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Abstract
A novel approach for the stabilization of the discontinuous Galerkin method based on the
Dafermos entropy rate crition is presented. The approach is centered around the efficient
solution of linear or nonlinear optimization problems in every timestep as a correction to the
basic discontinuous Galerkin scheme. The thereby enforced Dafermos criterion results in
improved stability compared to the basic method while retaining a high order of accuracy in
numerical experiments for scalar conservation laws. Further modification of the optimization
problem allows also to enforce classical entropy inequalities for the scheme. The proposed
stabilization is therefore an alternative to flux-differencing to enforce entropy inequalities.
As the shock-capturing abilities of the scheme are also enhanced is the method also an
alternative to finite-volume subcells, artificial viscosity, modal filtering, and other shock
capturing procedures in one space dimension. Tests are carried out for Burgers’ equation.

Keywords Discontinuous Galerkin methods · Entropy stability · High-order methods ·
Finite-volume methods · Entropy rate criterion

Mathematics Subject Classification 35L03 · 35L45 · 35L65 · 35L67 · 65M08 · 65M12 ·
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1 Introduction

In this work, a novel shock-capturing approach for discontinuous Galerkin (DG) schemes is
proposed. The first subsection of the introduction gives a short reminder of the basic theory of
hyperbolic conservation laws and the Dafermos entropy rate criterion, which is the basis for
the shock-capturing technique. A second subsection covers the basic discontinuous Galerkin
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Table 1 Used notation

A cell of the subdivision T of the domain � T

The left and right boundaries of cell T Tl , Tr

The space of ansatzfunctions for an cell T V T

L2 projection of u onto V PV u

Interpolation of u on V w.r.t. the collocation points (ξk )
N
k=1 IV u

Vector of nodal values in cell T at time t uT (t)

Ansatz function in cell T at position x and time t uT (x, t)

The total entropy in cell T Eu,T (t)

The discrete total entropy in cell T ET (t)

Entropy variables in cell T ∂U
∂u (uT (x, t))

Vector of nodal values of the entropy variables in cell T at t ∂U
∂u

T
(t)

Interpolation of the entropy variables in cell T on V ∂U
∂u

T
(x, t)

Numerical quadrature of f (x) on the intervall [a, b]
a

b

f (x) x = ∑
k ωk f (xk )

The canonical inner product between a, b ∈ R
n a · b or (a)·(b)

The inner product between u and v on cell T 〈u, v〉T
The p norm of u in cell T ‖u‖T ,p

Exact solution to the initial condition u(x, t0) after t − t0 H(u(·, t0), t − t0)

Mean value of subcell k of N , uT as initial condition uT ,N
k

As a general rule, quantities with only t as an argument are a vector of nodal values at a certain time. Values
with x and t in their argument list are functions that were evaluated at these values. Objects with T added as
exponent are approximations of the quantity in the cell T

framework that is used as a base scheme for our construction. Section2 outlines the general
idea used for the correction, while Sects. 3 and 4 give a preliminary analysis of the properties
of the modification. We close our presentation with numerical tests for Burgers’ equation, a
scalar conservation law, in Sect. 5 and an conclusion.

The used notation is summarized in Table 1.

1.1 Hyperbolic Conservation Laws

In this work we will consider one-dimensional systems of conservation laws form conserved
quantities [12, 30],

∂u(x, t)

∂t
+ ∂ f ◦ u(x, t)

∂x
= 0 for u(x, t) : R × R → R

m, f : R
m → R

m, (1)

where f ◦ u(x, t) = f (u(x, t)) denotes the composition of f and u. As classical solutions
to (1) can break down in finite time [30] one considers weak solutions u, which satisfy

∫ ∞

0

∫

R

(

u(x, t)

)

·
(

∂ϕ(x, t)

∂t

)

+
(

f ◦ u(x, t)

)

·
(

∂ϕ(x, t)

∂x

)

dx dt

+
∫

R

(u(x, 0))·(ϕ(x, 0)) dx = 0.
(2)
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This can be shown for classical solutions by multiplying with a suitable test function ϕ :
R × R → R

m , integrating over the domain and using integration by parts [29]. Sadly, weak
solutions are not unique [28] and one therefore hopes that additional constraints in form of
entropy inequalities,

∂U ◦ u

∂t
+ ∂F ◦ u

∂x
≤ 0, (3)

single out the relevant solution [30]. In this inequality U : R
m → R is the convex entropy

function and F : R
m → R the entropy flux satisfying

dU

du

d f

du
= dF

du
.

One can show that a pair of functions (U , F), satisfying this relation, induces an additional
conservation law for smooth classical solutions. The entropy inequality for weak vanishing
viscosity solution motivates the entropy inequality, as given above [29]. Entropy inequalities
are not the only criterion one can use to shrink the set of admissible solutions. Dafermos
proposed an entropy rate criterion in his seminal work [10]. After defining the total entropy
in the domain,

Eu(t) =
∫

R

U ◦ u(x, t) dx,

he conjectures that the physically relevant solution u is the one satisfying

∀t > 0 : dEu(t)

dt
≤ dEũ(t)

dt

compared to all other weak solutions ũ. See [9, 11, 15] for theoretical examples where the
Dafermos criterion is able to reduce the amount of admissible solutions.

1.2 Discontinuous Galerkin Methods

Discontinuous Galerkin (DG) methods, first considered for time dependent hyperbolic prob-
lems in [2, 7], can be derived as a generalization of classical Finite Volume (FV) methods
[34]. See [4, 5, 24] for a general introduction to DG methods. After the problem domain has
been subdivided into a set T of disjoint cells one can select a basis of ansatzfunctions

BT = {ϕT
1 (x), ϕT

2 (x), . . . , ϕT
M (x)}

associated to every cell T ∈ T . One further conjects that the numerical solution u(x, t) is
a linear combination of these basis functions on every cell and only piecewise continuous
in space. Discontinuities are only allowed to occur at cell interfaces. We denote the space
of ansatzfunctions on cell T by V T = span BT . Often, the index T will be omitted. One
therefore writes

u(x, t) =
∑

T∈T

∑

j∈T
uTj (t)ϕ

T
j (x)χT (x)

as an ansatz for a time dependent function u(·, t)|T ∈ V T with the time dependent coefficients
uTj (t) and the characteristic functions χT (x) of every cell. A time evolution equation for our
ansatz can be derived in every cell T ∈ T by multiplying the conservation law by another
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function v ∈ V T , using partial integration
∫

T

(
∂v

∂x

)

·
(

f (uT (x, t))

)

dx − [v · f (uT (x, t))]TrTl −
∫

T

(

v

)

·
(

∂uT (x, t)

∂t

)

dx = 0,

(4)

and requiring that this equation holds for all v ∈ V T in the same way weak solutions are
defined in (2). One can rewrite (4) as

∀T ∈ T , v ∈ V :
〈
∂v

∂x
, f

〉

T
− [v, f ]T −

〈

v,
∂uT

∂t

〉

T
= 0

using the inner products

〈u, v〉T =
∫

T
(u)·(v) dx, [v, f ]T =

∫

∂T
(v)·( f ) dO.

Evaluating these inner products for u, v ∈ V T is done using the basis representations
(uk)Mk=1, (vk)

M
k=1 of u and v and the Grammian matrices MT and ST associated with cell T ,

MT
k,l = 〈ϕk, ϕl〉T , STk,l =

〈
∂ϕk

∂x
, ϕl

〉

T
.

Clearly, this is possible because of their linearity

〈u(·, t), v(·, t)〉T =
〈
∑

k

ukϕk,
∑

l

vlϕl

〉

T

=
∑

k,l

uk 〈ϕk, ϕl〉T vl = (u)·(Mv) .

A 2-norm is also induced by the inner product 〈·, ·〉 and will later play an import role
∥
∥
∥uT (t)

∥
∥
∥
T ,2

=
√〈

uT (t), uT (t)
〉
T =

√(
uT (t)

)·(MuT (t)
)
,

together with the integral functional on V T

V T � uT �→
T

uT (x, t) x =
〈
1, uT

〉

T
=

(
1
)
·
(
MuT

)
.

Please note that the exact integration of uT depends on the inclusion of constants into V
[21], which will be assumed as given from now on. For nonlinear fluxes the chained function
f ◦ u is not necessarily in V . We therefore must find a different method to evaluate the
inner products involving f at least approximately. Approximating f in the space V via a
projection IV : R

R → V with IV = I
2
V is a common method in this case, leading to the

modified scheme

∀v ∈ V :
〈
∂v

∂x
, IV f

〉

T
− [v, f ]T −

〈

v,
∂u

∂t

〉

T
= 0. (5)

A suitable projection is the interpolation of f using suitable collocation points ξk ∈ T , i.e.

IV f (x) =
∑

k

ϕk(x) fk, with ( fk)
M
k=1 ∈ R

M satisfying ∀ξk : f (ξk) = IV f (ξk).

