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Abstract
Numerically solving the Boltzmann equation is computationally expensive in part due to
the number of variables the distribution function depends upon. Another contributor to the
complexity of the Boltzmann Equation is the quadratic collision operator describing changes
in the distribution function due to colliding particle pairs. Solving it as efficiently as possi-
ble has been a topic of recent research, e.g. Cai and Torrilhon (Phys Fluids 31(12):126105,
2019. https://doi.org/10.1063/1.5127114),Wang and Cai (J Comput Phys 397:108815, 2019.
https://doi.org/10.1016/j.jcp.2019.07.014), Cai et al. (Comput Fluids 200:104456, 2020.
https://doi.org/10.1016/j.compfluid.2020.104456). In this paper we exploit results from
representation theory to find a very efficient algorithm both in terms of memory and compu-
tational time for the evaluation of the quadratic collision operator. With this novel approach
we are also able to provide a meaningful interpretation of its structure.

Keywords Gas dynamics · Particle interactions · Moment equations · Symmetric trace-free
tensors · Spherical harmonics · Boltzmann equation

1 Introduction

Solving theBoltzmann equation numerically is an area of ongoing research. There are already
existing results based on Spectral-Fourier Approach by Pareschi and Russo [1] and Gamba
and Tharkabhushanam [2], with recent work improving some of its shortcomings such as [3]
on the preservation of conservations or [4] on the stability of such methods. Another ansatz
is based on the spectral Hermite ansatz introduced by Grad (1949) [5] with early work [6]
and more recent work such as [7, 8] on linearising the collision operator. Wang and Cai were
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recently [9] able to calculate the bilinear collision operator based on the spectral Hermite
ansatz. However, their method is computationally expensive. In response, Cai et al. [10]
developed and implemented a more efficient algorithm based on the spectral Burnett ansatz.
This ansatz has also been looked into analytically [11] and numerically [12]. Inspired by
Struchtrup’s (2005) tensorial approach to the collision operator in Equation 6.35 in [13], we
chose a different approach for calculating the Spectral-Burnett approximation of the Boltz-
mann collision operator. The main difference lies in the exploitation of features of the basis
set, which is adapted to the irreducible subspaces with respect to the orthogonal group of the
polynomial space as it consists of real solid spherical harmonics multiplied with Laguerre
polynomials. While we also implemented the mostly analytical calculation of collision coef-
ficients for a variety of potentials, the focus of this paper is the algorithm and corresponding
numerical code, which uses these coefficients to solve the space-homogeneous Boltzmann
equation for any distribution. Utilizing the properties of the irreducible subspaces, compared
to the previous works we are able to significantly reduce the memory and computation time
required for calculating the numerical solution.We could achieve this by virtue of the unique-
ness up to a constant of linear maps between the irreducible subspaces. Representation theory
allowed us to isolate each bilinear map, the constant for each map that encodes particle colli-
sions and identify all bilinear maps, that evaluate to zero due to the mathematical properties
of the irreducible subspaces in question. Our method provides a deep understanding of the
underlying structure of the bilinear collision operator, allows for a very flexible setup for
numerical computations and therefore is ideal for a purposeful reduction of computational
effort.

The structure of this paper is as follows: The next section provides an overview of the col-
lision operator and the potentials used in this paper. Sections3 and 4 describe the application
of representation theory to the collision operator, while Sect. 5 explains the representation
theoretically inspired algorithm and its implementation. In Sect. 6 we apply our algorithm
and also compare the results with [9]. For an overview of the applied representation theory
refer to the “Appendix”.

2 Boltzmann’s Collision Operator

To describe gas flows, the Boltzmann equation is known to be valid for a wide range of situa-
tions. In particular, it describes non-equilibrium gas flows accurately for Knudsen numbers in
the transition regime between the range of Navier–Stokes–Fourier equations and the kinetic
regime. The Boltzmann equation describes the evolution of the gas distribution function f ,
which in general depends on seven variables—time t , position space x and velocity space c.

As done in previous papers we look at the space-homogenous Boltzmann equation to be
able to focus solely on the collision operator:

∂ f

∂t
= S( f , f ) (1)

where f gives the time-dependent velocity distribution of particles,

f : [0, T ] × R
3 → R

f (t, c) dc = density of particles with velocity in [c, c + dc] at t, (2)
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and S( f , f ) is the bilinear collision operator, see e.g. the textbooks [14, 15], modelling the
binary collisions of the particles in the gas:

S ( f , f ) =
∫

R3

∫

n⊥g

π∫

0

(
f (t, c′) f (t, c′

1) − f (t, c) f (t, c1)
)
B(|g|, χ) dχ dn dc1 (3)

where n is the unit vector orthogonal to the collisional plane, the relative velocity g = c−c1,
the average velocity h = 1

2 (c + c1), and the primed velocities c′, c′
1, g

′ = c′ − c′
1 with

||g′|| = ||g||, h′ = h are the velocities after the collision. Additionally, we assume the initial
average velocity of the gas to be 0, and as this is one of the conserved moments it will always
be 0. The solution of (1) converges to a Gaussian centered around the average velocity. Our
assumption will allow us to exactly represent this solution with our numerical ansatz.

As discussed in several textbooks, [14, 15], they are given by

g′ = Rn,χ (g) = cos (χ)g + sin (χ)n × g c′ = h + 1

2
g′ c′

1 = h − 1

2
g′, (4)

where g′ is the result of rotating g around n by the angle χ . According to Cercignani’s work
[14], the kernel B(|g|, χ) depends on the assumed potential between the colliding particles.
Following [14, 15], different choices are possible and common models [7–10] include

• The hard spheres model, i.e.

B(|g|, χ) = |g|d
2

4
with d a constant for the diameter of the colliding particles. (5)

• Its generalization given by the variational hard spheres (VHS) model,

B(|g|, χ) = |g| η−5
η−1

d2

4
. (6)

• The inverse power law potentials (IPL), i.e. with η > 3 determining the power law
exponent

B(|g|, χ) = |g| η−5
η−1 W0

dW0

dχ
with χ = π − 2

∫ W1

0

(
1 − W 2 − 2

η − 1

(
W

W0

)η−1
)− 1

2

dW

(7)

and W1 the positive root of 1 − W 2
1 − 2

η − 1

(
W1

W0

)η−1

. (8)

We use the change of variables given in [7] to evaluate W0(χ).

We identify two types of assumed potentials corresponding to whether or not B depends on
the angle χ . Additionally, η can be chosen from (3,∞). Note that the IPL potential models
can be derived from assuming a specific potential between the colliding particles, whereas
the VHS model only allows that for η = ∞, in which case the two models correspond to
each other. In this sense, the power potentials can be seen as more realistic models and the
VHS models as a simplified version.

In this paper we will work with different examples of these models and compare them.
In particular, we work with the classical χ-dependent Maxwell Potential with η = 5, the
χ-independent and hence simplified Maxwell potential, as well as the hard power potential
with η = 10. As we will explore in Sect. 4.2.2, these choices reflect different levels of
computational difficulty both in a priori calculations as well as in the numerical evaluation.
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3 Irreducible Burnett Ansatz

3.1 Traditional Setup

3.1.1 Expansion of the Distribution Function

To solve the space homogeneous Boltzmann equation numerically, we follow [16] to expand
the distribution function with an orthonormal basis set ϒα(c),

f (t, c) =
∑
α

wα(t)ϒα(c) with ϒα(c) := �α(c) · f (eq)(c) (9)

where α is typically a multi-index in three indices determining the basis polynomial �α ,
f (eq)(c) is the global equilibrium or Maxwellian function and the scalar product is chosen
for the weighted function space Weq : L2(R3,R, 1

f (eq) dc), see e.g. [16]:

〈·, ·〉 :Weq × Weq → R

〈g, h〉 :=
∫
R3

gh
1

f (eq)
dc, (10)

to allow us to identify the weights wα as moments of the distribution function. Here, we shift
the velocity-coordinates such that the medium velocity is zero and rescale the variables so
that the temperature is 1, giving us

f (eq) := 1(√
2π
)3 exp

(
−c2

2

)
. (11)

Generalizing this approach, the distribution function f (t, c) is approximated as a time-
dependent polynomial in c of degree M ∈ N or less, multiplied by the global Maxwellian,

f (t, c) = pt (c)︸ ︷︷ ︸
time-dependent,

real valued
polynomial in c of degree ≤ M

f (eq)(c)︸ ︷︷ ︸
global Maxwellian,

Gaussian-like
equilibrium distribution

,

implicitly choosing the approximation space for the distribution function f (t, c) ∈ Veq with

Veq := PM · f (eq)(c), PM ⊂ R[cx , cy, cz], PM := {p ∈ R[cx , cy, cz]|degree of p ≤ M
} ∼= R

N ,

(12)

where R[cx , cy, cz] is the space of all real polynomials in three variables and N = 1
6 (M +

1)(M + 2)(M + 3) the dimension of PM . We can equip the polynomial space with a scalar
product corresponding to the setup (10):

〈·, ·〉P :R[cx , cy, cz] × R[cx , cy, cz] → R

〈p, q〉P :=
∫
R3

pq f (eq) dc. (13)
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3.1.2 Expansion of the Collision Operator

Inserting the expansion of the distribution function (9) into the space homogeneous Boltz-
mann equation (1) and using the linearity of the bilinear collision operator yields:

∑
α′

ϒα′(c)
∂wα′(t)

∂t
=
∑
βγ

S (ϒβ,ϒγ

)
wβwγ . (14)

We now project this expression onto Veq spanned by orthonormal basis functions ϒα . The
left hand side leads to〈

ϒα,
∑
α′

ϒα′
∂wα′(t)

∂t

〉
=
∑
α′

〈ϒα,ϒα′ 〉︸ ︷︷ ︸
δα′α

∂wα′(t)

∂t
= ∂wα(t)

∂t
,

while the right hand side evaluates to

∑
β,γ

〈
ϒα,S (ϒβ,ϒγ

)〉
︸ ︷︷ ︸

C(�)
αβγ

wβwγ =: sα. (15)

Overall, we find that the rate of change of the distribution function’s weights depends on the
collision vector sα ,

∂wα(t)

∂t
= sα. (16)

The collision vector in turn is determined by the bilinear operation (15) between the weights
wα of the distribution function and a basis-dependent collision tensor

C (�)
αβγ : = 〈�α f (eq),S(�β f (eq), �γ f (eq))〉 . (17)

3.2 Structure of the Approximation Space

The remaining choice are the N basis polynomials �α(c), with which we span PM , which
has great influence on the structure and sparsity of the collision tensor and hence on the
required computational time and memory to obtain sα .

