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Abstract
In this paper, we prove uniform error bounds for proper orthogonal decomposition (POD)
reduced order modeling (ROM) of Burgers equation, considering difference quotients (DQs),
introduced in Kunisch and Volkwein (Numer Math 90(1):117–148, 2001). In particular, we
study the behavior of the DQ ROM error bounds by considering L2(�) and H1

0 (�) POD
spaces and l∞(L2) and natural-norm errors. We present some meaningful numerical tests
checking the behavior of error bounds. Based on our numerical results, DQ ROM errors
are several orders of magnitude smaller than noDQ ones (in which the POD is constructed
in a standard way, i.e., without the DQ approach) in terms of the energy kept by the ROM
basis. Further, noDQ ROM errors have an optimal behavior, while DQ ROM errors, where
the DQ is added to the POD process, demonstrate an optimality/super-optimality behavior.
It is conjectured that this possibly occurs because the DQ inner products allow the time
dependency in the ROM spaces to make an impact.

Keywords Difference quotients · Proper orthogonal decomposition · Reduced order
models · Error analysis · Optimality

1 Introduction

Reducedordermodels (ROMs) are oneof themost popular low-dimensional surrogatemodels
to obtain the numerical simulation of linear and nonlinear systems [10, 13, 15–18, 23, 32–
35, 42, 44, 45]. To build a low dimensional ROM, one can use the following most popular
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frameworks such as proper orthogonal decomposition (POD) [1, 3–7, 12, 14, 17, 21, 25,
31, 33, 46, 47], reduced basis methods (RBM) [8, 36, 40], empirical interpolation method
(EIM), and discrete empirical interpolation method (DEIM) [2, 11, 37, 39]. In this work, we
specifically use the POD framework to build the ROM.

The ROM error analysis for the parabolic problems has been worked in [19, 26, 27, 29,
41, 43]. Difference quotients (DQs) (i.e., scaled snapshots of the form (un − un−1)/�t, n =
1, . . . , N ) were proposed by Kunisch and Volkwein in Remark 1 of [26] as a means to
achieve time discretization optimality. The effect of the DQs in linear applications and the
ROM error analysis for the parabolic problems are investigated in [9, 28] and [19, 22, 26,
29], respectively. The authors in [19] provide the DQ ROM numerical results for the Burgers
equation without providing any numerical analysis for the results. Thus, we emphasize that,
to our knowledge, the ROM error analysis considering the DQs for nonlinear problems has
never been proven.

The main aim of the paper is to provide an error analysis for the ROM approximation
of Burgers Eqs. (1) considering DQ, L2(�) and H1

0 (�) POD space frameworks and the
l∞(L2(�)) and natural-norms.Weprovide uniformROMerror bounds and present numerical
tests in which we observe a much smaller error of the DQ ROM errors than the noDQ
ones, with respect to energy kept in the ROM basis. This indicates that the DQ ROM keeps
better-selected information for the same amount of energy due to the difference quotients.

The rest of the paper is organized as follows: In Sect. 2, we briefly describe the noDQ/DQ
POD methodology and provide error bounds for the POD projection error. DQ Crank-
Nicolson (CN) ROM for the Burgers Eq. (1) is defined in Sect. 3. The error analysis of
the DQ CN ROM is discussed in Sect. 4. Specifically, in Sect. 4.1, we classify the optimality
type for the different ROM discretization errors. Furthermore, in Sects. 4.2 and 4.3, we pro-
vide l∞(L2) and natural-norm, i.e., l∞(L2) ∩ l2(H1

0 ) DQ ROM error bounds considering
L2(�) and H1

0 (�) POD bases and their optimality behavior, respectively. As a mathematical
model, we use viscous Burgers equation:

⎧
⎪⎨

⎪⎩

ut − νuxx + uux = f , x ∈ �, t ∈ (0, T ),

u(0, t) = u(1, t) = 0 , t ∈ (0, T ),

u(x, 0) = u0(x) , x ∈ �.

(1)

In Sect. 5, we provide ROM error bounds considering noDQ, DQ framework, L2(�), H1
0 (�)

POD spaces, and l∞(L2), natural-norm errors. Specifically, in Sects. 5.1 and 5.2, we numer-
ically discuss the optimality behavior of the noDQ and DQ ROM errors, respectively,
considering L2(�), H1

0 (�) POD spaces, and l∞(L2), natural-norm errors. In Sect. 5.3,
we numerically compare and discuss the noDQ and DQ ROM errors considering both
POD spaces and norm errors. Finally, Sect. 6 presents the conclusions and future research
directions.

2 Proper Orthogonal Decomposition (POD)

This section builds a general POD framework with/without DQs. The construction of the
noDQ/DQ POD basis is straightforward and can be summarized in the following steps: (i)
We collect a snapshot data set S:={u0, u1, ..., uN } that is contained in a real Hilbert space
H and by solving (1) for equispaced parameter t j = j�t,∀ j = 0, .., N where �t = T /N .
(ii) We obtain noDQ/DQ orthonormal POD basis functions (usually called PODmodes), i.e.,
{ϕ1, ..., ϕr } ⊂ S with fixed r > 0 value by solving the following generalized minimization
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problem:

min
(ϕi ,ϕ j )H=δi j

‖u − Pru‖2∗ (2)

where the ∗ norm is defined as

‖v‖∗ := 1
√
Mξ

( N∑

i=0

‖vi‖2H + ξ

N∑

i=1

‖∂vi‖2H
)1/2

, (3)

with the weight Mξ and tuning parameter ξ , and the DQs, i.e., ∂vk , defined by

∂vk := vk − vk−1

�t
, (4)

and Pr : H → H is the orthogonal projection onto Xr := span{ϕi }ri=1 given by

Pru =
r∑

i=1

(u, ϕi )H ϕi , u ∈ H. (5)

Depending on the choice of the tuning parameter ξ (we let ξ to be 0 or 1) in (3), (7) yields
the noDQ/DQ POD. To be more specific, the choice of ξ = 0 discards the DQ summation in
(3); thus, the minimization problem (2) is solved for just the given snapshot data set S with
the weight Wξ = N + 1 to obtain the standard POD (noDQ POD) basis. On the other hand,
choosing ξ = 1 (taking into account the DQ summation) leads to (2) to be solved for the
different snapshot data set S = {u0, .., uN , ∂u1, ..., ∂uN } with Mξ = 2N + 1, which results
in the DQ POD basis.

In order to solve (2), one considers the eigenvalue problem

Kv = λv, (6)

where K ji := (u j , ui )H, i, j = 1, .., Mξ is the snapshot correlation matrix, λ1 ≥ λ2 ≥
, ...,≥ λd > 0 are the positive eigenvalues, and vk, k = 1, ..., d , are the associated
eigenvectors. Then, the solution of (2) is given by

ϕi = 1√
λi

Mξ∑

j=1

(vi ) j u
j . (7)

To obtain the L2 or H1
0 POD space framework, one needs to choose the Hilbert spaceH in

(3) and (6) as either L2 or H1
0 , respectively. For example, if one needs to create the DQ-H01

POD, one should choose H = H1
0 in (3) and (6) and ξ = 1 in (3) to solve the minimization

problem (2) and eigenvalue problem (6).
Now, we provide DQ POD approximation errors in Lemma 2.1 proven in [19] by consid-

ering different norms and projections onto Xr = span{ϕi }ri=1 ⊂ H. Furthermore, we present
the uniform DQ POD projection error bounds in Theorem 2.2 proven in [24], Theorem
3.7. These results are necessary to prove DQ ROM error bounds and show their optimality
behavior in Sect. 3.