While one could also think of least squares projections PV , these are as hard to calculate
as the sought after inner product [24]. In what follows, we use the Gauß–Lobatto points as
collocation points [36] and assume that the matrices MT , ST are given with respect to the
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Lagrange polynomials of ξk , i.e. our basis B are the Lagrange polynomials. The practical
implementation should reside also to the usage of Legendre polynomials [24]. The values
of u at the element boundaries are not uniquely determined and neither are their fluxes. One
therefore uses monotone FV two-point fluxes as approximation of the flux over the boundary

f ∗ ≈ f
(
limh↑0 uT

(
xk+ 1

2
+ h, t

)
, limh↓0 uT

(
xk+ 1

2
+ h, t

))
, where the limits of uT (x, t)

are entered into the two arguments. Aswe introduced constants into our approximation space,

〈

1,
duT

dt

〉

T
=

〈
∂1

∂x
, IV f

〉

T︸ ︷︷ ︸
=0

−[1, f ∗]T = f ∗
l − f ∗

r ,

holds. The DG method can therefore be seen as a FV method that uses classical FV fluxes to
determine the flux of conserved quantities between cells but also advances an ansatz inside
the cells using a finite element ansatz. An especially popular choice for the inter cell flux
is the (local) Lax–Friedrichs flux [6, 29]. The complete scheme can be rewritten in vector
matrix notation as

MT du
T

dt
= ST f (uT (t)) −

⎛

⎜
⎝

ϕT
1 (xr ) f ∗

r − ϕT
1 (xl) f ∗

l
...

ϕT
N (xr ) f ∗

r − ϕT
N (xl) f ∗

r

⎞

⎟
⎠ .

The resulting scheme can be integrated in time, for instance, by strong stability preserving
Runge–Kuttamethods [23, 44] or any other solver for ordinary differential equations.Wewill
not consider the problem that if the semidiscrete scheme satisfies some bound or property
will the numerical solution to the ODE system in general not satisfy this bound. Refer to [40]
and [37] for an outline of the problems and a set of possible solutions. Classical DG type
methods use total variation limiters [6] and troubled cell indicators that switch a cell into a
first order FV mode [6] or reconstruct the ansatz from neighboring cells to enforce stability
and improve their abilities to calculate discontinuous solutions. More recent methods using
the summation by parts (SBP) property [3, 17, 41] in conjunction with flux differencing
[16] allow to obtain stability results without the usage of limiters. Another option are the
techniques of Abgrall, who introduced a general entropy correction term [1]. While the
aforementioned results provide entropy stability, the resulting schemes often need additional
stabilization to calculate solutions containing shocks. We will design two similar entropy
correction techniques in this work for the usage in the DG framework based on Dafermos’
entropy rate criterion that also serves as a shock-capturing technique. Prior usage of the
Dafermos entropy rate criterion was based on solving the variational problem given by the
entropy rate criterion in a convex subset of the fluxes [26]. In this work, the entropy rate
criterion will be applied to the approximate solutions inside every cell of the DG scheme
while the fluxes between cellswill be left untouched. Therefore existing reasonable numerical
fluxes can still be used. One should further note that the presented correction operations can
be generalized to multiblock SBP schemes and the author will consider these methods in
the future. The presented techniques will be tested here only without SBP-SAT and flux-
differencing techniques to underline their abilities.
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2 DafermosModification of DGMethods

In the last chapter the DG schemes were introduced. Let us denote an assumed exact solution
operator as H(u(·, t0), τ ) thatmaps an initial condition u(·, t0) onto the solution at time t0+τ .
The finite dimensional vector space V extorts several approximations, like the projection IV

of nonlinear fluxes and that the time derivative of the coefficients duT
dt ∈ V satisfies the weak

formulation only for v ∈ V . The time discretization is therefore in general different from the
projection of ∂H(u(·,t),τ )

∂τ
onto V and also this projection differs from ∂H(u(·,t),τ )

∂τ
.We therefore

select a trajectory from the initial condition leading away from the exact solution u or its
projection onto V . One further knows that weak solutions, which are standard for hyperbolic
conservation laws and built into the DG method, allow more than one path for an exact weak
solution. We will therefore modify the outlined vanilla DG scheme to rule out unwanted
deviations from the assumed trajectory of the assumed exact entropy solution. Unwanted
deviations are deviations that lead to instabilities, non-admissible solutions, oscillations or
high approximation errors. It is therefore conjectured that changing the trajectory duT (t)

dt of
our approximate solution to satisfy a modified Dafermos entropy rate criterion performs the
needed deviation to rule out these problems. We begin the construction of our modification
by the definition of a per cell total entropy as

Eu,T (t) =
∫

T
U (uT (x, t)) dx =

〈
1,U (uT (x, t))

〉

T
≈

〈
1,UT (t)

〉

T
= ET (t),

where UT (t) = U (uT (t)) is the vector composed of the values of U (u) evaluated with
the vector of nodal values uT (t). We will see that our numerical entropy functional for DG
schemes is (strictly) convex and localy Lipschitz continuous under certain circumstances.
One of the needed ingredients is a quadrature formula with perfect stability [19, 20].

Definition 1 (Perfectly Stable Cubature [19, 20]) A quadrature or cubature formula ωk is
termed perfectly stable if

∀k : ωk ≥ 0

holds and the cubature formula is exact for constants, i.e.
∑

k ωk = μ(�), where μ(�) =∫
�
1 dx shall be the measure of the integrated region �.

We will now state some useful properties of our discrete entropy functional condensed into
the following lemma.

Lemma 1 Let ωk be a perfectly stable quadrature formula on the cell T . Then the nonlinear
functional

ET (v) =
∑

k

ωkU (v(xk))

is local Lipschitz continuous. If U is a strictly convex entropy, then ET is strictly convex.
Further, the entropy functional is exact for constant functions and an upper bound for the
entropy of the mean value in the cell

U (u) = U

(∫
uT dx

μ(T )

)

≤ ET (u)

μ(T )
,

as used as per cell entropy in FV methods.
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Proof We begin by showing that the entropy functional is convex, if U is convex. Let λ ∈
[0, 1] and u, v ∈ V be arbitrary. The perfect stability of the quadrature implies

ET (λu + (1 − λ)v) =
∑

k

ωkU (λu(xk) + (1 − λ)v(xk))

≤ λ
∑

k

ωkU (u(xk)) + (1 − λ)
∑

k

ωkU (v(xk))

= λET (u) + (1 − λ)ET (v).

If U is even strictly convex so is also ET because in this case �strictly less� can be
put in place of �less� in the above derivation if u �= v. One further knows that ET is
local Lipschitz continuous in the ‖·‖∞ norm with constant L = LU if U is local Lipschitz
continuous with constant μ(T )LU

∣
∣
∣ET (u) − ET (v)

∣
∣
∣ ≤

∑
ωk |U (u(xk)) −U (v(xk)|

≤
∑

ωk LU ‖u − v‖∞ = μ(T )LU ‖u − v‖∞ .

To show that the functional is exact for constants we just note that our quadrature is exact
for constants and therefore

ET (v̄) =
∑

k

ωkU (v̄(xk)) =
∑

k

ωkU (v̄) = U (v̄)

holds. The last property follows because the quadrature is exact for constants and all v ∈ V
and the calculation of the mean value using this quadrature results in a convex combination
of point evaluations

U (v̄) = U

(∑
k ωkv(xk)
∑

k ωk

)

≤
∑

k ωkU (v(xk))
∑

k ωk
= ET (v)

μ(T )
.

��

Clearly, one now aims to deviate into the reduction of this nonlinear but convex functional,
or semidiscrecetly stated to minimize the derivative of this functional with respect to time

dEu,T (t)

dt
=

∫

T

dU

du

∂u

∂t
=

〈
dU

du
,
∂u

∂t

〉

T
≈

〈
dUT

du
,
duT

dt

〉

T
≈ dET

dt
,

towards the smallest values by varying duT
dt . It should be stressed, that our numerical approxi-

mation of the time derivative of Eu,T is not equivalent to the time derivative of our numerical
approximation of Eu,T , as the mass matrix M is in general not diagonal

〈
dUT

du
,
duT

dt

〉

T
=

〈
dUT

du
, M

duT

dt

〉

�=
〈

1, M

(
dUT

du

duT

dt

)〉

=
〈

1,
dUT

du

duT

dt

〉

T
.

But as we are interested in discretizing the steepest entropy descent, and not the steepest
discrete entropy descent, the first form will be used. Our modification will result in the
following scheme in the discrete case in every step.

1. Given a state uT (tn) calculate the next step ũT (tn+1) using a vanilla RK-DG method as
outlined in the last chapter.
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2. Calculate an error estimate δT for the solution ũT (tn+1), i.e. an reasonably small δT ≥ 0
with the property

∥
∥
∥H(uT (tn),�t) − ũT (tn+1)

∥
∥
∥
T

≤ δT ,

without complete knowledge of the exact solution operator H(·,�t).
3. Solve the optimization problem

uT (tn+1) = argminu∈Z ET (u), with

Z =
{

u ∈ R
n
∣
∣
∣
∣〈1, u〉T = 〈1, ũT (tn+1)〉T ∧

∥
∥
∥u − ũT (tn+1)

∥
∥
∥
T

≤ ε(δT )

}

,
(6)

where ε is a given function of the error δ and uT (tn).