For example Grad [5] or more recently Cai [9] choose Hermite polynomials in three
coordinates, since these are known to be orthogonal with respect to the corresponding scalar
product 〈·, ·〉P . However, structure and sparsity of the resulting collision tensor can still be
improved.

We want to use a basis that exploits a key feature of the collision operator: It describes a
physical process in the three dimensional velocity space, requiring it to be, like all physical
processes, compatible with isometric transformations of the coordinate system, i.e. with O3

the group of orthogonal matrices from R
3×3:

∀r ∈ O3 : r (S( f )(c)) = S (r( f )) . (18)

While this identity is often accepted, we included a proof in the “Appendix” for completeness,
as this statement is central for this paper. This restriction allows us to employ results from
the representation theory of O3 and reduce the bilinear maps with which we express sα to
only those bilinear maps between the O3-irreducible subspaces of PM .
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3.2.1 Decomposition of PM into Its Irreducible Subspaces

With the space of homogeneous and harmonic polynomials of degree n ∈ { 0, 1, · · · , M }
and dimension 2n + 1

H n :=
{
p ∈ R[cx , cy, cz]

∣∣∣∣ ∀λ ∈ R : p(λcx , λcy, λcz) = λn p(cx , cy, cz)
p := (∂2x + ∂2y + ∂2z )p = 0

}
∼= R

2n+1

(19)

we have the building blocks for the irreducible subspaces of PM [17]. To make it clear when
an index describes the degree of a harmonic polynomial, we call n the anisotropic index.
We also define the one-dimensional space of homogeneous isotropic polynomials of second
degree

� :=
{
p(cx , cy, cz) = λ(c2x + c2y + c2z )

∣∣∣ λ ∈ R

}
∈ PM , (20)

and denote with c2 its element where λ = 1. Ignoring the chosen scalar product from Eq. (13)
for now allows us to decompose PM into a direct sum of homogeneous polynomials with
respect to some corresponding scalar product,

PM =

⌊
M
2

⌋
⊕
a=0

M−2a⊕
n=0

(c2)a · H n . (21)

We can check that this decomposition is complete by counting dimensions:

⌊
M
2

⌋
∑
a=0

M−2a∑
n=0

dim
(
(c2)aH n) =

⌊
M
2

⌋
∑
a=0

M−2a∑
n=0

2n + 1 = 1

6
(M + 1)(M + 2)(M + 3) = dim

(
PM
)

.

(22)

Figure1 sorts these subspaces column-wise according to their homogeneous degree deg =
2a+n and row-wise according to their anisotropic index n. Subspaces with same anisotropic
index n are isomorphic to each other and the decomposition is not unique within each set
of isomorphic subspaces. Subspaces with different anisotropic indices are non-isomorphic
to each other and therefore necessarily pairwise orthogonal with respect to any O3 invariant
scalar product, see Remark 9.5 in this paper’s “Appendix”.

Nowwe come back to the chosen scalar product in (13). The isomorphic subspaces shown
in Fig. 1 are not orthogonal with respect to 〈·, ·〉P . We therefore orthogonalize each set of
isomorphic subspaces with a linear combination of suitable powers of (c2) determined by
associated Laguerre polynomials:

PM =

⌊
M
2

⌋
⊕
a=0

M−2a⊕
n=0

L

(
n+ 1

2

)
a

(
c2

2

)
· H n

︸ ︷︷ ︸
=:aH n

, (23)

where aH n are the orthogonalized irreducible subspaces. We call a the isotropic index and
are left with the basis choice for H n .
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Fig. 1 Decomposition of P1, P2, P3 to PM into their homogeneous irreducible subspaces. The irreducible
subspaces are sorted column-wise by their homogeneous degree deg = 2a + n and row-wise by the degree
n of the harmonic spaces H n . Those that share a row are isomorphic, subspaces that are from different
rows are pairwise non-isomorphic. The decomposition is not unique within each row, linear combinations of
different orders of c2 are possible. Here we chose the homogeneous polynomials of c2 for visual clarity. All
non-isomorphic irreducible subspaces are orthogonal to each other for every O3 invariant scalar product. To
achieve orthogonality with respect to our chosen scalar product within each row of isomorphic irreducible

subspaces, we use the linear combinations given by associated Laguerre polynomials of c2, L(n+1/2)
a

(
c2/2
)

3.2.2 Basis Choice Adapted to the Irreducible Subspaces

Here we employ the real-valued solid spherical harmonics Y l
n : R

3 → R of n-th degree
with the directional index l ∈ {−n,−n + 1, · · · , n − 1, n }, related to the real spherical
harmonics Y l

n : S2 → R by extension S2 → R
3 via

Y l
n(c) = ‖c‖n · Y l

n

(
c

‖c‖
)

. (24)

Note, that we can draw parallels to indices in quantum mechanics where the spherical
harmonics are complex, and the principal, azimuthal and magnetic quantum numbers have
similar mathematical roles to the isotropic index a, anisotropic index n and directional index
l, respectively.

This leads to the following choice for �α:

�α = �anl = 1

Nanl︸ ︷︷ ︸
normalization
coefficient

Y l
n(c)︸ ︷︷ ︸

real solid
spherical
harmonic

L

(
n+ 1

2

)
a

(
c2

2

)

︸ ︷︷ ︸
associated
Laguerre

polynomials

, (25)

with (a, n, l) ∈ N0×N0×{−n, · · · , n } specifying the multi-index α, and the normalization
coefficient given by

Nanl :=
√√√√
〈
Y l
n L

(
n+ 1

2

)
a , Y l

n L

(
n+ 1

2

)
a

〉

P

.
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3.3 Discussion of the Basis Set and Irreducibility

Instead of immediately choosing a basis set, we first looked at the irreducible subspaces of
PM with respect to O3 and collected them as spaces of homogeneous polynomials in Fig. 1.
Upon finding that we have multiple isomorphic subspaces, all row-wise collected in Fig. 1,
we linearly combined them via Laguerre polynomials to obtain aH n , the orthogonalized
irreducible subspaces. Then we chose basis polynomials for each aH n , but again using
the isomorphism between spaces within one row, it was enough to choose a set of basis
polynomials for each lowest degree irreducible subspace per row, i.e. for the spaces H n of
harmonic polynomials of degree n.

We have chosen real solid spherical harmonics, since they are easily accessible, orthogonal
and adapted to the chain of subgroupsO3 ≥ O2 ≥ O1 with cz the special symmetry direction,
i.e. for an O2-invariant problem rotated so that cz is the rotation axis for O2, all coefficients
with l �= 0 are zero.

The basis set containing all basis polynomials with 2a + n ≤ M spans the full space PM .
Note, that only basis polynomials with n = 0 are rotationally invariant. However, similar
to the decomposition of a natural number into its prime factors, this basis is adapted to the
decomposition of PM into its smallest invariant subspaces. Here “smallest” is defined as an
invariant subspaceU , that cannot be further decomposed into invariant subspaces other than
U itself and the zero space, similar to a prime number only being devisable by itself and
1. These subspaces are called irreducible. Figure1 shows the decomposition of PM into its
homogeneous irreducible subspaces, while we use orthogonalized subspaces with respect to
〈·, ·〉P given for a pair of chosen isotropic index a and anisotropic index n by

span { �anl | −n ≤ l ≤ n }
with a dimension of 2n + 1.

Note thatwe have recovered the spectral Burnett ansatzwith real spherical harmonics. First
results with the spectral Burnett basis have been developed previously in [10–12, 18], but we
are the first to exploit the underlying structure of the collision operator in our implementation.
We also implement the nearly fully analytic calculation of the tensor coefficients and carry
out numerical tests for large M .