Lemma 2.1 Let Xr = span{ϕi }ri=1 ⊂ H, let Pr : H → H be the orthogonal projection

onto Xr as defined in (5), and let d be the number of positive POD eigenvalues, where λ
DQ
i

represents the DQ POD eigenvalues for the collectionUDQ = {un}Nn=0∪{∂un}Nn=1 described
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above. If W is a real Hilbert space with UDQ ⊂ W and Rr : W → W is a bounded linear
projection onto Xr , then

1

2N + 1

( N∑

n=0

∥
∥un − Pru

n
∥
∥2
W +

N∑

n=1

∥
∥∂un − Pr∂u

n
∥
∥2
W

)

=
d∑

i=r+1

λ
DQ
i ‖ϕi‖2W , (8a)

1

2N + 1

( N∑

n=0

∥
∥un − Rru

n
∥
∥2
W +

N∑

n=1

∥
∥∂un − Rr∂u

n
∥
∥2
W

)

=
d∑

i=r+1

λ
DQ
i ‖ϕi − Rrϕi‖2W .

(8b)

Theorem 2.2 Let Xr = span{ϕi }ri=1 ⊂ H, let Pr : H → H be the orthogonal projection onto

Xr as defined in (5), let d be the number of positive POD eigenvalues, where λ
DQ
i represents

the DQ POD eigenvalues for UDQ, and let t j := j�t,∀ j = 0, ..., N where �t = T /N. If
W is a real Hilbert space with UDQ ⊂ W and Rr : W → W is a bounded linear projection
onto Xr , then

max
0≤k≤N

∥
∥
∥uk − Pru

k
∥
∥
∥
2

H
≤ C

d∑

i=r+1

λ
DQ
i , (9a)

max
0≤k≤N

∥
∥
∥uk − Pru

k
∥
∥
∥
2

W
≤ C

d∑

i=r+1

λ
DQ
i ‖ϕi‖2W , (9b)

max
0≤k≤N

∥
∥
∥uk − Rru

k
∥
∥
∥
2

W
≤ C

d∑

i=r+1

λ
DQ
i ‖ϕi − Rrϕi‖2W , (9c)

where C = 6max{1, T 2}.
Remark 2.3 The bounds in Lemma 2.1 and Theorem 2.2 are still valid if one replaces the
snapshots data {u0, u1, ..., uN }, which are the continuous solution data in this paper as in
[24], with finite element (FE) solutions {u0h, u1h, ..., uN

h }, where h is the spatial discretization
parameter. Furthermore, the data set used to generate the POD basis in (2) should be the same
as the data set used in the POD projection error bounds in Lemma 2.1 and Theorem 2.2.

Remark 2.4 The construction of all ROMs, which are used in the following sections, are
obtained by using Crank-Nicolson and Galerkin time and space discretizations, respectively.
However, they differ from each other based on two main criteria: noDQ/DQ and L2/H1

0 POD
frameworks. Thus, when we label the name of the models for brevity, we drop CN, POD,
and ROM acronyms, and, for clarity, we consider noDQ/DQ and L2/H1

0 acronyms.

3 Reduced Order Modeling (ROM)

In this section, we present a numerical method for the Burgers Eq. (1), which is the proper
orthogonal decomposition reduced order model.

First,wedefine the function space X = H1
0 (�) endowedwith the inner product (u, v)H1

0
=

(ux , vx )L2 . We take u(·, t) ∈ X , t ∈ [0, T ] to be the weak solution of the weak formulation
of the Burgers equation with homogeneous Dirichlet boundary conditions:

(∂t u, v)L2 + ν(ux , vx )L2 + (uux , v)L2 = ( f , v)L2 ∀v ∈ X . (10)
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Applying Crank-Nicolson and Galerkin discretizations in time and space, respectively to
the weak formulation of the Burgers Eq. (10) results in the CN ROM: ∀vr ∈ Xr ,

(
∂un+1

r , vr
)

L2 + ν((ur )
n+1/2
x , (vr )x )L2 + (un+1/2

r (ur )
n+1/2
x , vr )L2 = ( f n+1/2, vr )L2 ,

(11)

where ∂un+1
r := (un+1

r − unr )/�t .

Remark 3.1 We use the notation zn+1/2 for any discrete-time function z to denote the average
zn+1/2 := 1

2

(
zn+1 + zn

)
. However, for a continuous time function, we use f n+1/2 to denote

f (tn + �t/2).

4 Error Analysis

In this section, we prove uniform error bounds for the DQ ROM for the Burgers Eq. (1).
Specifically, we provide l∞(L2) and natural-norm (l∞(L2) ∩ l2(H1

0 )) error bounds consid-
ering L2(�) and H1

0 (�) POD bases and their optimality behavior in Sect. 4.2 and Sect. 4.3,
respectively.

We start the analysis by applying the CN time discretization to (10), which yields the
following: ∀v ∈ X ,

(
∂un+1, v

)

L2 + ν(un+1/2
x , vx )L2 + (un+1/2un+1/2

x , v)L2 = ( f n+1/2, v)L2 + τn(v), (12)

with the corresponding consistency error

τn(v) := (
∂un+1 − ∂t u(tn + �t/2), v

)

L2 + ν
(
uxx (tn + �t/2) − un+1/2

xx , v
)

L2

+
(
un+1/2un+1/2

x − u(tn + �t/2)ux (tn + �t/2), v
)

L2
.

(13)

The consistency error (13) does not depend on the f term because of Remark 3.1. Fur-
thermore, we assume the following regularity conditions on the continuous solution u and
the terms in (13):

u ∈ L∞(H1
0 (�)), (14a)

uttt , (utt )xx , (u(utt )x + utt ux ) ∈ L2(0, T ; L2(�)). (14b)

Now, we define the regularity constants, which are the bounds for the terms in (14b) as

In,1(u) := ‖uttt‖L2(tn ,tn+1;L2) + ‖(utt )xx‖L2(tn ,tn+1;L2)

+ ‖u(utt )x + utt ux‖L2(tn ,tn+1;L2),

In(u) := ‖uttt‖2L2(tn ,tn+1;L2)
+ ‖(utt )xx‖2L2(tn ,tn+1;L2)

+ ‖u(utt )x + utt ux‖2L2(tn ,tn+1;L2)
,

I (u) := ‖uttt‖2L2(0,T ;L2)
+ ‖(utt )xx‖2L2(0,T ;L2)

+ ‖u(utt )x + utt ux‖2L2(0,T ;L2)
.

(15)

Now, we subtract (11) from (12) by choosing v = vr in (12) (since Xr ⊂ X ), and label
the discretized error en+1 := un+1 − un+1

r . Then, one gets the following error equation:
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∀vr ∈ Xr ,
(
∂en+1, vr

)

L2 + ν(en+1/2
x , (vr )x )L2 + (un+1/2un+1/2

x , vr )L2

− (un+1/2
r (ur )

n+1/2
x , vr )L2 = τn(vr ).

(16)

Then, we split the discretized error en+1 into two parts as

en+1 = un+1 − un+1
r = (un+1 − wn+1

r ) − (un+1
r − wn+1

r )

= ηn+1 − φn+1
r ,

(17)

wherewn+1
r := Rrun+1 is chosen as the Ritz projection of un+1 on Xr (for different analyses,

wr could be chosen differently), which is defined as
(
(u − Rru)x , (vr )x

)

L2 = 0 ∀vr ∈ Xr . (18)

The POD projection error (η) and the discretization error (φ) in (17) are defined as

ηn+1 := un+1 − wn+1
r , (19a)

φn+1
r := un+1

r − wn+1
r . (19b)

During the analysis, we need a standard stability estimate of unr for the CN scheme, which
is

max
0≤n≤N

‖unr ‖L2 ≤ C. (20)

Now, by using the error splitting (17), one can rewrite the error equation (16) as

(∂φn+1
r , vr )L2 + ν((φr )

n+1/2
x , (vr )x )L2 = (∂ηn+1, vr )L2 + ν(η

n+1/2
x , (vr )x )L2

+ (un+1/2un+1/2
x , vr )L2 − (un+1/2

r (ur )
n+1/2
x , vr )L2 − τn (vr ) .