This is a direct statement of the modified Dafermos theorem pioneered by the author in [26].
The original Dafermos entropy rate criterion is thereby augmented with the three additional
constraints:

– The introduced additional approximation error by the dissipation should be small, i.e.
the dissipation should relate to the assumed error towards the exact solution. We would
like to enforce limδ→0 ε = 0.

– The resulting discretisation should still be conservative as defined in [43].
– The entropy rate criterion should not only hold global, but also local, i.e. in every cell.

This mirrors the reduction of a global problem in the calculus of variations to the Euler-
Lagrange equations, that state a local condition.

These three properties are engraved into the statement that the solution of the optimization
problem should still have the same mean value in the cell, i.e. the basic FV method is
unchanged, and that the error introduced by the dissipation is smaller than the bound ε(δ). We
will therefore call this scheme Dafermos Runge–Kutta Discontinuous Galerkin (DRKDG).
While the exact solution of this problem in every time step is not feasible it should be noted
that, if a strictly convex entropyU is used, the resulting optimization problem has an unique
solution, c.f. Sect. 4.

Remark 1 The exact effect of step 3 depends on the selected entropy and the selected norm
used for the restriction, and in general the effect is not the same as scaling to the mean
value. This can be seen from the example shown in Fig. 1 below. There, the situation is
sketched in the hyperplane

〈
1, ũT

〉
T = 〈1, u〉T . As this restriction is just a hyperplane are

convex functions once more convex, especially the entropy and the norm. The next value
of a vanilla DG method ũT (tn+1) was added with the radius of a norm ball given by the
error estimator. This can be thought of the set Z in this picture, as the entire situation is
drawn in the hyperplane of constant mean value of u, i.e. the second condition for the set Z
is automatically satisfied for all points in the plane. A minimizer of the entropy in the entire
plane is given by the constant function ū with the same mean value, as can be seen from
Lemma 3. Scaling towards the mean value results in movement on a straight line between
these two points. A solution uT (tn+1) of the optimization problem is on the other hand given
by an intersection of the lowest contour line that touches the norm ball, and the norm ball
around ũT . Obviously, this point is in general not part of the straight line. It should be noted
that this could be the case if the contour lines of the entropy are circles them-self, but this
is not even the case for scalar conservation laws, as the quadrature rule will in general have
varying weights.
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Fig. 1 Sketch of the solution of the optimization problem from step 3 of the DRKDG scheme

A related algorithm also can be given for a semi-discrete scheme in the following form.

1. Calculate the time derivative dũT
dt of the semidiscretisation using a vanilla DG scheme.

2. Estimate the error δT in cell T , i.e. find δT ≥ 0 with
∥
∥
∥
∥
dũT

dt
+ ∂ f (uT (x, t))

∂x

∥
∥
∥
∥
T

≤ δT

in a suitable norm. In this case ∂ f (uT (x,t))
∂x must not be understood as a classical derivative,

as it will exist only in a distributional sense.
3. Solve the optimization problem

duT

dt
= argminut∈Z

dET

dt

(
uT , ut

)
with

Z =
{

ut ∈ R

∣
∣
∣
∣ 〈1, ut 〉T = 0 ∧

∥
∥
∥
∥ut − dũk

dt

∥
∥
∥
∥
T

≤ ε(δT )

}

,

(7)

where ε(δT ) is a given function of the error δT and uT (t).

Wewill call this second versionDafermosDiscontinouousGalerkin (DDG). The optimization
problem in this modified algorithm can be solved exactly, as we will see in the next chapter.
Clearly, finding the correct error estimate and solving the optimization problems are intricate
steps in the algorithm andwewill often reside to using the semi-discrete form of the algorithm
because the optimization problem, and the error estimate, are significantly simpler. Another
motivation for this method can be made by the following observation. Assume, that the time

derivative of the exact solution ∂u
∂t = ∂H(uT (·,t),τ )

∂τ
and the entropy variable dU (u)

du (uT (·, t))
lie in the approximation space V . This implies ∂u

∂t exists almost everywhere. Then follows

∫

T

∂U (uT (x, t))

∂t
dx =

〈
dU

du
,
∂u

∂t

〉

T
≤ FT

l − FT
r

in the sense of distributions in time for an entropy stable numerical FV flux f with numerical
entropy flux F , from an integration of the entropy inequality (3) and the chain rule at all points

where ∂u
∂t exists. Assume now that duT

dt is the time derivative of a (numerical) approximation
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of u(x, t) inside T that satisfies

∥
∥
∥
∥
∂u

∂t
− duT

dt

∥
∥
∥
∥
T ,2

≤ δ.

The Cauchy–Schwarz inequality [31] allows us to bound the entropy production in this case

〈
dU

du
,
duT

dt
− ∂u

∂t

〉

T
≤

∥
∥
∥
∥
dU

du

∥
∥
∥
∥
T ,2

δ

�⇒
〈
dU

du
,
duT

dt

〉

T
≤

〈
dU

du
,
∂u

∂t

〉

T
+ δ

∥
∥
∥
∥
dU

du

∥
∥
∥
∥
T ,2

against the entropy production of the exact solution. If we now apply an entropy correction

to duT
dt by adding a deviation of length δ into the direction of the steepest entropy descent

follows
〈
dU

du
,
duT

dt
− δ

dU
du∥

∥ dU
du

∥
∥

〉

T

=
〈
dU

du
,
duT

dt

〉

T
− δ

∥
∥
∥
∥
dU

du

∥
∥
∥
∥
T ,2

≤
〈
dU

du
,
∂u

∂t

〉

T
+ δ

∥
∥
∥
∥
dU

du

∥
∥
∥
∥
T ,2

− δ

∥
∥
∥
∥
dU

du

∥
∥
∥
∥
T ,2

≤ FT
l − FT

r ,

that the entropy production of our numerical solution is bounded by the entropy production
of the exact solution. This would encourage us to use ε(δ) = δ in the previous algorithm.
Sadly, in general, we will not have an exact integration of the inner products as the exact
solution and entropy will not lie in our space V . We are further restricted to entropy descent
directions that do not change the mean value of the cell. The existence and regularity of u for
multidimensional systems is part of ongoing research and a generalization of this observation
to counteract these problems will be part of the next section.

Remark 2 Before we start the construction of a error indicator tailored to our needs in the
next section it is worthwhile to mention previous literature on error estimates. A posterior
error estimates can for example be constructed using Kruzkhovs uniqueness theory [27, 38].
As the basic Kruzkhov theory leans on the L1 theory are these estimates also L1 estimates,
and therefore lead to more complicated variational descriptions of the correction presented
above. For DDG, the L2 together with the Cauchy-Schwarz in-equality leads to relatively
simple solutions in the semi-discrete case, as we will see in Lemma 2. Further, one would
be restricted to scalar conservation laws. A different approach, yielding L2 error estimates
for systems, is based on the relative entropy framework by Dafermos [8, 14]. These error
estimates seem like a natural fit for our application, but numerical experiments show that they
tend to infinity for discontinuous solutions [13, 18] under grid refinements, as the relative
entropy framework assumes Lipschitz continuity of the solution. We would like to stress that
readers should consider those methods for general error estimates with a solid mathematical
foundation, as the error indicator in this work was designed specifically to prove an entropy
inequality and follow Dafermos’ entropy rate criterion. The base assumption of our estimate
in the next section will be, that the Lax-Friedrichs scheme or a similar first order E-scheme
converges for the given equation and initial data, which is an ad-hoc argument compared to
the previously mentioned error estimates.
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3 Construction of the Semidiscrete Scheme

We begin our search for error estimators with the design of an error estimator for the semi-

discrete scheme, i.e., the error of the derivative duT
dt in relation to ∂u

∂t . We will afterwards
generalize this semi-discrete case to design an error estimator for the discrete scheme. Esti-
mating the error in FV methods was already done using linearized conservation laws in the
sense of Friedrichs systems [45–47, 52] and numerical integration of the residual. We will
use a similar procedure as error estimate for our semi-discrete problem, but will directly
apply a quadrature to the error between our weak solution and the projection of a second
suitably fine solution onto the space V of ansatz functions. This seems problematic first,
and two questions arise. The first one is why to project a function if we could just use this
function as the solution of our scheme, and the second concerns the cost of calculating this
more accurate solution. Our reference solution will be the result of a subcell scheme [48].
We will see that the projection of this subcell scheme depends on the size h of the subcells in
such a way that one easily goes over to the limit h → 0. This limit will be a lot cheaper than
the subcell scheme it replaces. We will first define our subcell scheme in the following way

Definition 2 [Finite Volume subcells] Let uT (x) be an ansatz on a cell T = [xl , xr ] ⊂ R and
let

xl = x 1
2

< x1 < x 3
2

< · · · < xN < xN+ 1
2

= xr

be a subdivision of this cell into N subcells around xk and with left boundary xk− 1
2
and

right boundary xk+ 1
2
. Let us denote the space of piecewise constant functions on T with

discontinuities at xk+ 1
2
by

P0
(xk )k = { f : R → R|∀k ∈ {1, . . . , N },∀x ∈ [xk− 1

2
, xk+ 1

2
] : f (x) = fk}.