4 Implications of Representation Theory

4.1 Decomposing the Collision Operator

Equation (15) is the orthogonal projection of S( f , f ) onto the approximation space Veq.
Equivalently we can identify the bilinear map C : PM × PM → PM with coefficients given
by the collision tensor in terms of the basis functions of PM , now defined as

Cαβγ = Canl,bn̂l̂,cñl̃ := 〈�anl ,S(�bn̂l̂ f
(eq), �cñl̃ f

(eq))〉P , (26)

i.e. with p, q ∈ PM and their respective expansion coefficients wanl , uanl we can express
the map C via

C(p, q) =
∑
anl

∑
bn̂l̂

∑
cñl̃

Canl,bn̂l̂,cñl̃wbn̂l̂ ucñl̃�anl . (27)
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Not only is C a bilinear map, it inherits the property of the collision operator S that it is linear
with respect to O3, compare to Eq. (18):

∀r ∈ O3 : r (C(p, q)) = C (r(p), r(q)) . (28)

Such a map is called natural. This restriction has been studied in representation theory and
implies a decomposition of C into a sum over isotropic and anisotropic indices

C : PM × PM → PM =
∑
abc

∑
nn̂ñ

(29)

with Snn̂ñabc ∈ R some constants that, given a set of maps �nn̂ñ
abc , distinguish between different

maps C. Each �nn̂ñ
abc : PM × PM → PM is a non-zero natural bilinear map given by

PM PM

bH n̂ cH ñ

H n̂ H ñ

PM

aH n

H n

Qnn̂ñ

P(n̂,b) P(ñ,c)

ψ(n̂,b) ψ(ñ,c)

ψ−1
(n,a)

E(n,a)

(30)

with orthogonal projections P(n,a) : PM → aH n , isomorphisms ψ(n,a) : aH n → H n ,
embedding E(n,a) : aH n → PM , and the universal natural bilinear map

Qnn̂ñ : H n̂ × H ñ → H n . (31)

This map Qnn̂ñ is either zero or unique up to a constant, depending on the combination of
anisotropic indices:

Qnn̂ñ is zero unless

{
n̂ + ñ − n ∈ 2N0, and

0 ≤ n̂ + ñ − n ≤ 2min(n̂, ñ).
(32)

Note, that a decomposition of a (multi-) linear map between vector spaces into a sum of
maps between subspaces as done in Eq. (29) by itself is generally possible. Equation (28) is
crucial for the decomposition of C in (29), requiring �nn̂ñ

abc and Qnn̂ñ to be natural as well,
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and ultimately restricting all possible bilinear and natural mapsH n̂ ×H ñ → H n to be the
same up to a constant with the additional condition (32).

4.2 Decoding the Structure of the Collision Tensor

Overall, the previous result implies the decomposition of the collision tensor into two tensors:

Canl,bn̂l̂,cñl̃ = Sabc
nn̂ñ Q

nn̂ñ
ll̂l̃

, (33)

mirroring the structure of irreducible subspaces of PM . Qnn̂ñ
ll̂l̃

andSabc
nn̂ñ have two distinct roles

for the overall collision tensor. The coupling tensor Qnn̂ñ
ll̂l̃

collects the coefficients of the map

Qnn̂ñ . It is independent of the potential and encodes the purely mathematical coupling of Y l̂
n̂

and Y l̃
ñ to Y l

n . The impact tensor Sabc
nn̂ñ encodes the physics of the particle collisions.

4.2.1 The Coupling Tensor

The coupling tensor Qnn̂ñ
ll̂l̃

encodes the natural bilinear map, unique up to a constant factor,

from two harmonic polynomial spaces of degrees n̂ and ñ to a third harmonic polynomial
space of degree n, see Eq. (31). Crucially, two natural bilinear maps between different, but
isomorphic irreducible subspaces are identical up to a constant factor and hence all can be
expressed in terms of one Qnn̂ñ . Referring to Fig. 1 and knowing that all subspaces of the
same row are isomorphic to each other, we can also picture Qnn̂ñ as the bilinear map between
three rows. This universality is the key in our algorithm, allowing us to achieve high efficiency
both in terms of computational time and memory usage. We can calculate the values of the
coupling tensor for example with

Qnn̂ñ
ll̂l̃

= 〈Y l
n, Y

l̂
n̂ · Y l̃

ñ〉P =
∫
R3

Y l
n · Y l̂

n̂ · Y l̃
ñ f

(eq) dc. (34)

The coupling tensor is related to the Clebsch–Gordon-Coefficients [19]. While the
Clebsch–Gordon-Coefficients are more common in quantum physics, where they are usually
used for three harmonic spaces of complex polynomials, the coupling tensor is the equivalent
for real harmonic polynomials. It shares the property that it is zero for most combinations of
anisotropic and directional indices (n, n̂, ñ, l, l̂, l̃), but does not have as many restrictions as
its complex counterpart. In particular, the conditions in Eq. (32) hold for Qnn̂ñ

ll̂l̃
, and if they

are met, then Qnn̂ñ
000 is unequal to zero. Keeping in mind the uniqueness up to a constant of

the coupling tensor, we choose one instance of Qnn̂ñ for each triplet (n, n̂, ñ), calculate the
values of the coupling tensor once and hard-code them in the implementation as function

.

4.2.2 The Impact Tensor

In contrast to Qnn̂ñ
ll̂l̃

, the impact tensor Sabc
nn̂ñ contains all information about the physics of

the collision. While from the mathematical point of view the constant factor distinguishing
two maps Qnn̂ñ with same anisotropic indices (n, n̂, ñ) may seem irrelevant, it is clear that
in the physical application these factors are the main interest. Here the conservation rules
come into play as zeroes for particular combinations of anisotropic and isotropic indices
a, b, c, (n, n̂, ñ), but this is also where different potentials lead to different values in the
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Table 1 Overview of a few choices for η and χ -dependence in B(|g|, χ) and their corresponding potential
models

Realistic power potential VHS model
χ -dependent χ -independent

η = 5 Maxwell potential Simplified Maxwell potential

η = 10 Hard power potential Hard VHS model

η = ∞ Hard spheres potential

Note, that for η = ∞ the power potential corresponds to the VHS model, and therefore the Hard spheres
potential is χ -independent

coefficients of the impact tensor. Notice, that the impact tensor is independent of the direc-
tional indices (l, l̂, l̃), so with our chosen map Qnn̂ñ we can compute its coefficients with

Sabc
nn̂ñ = 〈�an0 f (eq),S(�bn̂0 f

(eq), �cñ0 f (eq))〉
Qnn̂ñ

000

(35)

for combinations of anisotropic indices (n, n̂, ñ) fulfilling the conditions in (32). Depending
on the potential, we can solve the integration in (35) fully or almost fully analytically with a
computer algebra system, see the git-repository [20] for further details.

Referring to Table 1, we can now see where each chosen potential falls on the spectrum
of high and low computational difficulty of both a priori evaluation, i.e. the calculation of
the impact tensor itself, and runtime evaluation of the collision vector.

Note, that there is some relation between these two types of difficulty. The a priori evalu-
ation only determines a set of numbers that make up the impact tensor, whereas the runtime
evaluation mostly depends on the number of non-zero impact tensor entries and not on the
specific non-zero entry Sabc

nn̂ñ . As already noted by Grad [5], for the potentials with η = 5 the
additional condition

2a + n �= 2b + ñ + 2c + c �⇒ Sabc
nn̂ñ = 0 (36)

applies, which stems from the orthogonality of the basis functions and the independence of
the kernel from c and c1. This significantly reduces the amount of non-zero impact tensor
coefficients, leading to comparatively low computational difficulty both a priori and during
runtime.

The a priori computational difficulty of the impact tensor coefficients additionally is deter-
mined by theχ-dependency of the kernel B. Allχ-independentmodels are of lower difficulty,
with the simplified Maxwell model the lowest difficulty due to (36). On the other side of the
spectrum lies the hard power potential with η = 10, since it is χ-dependent and condition
(36) does not apply, requiring the evaluation of the full set ofSabc

nn̂ñ . This potential also has high
runtime computational difficulty, since almost all impact tensor coefficients are non-zero.

4.3 Full Generalization of the Collision Operator

Notice, that the decomposition of the collision tensor into the impact and coupling tensor
not only implies a particular implementation to calculate the collision vector, but it also
gives us a unique understanding of the role of each coefficient. In particular, we can now
generalize the collision operator to any symmetric, bilinear map between real polynomials in
three variables with physical meaning, i.e. invariance under transformation of the coordinate
system: Such a map would not necessarily follow the conservation laws but still follow the
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decomposition into coupling and impact tensor. To obtain an upper limit for the computational
cost of calculating the collision vector, we can assign the impact tensor random numbers for
all combinations of anisotropic and isotropic indices that fulfil Eq. (32). When testing the
performance with this setup, we shall call such a potential general.

5 Implementation

The task is to implement the tensor-vector multiplication between the expansion coefficients
of the collision tensor in the form of Sabcnn̂ñ Q

nn̂ñ
ll̂l̃

and the expansion coefficients wanl of the
distribution function. The result is saved as a vector with expansion coefficients sanl , so we
want to find an efficient algorithm to compute the collision vector s, i.e.

(37)

5.1 Custom Implementation Adapted to the Given Tensor Structure

Looking at the calculation task in (37), we can separate it into operations that need to be
carried out for all combinations of anisotropic and isotropic indices. Beginning by setting
the collision vector s to zero, we can rewrite the task as

(38)

Note, how the impact tensor is now outside of the sum, only remaining as a constant factor.

5.1.1 Implementing the Coupling Tensor

In fact, we can now isolate the map between the irreducible subspaces of different anisotropic
and isotropic indices in terms of an operation that only involves the coupling tensors and the
directional indices:

(39)

Here the anisotropic indices are only relevant to indicate the degree of the harmonic subspaces
and hence the length of the involved vectors. Note, thatwe changed the positions of the indices
and font of the coefficients of the distribution function and collision vector to indicate that
this is an operation on a small subsection of the overall vectors.

Apart from the constant factor determined by the impact tensor, this operation is indepen-
dent of the isotropic indices (a, b, c), so we can give it as a general operation between three
generic vectors ςn, un̂, vñ of lengths 2n + 1, 2n̂ + 1, 2ñ + 1, respectively:

ςn
l += β ·

∑
l̂ l̃

Qnn̂ñ
ll̂l̃

un̂
l̂
vñ
l̃
. (40)

We obtain Eq. (39) by replacing β with the corresponding value of Sabc
nn̂ñ .