(21)

Then, (18) leads to (ηx , (vr )x )L2 = 0, ∀vr ∈ Xr ; thus, the second term (η
n+1/2
x , (vr )x )L2

on the right-hand side of (21) vanishes. We continue the error analysis by choosing vr :=
φ
n+1/2
r , then (21) is rewritten as

1

2�t

(
‖φn+1

r ‖2L2 − ‖φn
r ‖2L2

)
+ ν‖(φr )

n+1/2
x ‖2L2 = (∂ηn+1, φ

n+1/2
r )L2

+ (un+1/2un+1/2
x , φ

n+1/2
r )L2 − (un+1/2

r (ur )
n+1/2
x , φ

n+1/2
r )L2 − τn(φ

n+1/2
r ).

(22)

Now, we individually bound the terms in (22). During the analysis,C is a generic constant
that only depends on the data. By using the Cauchy-Schwarz inequality and the Young’s
inequality, the first term on the right-hand side of (22), can be bounded as

(∂ηn+1, φ
n+1/2
r )L2 ≤ ‖∂ηn+1‖L2‖φn+1/2

r ‖L2

≤ 1

4
‖∂ηn+1‖2L2 + ‖φn+1/2

r ‖2L2 .
(23)

Next, we arrange the nonlinear terms in (22) by adding and subtracting the term
(un+1/2

r un+1/2
x , φ

n+1/2
r )L2 . Then, we rewrite the nonlinear terms as

(un+1/2un+1/2
x , φ

n+1/2
r )L2 − (un+1/2

r (ur )
n+1/2
x , φ

n+1/2
r )L2

= ((u − ur )
n+1/2un+1/2

x , φ
n+1/2
r )L2 + (un+1/2

r (u − ur )
n+1/2
x , φ

n+1/2
r )L2

= (ηn+1/2un+1/2
x , φ

n+1/2
r )L2 − (φ

n+1/2
r un+1/2

x , φ
n+1/2
r )L2

+ (un+1/2
r η

n+1/2
x , φ

n+1/2
r )L2 − (un+1/2

r (φr )
n+1/2
x , φ

n+1/2
r )L2 .

(24)
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Now, we individually bound nonlinear terms in (24). By using the Hölder’s inequality,
the regularity condition of the continuous solution in (14a), and Young’s inequality, we can
bound the first term in (24) as

(ηn+1/2un+1/2
x , φ

n+1/2
r )L2 ≤ ‖ηn+1/2‖L2‖un+1/2

x ‖L∞‖φn+1/2
r ‖L2

≤ C‖ηn+1/2‖L2‖φn+1/2
r ‖L2

≤ C ‖ηn+1/2‖2L2 + ‖φn+1/2
r ‖2L2 .

(25)

For the second term in (24), we use the Hölder’s inequality and the regularity condition
of the continuous solution in (14a) as

(φ
n+1/2
r un+1/2

x , φ
n+1/2
r )L2 ≤ ‖φn+1/2

r ‖L2‖un+1/2
x ‖L∞‖φn+1/2

r ‖L2

≤ C‖φn+1/2
r ‖2L2 .

(26)

For the third term in (24), we use the Hölder’s inequality, the standard stability estimate
of unr in l

∞(L2) for CN scheme in (20), the Sobolev embedding, and the Young’s inequality
as

(un+1/2
r η

n+1/2
x , φ

n+1/2
r )L2 ≤ ‖un+1/2

r ‖L2‖ηn+1/2
x ‖L2‖φn+1/2

r ‖L∞

≤ C‖ηn+1/2
x ‖2L2 + C1‖(φr )

n+1/2
x ‖2L2 .

(27)

Finally, for the last nonlinear term in (24), we use the Hölder’s inequality, the stability
estimate of unr in (20), the Agmon’s inequality (eq. after (45) in [26]):

‖ϕ‖L∞ ≤ C‖ϕ‖1/2
L2 ‖ϕx‖1/2L2 , ∀ϕ ∈ H1

0 ,

and the Young’s inequality (p = 4, q = 4/3), then we get

(un+1/2
r (φr )

n+1/2
x , φ

n+1/2
r )L2 ≤ ‖un+1/2

r ‖L2‖(φr )
n+1/2
x ‖L2‖φn+1/2

r ‖L∞

≤ C‖φn+1/2
r ‖1/2

L2 ‖(φr )
n+1/2
x ‖3/2

L2

≤ C‖φn+1/2
r ‖2L2 + C2‖(φr )

n+1/2
x ‖2L2 .

(28)

To bound the consistency error (13), we use the Taylor’s theorem, the Young’s inequality,
and the property (a + b + c)2 ≤ 3(a2 + b2 + c2) for In,1(u) in (15), then we have

τn(φ
n+1/2
r ) ≤ �t3/2 In,1(u) ‖φn+1/2

r ‖L2

≤ 3

4
�t3 In(u) + ‖φn+1/2

r ‖2L2 .
(29)

Now, we choose coefficient C1 = C2 = ν/4, and insert all bounds (23)-(29) into (22),
then

1

2�t

(
‖φn+1

r ‖2L2 − ‖φn
r ‖2L2

)
+ ν

2
‖(φr )

n+1/2
x ‖2L2 ≤ C

[
‖φn+1/2

r ‖2L2 + ‖∂ηn+1‖2L2

+ ‖ηn+1/2‖2L2

+ ‖ηn+1/2
x ‖2L2 + �t3 In(u)

]
.

(30)

To derive a valid error bound from (30), there should be a relation between the time step
�t and the viscosity coefficient ν that is explained in the following lemma.
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Lemma 4.1 Let �t < 4C ν3

27 , then it holds

(1 − C�t)‖φn+1
r ‖2L2 + ν�t‖(φr )

n+1/2
x ‖2L2 ≤ (

1 + C�t
)‖φn

r ‖2L2 + C�t
[
‖∂ηn+1‖2L2

+ ‖ηn+1/2‖2L2 + ‖ηn+1/2
x ‖2L2

+ �t3 In(u)
]
,

(31)

where the constant C above is independent of all discretization parameters but depends on
the problem data.

Proof First, bounding the term ‖φn+1/2
r ‖2

L2 yields
1
2

(
‖φn+1

r ‖2
L2 + ‖φn

r ‖2
L2

)
in (30). Then, if

one computes the constant coefficients in (23)-(29), the generic constant C in (30) will be

C := max

{
1

4
,
‖un+1/2

x ‖2L∞
4

,
‖un+1/2

x ‖L∞

2
,
C2

ν
,
27C4

8ν3
,
3

4
,
3

2

}

. (32)

Then the constantC does not depend on the ROM solution. Without loss of generality, in this

paper, we assume that 27C4

8 ν3
dominates the terms in (32). Finally, multiplying the resulting

equation with 2�t , one obtains (31) with the constraint �t < 4C ν3

27 , where C = C−4. ��

Remark 4.2 One can bound the term ‖(φr )
n+1/2
x ‖2

L2 in (27)-(28) by using FE inverse
estimates, as in Theorem 9.2 in [38].

Remark 4.3 For any φn+1
r ∈ Xh , which is the FE space that contains Xr , then the following

FE inverse estimate holds:

‖(φn+1
r )x‖L2 ≤ C h−1‖φn+1

r ‖L2 . (33)

However, by using the FE inverse estimate to bound the term ‖(φr )
n+1/2
x ‖2

L2 in (27)-(28),
the generic constant C in (31) depends on the space discretization, and we eventually loose
h convergence order, assuming uniformly regular grid.

Furthermore, the bound in (31) obtained by using theGalerkinmethod leads to a restriction
on the time step �t (see Lemma 4.1). Using stabilized methods would allow relaxing this
restriction. In this paper, our concern is analyzing the error estimates optimality with respect
to the different POD setting strategies, so we will consider moderate values of ν.