As a projection of our ansatz into this space shall the calculation of mean values

uT ,N
k = 1

xk+ 1
2

− xk− 1
2

∫ x
k+ 1

2

x
k− 1

2

uT (x, t) dx

be used. We define by

G : V → P0
(xk )k , u

T �→
N∑

k=1

χ[x
k− 1

2
,x

k+ 1
2
]uT ,N

k

the projection of our ansatz function onto the space of piecewise constant functions.

If an arbitrary uT is projected in this way onto a function in P0
(xk )k

it can be used as an initial
condition to a low order FV scheme on the subcells. The used numerical flux can be the
same as the one used as intercell flux of the DG scheme. The solution of this scheme will, at
least for small times, be a function in Lp(�) at any fixed instant of time. We can moreover
interpret it as a differentiable mapping

uT ,N (·, t) : R → Lp, t �→
N∑

k=1

χ[x
k− 1

2
,x

k+ 1
2
](x)uTk (t)

by the following definition. The result at any fixed time lends itself to be projected back onto
the space V .
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Definition 3 (Semi-discrete schemes as Lp functions) Let f (ul , ur ) be an entropy stable two
point flux.Wewill interpret to a given initial state uTk the solution uT ,N

k (t) of the semi-discrete
scheme

duT ,N
k

dt
=

f
(
uT ,N
k−1 , uT ,N

k

)
− f

(
uT ,N
k , uT ,N

k+1

)

xk+ 1
2

− xk− 1
2

as a function uT ,N (·, t) ∈ Lp(�) by defining

uT ,N (x, t) =
∑

k

χ[

x
k− 1

2
,x

k+ 1
2

](x)uT ,N
k (t).

We therefore also can give an interpretation of the time derivative of the scheme as an Lp

function

∂uT ,N (x, t)

∂t
=

∑

k

χ[

x
k− 1

2
,x

k+ 1
2

]
f

(
uT ,N
k−1 , uT ,N

k

)
− f

(
uT ,N
k , uT ,N

k+1

)

xk+ 1
2

− xk− 1
2

=
∑

k

χ[

x
k− 1

2
,x

k+ 1
2

]
duT ,N

k (t)

dt
.

The last definition allowsus to devise approximate solutions to a given ansatzuT as initial state
by choosing an appropriate numerical flux f (ul , ur ), and we will often do so by choosing the
same flux as in the DG scheme under consideration, projecting, solving, and projecting back.
The limiting process N → ∞ is delicate if the initial condition is discontinuous between
cells, even at t = 0. The L1 norm of the derivative for the cell stays bounded while all norms
with higher exponents blow up. This can be seen for the L2 norm for example, assuming a
discontinuity at the left edge of the cell, as

∥
∥
∥
∥
∂uT ,N (t)

∂t

∥
∥
∥
∥
T ,2

=

√
√
√
√
√

N∑

k=1

⎛

⎝
f

(
uT ,N
k−1 , uT ,N

k

)
− f

(
uT ,N
k , uT ,N

k+1

)

xk+ 1
2

− xk− 1
2

⎞

⎠

2

(xk+ 1
2

− xk− 1
2
)

≥
∣
∣
∣ f

(
uT ,N
0 , uT ,N

1

)
− f

(
uT ,N
1 , uT ,N

2

)∣
∣
∣

√
x1+ 1

2
− x 1

2

N→∞−−−−→ ∞

holds as a consequence of xk+ 1
2

→ xk− 1
2
in this case, because the fluxes are discontinuous

at the edges. For the inner of the domain and also the edges, if uT (x, t) is differentiable at
the cell interfaces, follows on the contrary by the consistency of the flux

f
(
uT ,N
k−1 , uT ,N

k

)
− f

(
uT ,N
k , uT ,N

k+1

)

xk+ 1
2

− xk− 1
2

N→∞−−−−→ −∂ f (uT )

∂x

(

lim
N→∞ xk

)

.
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We will split the derivative of our approximate solution from now on into two parts which
we will call the singular and the regular part. The singular part

(1 − R)
∂uT ,N

∂t
=

f
(
uT ,N
0 , uT ,N

1

)
− f

(
uT ,N
1 , uT ,N

2

)

x 3
2

− x 1
2

χ[

x 1
2
,x 3

2

](x)

+
f

(
uT ,N
N−1, u

T ,N
N

)
− f

(
uT ,N
N , uT ,N

N+1

)

xN+ 1
2

− xN− 1
2

χ[

x
N− 1

2
,x

N+ 1
2

](x)

is the derivative of the subcells next to the cell boundary of the outer big cell. The regular
part

R
∂uT ,N

∂t
=

N−1∑

k=2

χ[

x
k− 1

2
,x

k+ 1
2

]
f

(
uT ,N
k−1 , uT ,N

k

)
− f

(
uT ,N
k , uT ,N

k+1

)

xk+ 1
2

− xk− 1
2

shall be the derivative of the subcells using only the extrapolated inner polynomial of the cell.
Although the 2-norm of our approximate solution derivative blows up under grid refinement,
we can still project this approximate solution onto the function space of our ansatzes V for
fixed N . One can even find a closed expression for the limit of this projection for N → ∞,
and this limit exists as the sequence of projections is bounded in the L2 norm by the norm of
the sequence of solutions prior to the projection in the L1 norm

∥
∥
∥
∥PV

∂uT ,N (x, t)

∂t

∥
∥
∥
∥
T ,2

≤
M∑

k=1

∥
∥
∥
∥

ϕk

〈ϕk, ϕk〉 T ,2

〈

ϕk,
∂uT ,N

∂t

〉∥
∥
∥
∥
T ,2

≤
M∑

k=1

‖ϕk‖T ,∞
∥
∥
∥ ∂uT ,N

∂t

∥
∥
∥
T ,1

‖ϕk‖T ,2
.

Because of our split into the regular and singular part we can estimate the norm of the time
derivative as

∥
∥
∥
∥
∂uT ,N

∂t

∥
∥
∥
∥
T ,1

≤
∥
∥
∥
∥R

∂uT ,N

∂t

∥
∥
∥
∥
T ,1

+
∥
∥
∥
∥(1 − R)

∂uT ,N

∂t

∥
∥
∥
∥
T ,1

.

The norm of the regular part has to converge to ∂ f
∂x , as stated before, and therefore be bounded.

The singular part is clearly bounded by

∥
∥
∥
∥(1 − R)

∂uT ,N

∂t

∥
∥
∥
∥
T ,1

≤
∣
∣
∣ f

(
uT ,N
0 , uT ,N

1

)
− f

(
uT ,N
1 , uT ,N

2

)∣
∣
∣ +

∣
∣
∣ f

(
uT ,N
N−1, u

T ,N
N

)
− f

(
uT ,N
N , uT ,N

N+1

)∣
∣
∣ .

We will now calculate a closed expression for the limit N → ∞ for the sequence of these
projections. For the regular part

R
∂uT ,N

∂t
N→∞−−−−→ −∂ f

∂x
�⇒ PV R

∂uT ,N

∂t
N→∞−−−−→ − PV

∂ f

∂x

follows because of the convergence in the L2 norm of the regular part towards the strong
spacial flux derivative. Calculating the L2 projection of the singular part boils down to the
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calculation

∫

T
ϕk(x)χ[

x 1
2
,x 3

2

]
f

(
uT ,N
0 , uT ,N

1

)
− f

(
uT ,N
1 , uT ,N

2

)

x 3
2

− x 1
2

dx

=
∫ x 3

2

x 1
2

ϕk(x)
f

(
uT ,N
0 , uT ,N

1

)
− f

(
uT ,N
1 , uT ,N

2

)

x 3
2

− x 1
2

dx

= ϕk(ξ)
(
f

(
uT ,N
0 , uT ,N

1

)
− f

(
uT ,N
1 , uT ,N

2

))
, ξ ∈

[
x 1
2
, x 3

2

]

N→∞−−−−→ ϕk(0)
(
f ∗
l − f

(
uT (xl)

))
.

This shows

PV (1 − R)
∂uT ,N

∂t
N→∞−−−−→

∑

k

ϕk(xl)

〈ϕk, ϕk〉
(
f ∗
l − f

(
uT (xl)

))

+ ϕk(xr )

〈ϕk, ϕk〉
(
f

(
uT (xr )

)
− f ∗

r

)
.

Here we used the mean value theorem of integration. Interestingly, the sequence of the
projected approximate solution derivatives does not blow up in the norm but stays bounded
also in all norms as our ansatz functions are bounded in all norms.Wewill use this knowledge
later to calculate the distance between this projected approximate solution and the solution
yielded by the DGmethod as an error estimate. This is possible as we can calculate the spatial
derivative of our ansatz function uT (x, t), that is smooth in the inner of every cell, exactly
as

∂uT (x, t)

∂x
= ∂

∂x

∑

l=1

uTl (t)ϕl(x) =
∑

l=1

uTl (t)
∂ϕl(x)

∂x
.

One has therefore for x ∈ ◦
T

∂u

∂t
= −∂ f (uT (x, t))

∂x
= −∂ f

∂u

∂uT

∂x

by usage of the chain rule and has therefore, in theory, access to the projection of the limit
of the low order scheme.