Since Qnn̂ñ
ll̂l̃

are constants, the above operation (40) can be hard-coded without loss of
generality of the overall implementation. We do so by giving each triple of anisotropic
indices (n, n̂, ñ) a unique case numer q and saving the expansion coefficients of both the
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Fig. 2 Schematic showing the operation of on the specifically structured arrays of the distribution
function f determined by the weights w and the collision operator determined by the weights s

distribution function wanl and the collision vector sanl in a specific order, so that we seperate
it into coherent 2n + 1 long sections, or sub-vectors, wan . We also order the wanl such that
the directional index l starts at −n and ends at n, see Fig. 2. This reflects the splitting of the
polynomial space into its irreducible subspaces: Each section wan contains the coordinates
of w in one particular irreducible subspace characterized by the anisotropic and isotropic
indices a and n. The position of each section wan is given by a corresponding pointer pan ,
which locates the first of the 2n + 1 entries. The collision vector is ordered similarly.

Furthermore, we know that the following symmetry relations must hold:

Sabc
nn̂ñ = Sacb

nñn̂ Qnn̂ñ
ll̂l̃

= Qnñn̂
ll̃l̂

(41)

Therefore, we usedMathematica to generate the C++ function that implements Eq. (40)
for all combinations of anisotropic indices (n, n̂, ñ) with n̂ ≤ ñ. Input for this method is β as
double , q as integer and the three vectors ξn, ζ n̂, ς ñ as three double pointers
, , . The method switches between all relevant triplets of anisotropic indices (n, n̂, ñ),
where q indicates the triplet and is thus used in the case distinction. For each case C++-code
corresponding to the operation in (40) was generated. Here the three pointers are used as
starting positions for the three vectors.

Note, that this code does not check, whether the three vectors actually have been allocated,
all input is assumed to be valid in order for the computation to be as time-efficient as possible.
Furthermore, it is always assumed that n̂ ≤ ñ, the input vectors should be ordered accordingly
(Fig. 3).

5.1.2 Implementing the Impact Tensor

In contrast to Q, the coefficients Sabc
nn̂ñ can vary depending on the potential. We therefore

give the impact tensor in a text file as input for the code. Each line of this text file is an input
list containing the necessary information for , compare to Eq. (40) and see Fig. 4:

Sabc
nn̂ñ q pan pbn̂ pcñ
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Fig. 3 Extract from the C++ code for the function

Fig. 4 Extract from the impact tensor file, each line containing all necessary information for . These are
the first 20 lines corresponding to the Maxwellian potential and M = 20
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Table 2 Overview of the computational requirements to calculate the collision operator with our implemen-
tation of the irreducible Burnett ansatz depending on the computational setups

Potential Theory Size of impact tensor in Calculation time
Number of lines Memory per time step

General M = 20 188,176 12.2 MB 200 ms

IPL η = 10 M = 20 186,247 12.7 MB 200 ms

Maxwell M = 20 4522 303 kB 5 ms

Maxwell M = 20, n = 0 34 2kb ≤ 2 µs

The average timings are given for one timestep, i.e. they contain 4 evaluations of the collision operator. They
have been calculated by measuring the calculation time of 1000 timesteps with a generic input distribution.
Notice, that we are able to provide an upper bound for the computational requirements with the general
potential that has non-zero entries for every impact tensor coefficient. Note, that the coupling tensor is stored
as compiled C++ code and requires for M = 20 roughly 38 MB

To calculate the collision vector, i.e. to compute (38), the C++-code iterates through each
line of the impact tensor file and applies with the case q , β = Sabc

nn̂ñ and the three
vectors determined by pan, pbn̂, pcñ . Utilizing (41), we can shorten the input list by stating
twice the value of Sabc

nn̂ñ when (b, n̂) �= (c, ñ), leaving the line with n̂ < ñ and omitting the
corresponding line of Sacb

nñn̂ .

5.1.3 Discussion of the Implementation

Effectively, we have now implemented the map �nn̂ñ
abc from Eq. (30): Structuring the array

of moments wanl into subsections corresponding to the irreducible subspaces and using the
positions given by the pointers pbn̂ and pcñ as starting positions for the operation
corresponds to φ(n̂,b) ◦ P(n̂,b) and φ(ñ,c) ◦ P(ñ,c). itself is the implementation of the
map Qnn̂ñ , only that it operates on the section of the vector sanl indicated by the pointer pan ,
implementing E(n,a) ◦ φ−1

(n,a).
This setup is very flexible. It is easily adapted to different potentials, theories and initial

conditions, i.e. the initial occupancy of wanl of the distribution function. Omitting lines
belonging to irrelevant combinations of (a, b, c, n, n̂, ñ) for the given setup, we can build
calculation-specific input files for the collision operator. In Table 2we have listed the required
memory space for the impact tensor and the average calculation time of one time step for a
selection of different potentials and theories. All computation is done sequentially on a CPU
model Intel(R) Core(TM) i7-8650U. We note that the hard power potential with η = 10 is
very close to the general potential in terms of computational requirements. In Table 3 we
have listed the number of coupling coefficients for different M and the corresponding sizes
of the compiled program. We note, that the memory requirement for the compiled program
is much larger than that for the text file of the impact tensor.

5.2 Comparison to an Algorithm for General Tensor-Vector Multiplications and
Current State of the Art

Given that the ultimate goal of this work is to produce an implementation of the evaluation
of S( f , f ) within a numerical code, that is as fast as possible, the question is, whether
the above described implementation is better than an algorithm developed specifically for
the computation of tensor-vector multiplications. The efficient implementation of tensor
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Table 3 Overview of the
computational requirements for
the coupling tensor depending on
the computational setups

Theory Size of coupling tensor in

Number of cases Memory

M = 20 1331 38 MB

Maxwell M = 20 505 6.6 MB

M = 15 612 9.9 MB

M = 10 216 1.6 MB

M = 5 42 122 MB

M = 0 1 2 kB

The memory requirements of the coupling tensor are given by the cor-
responding sizes of the compiled C++ code

operations is a field of on-going research in high performance computing and currently there
are many different options available.

To check how the algorithm we developed compares to other algorithms, we chose the
Tensor Algebra Compiler (TACO) [21] as a case study, as it provides code generation in C++
and seems to perform similarly well to other libraries. Here we found that TACO performed
best when given the full collision tensor Cαβγ with every triple of indices (a, n, l) mapped
to one counter index. We found the computational times comparable but slightly slower than
our implementation. We also compare memory requirements for the full tensor Cαβγ with
the irreducible Burnett approach and found that for a general potential, the full tensorCαβγ is
muchmore demanding thanwhat is needed for the impact tensor and together. However,
when measuring the memory requirements for the Maxwell potential, we initially found that
the memory requirements for the full tensor Cαβγ are less than the requirements for .
This is because saving as compiled program is more memory intensive than a file with
only numbers, and because we still compared to the general coupling tensor which has many
more cases than actually necessary—for M = 20 out of the 1331 possible cases only 505
are actually required for the Maxwell potential, leading to a significantly smaller program of
only 6.6MB. This reduction is due to the additional condition on the indices (36).

Assessing the performance of the irreducible Burnett algorithm would be incomplete
without looking at the performance of the Burnett spectral method in [10] obtained from a
single thread computation on a CPU model Intel Xeon E5-2697A V4. In Table 4 we can
compare the three algorithms for the Maxwell potential. Additionally, for the hard Maxwell
potential with η = 10 and M = M0 = 20, we find from Figure 15 in [10], that one
evaluation of the collision operator takes about 90ms, whereas our algorithm takes about
50ms.Note however, that a different computational setupwith differentCPUmodelswas used
for each computation. We therefore conclude, that the computational time of both methods
is similar for the IPL potential with η = 10, while the memory cost is greatly reduced with
the irreducible Burnett method, which requires about 51MB, whereas the spectral Burnett
method needs 784MB for just the sparseMaxwell potential. Table 4 also allows us to compare
performance for the Maxwell potential of both methods and here we can see a significant
difference both in computational time and memory usage.

Overall, we are satisfied to conclude that our implementation utilizes the underlying
structure of the collision operator well enough to outperform the current state of the art.
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Table 4 Comparison between total runtimes of different algorithms for the Maxwell Potential (top), and a
general potential (bottom)

Algorithm Runtime (s) Memory

Maxwell potential Irreducible Burnett 0.3 7 MB

TACO [21] 0.6 25 MB

Spectral Burnett [10] 39.76 784 MB

General potential Irreducible Burnett 20 50 MB

TACO [21] 31 1.4 GB

The time is given for M = 20, 100 iterations and initial function given by the BKW solution for the Spectral
Burnett algorithm and a generic input distribution for the other algorithms. Note, that all algorithms use pre-
computed coefficients for the collision operator and run sequentially. In these timings the irreducible Burnett
algorithm has not been simplified to the homogeneous case, see Table 2 for these specs. The timings and
memory usage for the spectral Burnett algorithm are taken from [10] with computation done on a single thread
with CPU model Intel Xeon E5-2697A V4, while the other computations ran sequentially on a CPU model
Intel(R) Core(TM) i7-8650U

5.3 Comparison to the Spectral Burnett Method in [10]

The spectral Burnett method used in the ansatz in [10] is based on complex solid harmonics.
Here the presented algorithm exploits the relation for the directional indices—the collision
tensor’s entries can only be non-zero if l = l̂ + l̃ holds. By contrast, the irreducible Burnett
ansatz uses real solid harmonics, for which this condition does not apply. Instead, we find
a sparse coupling tensor with band structures, since the real solid harmonics are a simple
linear combination of their complex counterparts. Crucially, the main difference between the
two approaches lies in the decomposition of the collision tensor into the impact and coupling
tensor. The algorithm of the irreducible Burnett ansatz exploits both this decomposition and
the sparsity of the coupling tensor. It is possible, that the performance can still be improved
by applying the decomposition to the basis with complex spherical harmonics.