Remark 4.4 In this paper, we construct the POD basis by using the snapshots, which are the
FE solutions; thus, ηn bounds in Lemma 2.1 and Theorem 2.2 should be expressed in terms
of the FE solution data. We next bound the projection error ηn in terms of the finite element
solution.

We next bound the projection error ηn in terms of the finite element solution.

Lemma 4.5 Let Rru and Rruh be the Ritz projection, which is defined in (18), of the
continuous solution u and FE solution uh, respectively, then the following estimates hold

1

N + 1

N∑

n=0

‖un − Rru
n‖2W ≤ C (h2l + �t4) + 1

N + 1

N∑

n=0

‖unh − Rru
n
h‖2W (34a)
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1

N

N∑

n=1

‖∂(un − Rru
n)‖2L2 ≤ C (h2l+1 + �t3) + 1

N

N∑

n=1

‖∂(unh − Rru
n
h)‖2L2 , (34b)

where h and �t are space and time discretization parameters, respectively, and l is the FE
interpolation order.

Proof We start proving withW = H1
0 in (34a). By using the definition of the Ritz projection

(18), we have

‖∇(un − Rru
n)‖2L2 = (∇(un − Rru

n),∇(un − Rru
n)),

= (∇(un − Rru
n),∇(un − Rru

n
h)),

≤ ‖∇(un − Rru
n)‖L2 ‖∇(un − Rru

n
h)‖L2 .

(35)

Then, by adding and subtracting the FE solution unh in (35) and summing the resulting
inequality from n = 0 to N , we get

‖∇(un − Rru
n)‖2L2 ≤ ‖∇(un − unh)‖2L2 + ‖∇(unh − Rru

n
h)‖2L2 ,

1

N + 1

N∑

n=0

‖∇(un − Rru
n)‖2L2 ≤ C (h2l + �t4) + 1

N + 1

N∑

n=0

‖∇(unh − Rru
n
h)‖2L2 .

(36)

For W = L2 case, we still revisit the definition of the Ritz projection (18) and choose
vr = Rru, then we have

‖∇Rru‖L2 ≤ ‖∇u‖L2 . (37)

Then, by adding and subtracting the FE solution unh in ‖un − Rrun‖L2 , applying the Poincaré
inequality, the relation in (37), and summing from n = 0 to N give

‖un − Rru
n‖2L2 ≤ ‖un − unh‖2L2 + ‖Rr (u

n − unh)‖2L2 + ‖unh − Rru
n
h‖2L2 ,

≤ ‖un − unh‖2L2 + Cp ‖∇Rr (u
n − unh)‖2L2 + ‖unh − Rru

n
h‖2L2 ,

1

N + 1

N∑

n=0

‖un − Rru
n‖2L2 ≤ C (h2l + �t4) + 1

N + 1

N∑

n=0

‖unh − Rru
n
h‖L2 .

(38)

Finally, to bound the term ‖∂(un − Rrun)‖, we follow similar steps as in (38) and get the
following:

1

N

N∑

n=1

‖∂(un − Rru
n)‖2L2 ≤ C (h2l + �t3) + 1

N

N∑

n=1

‖∂(unh − Rru
n
h)‖L2 . (39)

��

Now, in the following two sections, by using Lemma 4.1, we continue to derive and discuss
DQ ROM errors in different norms considering L2(�) and H1

0 (�) POD bases that will lead
to different consistency error estimates.
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4.1 Behavior of Error Bounds

In Sects. 4.2 and 4.3, we discuss the behavior of the different DQ error bounds with respect
to ROM discretization. Before proceeding with these results, which are derived in the next
sections,weprovide definitions to distinguishwhetherROMdiscretization error is suboptimal
or optimal and to classify the types of the optimality/suboptimality behavior of the ROM
discretization errors.

The behavior of a pointwise error bound depends on both the space H for the POD basis
and the spaceW for the pointwise error norm. The expected pointwise error bounds have the
structure:

max
0≤k≤N

‖ek‖2W ≤ C(r + 0
r + ζ(�t) + ξ(h)), (40)

where �t and h are the time and spatial discretization parameters, and r , 0
r , ζ(�t), and

ξ(h) represent the ROM discretization error, the ROM discretization error for the initial
condition, time discretization error, and spatial discretization error, respectively.

Since we are interested in the behavior of a pointwise error bound only with respect to
the ROM discretization, in the following sections, we provide the definition and types of
optimality and the definition of suboptimality in ROM discretization error sense.

A ROM discretization error, i.e.,r is called optimal if it is bounded by∗
r ,

I
r or

I I
r in

(41a)-(41c) inDefinition 4.6.Depending on how theROMdiscretization error is bounded (see
Definition 4.6), the type of the optimality differs such as truly optimal, optimal-I discussed
in [20] or optimal-II discussed in [24].

Definition 4.6 Let Xr ⊂ H be the span of the first r POD modes, and assume Xr is also
contained in W . Let Pr : H → H be the orthogonal POD projection onto Xr , and let
�W

r : W → W be the W -orthogonal projection onto Xr . Also, let d be the number of
positive POD eigenvalues. Then, the ROM discretization error, i.e., r , is

truly optimal: r ≤ C∗
r , ∗

r :=
(

max
1≤k≤N

‖uk − �W
r uk‖2W

)
, (41a)

optimal-I: r ≤ CI
r , I

r :=
( d∑

i=r+1

λi‖ϕi‖2W
)
, (41b)

optimal-II: r ≤ CI I
r , I I

r :=
( d∑

i=r+1

λi‖ϕi − �W
r ϕi‖2W

)
, (41c)

where the constant C above should be independent of all discretization parameters but may
depend on the solution data and the problem data.

Remark 4.7 If the given ROM discretization error does not meet any criteria in Definition 4.6
or the constant C depends on the ROM discretization parameter such as r , then it is called
suboptimal.

In Sects. 4.2 and 4.3, we consider four possibilities: we used H = L2 or H = H1
0 for the

POD basis, and we use W = L2 or W = H1
0 for the error norm and use Definition 4.6 and

Lemma 4.8, i.e., POD inverse estimates, which was proved in Lemma 2 and Remark 2 in
[26], to determine the pointwise error bounds behavior.

To state these inverse estimates, let Mr ∈ Rr×r with Mi j = (ϕ j , ϕi )L2 be the POD mass
matrix and Sr ∈ Rr×r with Si j = (∇ϕ j ,∇ϕi )L2 be the POD stiffness matrix. Let ‖ · ‖2
denote the matrix 2-norm.
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Lemma 4.8 For all vr ∈ Xr , the following POD inverse estimates hold:

‖∇vr‖L2 ≤ CL2

inv(r) ‖vr‖L2 , for the L2-POD, (42a)

‖∇vr‖L2 ≤ C
H1
0

inv(r) ‖vr‖L2 , for the H1
0 -POD, (42b)

where CL2

inv(r) = √‖Sr‖2 and CH1
0

inv(r) =
√

‖M−1
r ‖2.

4.2 The l∞(L2) Error Estimates

In this section, we provide the l∞(L2) error estimates for the DQ ROM (11), considering
both L2(�) and H1

0 (�) POD spaces. Furthermore, we discuss the behavior of the l∞(L2)

DQ-L2 and DQ-H01 error in Theorem 4.9 and Theorem 4.11, respectively.

Theorem 4.9 Assume that �t ≤ 2C ν3

27 , then the l∞(L2) DQ-L2 error is bounded by

max
0≤k≤N

‖ek‖2L2 ≤ C
[
‖φ0

r ‖2L2 +
d∑

i=r+1

λ
DQ
i

(
‖ϕi − Rrϕi‖2L2 + ‖(ϕi − Rrϕi )x‖2L2

)

+ (h2l + �t3) + �t4 I (u)
]
,

(43)

where φ0
r is the discretization error (19b) at t = t0.