Sadly, the exact evaluation of the error is still a nontrivial task as we would need to project
the regular part of our assumed exact solutions derivative, calculated using the strong form,
onto our vectorspace V . Because this is in general a function u ∈ Ck is this a hard problem.
Incidentally, the singular part can be projected easily, as we saw earlier. We will therefore
estimate the norm of the distance between the limit of the projections and the DG scheme
by

∥
∥
∥
∥
duT

dt
− PV R

∂uT ,N

∂t
− PV (1 − R)

∂uT ,N

∂t

∥
∥
∥
∥
p

=
∥
∥
∥
∥PV

(
duT

dt
− R

∂uT ,N

∂t
− PV (1 − R)

∂uT ,N

∂t

)∥
∥
∥
∥
p

≤
∥
∥
∥
∥
duT

dt
− R

∂uT ,N

∂t
− PV (1 − R)

∂uT ,N

∂t

∥
∥
∥
∥
p
,
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where the estimate follows from the fact that duT
dt and PV (1 − R) ∂uT ,N

∂t lie in V , and are
therefore fixed points of the projection, and the projection operator has a norm smaller than
one. The author would like to stress that the function in the norm on the right hand side of
the equation is as smooth as the (numerical) flux function and can be evaluated exactly at any
point. It is therefore only logical to evaluate this norm in case of the 2 norm using numerical
quadrature, which was done in the numerical tests. Quadrature rules of the Gauß–Legendre
family were chosen in the numerical tests. We will from now on refer to the limit of the
regular part of the approximate solution by the low-order scheme together with the limit of
the irregular part projected onto V as the reference solution

∂uref

∂t
= R

∂uT ,∞

∂t
+ PV (1 − R)

∂uT ,∞

∂t
.

As explained before, our solver needs to solve an optimization problem after every time
step for the discrete, or for every evaluation of the time derivative in the semi discrete
algorithm. We will first consider the optimization problem of the semi discrete scheme as
this will in fact also be a building block for our approximate solution to the optimization
problem in the discrete case. The semi discrete problem is, luckily, a linear one and can be
solved exactly, as we will see in the next lemma.

Lemma 2 [Restricted gradien descent] A solution s of the semidiscrete optimization problem
(7) is given by

g = −dUT

du
(uT ), h = g − 〈1, g〉T

〈1,1〉T 1, s =
{

εh√〈h,h〉T h �= 0

0 h = 0

and this solution is unique if dU
T

du �= c1 holds, i.e. when the solution in the cell is not constant.

Proof We beginn our proof by showing that s ∈ Z holds. Clearly,

〈1, s〉T = ε√〈h, h〉T

(

〈1, g〉T − 〈1, g〉T
〈1,1〉T
〈1,1〉T

)

= 0

shows that the solution lies in the linear subspace V ⊃ W = {v ∈ V | 〈1, v〉T = 0}. The
rescaling from h to s also implies

‖s‖T ,2 = √〈s, s〉T = ε

√〈h, h〉T√〈h, h〉T
= ε.

The set Z = W ∩ Bε is clearly the intersection of vectors of length less than or equal ε

and the subspace W and hence s lies inside this vectorspace. After the admissibility of s
was established we can take care of the optimality. We will first show that for the restriction

g ∈ Bε is a scaled version of g = − dUT

du indeed the optimal descent direction. We will
afterwards show that the optimal descent direction is s = Pw g if only directions in the
subspace W are considered. Clearly,

〈
dUT

du
, ε

g

‖g‖T ,2

〉

T

=
〈
dUT

du
,−ε

dUT

du∥
∥
∥ dUT

du

∥
∥
∥
T ,2

〉

T

= −ε

∥
∥
∥
∥
dUT

du

∥
∥
∥
∥
T ,2

holds, because dUT

du and s are colinear. Let now v ∈ V be arbitrary with ‖v‖T ,2 = ε. The
Cauchy-Schwarz inequality implies

∣
∣
∣
∣

〈
dUT

du
, v

〉

T

∣
∣
∣
∣ ≤

∥
∥
∥
∥
dUT

du

∥
∥
∥
∥
T

ε.
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It therefore follows
〈
dUT

du
, s

〉

T
≤

〈
dUT

du
, v

〉

T
,

and this inequality is strict for dUT

du �= c1 and v �= s, as in this case s �= 0 and dUT

du �= 0

follows and the Cauchy-Schwarz inequality is equal only if dUT

du and s are colinear in this
case. We note in passing that 〈·, ·〉T , as a inner product on V , also is an inner product on
W and hence the Cauchy-Schwartz inequality applies for all elements in W . We can further
decompose V into W⊥ and W and if at least one vector v ∈ W of two vectors v,w ∈ V is
from W follows

〈v,w〉 = 〈
PW v + PW⊥ v,w

〉 = 〈PW v,w〉 .

we can therefore conclude that the aforementioned proof can be reread with PW
dUT

du and

still applies, if only vectors v ∈ W are allowed, or equivalently PW
dUT

du is entered instead

of dUT

du . This in turn equals s. ��

Remark 3 Abgrall and collaborators in [1] showed that the entropy correction terms derived
for the residual distribution schemes to enforce entropy conservation can be interpreted as
solutions to optimization problems. These correction terms or the respective solutions to the
optimization problems lead to the same descent directions, albeit their optimization problems
are different. A closer inspection reveals that the optimization problems are in fact more or
less dual to ours. Still, we are not interested in entropy conservation but high dissipation
restricted by error bounds.

Remark 4 The expression s in lemma 2 above is discontinuous at h = 0 as it jumps from a
vector of length ε to 0. Similar problems appear when WENO weights [32] are computed
and we therefore use and advise to use

s = εh√〈h, h〉T + c

as a stand in term. The constant c ≈ 10−30 averts a division by zero and removes a conditional
expression in the same wayWENO weights are computed in a stable manner while avoiding
a division by zero. If ε is in the region of the relative machine precision the correction can
be omitted.

Knowledge of the solution also allows us to give a lower bound for δ that makes our
scheme even entropy dissipative in the classical sense.

Theorem 1 [Classical entropy inequality for DDG] Assume that a monotone entropy stable
FV flux f (ul , ur ) and a strictly convex and twice continuously differentiable entropy U is
used. Let ε be determined by the following expression, depending on u

ε ≥ lim
N→∞

‖h‖T ,2〈
h, dUT

du

〉

T

(

δ(N )

∥
∥
∥
∥
∥

d̃UT

du

∥
∥
∥
∥
∥
T ,2

+ δU

∥
∥
∥
∥
∂uT ,N

∂t

∥
∥
∥
∥
T ,1

)

,

δ(N ) =
∥
∥
∥
∥
duT

dt
− ∂uref,N

∂t

∥
∥
∥
∥
T ,2

, δU =
∥
∥
∥
∥
dU

du

(
uT

)
− dUT

du

∥
∥
∥
∥
T ,∞

. (8)
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Then hold the two entropy inequalities

dEu,T

dt
≤ FT

l − FT
r ,

dEu,T

dt
(t0) ≤ lim

N→∞
d

dt

∫

T
U

(
uT ,N

)
dx,

for our modified scheme

duT ,D

dt
= duT

dt
− s.

The first inequality states that our solution satisfies a discrete entropy inequality, while the
second one states that the entropy decreases faster than the entropy of the limit solution of
the subcell scheme.

Proof Let us remark before we start with our proof, that our corrections to the base scheme
have zero mean value, i.e. the mean value of the time derivative of our scheme and of the
base scheme are the same. We will exploit this behavior in what follows and use

duT

dt
= duT

dt
+ d̃uT

dt

as a notation for the splitting of a function g into a constant function g with the mean values
of g and a function g̃ representing the variation of g around it’s mean value. If uT = uT holds
we can look at the special case of our base FV scheme as in this case dU

du (u(xk)) = dU
du (ū)

dEu,T (u(t))

dt
=

〈
dU

du
,
duT

dt

〉

T
= dU

du
(ū)

〈

1,
duT

dt

〉

T
= dU

du
(ū)( f Tl − f Tr ) ≤ (FT

l − FT
r )

is satisfied. Here we used that the entropy flux F(ul , ur ) of the entropy stable flux f (ul , ur )
satisfies

dU

du
(um)( f (ul , um) − f (um, ur )) = dU

du

dum
dt

= dU

dt
≤ F(ul , um) − F(um, ur ).