5.4 Comparison to the Spectral Fourier Approach

The irreducible and the spectral Burnett ansatz share a similar approach to discretize the
velocity space through moments. This method is based on picking a finite polynomial degree
and using a finite-dimensional approximation space for the velocity-dependency of the dis-
tribution function. In contrast, the spectral Fourier approach discretizes the velocity space
by choosing some finite 3-dimensional velocity domain and representing that with a grid of
equally distant points. The collision operator is a weighted convolution. [2] and [10] com-
pared its computational costs to the presented algorithm and found comparable performance.
Fixing the velocity domain introduces problems in the form of aliasing effects, choice of
cut off and conservation properties. On the other hand, moment methods have difficulty in
approximating some distributions, an example for this will be demonstrated in Sect. 6.3.

Notably, the spectral Fourier approach is connected to the representation theory of abelian
groups, such as O2 or the group of translations. In fact, the functions e2π iθk used for the
expansion each span a one-dimensional irreducible subspace [22].
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5.5 Using the Irreducible Burnett Ansatz

As we will see in the numerical application, not all initial conditions are computable in
the Burnett basis. However, moment equations allow a relatively low number of numerical
degrees of freedom to describe physically relevant situations. Moments as variables encode
physical quantities, usually those of low order are themost interesting, allowing us to interpret
a subset of the numbers representing the distribution function in a meaningful way.

Moment equations come with a level of complexity, and the irreducible Burnett ansatz is
no exception. Its implementation is challenging compared to other numerical methods for
the Boltzmann equation such as direct simulation monte carlo methods [23] or the aforemen-
tioned spectral Fourier approaches. This is due to the low level C++ code of the coupling
tensor, which needs to be generated using scripts or similar for a high polynomial degree
M due to the large number of different cases. We generated the function with Mathe-
matica, and while the generating code can be checked, the overall code of cannot be
verified by a human, only tested for plausibility in a small number of cases. However, this
paper must be seen in the context of moment approximations for the Boltzmann equation, see
e.g. [13, 24, 25]. In this context, via one way or the other, the collision operator will always
be implemented as some matrix–vector product in the linear case, or a tensor-vector-vector
product in the bilinear case. While the implementation of such a (bi-) linear operation can
be verified by a human, for large degree M the matrix or tensor entries themselves similarly
cannot be checked due to their number.

Solving just the spatially homogeneous Boltzmann equation is incomplete, the overall
goal is to provide a method, with which the collision operator can be evaluated efficiently.
However, the application of the irreducible Burnett ansatz to the inhomogeneous Boltzmann
equation is out of the scope of this paper and we refer to [26] for further details.

6 Numerical Application

The irreducible Burnett ansatz is the real pendant to the spectral Burnett ansatz, addition-
ally mathematically decomposing the collision tensor. While the spectral Burnett ansatz in
[10] uses complex solid harmonics, the distribution function is real for their method as well.
Therefore we expect its properties to be inherited from the spectral Burnett ansatz, including
the rate of convergence. All differences between results of both methods must stem from
purely numerical effects resulting from computational accuracy. This section aims to ensure
the correct implementation of themethod. To do so, wewill roughly estimate spectral conver-
gence by comparing lower orders of approximation to the numerical solution with M = 20
for all cases and times. Additionally we compare to the analytical solution where possible.

Let f denote the exact distribution, f̂ the numerical solution with degree M = 20 and
moments ŵ, f̃ any other numerical solution with smaller degree and moments w̃,  f :=
f̂ − f̃ and their difference. Using the L2-norm implied by the scalar product on Veq from
Eq. (10),

‖ f ‖ = √〈 f , f 〉 =
√∫

R3
f 2

1

f (eq)
dc,

‖ f ‖ is simply given by the standard vector norm of the difference between their moments,

‖ f ‖ = ‖ŵ − w̃‖.
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Unlike the exact solution f , which we can only access in the first test case,  f is available
for all times. It is also a good indicator for spectral convergence, as we find for the residual

‖ f − f̃ ‖ = ‖ f − f̂ − ( f̂ − f̃ )‖ ≤ ‖ f − f̂ ‖ + ‖ f ‖.
Note that for t = 0, f̂ is the result of the orthogonal projection of f and therefore f − f̂ is
in the orthogonal complement of Veq, implying that  f ⊥ ( f − f̂ ). Therefore, at t = 0

‖ f − f̃ ‖2 = ‖ f − f̂ ‖2 + ‖ f ‖2
holds, so when ‖ f ‖ decreases, so does ‖ f − f̃ ‖. We will calculate ‖ f − f̂ ‖ at t = 0 to
find the difference’s order of magnitude, but show plots of ‖ f ‖ for both t = 0 and t �= 0,
as we are mostly interested in the evolution of the coefficients calculated by the irreducible
Burnett ansatz.

We consider three initial distributions to demonstrate the range of numerical application
of our method:

• BKW-Solution, where the initial function can be visualized as a 3-dimensional hollow
sphere.

• Bi-Gaussian distribution, where the initial function consists of two overlapping Gaus-
sians.

• Discontinuous distribution, where the initial function consists of two different states that
are seperated at a flat plane in velocity space and that haven’t interacted with each other
yet.

Wewill look both at the effect of the choice of potential, as well as the difference between var-
ious numerical approximations, mainly given by the choice of different maximal polynomial
degrees M . The equilibrium solution to the Boltzmann equation, the Gaussian distribution,
lies in the chosen approximation space Veq for any M . With the our basis the Gaussian dis-
tribution corresponds to the state w000 = 1 and all other moments equal to zero. Note, that
all presented initial distributions evolve towards the Gaussian distribution with time for all
presented potentials. Therefore, for large times we expect no difference between any two
solutions, regardless of their initial distribution. This also implies that the residual between
any two solutions decreases with increasing time. As a result, the focus should be on early
time scales, because differences show up in early times and decrease with large time.

Additionally, conservation of mass, momentum and energy imply constraints on the first
coefficients, making them irrelevant for further consideration:

∀t ∈ R
+ : w000 = 1 w01−1 = 0 w010 = 0 w011 = 0 w100 = 0. (42)

6.1 BKW Solution

The BKW solution is one of the few analytical solutions to the homogeneous Boltz-
mann Equation with Maxwell-potential and has been originally developed by Krupp (1967);
Bobylev et al. (1976) [27]. As done in [9], we use the dimensionless formulation from Ernst
[27]:

f (t, c) = (2πτ(t))
3
2 exp

(
− |c|2
2τ(t)

)[
1 + 1 − τ(t)

τ (t)

( |c|2
2τ(t)

− 3

2

)]
, (43)

where

τ(t) = 1 − exp
(π

3
Bt − T0

)
with B = −0.6542926411560946‘ T0 = 0.92 (44)
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Fig. 5 Graphs of the initial distribution of the BKW solution

Fig. 6 BKW solution: Analytical (solid lines) vs. numerical (dots) evolution of coefficients wa00. Numerical
coefficients were calculated with the bilinear Maxwell potential

The initial distribution f (0, c) can be envisioned as a 3D hollow sphere. In particular, it is
obvious, that this distribution is rotationally invariant, allowing us to plot it in cylindrical
coordinates without loosing information. Since our basis is adapted to O3, we can reduce the
degrees of freedom to only those coefficients that correspond to rotationally invariant basis
functions, i.e. only weights wanl with (a, n, l) = (a, 0, 0) can be non-zero (Fig. 5).

Choosing a maximal degree of M = 20, we only have 11 relevant coefficients:

a ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} and n = l = 0 :

w000 w100 w200 w300 w400 w500

w600 w700 w800 w900 w10 00.

Combined with the restraints from Eq. (42), this allows us to take a look at the remaining
nine time-dependent moments, all of higher order with w200 the lowest one, to judge how
well the analytical and numerical solutions match without loosing any information.

Given that Cai et al. observed very good correspondence in [9, 10], and that the approxi-
mations differ in basis choice at most, we expect to obtain similar results. Looking at Fig. 6,
we observe that this expectation is met. We can also see spectral convergence of our method
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Fig. 7 Spectral Convergence of the solution for the BKW distribution. The y-Axis shows ‖ f ‖, i.e. the L2-
Norm given by the weighted scalar product of the difference between the projection of the analytical solution
onto the approximation space with M = 20 and the numerical solution with different maximal polynomial
degrees M , the x-Axis shows this degree. The plots are shown for times between 0 (top graph) and 1 (bottom
graph) in steps of 0.1 (in order from top to bottom) and the evolution is calculated with the Maxwell potential

in Fig. 7 by comparing results of lower polynomial degrees

M ∈ { 4, 6, 8, 10, 12, 14, 16, 18 }
to the projection of the analytical solution onto the approximation space with M = 20
for different times t ∈ [0, 1]. We observe faster than exponential convergence, which is
demonstrated by the downward sloping curves on the semi-log scale. However, there is no
reason to expect that this behaviour translates from the very special BKW test case to the
approximation of a general distribution.

Note, that for various M the difference between the evolution of the lowest order time-
dependent moment w200, which all compared theories share, is in the order of 10−14. This is
due to the restriction in Eq. (36) imposed by the Maxwell potential, which for this particular
case simplifies to

a = b + c.

With a = 2, the only possible contributions can come from (b, c) ∈ { (0, 2), (1, 1) }, which
are already taken into account by the lowest order ansatz with M = 4. A corresponding
argument applies to any higher moment—in this specific test case the increase of polynomial
degree cannot have an influence on the lower moments, but it does add accuracy to the overall
distribution, as shown in Fig. 7.