Proof To apply the discrete Gronwall’s lemma to Lemma 4.1, we first consider the following
notations:

αn := ‖φn
r ‖2L2 ≥ 0,

βn := C�t
(
‖∂ηn+1‖2L2 + ‖ηn+1/2‖2L2 + ‖ηn+1/2

x ‖2L2 + �t3 In(u)
)

≥ 0,

C = 27

4 C ν3
≥ 0 from Lemma 4.1.

(44)

By using notations in (44), we rewrite (31) as follows:

(1 − C�t)αn+1 ≤ (1 + C�t)αn + βn ∀n = 0, ..., N − 1. (45)

By using the discrete Gronwall’s lemma (see Lemma 10.4 in [38]) in (45), and if the small

time step assumption, i.e., �t ≤ 0.5C−1 = 2C ν3

27 , is guaranteed, then the the following
inequality holds:

max
k=0,..,N

‖φk
r ‖2L2 ≤ e4CT ‖φ0

r ‖2L2

+ 2Ce4CT
N−1∑

n=0

�t
(
‖∂ηn+1‖2L2 + ‖ηn+1‖2L2 + ‖ηn+1

x ‖2L2 + �t3 In(u)
)
.

(46)

Now, using triangle inequality, from (46) we get

max
0≤k≤N

‖ek‖2L2 ≤ max
0≤k≤N

‖ηk‖2L2 + Ce4CT
[
‖φ0

r ‖2L2 + �t4 I (u)

+
N−1∑

n=0

�t
(
‖∂ηn+1‖2L2 + ‖ηn+1‖2L2 + ‖ηn+1

x ‖2L2

)]
.

(47)
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Fig. 1 FOM simulation for
Burgers Eq. (1) with initial
condition (59)

Using (2N +1)�t = 2T +�t ≤ 3T relation and updating the generic constant C in (47)
give

max
0≤k≤N

‖ek‖2L2 ≤ C
[

max
0≤k≤N

‖ηk‖2L2 + ‖φ0
r ‖2L2 + �t4 I (u)

+ 1

2N + 1

N−1∑

n=0

(
‖∂ηn+1‖2L2 + ‖ηn+1‖2L2 + ‖ηn+1

x ‖2L2

)]
.

(48)

Now, use Lemma 4.5, (8b) in Lemma 2.1 with W = L2 and H1
0 , and (9c) in Theorem 2.2

with W = L2. This ends the proof. ��
Now, we discuss the behavior of the l∞(L2)DQ-L2 error (43). At a first glance, (43) does

not meet any optimality type of criteria in Definition 4.6 since the DQ-L2 error is built with
the norm error choice W = L2 and the right-hand side of (43) is not only purely bounded
with W = L2 norm error. Applying (42a) in Lemma 4.8 to the second term, which is in
‖(ϕi − Rrϕi )x‖2L2 = ‖ϕi − Rrϕi‖2H1

0
in (43) yields a coefficient CL2

inv := √‖Sr‖2 which

depends on the ROM dimension r . However, when we numerically investigate the behavior
of

√‖Sr‖2, we observe that it is almost constant (see the top-right plot in Fig. 5). Thus, the
l∞(L2) DQ-L2 error bound does not meet the suboptimality criteria in Remark 4.7; on the
contrary, it holds the optimality-II type, i.e., (41c).

Before presenting the l∞(L2) DQ-H01 error, we provide some bounds related to the
Ritz projection when considering the H1

0 (�) POD space framework, which will be used in
Theorem 4.11.

Lemma 4.10 (Bounds for Ritz Projection) The Ritz projection satisfies the following bounds
if H1

0 (�) POD basis is used, see Sect. 4.2 in [30]:
{

‖ϕi − Rrϕi‖L2 = ‖ϕi‖L2

‖(ϕi − Rrϕi )x‖L2 = 1, ∀i = r + 1, ..., d.
(49)

Proof One can expand the term Rrϕi ∈ Xr by considering the first r POD modes as

Rrϕi :=
r∑

j=1

(Rrϕi , ϕ j )H1
0
ϕ j (50)
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Let W denote either L2 or H1
0 . Then, by using (50), we get the following:

‖ϕi − Rrϕi‖2W =
(
ϕi −

r∑

j=1

(
Rrϕi , ϕ j

)

H1
0
ϕ j , ϕi −

r∑

k=1

(
Rrϕi , ϕk

)

H1
0
ϕk

)

W

= ‖ϕi‖2W −
r∑

j=1

(
Rrϕi , ϕ j

)

H1
0

(
ϕ j , ϕi

)

W −
r∑

k=1

(
Rrϕi , ϕk

)

H1
0

(
ϕk, ϕi

)

W

+
r∑

j,k=1

(
Rrϕi , ϕ j

)

H1
0
(Rrϕi , ϕk)H1

0

(
ϕ j , ϕk

)

W

= ‖ϕi‖2W −
r∑

j=1

(
ϕi , ϕ j

)

H1
0

(
ϕ j , ϕi

)

W −
r∑

k=1

(
ϕi , ϕk

)

H1
0

(
ϕk, ϕi

)

W

+
r∑

j,k=1

(
ϕi , ϕ j

)

H1
0

(
ϕi , ϕk

)

H1
0

(
ϕ j , ϕk

)

W

= ‖ϕi‖2W

(51)

where (ϕi , ϕk)H1
0

= 0, ∀i = r+1, .., d, j, k = 1, .., r . IfW = L2, then‖ϕi‖2W = ‖ϕi‖2L2

will keep the same; otherwise, W = H1
0 , then ‖ϕi‖2H1

0
= 1. This ends the proof. ��

Theorem 4.11 Assume that �t ≤ 2C ν3

27 , then the l∞(L2) DQ-H01 error is bounded by

max
0≤k≤N

‖ek‖2L2 ≤ C
[
‖φ0

r ‖2L2+
d∑

i=r+1

λ
DQ
i

(
1 + ‖ϕi‖2L2

) + (h2l + �t3) + �t4 I (u)
]
.

(52)

Proof The derivation of the l∞(L2) DQ-H01 error bound is exactly the same as the error
bound for the l∞(L2)DQ-L2 error bound (43). Now,we consider the H1

0 (�)PODbasis; thus,
we need to bound the right-hand side of (43) by using the properties in (49) in Lemma 4.10.
This ends the proof. ��

Now,wediscuss the behavior of the l∞(L2)DQ-H01error bound (52).Basedonoptimality
types in Definition 4.6, one can conclude that (52) is optimal-I if there is no additive factor 1,
which equals to ‖ϕi‖H1

0
for H1

0 POD. Applying (42b) in Lemma 4.8 to ‖ϕi‖H1
0
in (52) yields

1 + ‖ϕi‖2L2 = ‖ϕi‖2H1
0

+ ‖ϕi‖2L2 ,

≤ C2
r ‖ϕi‖2L2 ,

(53)

where Cr = max{1,CH1
0

inv}. We numerically investigate the behavior of C
H1
0

inv =
√

‖M−1
r ‖2

and find that it is almost constant (see the top-right plot in Fig. 6). Thus, the l∞(L2) DQ-H01
error bound is optimal-I, i.e., (41b).

4.3 The Natural-Norm Error Estimates

In this section, we provide the natural-norm, i.e., (l∞(L2) ∩ l2(H1
0 )) error estimates for the

DQROM (11) considering both L2(�) and H1
0 (�) POD spaces. Furthermore, we discuss the
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Fig. 2 The behavior of the l∞(L2) and natural-norm noDQ-L2 errors

behavior of the natural-norm DQ-L2 and DQ-H01 error in Theorem 4.12 and Theorem 4.13,
respectively.

Theorem 4.12 The natural-norm DQ-L2 error is bounded by

max
0≤k≤N

‖ek‖2L2 + ν�t
N−1∑

n=0

‖en+1/2
x ‖2L2 ≤ C

[
‖φ0

r ‖2L2 +
d∑

i=r+1

λ
DQ
i

(
‖ϕi − Rrϕi‖2L2

+ ‖(ϕi − Rrϕi )x‖2L2

)
+ (h2l + �t3) + �t4 I (u)

]
.