See for example [49, 50]. This entropy inequality also allows us to proof

lim
N→∞

〈
dU

du
(uT ,N ),

duT ,N

dt

〉

= lim
N→∞

d

dt

∫

T
U (uT ,N (x, t)) dx ≤ FT

l − FT
r (9)

for arbitrary uT (x, t), as this holds for the summed contributions of the FV subcell scheme
in the cell for fixed N , and also in the limit. Clearly holds also

lim
N→∞

〈
dU

du
(uT ),

∂uT ,N

∂t

〉

= lim
N→∞

〈
dU

du

(
uT ,N

)
,
∂uT ,N

∂t

〉

as
∥
∥
∥ ∂uT ,N

∂t

∥
∥
∥
T ,1

stays bounded while
∥
∥ dU

du

(
uT

) − dU
du

(
uT ,N

)∥
∥
T ,∞

N→∞−−−−→ 0 holds as the

ansatz is continuous in the cell. We will assume from now on uT �= ū and therefore also that

h = g − 〈1, g〉
〈1,1〉 1 �= 0

because dU
du (uT ) = 0 is only possible for a single u ∈ R

n and u �= ū implies ∂U
∂u �= ∂U

∂u
as the entropy is strictly convex. We will now generalize our argument from the last section

concerning the entropy dissipativity of our approximate time derivative duT
dt . It is imperative

to first concentrate on the case where N is finite as done before for the entropy inequality for
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the subcell scheme and derive appropriate bounds. We will afterwards go over to the limit to
prove the theorem. Let us denote by dU

du (uT (x, t)) the exact value of the entropy variables
associated with the numerical solution uT (t) while

dUT

du
(uT (x, t)) =

∑

j∈T
ϕ j (x)

dU

du
(uT (x j , t)),where ϕ j (x) are Lagrange polynomials,

shall be the interpolation of dU
du (uT (x, t)) in the spaceV .We can therefore state the errormade

in the prediction of the entropy dissipation by interchanging the exact entropy functional with
the one living in our approximation space

〈
dU

du

(
uT (·, t)

)
,
∂uT ,N

∂t

〉

T

=
〈
dUT

du
,
∂uT ,N

∂t

〉

T
+

〈
dU

du

(
uT (·, t)

)
− dUT

du
(·, t), ∂uT ,N

∂t

〉

T︸ ︷︷ ︸

≤δU

∥
∥
∥ ∂uT ,N

∂t

∥
∥
∥
T ,1

.

Because dUT

du is from V we can exchange ∂uT ,N

∂t for ∂uref,N
∂t

〈
dUT

du
,
∂uT ,N

∂t

〉

=
〈
dUT

du
,
∂uref,N

∂t

〉

without any penalty as ∂uT ,N

∂t − ∂uref,N
∂t ∈ V⊥ holds. If we also swap the reference time

derivative for our scheme derivative duT ,N

dt , we find
〈
dUT

dt
,
∂uref,N

∂t

〉

T

=
〈
dUT

du
+ d̃UT

du
,
∂uref,N

∂t
+ ∂̃uref,N

∂t

〉

T

=
〈
dUT

du
+ d̃UT

du
,
∂uref,N

∂t

〉

T︸ ︷︷ ︸
same mean value

+
〈
dUT

du
,
∂̃uref,N

∂t

〉

T︸ ︷︷ ︸
orthogonality

+
〈
d̃UT

du
,
∂̃uref,N

∂t

〉

T

=
〈
dUT

du
+ d̃UT

du
,
duT

dt

〉

T

+
〈
dUT

du
,
d̃uT

dt

〉

T

+
〈
d̃UT

du
,
d̃uT

dt

〉

T︸ ︷︷ ︸
〈
dUT
du , du

T
dt

〉

T

+
〈
d̃UT

du
,
∂̃uref,N

∂t
− d̃uT

dt

〉

T︸ ︷︷ ︸

≤
∥
∥
∥
∥
d̃UT
du

∥
∥
∥
∥
T ,2

δ(N )

.

Please note that we used several facts of our reference solution and our approximate solution
to sharpen this bound to only depend on the variation of the entropy variables and the variation
of the solution around their respective mean values. This was possible after the inner product
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was split into the respective inner products of themean values and variations around themean

values with each other. As our reference solution ∂uref
∂t and duT

dt share the same mean values
we can easily swap one for the other in the first inner product. The second inner product in
this decomposition can also be swapped, as it is by definition zero. This follows from the
fact that the mean values, calculated with respect to the inner product of T , are orthogonal
to the variations. The only penalty that has to be bounded consists of the inner product of the
variations. Combining the previous steps leads us to

∣
∣
∣
∣

〈
dU

du

(
uT (t)

)
,
∂uT ,N

∂t

〉

T
−

〈
dUT

du
(t),

duT

dt

〉

T

∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

〈
d̃UT

du
(t),

∂̃uref,N

∂t
− d̃uT

dt

〉

T

∣
∣
∣
∣
∣
∣
+

∣
∣
∣
∣

〈
dU

du
− dUT

du
,
∂uT ,N

∂t

〉

T

∣
∣
∣
∣

≤
∥
∥
∥
∥
∥

d̃UT

du

∥
∥
∥
∥
∥
T ,2

δ(N ) + δU

∥
∥
∥
∥
∂uT ,N

∂t

∥
∥
∥
∥
T ,1

as an upper bound for the difference of the exact entropy dissipation and the entropy dissi-
pation of our approximate solution. If ε is set according to the value given above, one finds
that the following inequality holds as the additional entropy production that can be bounded
using the error δ and δU can be fully counteracted by the entropy dissipation of the steepest
descent direction

〈
dUT

du
,
duT

dt
− sN

〉

T
=

〈
dUT

du
,
duT

dt
− εN

h

‖h‖
〉

T
=

〈
dUT

du
,
duT

dt

〉

T
− ε

〈
h, dUT

du

〉

T

‖h‖T ,2

=
〈
dUT

du
,
duT

dt

〉

T
−

(

δ

∥
∥
∥
∥
∥

d̃UT

du

∥
∥
∥
∥
∥
T ,2

+ δU

∥
∥
∥
∥
∂uT ,N

∂t

∥
∥
∥
∥
T ,1

)

≤
〈
dU

du

(
uT (t)

)
,
∂uT ,N

∂t

〉

.

The given lower bound for ε behaves significantly better than one would think. A primary

reason for this is that h is co-linear to d̃UT

du and relates to dUT

du via an orthogonal projection.
Therefore is the expression

‖h‖T ,2

∥
∥
∥
∥
d̃UT

du

∥
∥
∥
∥
T ,2〈

h, dUT

du

〉

T

=
‖h‖T ,2

∥
∥
∥
∥
d̃UT

du

∥
∥
∥
∥
T ,2〈

h, d̃UT

du

〉

T
+

〈

h, dUT

du

〉

T

bounded. We showed earlier, that the limit of the reference solution exists. We can therefore
go over to the limit and conclude that

〈
dUT

du
,
duT ,D

dt

〉

T
=

〈
dUT

du
,
duT

dt
− s

〉

T
≤ lim

N→∞
d

dt

∫

T
U

(
uT ,N

)
dx

holds in the limit. The last step in our proof is a comparison principle. We combine the last
equation with (9) to find

〈
dUT

du
,
duT ,D

dt

〉

T
=

〈
dUT

du
,
du

dt
− s

〉

T
≤ FT

l − FT
r .

��
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4 Construction of the Discrete Scheme

Designing an error estimator for the discrete scheme is amore delicate issue. The observation

d

dt

∥
∥
∥uref (·, t) − uT (·, t)

∥
∥
∥
T ,2

= d

dt

√〈
uref (·, t) − uT (·, t), uref (·, t) − uT (·, t)〉T

=
d
dt

〈
uref (·, t) − uT (·, t), uref (·, t) − uT (·, t)〉T

2
√〈

uref (·, t) − uT (·, t), uref (·, t) − uT (·, t)〉T

=
〈
uref − uT , ∂uref

∂t − duT
dt

〉

T∥
∥uref − uT

∥
∥
T ,2

≤
∥
∥
∥
∥
∂uref

∂t
− duT

dt

∥
∥
∥
∥
T ,2

= δTt

allows us to estimate the total error made in cell T if we know the error between the derivative
of the reference solution and the exact solution,

∥
∥
∥uref (x, t) − uT (x, t)

∥
∥
∥
T ,2

≤
∫ t

0

∥
∥
∥
∥
∂uref

∂t
(τ ) − duT

dt
(τ )

∥
∥
∥
∥
T ,2

dτ =
∫ t

0
δTτ dτ.

But during the integration of such an error estimate in time the two solutions will in general
start to drift apart from each other. Calculating a reference derivative would therefore need
the knowledge of the exact solution. We will assume therefore that the total error between
reference solution and numerical solution stays small enough towarrant us using the reference
derivative at time τ as calculated from the solution uT (·, τ ) and not with respect to uref (·, τ ).
As in the other cases, we will reside to numerical quadrature for the calculation of this
quantity. The integrand was already used as an error estimate in the semidiscrete case. For
the calculation of the outer integral in the time direction it is worthwhile to consider the
connection between Runge–Kutta time integration and numerical quadrature. If for example
the SSPRK33 solver [44]

u(1) = u(0) + �t L(u(0))

u(2) = u(0) + 1

4
�t L(u(0)) + 1

4
�t L(u(1))

u(3) = u(0) + 1

6
�t L(u(0)) + 1

6
�t L(u(1)) + 2

3
�t L(u(2))

is used one sees clearly, that this in fact a numerical quadrature of du
dt = L(u) where first

using the left sided Newton-Cotes formula an approximation u(1) for the solution at �t is
calculated. Next an approximation u(2) for the solution at time �t/2 is calculated using the
trapezoidal rule

∫ �t

0

du

dt
dt ≈ L(u(0)) + 4L(u(�t/2)) + L(u(�t))

6
,

and as a last step a better approximation of the rightmost value is calculated using the Simpson
rule and the two precalculated approximations. If our semi-discrete error estimate is local
Lipschitz continuous, which it clearly is, it is therefore a logical decision to choose the
quadrature of the time integrator as error estimate quadrature. One can therefore also reuse
the interim results of the time integrator. Our discrete error estimate therefore reads as

δT = �t
δTt

(
u(0)

) + 4δTt
(
u(2)

) + δTt
(
u(1)

)

6
, (10)

123



Journal of Scientific Computing (2023) 95 :55 Page 21 of 37 55

and is third order accurate, as is the timesteping algorithm.