While the difference in basis choice and understanding of the underlying representation
theory seems benign, in this particular case it means we have reduced the roughly 1700
perceived degrees of freedom to just 9. This also affects the number of relevant impact
coefficients: For a rotationally invariant distribution and M = 20 we only need 34 impact
coefficients Sabc

nn̂ñ and hence the evaluation time for one time step is only a few ms.
Figure8 compares the evolution of the moments for different potentials. By omitting

any line in the impact tensor file where b �= 0, we generated the linear collision operator.
In Fig. 8a we can clearly see a difference between the linear Maxwell potential and the
analytical solution, in particular in the higher moments. We also calculated the evolution of
the coefficients for the simplified Maxwell model and found that it corresponds well to the
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Fig. 8 BKW solution: Analytical (solid lines) vs. numerical (dots) evolution of coefficients for different
potentials

analytical solution. Figure8b compares the residual between the moments obtained from the
numerical solution with M = 20 and the moments given by projecting the analytical solution
onto the approximation space Veq with M = 20 for the three different potentials. We can see
that both the Maxwell and the simplified Maxwell potential produce very accurate moments
with error in the order of 10−13, while the linear potential differs significantly from the
analytical solution. The plot also shows ‖ f − f̂ ‖, i.e. the difference between the analytical
and numerical solution obtained with the Maxwell potential for the ansatz with M = 20 in
the full function space equipped with the same scalar product as Veq. The residual starts at
8.9e−4 for t = 0 and we can see it steadily decreasing with time, as the solutions converge
to the same Gaussian.

We conclude, that for rotationally invariant cases, the simplifiedMaxwell model produces
similar results as the exact Maxwell model, and linearising the collision operator introduces
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Fig. 9 Bi-Gaussian distribution: Exact and with M = 20 approximated inital distribution function together
with two views of their difference in cylindric coordinates

a noticeable error. We also see even in this simple example the limit of spectral Burnett
ansatz—moments can be accurately calculated, but the actual distribution function can only
be approximated with some error depending on the degree M .

We also calculated the evolution of the coefficients for the simplified Maxwellian model
and found that it corresponds to the analytical solution as well. The linearised simplified
Maxwell model differs to the analytical solution similarly to the linearised Maxwell model.
We conclude, that for rotationally invariant cases, the simplified Maxwell model is as good
as the exact Maxwell model, and linearising the collision operator introduces a small but
noticeable error (Fig. 9).

6.2 Bi-Gaussian Distribution

Again we take the initial distribution from [9]

f (0, c) = 1

2π3/2

⎛
⎝e−cx 2−cy2−

(
cz−
√

3
2

)2
+ e

−cx 2−cy2−
(
cz+
√

3
2

)2⎞
⎠ . (45)

Due to the distribution’s mirror symmetry w.r.t the x, y-plane, only even anisotropic indices n
can result in non-zero projection coefficients in our basis. This is reflected in the projection of
a monomial. Using the computer algebra systemMathematica, the projection of a monomial
leads to a product fromwhich it is easy to find a corresponding condition—any uneven degree
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leads to 0:

〈cax cbyccz , f (0, c)〉 = ((−1)a + 1
) (

(−1)b + 1
) (

(−1)c + 1
)
K1(a, b, c),

with some additional function K1(a, b, c).We further see, that the distribution isO2-invariant
for rotations around the z-axis, resulting in the additional constraint that unless the directional
index l = 0, the coefficients are zero. Overall, with M = 20 we find 66 relevant coefficients
from combinations of

isotropic index a ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ,
anisotropic index n ∈ {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20}, with 2a + n ≤ M and l = 0.

We note, that with all the coefficients of uneven anisotropic indices being zero in the
beginning and due to the conditions (32), we again may drop many lines from the impact
tensor file, albeit not as many as in the BKW case. Figure11 shows the residual between the
ansatz with M = 20 and lower order approximations with the maximal polynomial degrees
M ∈ { 10, 12, 14, 16, 18 }.

Here we again see spectral convergence of the solution, indicating that this test case can
also be well approximated by the spectral Burnett basis. Figure10 indicates that the smallest
and largest orders M = 10 and M = 20 both have similar looking distributions, with their
largest difference located at the tips and overlap of the two Gaussians. We can further see
from both Figs. 10 and 11 that the difference between approximations decreases with time as
discussed in the beginning of this chapter. ‖ f − f̂ ‖ at t = 0 evaluates to 1.6e−3, the same
order of magnitude as the first case. Overall, this indicates that the initial distribution is well
approximated.

Lastly, we compare the simplified and actual Maxwell potential in Fig. 12, where we look
at the evolution of 19 out of the 66 coefficients as examples to demonstrate the range of
possibilities. We note that for some moments the Maxwell and simplified Maxwell potential
correspond to each other well, while for other moments those calculated with the Maxwell
potential converge faster to 0. This trend is observed for most of the not displayed coefficients
as well. However, we also note that some coefficients grow first, before converging to zero.
Here we see, that the coefficients of theMaxwell potential remain closer to zero than those of
the simplifiedMaxwell potential. Overall, we conclude that the simplifiedMaxwell potential
can lead to a significantly different solution than the Maxwell potential in setups that are not
rotationally invariant.

6.3 Discontinuous Distribution

Using the dimensionless formulation from [9] for this case we have

f (0, c) =

⎧⎪⎪⎨
⎪⎪⎩

4√2
(
2−√

2
)

π3/2 · exp
(
− c2√

2

)
cz > 0

4√2
(
2−√

2
)

4π3/2 · exp
(
− c2

2
√
2

)
else

(46)

Projection of a monomial, evaluated by Mathematica, again leads to a product from which
we can infer that certain index combinations lead to zero:

〈cax cbyccz , f (0, c)〉 = ((−1)a + 1
) (

(−1)b + 1
) (

(−1)c 2
1
2 (a+b+c) + √

2
)
K2(a, b, c),

again with some additional function K2(a, b, c) However, finding exclusion rules for the
projection coefficients is less obvious here. They can only be non-zero if n is uneven or
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Fig. 10 Bi-Gaussian distribution: Snapshots of the evolution of the approximation with M = 10, M = 20
and their difference in cylindrical coordinates for t ∈ { 0, 0.3, 0.6, 1 } calculated with the Maxwell potential

zero. We again find that the distribution function is O2-symmetric, requiring the projection
coefficients to be zero unless l = 0. Note in contrast to the bi-Gaussian case, that even
though at the beginning the relevant coefficients have an uneven or zero anisotropic index,
two uneven anisotropic indices can couple to an even anisotropic index, see (32). So the total
set of relevant coefficients wanl for M = 20 is given by:

isotropic index a ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ,
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Fig. 11 Spectral convergence of the solution for the bi-Gaussian distribution. The y-Axis shows ‖ f ‖, i.e.
the L2-Norm given by the weighted scalar product of the difference between the two solutions of different M
and M = 20 as indicated by the x-Axis. The plots are shown for times between 0 (top graph) and 1 (bottom
graph) in steps of 0.1 (in order from top to bottom) and the evolution is calculated with the Maxwell potential

Fig. 12 Bi-Gaussian distribution: Comparison of the evolution of the coefficients wan0 of the bi-Gaussian
distribution function for the Maxwell (MX, solid lines) and simplified Maxwell (SMX, dots) potential
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Fig. 13 Discontinuous distribution: Exact and with M = 20 approximated inital distribution function together
with two views of their difference in cylindric coordinates

anisotropic index n ∈ {x |x ∈ N0 ∧ 0 ≤ x ≤ M}, with 2a + n ≤ Mand l = 0.

i.e. one coefficient per irreducible subspace, which makes 121 coefficients in total for
M = 20.However, because all combinations of isotropic and anisotropic indices are possible,
this case requires the full impact tensor and basis set, which has 1771 moments. Due to the
O2-symmetry, most of them are zero and will always be zero for this test case. Looking at
Fig. 13, we can clearly see that the discontinuity at t = 0 is not well approximated, even with
a large degree of M = 20. This is reflected in ‖ f − f̂ ‖, which at t = 0 evaluates to 1.7e−1,
a much larger value than in the other two cases.

Comparing the evolution of the distribution function in Fig. 14 for approximations of
degree M = 10 and M = 20, we again find that the two approximations get closer to each
other with time, as both converge to the same Gaussian.

Figure15 shows the residual between the ansatz with M = 20 and lower order approxi-
mations, each denoted by their maximal polynomial degree

M ∈ { 10, 11, 12, 13, 14, 15, 16, 17, 18 } .