(54)

Proof We start derivation with rearranging (30) as follows:

(‖φn+1
r ‖2L2 − ‖φn

r ‖2L2

) + ν�t‖(φr )
n+1/2
x ‖2L2 ≤ C�t

[
‖φn+1

r ‖2L2 + ‖φn
r ‖2L2

+ ‖∂ηn+1‖2L2 + ‖ηn+1/2‖2L2

+ ‖ηn+1/2
x ‖2L2 + �t3 In(u)

]
,

(55)

where C = 27
4C ν3

. The first two terms on the right-hand side of (55) are in ROM space;
thus, they are bounded thanks to the standard stability estimate for the ROM solution. Then,
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summing from n = 0 to n = N − 1 and using triangle inequality give

max
0≤k≤N

‖ek‖2L2 + ν�t
N−1∑

n=0

‖en+1/2
x ‖2L2 ≤ C

[
max

0≤k≤N
‖ηk‖2L2 + ‖φ0

r ‖2L2

+ �t
N−1∑

n=0

(
‖∂ηn+1‖2L2 + ‖ηn+1/2‖2L2 + ‖ηn+1/2

x ‖2L2

)
+ �t4 I (u)

]
,

(56)

Use (2N + 1)�t = 2T + �t ≤ 3T relation and update the generic constant C in (56), then
apply Lemma 4.5, (8b) in Lemma 2.1 with W = L2 and H1

0 , and (9c) in Theorem 2.2 with
W = L2. This ends the proof. ��

Now, we discuss the behavior of the natural-norm DQ-L2 error bound (54). If l∞(L2)

and l2(H1
0 ) parts of the natural-norm in (54) are controlled by ‖ϕi − Rrϕi‖2L2 and ‖(ϕi −

Rrϕi )x‖2L2 , respectively, then based onDefinition 4.6, one can conclude that the natural-norm
DQ-L2 (54) is optimal-II.

Theorem 4.13 The natural-norm DQ-H01 error is bounded by

max
0≤k≤N

‖ek‖2L2 + ν�t
N−1∑

n=0

‖en+1/2
x ‖2L2 ≤ C

[
‖φ0

r ‖2L2 +
d∑

i=r+1

λ
DQ
i

(
1 + ‖ϕi‖2L2

)

+ (h2l + �t3) + �t4 I (u)
]
.

(57)

Proof The derivation of the natural-norm DQ-H01 error bound is exactly the same as the
error bound for the natural-norm DQ-L2 error bound (54). Now, we consider the H1

0 (�)

POD basis; thus, we need to bound the right-hand side of (54) by using the properties in (49)
in Lemma 4.10. This ends the proof. ��

Now, we discuss the behavior of the natural-norm DQ-H01 error bound (57). If l∞(L2)

and l2(H1
0 ) parts of the natural-norm in (57) are controlled by ‖ϕi‖2L2 and 1 = ‖(ϕi )x‖2L2 ,

respectively, then based on Definition 4.6, one can conclude that the natural-norm DQ-H01
(57) is optimal-I.

Remark 4.14 We briefly provide the l∞(L2) and natural-norm noDQ-L2 and noDQ-H01
error estimates. To obtain the l∞(L2) and natural-norm noDQ error bounds, one can proceed
similarly to the above proof using the L2 projection instead of the Ritz projection. The
l∞(L2) and natural-norm error bounds are the same. Specifically, the l∞(L2) and natural-
norm noDQ-L2 error bound is provided in (58a), and the noDQ-H01 error bound is provided
in (58b).

E ≤ C
[
‖φ0

r ‖2L2 +
d∑

i=r+1

λ
noDQ
i

(
‖ϕi‖2L2 + ‖(ϕi )x‖2L2

)
+ (h2l + �t3) + �t4 I (u)

]
, (58a)

E ≤ C
[
‖φ0

r ‖2L2 +
d∑

i=r+1

λ
noDQ
i

(
1 + ‖ϕi‖2L2

) + (h2l + �t3) + �t4 I (u)
]
. (58b)

Now, we discuss the behavior of the noDQ-L2 (58a) and noDQ-H01 (58b) error bounds
by applying the same process as we did in the DQ case.
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Fig. 3 The behavior of the l∞(L2) and natural-norm noDQ-H01 errors

For l∞(L2) noDQ-L2 error bound, applying (42a) in Lemma 4.8 to the second term,
which is in ‖(ϕi )x‖2L2 , in (58a) yields a coefficient CL2

inv := √‖Sr‖2 which depends on the
ROM dimension r . We numerically investigate the behavior of

√‖Sr‖2, and observe that it
increases as r increases (see the top-right plot in Fig. 2). Since the l∞(L2) noDQ-L2 error
bound does meet the suboptimality criteria in Remark 4.7, l∞(L2) noDQ-L2 error bound
(58a) is suboptimal.

For natural-norm noDQ-L2 error bound, if l∞(L2) and l2(H1
0 ) parts of the natural-norm

in (58a) are controlled by ‖ϕi‖2L2 and ‖(ϕi )x‖2L2 , respectively, then based on Definition 4.6,
one can conclude that the natural-norm noDQ-L2 (58a) is optimal-I.

For l∞(L2) noDQ-H01 error bound, applying (42b) in Lemma 4.8 to ‖ϕi‖H1
0
in (58b)

yields the coefficient C
H1
0

inv =
√

‖M−1
r ‖2. We numerically investigate the behavior of C

H1
0

inv

and observe that it increases as r increases (see the top-right plot in Fig. 3 ). Since, the
l∞(L2) noDQ-H01 error bound does meet the suboptimality criteria in Remark 4.7, l∞(L2)

noDQ-H01 error bound (58b) is suboptimal.
For natural-norm noDQ-H01 error bound, if l∞(L2) and l2(H1

0 ) parts of the natural-
norm in (58b) are controlled by ‖ϕi‖2L2 and 1 = ‖(ϕi )x‖2L2 , respectively, then based on
Definition 4.6, one can conclude that the natural-norm noDQ-H01 (58a) is optimal-I.

The behavior of the error bounds, which are theoretically derived in Sects. 4.2 and 4.3,
are summarized in Table 1. Considering L2 and H1

0 POD basis, error norms, and noDQ/DQ
frameworks, we observe that for the DQ errors bounds with all cases and the natural norm
noDQ-L2 and noDQ-H01 are optimal; whereas the l∞(L2) noDQ-L2 and noDQ-H01 error
bounds are suboptimal.
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Fig. 4 Comparison of the noDQ-L2 and noDQ-H01 solution plots with two different r values

Table 1 Theoretical results: the
behavior of the noDQ and DQ
ROMs with L2(�) and H1

0 (�)

POD basis and l∞(L2) and
natural norm errors

l∞(L2) Natural norm

noDQ-L2 Suboptimal Optimal-I

Sect. 4.3 Sect. 4.3

(58a) in Remark 4.14 (58a) in Remark 4.14

noDQ-H01 Suboptimal Optimal-I

Sect. 4.3 Sect. 4.3

(58b) in Remark 4.14 (58b) in Remark 4.14

DQ-L2 Optimal-II Optimal-II

Sect. 4.2 Sect. 4.3

(43) in Theorem 4.9 (54) in Theorem 4.12

DQ-H01 Optimal-I Optimal-I

Sect. 4.2 Sect. 4.3

(52) in Theorem 4.11 (57) in Theorem 4.13

(41a) in Definition 4.6 (41a) in Definition 4.6

5 Numerical Results

In this section, we provide numerical results for the Burgers equation (1) with the following
initial condition

u0(x) =
{
1, x ∈ (0, 1/2],
0, x ∈ (1/2, 1]. (59)
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Fig. 5 The behavior of the l∞(L2) and natural-norm DQ-L2 errors

This condition generates a smooth solution at any t > 0, with an infinite time gradient at
t = 0. This allows us to test the role of the difference quotients. To obtain full order model
(FOM) data (the FOM simulation is provided in Fig. 1 ), we solve (1) by using the finite
element method considering ν = 10−2, f = 0, mesh size h = 1/512, piecewise linear finite
elements for the spatial discretization, and Crank-Nicolson time discretization. A small time
step �t = 10−3 is taken to obtain the errors due to the POD discretization.