Lemma 3 [Existence of at most one solution] The optimization problem stated for the
DRKDG method (6) possesses a unique solution if a strictly convex entropy functional is
used.

Proof The set Z is closed and bounded, hence compact, and the functional ET (u) continuous.
Therefore there exists a u in Z with ∀v ∈ Z : ET (u) ≤ ET (v). Concerning the uniqueness,
the strict convexity of ET (·) implies that if u, v ∈ V , with u �= v, would exist with ET (u) =
ET (v) and ∀w ∈ W : ET (u) ≤ ET (w) a contradiction for λ = 1

2 and w = λu + (1 − λ)v

would arise as

ET (w) = ET (λu + (1 − λ)v) < λET (u) + (1 − λ)ET (v) = ET (u)

would follow from the strict convexity in this case. ��
Solving the optimization problem for the discrete case ismore intricate than in the semidis-

crete case. While a solution for the simple entropy U (u) = u2
2 could be computed by hand,

the computation for complicated entropies is not feasible. We will therefore concentrate on
the numerical approximation of a solution. A simple, yet effective, procedure seems to be
the gradient descent

uT ,n+1 = uT ,n − λh

with appropriately chosen step sizeλ [35]. The descent directionwill be, as in the semidiscrete
case, the solution to the steepest descent problem from Lemma 2. As we would like to solve
this problem in every complete RK step should the cost of the nonlinear solver be of the same
magnitude as the repeated evaluations of the semidiscretisation for the Runge–Kutta time
integration method. This limits the number of allowed steps and we generally try to use the
same amount of gradient steps r as there are stages in the RK method. We therefore propose

λ = ε

r ‖h‖T ,2

as this limits the maximal distance between uT ,0 and the final result uT ,s to
∥
∥
∥uT ,0 − uT ,r

∥
∥
∥
T ,2

≤
r∑

n=1

∥
∥
∥uT ,n − uT ,n−1

∥
∥
∥
T ,2

≤
r∑

n=1

ε ‖h‖T ,2

r ‖h‖T ,2
= ε.

One restriction has to be made, as this selection could lead to a diverging sequence of steps
if λ is large as ε is large. We therefore restrict the step size to counteract this problem. Let
L be a Lipschitz bound on the entropy variables in the norm on T . Then follows from [35,
equation 1.2.5]

ET
(
uT ,n+1

)
≤ET

(
uT ,n

)
+

〈
dUT

du
, λh

〉

T
+ L

2
λ2

=ET
(
uT ,n

)
− λ

〈
dUT

du
,−h

〉

T︸ ︷︷ ︸
≥0

+ L

2
λ2.

This implies that a descent happens whenever the step size is chosen as

λ < 2

〈
dUT

du ,−h
〉

T

L
.
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Table 2 Overview of the schemes that were tested against each other in the numerical tests section

Option DDG DRK-DG Godunov

Time integrator SSPRK33 SSPRK33 Forward Euler

Timestep 0.5 = �t(p2+1)
�x cmax 0.5 = �t(p2+1)

�x cmax
�t
�x cmax = 0.25

Correction length ε(δ) From (8) From (10), ε(δ) = δ None

Collocation points p + 1 pt. Gauß-Lob p + 1 pt. Gauß-Lob None

Error estimate p + 2 pt. Gauß-Leg p + 2 pt. Gauß-Leg None

Mass matrix Exact Exact Not applicable

Their respective parameters concerning time integration are given together with the used quadratures and
collocation points. The Godunov method is used to calculate reference solutions on a fine mesh. The reference
solutions for the numerical convergence analysis were calculated using themethod of characteristics to achieve
the desired accuracy

In fact, in the implementation

λ ≤
3

〈
dUT

du ,−h
〉

T

2L

is used as a compromise as

λ ≤
〈
dUT

du ,−h
〉

T

L

minimizes this bound.

5 Numerical Tests

Our numerical tests were carried out to shed some light on the following topics and possible
problems:

– Does the added error estimate controlled dissipation stabilize the schemes enough to use
them for shock capturing calculations?

– Is the numerical Dafermos entropy rate criterion satisfied, even though only approximate
error indicators are used?

– Are the added corrections small enough when a smooth solution is calculated to not
destroy the high order approximation?

– Does the added dissipation reduce or enlarge the possible time step?

Before detailing the results, let us state that all of these questions can be answered with
promising results, although the question of small approximation errors needs further research,
especially for long integration times. The tested methods, i.e. their used quadrature rules,
collocation points, time integration and similar design decisions are given in the Table 2.

Remark 5 Theprocedure is not for free, but not to expensive either.Additional costs compared
to the standard DG scheme are the evaluation of the error estimator, and the evaluation of the
entropy variables at every node. The needed operations for both of these actions scale linear
with the number of nodes per cell, apart from the evaluation of the ansatz function at the
nodes for the quadrature of the error estimate, that needs a quadratic amount of operations, as
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a matrix vector multiplication is needed. While the evaluation of the entropy variables can be
costly, one gains a semi-discrete entropy inequality. Flux-differencing, for example, is based
on the evaluation of two-point fluxes with entered nodal values and coefficients forming
an anti-symmetric matrix. Therefore, n2/2 evaluations of in general non-trivial two-point
fluxes are needed, which can outweigh the cost of the presented approach. Abgrall [1] uses
not an error estimate but a direct calculation of the entropy dissipation needed to produce
an entropy conservative scheme. As stated in Remark 3, this results in a correction with a
similar direction, but a different overall effect and size. A recent comparison showed [33],
that the correction of Abgrall only results in a 50 percent runtime increse of the unmodified
DG scheme, while flux-differencing resulted in a 180 percent runtime increase, and a similar
outcome could be expected for the method presented here. As this work focuses not on the
efficient implementation of the new technique but is a first proof of concept a detailed cost
analysis is out of scope for the present publication.

5.1 Calculation of Discontinuous Solutions

The DRKDG and DDG schemes were first tested for Burgers’ equation

� = [0, 2), f (u) = u2

2
, U (u) = u2

on a periodic domain with the square entropy and the local Lax-Friedrichs flux. The tested
initial conditions were

u1(x, 0) = sin(πx) + 1

2
, u2(x, 0) =

{
−x x ∈ [0, 1)
2 − x x ∈ [1, 2)

and it is well known that u1 results in a discontinuous solution in finite time and crashes a
RK-DGmethod without further stabilization quite easily. The second initial condition results
in a rarefaction of the initial discontinuity. Because the sonic point of the flux is also part
of this rarefaction we will be able to analyze the behavior of the scheme in this sometimes
troublesome situation [51].

First of all, both test cases were successfully run by both schemes until t = 100, where the
simulation was stopped, and nothing indicates that the simulation could not be run further.
Moreover, as can be seen from the results in Figs. 2 and 3, their solutions seem to be essentially
free of oscillations, as only the polynomials in up to three shocked cells oscillate slightly.
This evidence of a robust scheme is only hampered slightly by the tests concerning the sonic
point glitch. The cells around the sonic point of the flux clearly show a problematic feature
of the base Lax-Friedrichs scheme that can’t be corrected using the devised method, consult
also Figs. 4 and 5. Future improvements could therefore be based around modifications of
the intercell flux. Note that while only tests for polynomials p = 6 are shown, the results
look comparable for all orders satisfying 2 ≤ p ≤ 10, and higher orders were not tested.
The case p = 1 showed a limitation of the method, as in this case the entropy dissipation in
the cell results in a slope limiting, as this is the only degree of freedom, that also happens in
smooth areas.

5.2 Numerical Test of the Dafermos Entropy Rate Criterion and Semidiscrete
Entropy Inequalities

In [26] the author tested several schemes for their compatibility with Dafermos’ entropy
rate criterion. A followup paper [25] also tested if a similar family of solvers respects the
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Fig. 2 Solution to the first initial condition using the semi-discrete schemeDDG and polynomial degree p = 6

classical entropy inequality, i.e. if the schemes are entropy dissipative. We would like to
test the new DG scheme presented in this publication for the same two entropy criteria, i.e.
Dafermos’ entropy rate criterion and classical entropy inequalities. Our first test case with
initial condition u1(x, 0) will be used, which coincides with the test case used in the first
publication.