Here we see a rather slow spectral convergence and that there is little gain of accuracy when
increasing M from an uneven to an even degree, which is also why M = 19 was omitted. We
propose that this is due to the initial condition, in which most of the coefficients with even
2a + n are zero. Together with the badly approximated discontinuity shown in Fig. 13, this
shows one of the limits of the approximation space. This is the first test case where all lines
of the impact tensor file are contributing to the overall evolution of the distribution function
and as with the previous example we can see clear differences in the evolution of coefficients
between the simplified Maxwell and Maxwell potential in Fig. 16.
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Fig. 14 Snapshots of the evolution of the approximation of the discontinuous distribution function with
M = 10, M = 20 and their difference in cylindrical coordinates for t ∈ { 0, 0.3, 0.6, 1 } calculated with the
Maxwell potential
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Fig. 15 Convergence of the solution for the discontinuous distribution. The y-Axis shows ‖ f ‖, i.e. the L2-
Norm given by the weighted scalar product of the difference between the two solutions of different M = 20
and M as indicated by the x-Axis. The plots are shown for times between 0 (top graph) and 1 (bottom graph)
in steps of 0.1 (in order from top to bottom) and the evolution is calculated with the Maxwell potential

Fig. 16 Discontinuous distribution: Comparison of the evolution of the coefficients wan0 for the Maxwell
(MX, solid lines) and simplified Maxwell (SMX, dots) potential
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Fig. 17 Discontinuous distribution: Evolution of the stress tensor entries σ11 and σ22 and the heat flux entry
q1 for the hard IPL potential with η = 10. The results of the irreducible Burnett ansatz (irreducible, dots) are
compared to those from [9] (reference, solid lines), with values kindly provided by the authors. Note, that we
transformed our coordinates to match the orientation of the reference values for this plot

123



Journal of Scientific Computing (2023) 95 :78 Page 31 of 39 78

When looking at the heat flux and stress tensor, we find good correspondence to previously
published results in [9] in Fig. 17, with an absolute difference in the order of 10−6. Note,
that the approximation space for this comparison is not the same. Referring to the method
demonstrated in [9], our ansatz corresponds to M0 = M = 20, while the values provided
by the authors have been calculated with M0 = 15, M = 60. The good correspondence
suggests that this difference has little influence on the moments of this low order and that
the irreducible Burnett ansatz produces results very similar to the spectral Burnett ansatz.
This should be the case, since the difference between the spectral and the irreducible Burnett
ansatz lies solely in the exploitation of the collision tensor’s decomposition.

7 Summary

With the irreducible Burnett ansatz we were able to reduce the computational effort of cal-
culating Boltzmann’s collision operator in the spectral Burnett ansatz both in computational
time and memory by implementing an algorithm inspired by the representation theoretical
decomposition of the collision operator. This decomposition relies on the fact that the used
basis is adapted to the irreducible subspaces of the approximation space.

This decomposition not only allowed us to find an efficient algorithm, but also provides an
understanding behind the structure of the collision tensor by separating factors that depend
on the underlying physics from those that are of pure mathematical nature: The bilinear
collision tensor can be expressed as product of the impact tensor with coefficients depending
on the potential between the colliding particles and the coupling tensor with coefficients only
depending on the basis choice of the irreducible subspaces.

With spherical harmonics as basis, further structure of the coupling tensor could be
exploited by looking at O2-irreducible subspaces. For example, the coupling tensor could
be split into the case where all anisotropic indices are zero and everything else. This is not
necessarily generally applicable, but there may exist interesting use-cases.

Applying the method of this paper to collision operators of different kind, such as poly-
atomic gases [28] or the Landau operator [29], looks like a promising next step.
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9 Appendix

9.1 Rotational Covariance of the Collision Operator

Repeating the quadratic collision operator S( f ) given in Eq. (3)

S ( f ) =
∫

R3

∫

n⊥g

π∫

0

(
f (t, c′) f (t, c1′) − f (t, c) f (t, c1)

)
B(|g|, χ) dχ dn dc1 (47)

we see it is a function in c. Any orthogonal coordinate transformation r ∈ O3 acts on any
function T : R3 → R by

r−1 (T (c)) := T (r(c)),

which applied to the collision operator is

r−1 (S( f )(c)) = S( f )(r(c)). (48)

Additionally, as a physically motivated map between function spaces, the collision operator
is rotationally covariant, i.e. as stated in Eq. (18) it fulfils

∀r ∈ O3 : r−1 (S( f )(c)) = S(r−1 ( f ))(c). (49)

This means that rotating or mirroring the input distribution function f will result in a corre-
spondingly rotated/mirrored collision operator. To see that (49) is true, we will check that

S(r−1 ( f ))(c) = S( f )(r(c)) (50)

holds. Since r is a 3× 3 orthogonal matrix, r(c) = r · c. Noting that r−1 ( f ) (c) = f (r · c)),
we find for the left hand side

S(r−1 ( f ))(c) =
∫

R3

∫

n⊥g

π∫

0

(
f (r · c′) f (r · c1′) − f (r · c) f (r · c1)

)
B(|g|, χ) dχ dn dc1,

(51)
omitting the dependency on time t for the remainder of this calculation. To obtain the right
hand side, we just need to substitute c with r · c. We will make use of the variable change

c̃1 :=r · c1 dc̃1 = dc1 c1 =r−1c̃1, (52)

which transforms the second pair of distributions in Eq. (51) on the left hand side. Comparing
to the same pair of the right hand side we obtain:

LHS: f (r · c) f (r · c1) = f (r · c) f (c̃1), RHS: f (r · c) f (c1). (53)

Both sides are already very similar—the only difference is the tildation of c1. For the first
pair in Eq. (51) we look at the velocities r · c′ and r · c1′ individually. From (4) we obtain

r · c′ = r ·
(
h + 1

2
Rn,χ (g)

)
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= 1

2
r · (c + c1 + Rn,χ (c) − Rn,χ (c1)

)

= 1

2
r · c + 1

2
c̃1 + 1

2
r Rn,χr

−1

︸ ︷︷ ︸
=Rr(n),χ

rc − 1

2
r Rn,χr

−1

︸ ︷︷ ︸
=Rr(n),χ

c̃1, (54)

and similarly for r · c1:

r · c1 = 1

2
r · c + 1

2
c̃1 − 1

2
r Rn,χr

−1

︸ ︷︷ ︸
=Rr(n),χ

rc + 1

2
r Rn,χr

−1

︸ ︷︷ ︸
=Rr(n),χ

c̃1. (55)

We further note, that g and n are affected by the variable change:

g = c − c1 = c − r−1c̃1 = r−1 (rc − c̃1) �⇒
{ |g| = |rc − c̃1|,
n ⊥ g = n ⊥ r−1 (rc − c̃1) .

(56)

Note how the transformation r acts on the normal vector n: The matrix R now rotates around
the axis r(n), instead of the axis n, while the integration domain is transformed by r−1.
Therefore, we can equivalently integrate over n ⊥ rc− c̃1 and substitute all n by r−1n. Now
we are left with an expression for S(r−1( f )) that has r(c) instead of c, and c̃1 instead of c1
everywhere, which is equivalent to the right hand side of (50). This shows covariance of the
collision operator.

Note the core reason for this: The collision operator is a concatenation of rotationally
covariant operations such as taking the norm of a vector, or integrating over all directions.

9.2 Representation Theory: An Overview

Below we describe the core aspects of representation theory that we employed in this paper.
This is a use-case restricted overview of the subject and we refer the reader to lecture books,
e.g. [30–35], and to the original material such as [17, 36] for further reading and full proofs
of the following statements.

Definition 9.1 (Representation (Definition 4.1 from [33])) Let G be a group and F a field.
A representation of G over F consists of

• a F-vector space V ,
• a map · : G × V → V , (g, v) �→ g · v, called the operation of the group on the vector

space, that satisfies the axioms in Table 5.

We can say V is a representation of G and G operates on V .

For our purposes, we are interested in representations of the orthogonal groups, mainlyO3

given by orthogonal matrices r ∈ R
3×3, i.e. G = O3. The field F is R and the vector spaces

V we use are the tensor space of R3 and the space of real polynomials in three arguments
R[x, y, z]. For both the operation of O3 is given in terms of the matrix vector-product r · v

with v, vi ∈ R
3:

r · v1 ⊗ · · · ⊗ vn = (r · v1) ⊗ · · · ⊗ (r · vn), (57)

r · p(v) = p(r−1 · v). (58)
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Table 5 Defining properties of representations and homomorphisms between representations, withG a group,
V ,U two representations of G, f : U → V a homomorphism

Axioms of representations Meaning

Linearity ∀g ∈ G : (V → V , v �→ g · v) is a linear map

Associativity ∀g, h ∈ G∀v ∈ V : g · (h · v) = (g · h) · v

Non-triviality or normalization ∀v ∈ V : 1G · v = v

Axioms of homomorphisms Meaning

F-linearity f is a linear map U → V

G-linearity ∀g ∈ G, u ∈ U : f (g · u) = g · f (u)

One can generalize this to the tensor product between two vector spaces V ,U each a rep-
resentation of O3. Then V ⊗ U is also a representation of O3 with the action of r ∈ O3 on
v ⊗ u ∈ V ⊗U , v ∈ V , u ∈ U , defined according to chapter 1.1 in [37] as

r · v ⊗ u = (r · v) ⊗ (r · u). (59)

We are concerned with R[x, y, z] ⊗ R[x, y, z].
Definition 9.2 (Homomorphism between two representations (Definition 4.3 from [33])) Let
U , T be two representations of G and f : U → V a homomorphism, i.e. a linear map. f
is called FG-linear map, intertwining map or natural map, if the two axioms in Table 5 are
satisfied. The space of all FG-linear maps is written as HomFG(U , V ). If the two vector
spaces are identical, i.e. f : V → V , the FG-linear map is called endomorphism and the
space of such maps is denoted with EndFG(V ).

If f is invertible, i.e. there exists a map f ′ : V → U with f ◦ f ′ = f ′ ◦ f = id, then
f is called an isomorphism of the representations. We call two representations isomorphic if
such an f exists.

For two representations to be isomorphic, their vector spaces also need to be isomor-
phic. If the dimensions of two vector spaces are not equal, then they cannot be isomorphic
representations.

Since the collision operator describes a physical process, one of its fundamental properties
is, that it does not depend on the choice of coordinates. We also note, that it is a bilinear
map between polynomial spaces, C : PM × PM → PM , which can be written as a linear
map between the tensor product of two polynomial spaces to a polynomial space, PM ⊗
PM → PM . In mathematical terms, the collision operator must be a homomorphism from
HomRO3(P

M ⊗ PM , PM ), i.e. a natural map. While this already restricts the degrees of
freedom when compared to general linear map PM ⊗ PM → PM , we can go further by
using the concept of irreducible subspaces.