For all test cases, we compute two different absolute norm ROM errors:

El∞(L2) = max
0≤k≤N

‖ek‖2L2 , (60a)

El∞(L2)∩l2(H1
0 ) = max

0≤k≤N
‖ek‖2L2 + ν�t

N−1∑

n=0

‖en+1/2
x ‖2L2 , (60b)

being e = uh − ur .

Remark 5.1 Since the ROM initial condition is chosen as u0r := Rru0, the discretization error
(43) at t = t0, i.e., φ0

r = 0 in all the error bounds derivation in numerical results.

5.1 noDQ ROM Results

In this section, we numerically discuss the behavior of the l∞(L2) and natural-norm noDQ-
L2 and noDQ-H01 error bounds. Based on the noDQ error estimates in (58a)-(58b) in
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Remark 4.14, we define the following RHS terms:

noDQ-RHS1 =
d∑

i=r+1

λ
noDQ
i

(
‖ϕi‖2L2 + ‖(ϕi )x‖2L2

)
+ �t2 + �t4 I (u), (61a)

noDQ-RHS2 =
d∑

i=r+1

λ
noDQ
i (1 + ‖ϕi‖2L2) + �t2 + �t4 I (u). (61b)

In the top left plot of Fig. 2, we plot the noDQ-RHS1 defined in (61a) and l∞(L2), natural-
normnoDQ-L2 errors in (58a).We observe that the l∞(L2) and natural-normnoDQ-L2 errors
stay below the noDQ-RHS1. The top right plot shows how the scaling of ‖Sr‖2, which is
defined above Lemma 4.8, changes as r changes. For the bottom plots in Fig. 2, we plot
the linear regression (LR) orders for l∞(L2) and natural-norm noDQ-L2 errors, from left to
right, respectively. Since the LR orders in the bottom plots are close to 1, we numerically
observe that l∞(L2) and natural-norm noDQ-L2 errors are optimal. However, theoretical
discussions in Remark 4.14 show that the l∞(L2) and natural-norm noDQ-L2 error bounds
are suboptimal and optimal, respectively.

In the top left plot of Fig. 3, we plot the noDQ-RHS2 defined in (61b) and l∞(L2), natural-
norm noDQ-H01 errors in (58b). The top right plot shows how the scaling of ‖M−1

r ‖2, which
is defined above Lemma 4.8, changes as r changes. For the bottom plots in Fig. 3, we plot
the linear regression (LR) orders for l∞(L2) and natural-norm noDQ-H01 errors, from left
to right, respectively. Since the LR orders in the bottom plots are close to 1, we conclude that
l∞(L2) and natural-norm noDQ-H01 errors are optimal. However, theoretical discussions in
Remark 4.14 show that the l∞(L2) and natural-norm noDQ-H01 error bounds are suboptimal
and optimal, respectively.

In Fig. 4, we plot the noDQ-L2 and noDQ-H01 solutions with two different r values, i.e.,
r = 5, 20. For both r values, we observe that the noDQ-H01 yields slightly more accurate
results than the noDQ-L2, especially for low r values such as r = 5.

5.2 DQ ROM Results

In this section, we numerically discuss the behavior of the l∞(L2) and natural-norm DQ
ROM errors considering L2(�) and H1

0 (�) POD bases.
Based on the DQ-L2 error estimates in (43) and (54), we define the following RHS term:

DQ-RHS1 =
d∑

i=r+1

λ
DQ
i

(
‖ϕi − Rrϕi‖2L2 + ‖(ϕi − Rrϕi )x‖2L2

)
+ �t2 + �t4 I (u), (62a)

to discuss the behavior of the DQ-L2 error estimates in (43) and (54). In the top left plot
of Fig. 5, we plot the DQ-RHS1 defined in (62a) and l∞(L2), natural-norm noDQ-L2 errors
in (43) and (54). We observe that the l∞(L2) and natural-norm DQ-L2 errors stay below
the DQ-RHS1. The top right plot shows how the scaling of ‖Sr‖2, which is defined above
Lemma 4.8, changes as r changes. For the bottom plots in Fig. 5, we plot the linear regression
(LR) orders for l∞(L2) and natural-norm DQ-L2 errors, from left to right, respectively. The
LR order for the l∞(L2) DQ-L2 error bound is more than 1.5 (1 is considered optimal);
thus, we conclude that the l∞(L2) DQ-L2 is superoptimal; whereas we theoretically prove
that it is optimal (see the discussion after Theorem 4.9). For the natural-norm DQ-L2 error
bound, the LR order is around 1; thus, we conclude that the natural-norm DQ-L2 is optimal.
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Fig. 6 The behavior of the l∞(L2) and natural-norm DQ-H01 errors

The behavior of the natural-norm error bound theoretically and numerically match (see the
discussion after Theorem 4.12 for the theoretical conclusion).

Based on the DQ-H01 error estimates in (52) and (57), we define the following RHS term:

DQ-RHS2 =
d∑

i=r+1

λ
DQ
i

(
1 + ‖ϕi‖2L2

) + �t2 + �t4 I (u), (63a)

to discuss the behavior of the DQ-H01 error estimates in (52) and (57). In the top left plot of
Fig. 6, we plot the DQ-RHS2 defined in (63a) and l∞(L2), natural-norm noDQ-H01 errors in
(52) and (57). We observe that the l∞(L2) and natural-norm DQ-H01 errors stay below the
DQ-RHS2. Furthermore, a sudden decrease in the l∞(L2), and natural-norm DQ-H01 errors
arises when a large enough number of PODmodes is attempted. We think this may be related
to the sharp gradients of the solution that are well represented on the DQ ROM basis only
when its dimension is large enough. The top right plot shows how the scaling of ‖M−1

r ‖2,
which is defined above Lemma 4.8, changes as r changes. For the bottom plots in Fig. 6,
we plot the linear regression (LR) orders for l∞(L2) and natural-norm DQ-H01 errors, from
left to right, respectively. The LR order for the l∞(L2) DQ-H01 error bound is more than
1.5 (1 is considered optimal); thus, we conclude that the l∞(L2) DQ-H01 is superoptimal;
whereas we theoretically prove that is is optimal (see the discussion after Theorem 4.11). For
the natural-norm DQ-H01 error bound, the LR order is around 1; thus, we conclude that the
natural-normDQ-H01 is optimal. The behavior of the natural-norm error bound theoretically
and numerically match (see the discussion after Theorem 4.13 for the theoretical conclusion).

In Fig. 7, we plot theDQ-L2 andDQ-H01 solutionswith different r values, i.e., r = 13, 28.
For r = 13, the DQ-H01 solution is less accurate than the DQ-L2 one since the ROM
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Fig. 7 Comparison of the DQ-L2 and DQ-H01 solution plots with two different r values

Table 2 Numerical results: The behavior of the noDQ and DQ ROMs with L2(�) and H1
0 (�) POD basis and

l∞(L2) and natural norm errors

l∞(L2) Natural norm

noDQ-L2 Optimal Optimal

Sect. 5.1 Sect. 5.1

Bottom-left plots in Fig. 2 Bottom-right plots in Fig. 2

noDQ-H01 Optimal Optimal

Sect. 5.1 Sect. 5.1

Bottom-left plots in Fig. 3 Bottom-right plots in Fig. 3

DQ-L2 Superoptimal Optimal

Sect. 5.2 Sect. 5.2

Bottom-left plots in Fig. 5 Bottom-right plots in Fig. 5

DQ-H01 Superoptimal Optimal

Sect. 5.2 Sect. 5.2

Bottom-left plots in Fig. 6 Bottom-right plots in Fig. 6

dimension r does not exceed the threshold value, which is r = 27 as can be observed
in Fig. 6. Furthermore, the plots show that when enough POD modes are guaranteed, the
DQ-H01 solution rapidly yields an accurate solution.