The semi-discrete entropy inequalitywas calculated for the first test case at every time-step
and the decadic logarithm of the positive and negative deviation from the entropy equalitywas
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Fig. 3 Solution to the first initial condition by the fully discrete schemeDRKDG and polynomial degree p = 6

plotted as a heat map, see Fig. 6. This was deemed necessary as error bounds stemming from
numerical quadrature are used in the implementation, hence the proved entropy inequality
does not apply in a strict sense but under the assumption of vanishing quadrature errors.
Still, the hope is that the deviations from this entropy equality are small. And interestingly
this seems to be true. A positive violation is only appearing with a magnitude of 10−16,
around the machine precision used for the calculation and only in extremely smooth areas
of the solution - indicating that these smooth areas indeed lead to an entropy equality, as
dictated by theory. Moreover, we would like to find evidence of a numerical solution aligned
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Fig. 4 Solution to the second initial condition calculated by the DDG scheme using polynomial degree p = 6

Fig. 5 Solution to the second initial condition calculated by the fully discrete scheme DRKDG using polyno-
mials of degree p = 6

with Dafermos’ entropy rate criterion. Therefore the same method as in [26] was used.
There, the total entropy was calculated at fixed instants in time for the reference as well
the numerical solution. Then, plots of these total entropies over time were used to compare
several solvers, and it was found that some entropy dissipative solvers were able calculate
approximate solutions with a higher total entropy that also reduced slower than the total
entropy of the reference solution. One can therefore conclude that schemes whose entropy
lies above the entropy of the reference solution seem to violate Dafermos’ entropy criterion
under two additional assumptions. First, that the entropy dissipation in the limit will be
comparable, and second, that the reference solution in fact satisfies Dafermos’ entropy rate
criterion. The last assumption is provably true for the entropy solutions to one-dimensional
scalar conservation laws with convex flux, as follows from the existence proof [39]. The
total entropies of both solvers from this publication can be seen in Fig. 7. The solution of an
extremely fine grained Godunov scheme with N = 10000 cells was added as a reference
solution, to which the entropy of the numerical solutions by the modified DG schemes can
be compared to. Both curves align nearly perfectly, with one exception. The entropy of the
DG method starts to drop at nearly the same rate as the one of the Godunov method, but
at a slightly earlier time. While the rates, apart from small oscillations in the DG method,
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Fig. 6 Negative and positive violation of the entropy equality for test case u1 and polynomial degree p = 3
and p = 6. The positive violation is of the same magnitude as the machine precision

are comparable, the total entropy of the DG method is always lower than the one of the
Godunov method. Against the first instinct, this is not an unpleasant result. The reason being
that the DGmethod is based around a piece-wise polynomial approximation space. Therefore
the method starts every timestep from an approximate solution and this solution seems to
be unable to resolve the sharp discontinuity and instead smears it over up to 3 cells. This,
together with conservation, seems to force a lower total entropy for the approximate solution.
One can therefore conclude that our plan to enforce Dafermos’ entropy rate criterion in DG
schemes was successful.

5.3 Numerical Convergence Analysis

Our deviations from the basic DG scheme are only limited by an assumed error estimate.
Future work could therefore be concentrated on deriving convergence rate estimates for
smooth solutions. We will collect some numerical evidence that such convergence rate esti-
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Fig. 7 Total entropy of the solution calculated by the DDG and DRKDG schemes in comparison with the total
entropy of a solution calculated by a Godunov solver

mates are possible. This will be done by an experimental convergence analysis. As we will
see, our schemes retain a high order of accuracy if high polynomial orders are used but this
order can be one degree lower than the expected order of the base schemes [24, 53]. Once
more Burgers’ equation was solved with the initial conditions

us(x, 0) = 1 + sin(πx)

10
, ul(x, 0) = 1 + sin(πx)

50

and a periodic domain � = [0, 2). The solutions of these problems are smooth on t = [0, 1]
for the initial condition us and t = [0, 8] for the initial condition ul . We look at the error at
tend = 1 or tend = 8 of the solution calculated with N ∈ {10, 15, 20, 25, 30, 40, 50} cells
and internal polynomials of order p ∈ {3, 4, 5, 6, 7}. The relatively small maximum amount
of cells was chosen as it was feared that otherwise the floating point accuracy could interfere
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Fig. 8 Convergence analysis for the semi-discrete scheme DDG, initial condition us solved up to t = 1

with the calculation of the error estimates, as the errors are already near the square root
of the relative machine precision. Reference solutions were calculated with the method of
characteristics. Time integration was carried out once more using the SSPRK33 method. The
time step was not selected to keep λ = �t

�x constant, but as λ(�x)2 = �t as this allow us to
observe up to sixth order convergence rate without being limited by the accuracy of the time
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Fig. 9 Convergence analysis for the fully discrete scheme DRKDG, initial condition us solved up to t = 1

integration method. The method displays p-th order of accuracy in our tests in Figs. 8 and 9
for the initial condition us . Note that orders above p = 5 are not shown, but also converge.

While this is a promising result some caution is advised, when using long integration
times, as for example for ul . The author witnessed that lower order versions of the scheme had
problems to converge with high order. For example a schemewith p = 5 only convergedwith
first order, consult Figs. 11 and 10. For order p = 6 and higher the problem vanished. These
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Fig. 10 Convergence analysis for the fully discrete scheme DRKDG, initial condition ul solved up to t = 8

problems could have several reasons. One of them being that the method was implemented
without any modal filtering present. Higher polynomial orders could have lead to smaller
aliasing errors and therefore mitigated the problem in the tests. Future tests will include
modal filtering as an additional building block after the theoretical compatibility of modal
filtering and the DG entropy descent was explored. See [22, 42] concerning modal filtering
(Figs. 12 and 13).
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Fig. 11 Convergence analysis for the semi-discrete scheme DDG, initial condition ul solved up to t = 8

5.4 Experimental Analysis of the Timestep Restriction

Sadly, the vanilla DG method suffers from low time step restrictions, i.e. the CFL number,
the upper bound on the grid constant λ = �t

�x with respect to the highest signal velocity, drops
drastically with the used order [2, 7, 24]. Several methods have been devised to counteract
this problem and since the limiting base FV scheme of our discretization does not have such a
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Fig. 12 Heatmap of the achieved maximum simulation time before the solution blows up for test case u1 in
relation to the used CFL number and the number of cells. The semidiscrete scheme DDG was used

low time step restriction we will test which effect our modifications have on the allowed time
step.We use the first initial condition given, that was used as a test for discontinuous solutions.
Note that the standard DG scheme blows up at t ≈ 0.3 when a shock forms independently of
the time step. We test the scheme with different CFL numbers and orders. We can therefore
identify, if the maximum allowed time step scales linearly with the grid size and if, and how
their ratio depends on the order of the used cells.

The results for our modified DG schemes are shown in Figs. 12 and 13. The shown
heatmaps correspond to the simulation time at which a blowup occurred. The black areas
correspond to the maximum simulation time of t = 1. There, no blowup occurred up to this
time, where the simulation was stopped. Interestingly, the DRKDG scheme is able to use
significantly bigger time steps than the DDG scheme, when the Grid is fine enough. Gains
of a factor of 4 for polynomials of degrees 3 to 6 can be seen in Fig. 13 compared to Fig. 12.
A problem in this regard concerns the accuracy of solutions calculated in this way. The sim-
ulations do not crash, but are pulled down to first order when used at to big time steps. This
is especially dangerous if these schemes are used with the rule of thump to run them with
time steps only barely stable.

6 Conclusion

In this publication, the author used error estimates between the exact entropy variables and
the approximate entropy variables, error estimates between a fine sub cell scheme and the
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Fig. 13 Heatmap of the achieved maximum simulation time before the solution blows up for test case u1 in
relation to the used CFL number and the number of cells for the discrete scheme DRKDG

approximate solution, and error estimates between a projection of the exact solution to theDG
approximation space to control the entropy in DG methods. It was thereby possible to bound
the derivative of the total entropy with the derivative of the total entropy of the limit of the
sub cell scheme. This serves as a numerical treatment of the Dafermos entropy criterion in its
original formwith the sub cell solution as a referenceweak solution towhich themodifiedDG
solution is compared concerning its total entropy dissipation. If one conjects that this solution
already satisfies the Dafermos criterion, it follows further that the approximate solution of
the DG method satisfies this criterion. Further, the author conjectured in a previous work
that a numerical Dafermos entropy rate criterion should be centered around allowing only a
minimization of the entropy rate if the additional residual produced by this action is small.
This is especially important as the method would otherwise be able to dissipate entropy to
fast by enlarging approximation errors. Because the scheme was designated as a correction
to the classical DG method, where the correction is the biggest possible entropy dissipation
in the allowed error margin, could the method be also interpreted as correctly implementing
this criterion. As a side note a classical entropy inequality is also satisfied if one conjectures
the correctness of the error estimators and scales the maximum descent direction using the
formulae derived by the author. The same techniquewas also used to construct a fully discrete
variant of the scheme. Apart from being able to calculate smooth solutions with high order
of accuracy, as the standard DGmethod, shocks are also handled well without any additional
stabilization. Especially oscillations in shocked cells are nearly invisible and do not produce
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oscillations in other cells. Future work will focus on the application to multiple dimensions
and systems of conservation laws. The author is sure that the derived error estimates can
be also useful for other techniques in use with DG methods. These could be for example
positivity preserving correction terms or artificial viscosity.
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