k in Algorithm 3 used for the model (12) generally make use of the
discrete space Zh , whereas for g we instead use a cellwise linear discontinuous space to
capture the discontinuous component ∇ fw,k−1. The warping step fw,k(x) = f1(x + uk(x))
itself, however, is carried out by evaluating the original image f1 using bicubic interpolation.

To approximately solve for uk in Algorithm 3, we make in (12) the choice

Tu := ∇ fw,k−1 · u, g := ∇ fw,k−1 · uk−1 − ( fw,k−1 − f0).
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Fig. 7 Middlebury Dimetrodon Optical Flow Benchmark: top row: f0, f1, image difference f1 − f0, bottom
left: computed optical flow u using Algorithm 3 stopping after one iteration, bottom center: computed optical
flow u using Algorithm 3, bottom right: ground truth optical flow

We use in Algorithm 3 the stopping criterion

‖ fw,k−1− f0‖L2−‖ fw,k− f0‖L2‖ fw,k−1− f0‖L2 < εwarp

for some specified constant εwarp, which ensures that warping continues only as long as the
remaining image difference ‖ fw,k − f0‖2L2 is being reduced sufficiently.

Note that the warping technique in Algorithm 3 may be combined with a coarse-to-fine
scheme, where uk is solved on increasingly finer scales, resolving large displacements on an
early coarse scale and filling in detail later. In upcoming work [4] we plan to use adaptive
finite elements to establish such a coarse-to-fine scheme.

In our experiments we use the manually chosen model parameters S = ∇, α1 = 10, α2 =
0, λ = 1 to obtain visually pleasing results, cf. superiority of L1-TV in [24], β = 1× 10−5,
γ1 = 1× 10−4, γ2 = 1× 10−4 to balance between speed and quality of the reconstruction
and u0 := 0. For Algorithm 1 εnewton = 1× 10−3 was chosen. We use εwarp = 5× 10−2 in
Algorithm 3.

In Fig. 7 we evaluate Algorithm 3 visually against theMiddlebury optical flow benchmark
[9]. We also consider Algorithm 3 stopped after just one iteration, i.e. the classical linearized
optical flow equation.

The color-coded images representing optical flow fields are normalized by the maximum
motion of the ground truth flow data and black areas of the ground truth data represent
unknown flow information, e.g. due to occlusion. A good resemblance of the computed
optical flow to the ground truth and the effect of total variation regularization, i.e. sharp
edges separating homogeneous regions, can be seen clearly. It is unclear how much visual
improvementmore careful or adaptive parameter selectionmaygive and further study remains
to be done.
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A Proof of Theorem 2.2

The proper, convex and lower semi-continuous functions F : V → R, G : W → R and the
linear operator A : V → W are set as follows:

F(u) := α2
2 ‖Tu− g‖2L2 + β

2 ‖Su‖2L2 ,

G(Au) := α1‖Tu− g‖L1 + λ

∫
Ω

|∇u|F dx, A := (T ,∇).

Using the definition of the conjugate function, we compute F∗ and G∗. We have:

F∗(u∗) = sup
u∈V

{
〈u∗,u〉V ∗,V − α2

2 ‖Tu− g‖2L2 − β
2 ‖Su‖2L2

}

= sup
u∈V

{
〈u∗ + α2T

∗g,u〉V ∗,V − 1
2

〈
(α2T

∗T + βS∗S)u,u
〉
V ∗,V − α2

2 ‖g‖2L2

}
.

A function u ∈ V is a supremum of the above set if

0 = ∂u{〈u∗,u〉V ∗,V − F(u)} = u∗ + α2T
∗g − (α2T

∗T + βS∗S)u

and hence the supremum is obtained at

u = (α2T
∗T + βS∗S)−1(u∗ + α2T

∗g) = B−1(u∗ + α2T
∗g).

Thus we obtain an explicit formulation for F∗ : V ∗ → R as

F∗(u∗) = 1
2

〈
u∗ + α2T

∗g, B−1(u∗ + α2T
∗g)

〉
V ∗,V − α2

2 ‖g‖2L2

= 1
2‖u∗ + α2T

∗g‖2B−1 − α2
2 ‖g‖2L2 .

For the computation of G∗ we split according to [28, III, Remark 4.3]:

G∗(v∗) = G∗
1 (v

∗
1) + G∗

2 (v
∗
2),

with G1(v1) := α1‖v1 − g‖L1 , G2(v2) := λ‖v2‖L1 . Then we have

G∗
1 (v

∗
1) = sup

v1∈L2(Ω)

{〈v1, v∗1〉L2 − α1‖v1 − g‖L1}

= sup
v′1=v1−g∈L2(Ω)

{ ∫
Ω

v∗1 · v′1 − α1|v′1| + v∗1 · g dx
}

= 〈g, v∗1〉L2 + χ|v∗1 |≤α1 .
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Analogously we find

G∗
2 (v

∗
2) = sup

v2∈L2(Ω)d×m

{
〈v2, v∗2〉L2 − λ

∫
Ω

|v2(x)|F dx
}
=

{
0 if |v∗2(x)|F ≤ λ,

∞ if |v∗2(x)|F > λ.

Combining these calculations we obtain

G∗(v) = 〈g, v∗1〉L2 + χ|v∗1 |≤α + χ|v∗2 |F≤λ.

Applying the Fenchel duality from Theorem 2.1 yields the corresponding dual formulation
and the optimality conditions A∗p ∈ ∂F(u) and −p ∈ ∂G(Au). The former reads

T ∗ p1 + ∇∗p2 = α2T
∗(Tu− g) + βS∗Su = Bu− α2T

∗g.

The latter resolves pointwise to

−p1 = α1
Tu−g
|Tu−g| ,

−p2 = λ ∇u
|∇u|F ,

whenever Tu − g �= 0 or ∇u �= 0 respectively and |p1| ≤ α1 or |p2|F ≤ λ otherwise.
Equivalently one has |p1| ≤ α1, |p2|F ≤ λ a.e. on Ω and

|Tu− g| p1 = −α1(Tu− g),

|∇u|F p2 = −λ∇u,

which concludes the proof.
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