The behavior of the error bounds, which are numerically derived in Sects. 5.1 and 5.2,
are summarized in Table 2 . Considering L2 and H1

0 basis, error norms, and noDQ/DQ
frameworks, we observe that the noDQ errors bounds with all cases and the natural norm
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Fig. 8 l∞(L2) (left) and natural-norm (right) ROM errors decay with respect to the ratio of energy kept by
the ROM Rλ

DQ-L2 and DQ-H01 are optimal; whereas the l∞(L2) DQ-L2 and DQ-H01 error bounds are
superoptimal.

5.3 noDQ and DQ ROM Comparison

In this section, we numerically compare how all noDQ and DQ ROM errors change based
on (i) the ROM dimension, i.e., r , (ii) the residual eigenvalues, i.e., rλ, and (iii) the ratio of
residual eigenvalues, i.e., Rλ, which are defined as

rλ(i) :=
d∑

i=r+1

λi , (64a)

Rλ(i) :=
( d∑

i=r+1

λi

)
/
( d∑

i=1

λi

)
, (64b)

where λ represents the noDQ/DQ eigenvalues, which solve (6), and d represents the number
of positive eigenvalues.

In Fig. 8, we plot all l∞(L2) ROM errors in the left plot and all natural-norm errors in the
right plot and compare the behavior of these errors with respect to the ratio of energy kept
by the ROM Rλ in (64b). Both plots in Fig. 8 show that the DQ-L2 recovers a much smaller
error than the noDQ-L2 for the same ratio of energy considered. Furthermore, the DQ-H01
has a better slope than the noDQ-H01, even if the DQ-H01 decays later, after stagnation. The
H01-norm stagnation is possibly due to the hard test problem we have taken with very sharp
gradients.

In Fig. 9, we plot all l∞(L2) ROM errors in the left plot and all natural-norm errors in
the right plot and compare the behavior of these errors with respect to the energy kept by
the ROM rλ in (64a). For both plots in Fig. 9, the DQ ROM errors are over three orders of
magnitude smaller than noDQ ROM errors over the same rλ interval. Based on these results,
we may interpret that for a given energy, the DQ ROMs hold much more information than
the noDQ ROMs.

In Fig. 10, we plot all l∞(L2) ROM errors in the left plot and all natural-norm errors in
the right plot and compare the behavior of these errors with respect to the ROM dimension
r . For almost all r values, in both plots in Fig. 10, noDQ errors are almost lower than the
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Fig. 9 l∞(L2) (left) and natural-norm (right) ROM errors decay with respect to the energy kept by the ROM
rλ

Fig. 10 l∞(L2) (left) and natural-norm (right) ROM errors decay with respect to the ROM dimension r

DQ errors. The natural-norm noDQ and DQ ROM error behaviors (right plot of Fig. 10) are
more explicit and clearer than the l∞(L2) noDQ and DQ ROM error behaviors (left plot of
Fig. 10). Furthermore, in both plots in Fig. 10, we observe that the noDQ-L2, noDQ-H01,
and DQ-L2 errors decrease progressively until r = 47 and r = 55, in the left and right plot,
respectively, then they stagnate. However, the DQ-H01 error in both plots has a constant
error behavior until r = 27, and when it guarantees enough POD modes, it shows a drastic
decrease from r = 27 to r = 28 and after r = 47 in the left plot and r = 55 in the right plot,
it stagnates again.

From Sects. 5.1 and 5.2, we numerically observe that l∞(L2) noDQ-L2 and noDQ-H01
error bounds are optimal and DQ-L2 and DQ-H01 are superoptimal. If one shows that the
slopes of the DQ-L2 and DQ-H01 errors are much sharper than the noDQ-L2 and noDQ-H01
errors, then superoptimal behavior makes sense. The slope comparison of the errors in Figs. 8
and 9 is clearer than Fig. 10.

In both Fig. 8 and 9, we observe that the decreasing rates of the DQ-L2 errors are better
than the noDQ-L2 ones, being over three orders of magnitude smaller in a wide range of
Rλ and rλ, respectively, until stagnation occurs, likely due to round-off errors. For the H01-
norm comparison, the DQ-H01 has a better slope than the noDQ-H01, even if the DQ-H01
decays later, after stagnation. Therefore, the DQ keeps better-selected information for the
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same amount of energy due to the difference quotients. This supports the interest in using
the DQs.

6 Conclusions

In this paper, we provided uniform ROM error bounds of nonlinear PDEs, considering the
Burgers equation as the first preliminary step considering the DQs. Overall, we theoretically
proved and numerically investigated the behavior of the DQ ROM error bounds by consid-
ering L2(�) and H1

0 (�) POD spaces and l∞(L2) and natural-norm errors. Furthermore, we
provided the noDQ ROM errors without complete theoretical support to make a clear and
complete conclusion.

The main results of this paper can be summarized as follows: (i) At the theoretical level,
we derived four different DQROMerror bounds by considering two error norms, i.e., l∞(L2)

and natural-norm, and two different POD space frameworks, i.e., L2(�) and H1
0 (�) POD

spaces. (ii) In Sect. 4.2, we theoretically proved that both l∞(L2)DQ-L2 and DQ-H01 errors
are optimal with respect to the ROM discretization. (iii) In Sect. 4.3, we obtained the same
theoretical results obtained in Sect. 4.2 for the natural-norm DQ-L2 and DQ-H01 errors. (iv)
In Sect. 5, we observed that the DQ ROM errors are several orders of magnitude lower than
the noDQ errors in terms of the rate of energy kept by the ROM basis.

In Sect. 5.1, we numerically showed that all noDQ errors have optimal behaviors. The
numerical convergence rates of the l∞(L2) noDQ-L2 and noDQ-H01 errors are better than the
theoretical ones since the l∞(L2) noDQ-L2 (58a) and noDQ-H01 error (58b) are suboptimal
theoretical supports.

In Sect. 5.2, we numerically showed that the l∞(L2) DQ-L2 and DQ-H01 error bounds
are superoptimal; whereas, the natural-norm DQ-L2 and DQ-H01 error bounds are optimal.
In Sects. 4.2 and 4.3, we theoretically proved that all DQ ROM error bounds are optimal.
Based on these results, we conclude that the numerical convergence rates for the l∞(L2)

DQ-L2 and DQ-H01 are better than the theoretical ones.
Furthermore, in Sect. 5.3, we provided Figs. 8-10 to discuss the superoptimality behavior

of the l∞(L2) DQ-L2 and DQ-H01 errors and the optimality behavior of the l∞(L2) noDQ-
L2 and noDQ-H01 errors by comparing their slopes. We believe that considering the time
dependency by the DQ inner products increases the linear regression orders.

Finally, in Figs. 4 and 7, we compared the noDQ-L2 with noDQ-H01 and DQ-L2 with
DQ-H01 solution plots to understand how the POD space framework affects the accuracy of
the solution for both noDQ and DQ cases. In Fig. 4, we concluded that noDQ-L2 and noDQ-
H01 yield similar results; however, for a low r value, the noDQ-H01 solution is slightly more
accurate than the noDQ-L2. However, the comparison between the DQ-L2 and DQ-H01 is
quite different than the noDQ one. In Fig. 7, we observed that the DQ-H01 yields an accurate
solution after enough PODmodes are guaranteed but reaching the accurate results is quicker
than the DQ-L2.

Extending and improving the effectiveness of the DQs on the Navier-Stokes equations
will be our future research direction.
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