Definition 9.3 (Invariant subspaces (Definition 4.2 from [33])) A subspace U of any vector
space V is called invariant with respect to the operation of a group G, or G-invariant, iff for
all g ∈ G and for all u ∈ U , the operation of g on u still is in U , g · u ∈ U or equivalently:
∀g ∈ G : g(U ) = U .

Definition 9.4 (Irreducible subspaces (Definition 4.2 from [33])) A subspace U �= 0 of
any vector space V is called irreducible with respect to the operation of a group G, or G-
irreducible, iff it is invariant and there is no invariant subspace W ⊂ U with the properties
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W �= U and W �= 0. If a subspace U is invariant and dimU = 1, then it is also irreducible,
however an irreducible subspace can be of dimension larger than 1.

As mentioned in [17], the space of symmetric trace-free tensors of order n, STFn(R3), is
O3-irreducible. With the isomorphism between STFn(R3) and H n , which is also explored
in [17], H n is also irreducible.

Remark 9.5 Two irreducible subspaces U1,U2 that are not isomorphic to each other are
orthogonal to each other with respect to any scalar product of V that is compatible with the
operation of the group G, i.e. is itself a natural map:

∀g ∈ G ∀v1, v2 ∈ V : 〈v1, v2〉 = 〈g · v1, g · v2〉 . (60)

We can project from the full vector space V onto an irreducible subspace U1. Due to the
universal orthogonality, such a projection is always unique up to a constant (or zero) if the
irreducible subspace U1 has a multiplicity of 1, i.e. there is no other irreducible subspace of
the vector space isomorphic to U1.

This universal orthogonality between non-isomorphic irreducible subspaces is a conse-
quence of one of the fundamental lemmas in representation theory:

Lemma 9.6 (Schur’s Lemma (Theorem 4.29 from [33])) Let U1 and U2 be two finite-
dimensional, irreducible subspaces of a representation. A natural map φ : U1 → U2 is only
non-zero, iff U1 and U2 are isomorphic to each other. All non-zero natural maps U1 → U2

are the same up to a constant if the field is C.

Remark 9.7 For real representations, the space of natural maps U1 → U2 between two iso-
morphic irreducible subspaces is not necessarily one-dimensional.We shall see with Brauer’s
classification of natural maps that for our case (F = R, G = O3, V the tensor space of R3

or R[x, y, z]), we only find one-dimensional spaces of such natural maps.

Remark 9.8 Given a homomorphism h in HomFG(U , V ) a list of all irreducible subspacesUi

ofU and Vj of V and that for each pair of isomorphic subspaces (Ui , Vj ) the space of natural
maps Ui → Vj is one-dimensional, we can pick non-zero isomorphism φi j : Ui → Vj , to
express h as sum over all isomorphism φi j multiplied by free constants, which are the only
degrees of freedoms for h.

h : U → V =
∑
i j

Ui → Vj (61)

h =
∑
i j

ci jφi j . (62)

This follows immediately from Schur’s Lemma. Note, that the sum does not necessarily
include all combinations of (i, j), but only those where the corresponding Ui and Vj are
indeed isomorphic, since all other natural maps are zero. If there are multiple instances of
the same irreducible subspace up to isomorphism withinU (or V ), we can make the splitting
unique by choosing some orthogonal decompositionwith respect to the chosen scalar product
for U (or V ).

Applying this idea to the setup in this paper, we first define the notation for the irreducible
and orthogonal subspaces characterized with the isotropic and anisotropic indices:

H n
a := L

(
n+ 1

2

)
a

(
c2

2

)
· H n . (63)
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Nowwe can decompose our bilinear collision operator as the sum over natural maps between
irreducible subspaces,

C : PM ⊗ PM → PM =
(∑

an

H n
a

)
⊗
(∑

an

H n
a

)
→
(∑

an

H n
a

)

=
∑

abcnn̂ñ

H n̂
b ⊗ H ñ

c → H n
a , (64)

and using the isomorphism betweenH n
a andH n , we can restrict the different types of maps

to

H n̂ ⊗ H ñ → H n . (65)

We now note that symmetric tensors are isomorphic to polynomials of the same degree and
same underlying vectorspace, Chapter B.2 in [38], i.e. withR3 we canmap symmetric tensors
of degree n from the space of symmetric tensors Symn(R3) to homogeneous polynomials
of degree n in R[x, y, z]. We identify the tensor space that is isomorphic to the space of
harmonic polynomialsH n of degree n as the space of symmetric trace-free tensors STFn of
same degree, as is explored in [17]. Anything that we learn from the tensorial view,

STFn̂ ⊗STFñ → STFn, (66)

we can apply to the polynomial view. We first note, that the tensor product of two represen-
tations is itself a representation. We also note, that the codomain of the natural map is an
irreducible representation of O3, so using Schur’s lemma, we know that the natural maps in
(66) can only be non-zero if the codomain is isomorphic to one of the irreducible subspaces
of the domain. Finding the irreducible subspaces of the tensor product of two representations
is not trivial in general and this decomposition is called Clebsch-Gordan theory [39]. For the
case of O3 and symmetric trace-free tensors over R, one can find the decomposition of the
maps in (66) relatively easily and we show the argument only for the sake of completeness.
We start by considering the types of natural maps between tensors [36]:

• Permuting tensor factors,
• Taking the trace between two factors,
• Taking the tensor product with the equivalent of c2,ω :=∑i bi ⊗bi for any orthonormal

basis set { b1, b2, b3 } of R3, also known as the δi j -tensor.

Any natural map between tensor spaces can be expressed as linear combination and com-
position of the above maps. They can be represented graphically with Brauer diagrams [36].
This gives us a search space for the isomorphism STFn̂ ⊗STFñ → STFn . We first note, that
the result must be a tracefree tensor, so we use the detracer D from [17]. D is an explicitly
given projection from a symmetric tensor onto the symmetric tracefree tensor space of same
order. As its input is a symmetric tensor, we need the symmetrizer (Part B.2 in [38])

q : R3⊗n → Symn (67)

v1 ⊗ · · · vn �→ 1

n!
∑
σ∈Sn

vσ(1) ⊗ · · · vσ(n), (68)

which gives us the overall projector D ◦ q , which is applied last. From Remark 9.5 and
because the multiplicity of STFn in Symn is one, we know that this map is unique up to a
constant. What remains to be shown is for any natural linear map φ that we apply before this
projector such that the overall map D ◦ q ◦ φ is STFn̂ ⊗STFñ → STFn , the overall maps
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at most differ by a constant factor and thereby fulfilling the promise in Remark 9.7. In other
words: We want to show that

span
{
D ◦ q ◦ φ : STFn̂ ⊗STFñ → STFn

∣∣∣ φ is a natural linear map
}

is one-dimensional or the space of maps to zero.
Next, we note that the overall tensorial degree of the domain is n̂+ ñ, and we would like to

show the restriction n ≤ n̂ + ñ. To do so, we find all natural maps STFn → (R3)
⊗(n̂+ñ)

and
show that theymust all be zero, leavinguswith the conclusion that a representation isomorphic

to STFn cannot be contained in (R3)
⊗(n̂+ñ)

. Any natural map STFn → (R3)
⊗(n̂+ñ)

must
reduce the tensorial degree n to n̂ + ñ, leaving the trace as the only candidate, but since the
tensors in STFn are trace-free by definition, the result is zero. First taking the tensor product,
i.e. multiplying, with any number of ω also does not yield a different result, since in the end
more traces need to be taken than the number of ω that have been multiplied, inadvertently
leading to taking at least one trace of the tensor in STFn . Therefore, for n > n̂+ ñ there does

not exist a subspace in (R3)
⊗(n̂+ñ)

isomorphic to STFn , leading us to the desired restriction.
We further note, that the maps listed above all change the degree of tensor product by

an even number, so ñ + n̂ − n ∈ 2N0. It is clear that the traces can only be taken between
one factor of STFn̂ and one factor of STFñ each, as opposed to a trace of two factors in
STFn̂ , which would map to zero by definition of STFn̂ . This gives the third condition on the
anisotropic indices from (32), ñ + n̂ − n ≤ 2min(ñ, n̂). Finally, we note that the codomain
is also tracefree, so if somewhere in the composition the tensor product with ω is taken, an
additional trace needs to be taken as well to achieve tracefreeness, otherwise the detracer
would project onto zero due to the orthogonality between tracefree tensors and tensors with a
trace (PartB, section 6 in [40]).Overall, the space of homomorphismsSTFn̂ ⊗STFñ → STFn

is one-dimensional, so each map is unique up to a constant.
Following the isomorphism back to the polynomial spaces, we can apply the results one-

to-one, leading to the unique up to a constant natural map given by the coupling tensor.
Looking at (64):

C =
∑

abcnn̂ñ

H n̂
b ⊗ H ñ

c → H n
a , (69)

and picking one non-zero instance for each of the maps that satisfy (32):

Q̃nn̂ñ
abc : H n̂

b ⊗ H ñ
c → H n

a , (70)

we apply Remark 9.8 to write any natural map of the form (64) as
∑

abcnn̂ñ

Sabc
nn̂ñ Q̃

nn̂ñ
abc . (71)

Noting that due to the isomorphism between the irreducible subspaces, all Q̃nn̂ñ
abc with same

combination of anisotropic indices work the same, we arrive at the decomposition of the
collision tensor from Eq. (33).
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