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Abstract
The generalized Nash equilibrium problem (GNEP) is a kind of game to find strategies for a
group of players such that each player’s objective function is optimized. Solutions for GNEPs
are called generalized Nash equilibria (GNEs). In this paper, we propose a numerical method
for finding GNEs of GNEPs of polynomials based on the polyhedral homotopy continuation
and the Moment-SOS hierarchy of semidefinite relaxations. We show that our method can
find all GNEs if they exist, or detect the nonexistence of GNEs, under some genericity
assumptions. Some numerical experiments are made to demonstrate the efficiency of our
method.

Keywords Generalized Nash equilibrium problem · Polyhedral homotopy · Polynomial
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1 Introduction

Suppose there are N players and the i th player’s strategy is a vector xi ∈ R
ni (the ni -

dimensional real Euclidean space). We write that

xi := (xi,1, . . . , xi,ni ), x := (x1, . . . , xN ).
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The total dimension of all strategies is n := n1 + · · · + nN . When the i th player’s strategy is
considered, we use x−i to denote the subvector of all players’ strategies except the i th one,
i.e.,

x−i := (x1, . . . , xi−1, xi+1, . . . , xN ),

and write x = (xi , x−i ) accordingly. The generalized Nash equilibrium problem (GNEP) is
to find a tuple of strategies u = (u1, . . . , uN ) such that each ui is a minimizer of the i th
player’s optimization

Fi (u−i ) :

⎧
⎪⎨

⎪⎩

min
xi ∈Rni

fi (xi , u−i )

s.t. gi, j (xi , u−i ) = 0, ( j ∈ Ei ),

gi, j (xi , u−i ) ≥ 0, ( j ∈ Ii ).

(1.1)

In the above, the Ei and Ii are disjoint labeling sets (possibly empty), the fi and gi, j are
continuous functions in x and we suppose Ei ∪ Ii = {1, . . . , mi } for each i ∈ {1, . . . , N }. A
solution to the GNEP is called a generalized Nash equilibrium (GNE). If defining functions
fi and gi, j are polynomials in x for all i ∈ {1, . . . , N } and j ∈ {1, . . . , mi }, then we call the
GNEP a generalized Nash equilibrium problem of polynomials. Besides that, we let Xi be
the point-to-set map such that

Xi (x−i ) :=
{

xi ∈ R
ni

∣
∣
∣
∣

gi, j (xi , x−i ) = 0, ( j ∈ Ei ),

gi, j (xi , x−i ) ≥ 0, ( j ∈ Ii )

}

.

Then, Xi (x−i ) is the i th player’s feasible set for the given other players’ strategies x−i . Let

X := {x ∈ R
n | xi ∈ Xi (x−i ) for all i = 1, . . . , N }.

We say x ∈ R
n is feasible for this GNEP if x ∈ X . Moreover, if for every i ∈ {1, . . . , N } and

j ∈ {1, . . . , mi }, the constraining function gi, j only has the variable xi , i.e., the i th player’s
feasible strategy set is independent of other players’ strategies, then the GNEP is called a
(standard) Nash equilibrium problem (NEP). The GNEP is said to be convex if for each i
and all x−i such that Xi (x−i ) �= ∅, the Fi (x−i ) is a convex optimization, i.e., fi (xi , x−i ) is
convex in xi , gi, j ( j ∈ Ei ) is linear in xi , and gi, j ( j ∈ Ii ) is convex in xi .

GNEPs originated from economics in [2, 11], and have been widely used in many other
areas, such as telecommunications [1], supply chain [42] and machine learning [33]. There
are plenty of interesting models formulated as GNEP of polynomials, and we refer to [14,
15, 38, 39, 42] for them.

For recent studies on GNEPs, one primary task is to develop efficient methods for finding
GNEs. Indeed, solvingGNEPsmay easily be out of reach, especiallywhen convexity assump-
tions are not given. For NEPs, somemethods are studied in [18, 44].When the NEP is defined
by polynomials, amethod using theMoment-SOS semidefinite relaxation on theKKT system
is introduced in [38]. For GNEPs, people mainly consider solution methods under convexity
assumptions, such as the penalty method [3, 15], the augmented Lagrangian method [24], the
variational and quasi-variational inequality approach [13, 16, 19], the Nikaido-Isoda function
approach [49, 50], and the interior point method on solving the KKT system [12]. Moreover,
for convex GNEP of polynomials, a semidefinite relaxation method is introduced in [39],
and it is extended to nonconvex rational GNEPs in [41]. The Gauss-Seidel method is studied
in [40] for nonconvex GNEPs of polynomials. We refer to [14, 16] for surveys on GNEPs.

In this paper, we study GNEPs of polynomials. The problems without convexity assump-
tions are mainly considered. We propose a method for finding GNEs based on the polyhedral
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homotopy continuation and the Moment-SOS semidefinite relaxations, and investigate its
properties. Our main contributions are:

• We propose a numerical algorithm for solving GNEPs of polynomials. The polyhedral
homotopy continuation is exploited for solving the complex KKT system of GNEPs,
and we select GNEs from the set of complex KKT points with the help of Moment-SOS
semidefinite relaxations.

• We show that when the GNEP is given by dense polynomials whose coefficients are
generic, the mixed volume for the complex KKT system is identical to its algebraic
degree. In this case, the polyhedral homotopy continuation can obtain all complex KKT
points, and our algorithm finds all GNEs if they exist, or detect their nonexistence of
them.

• Even when the number of complex KKT points obtained by the polyhedral homotopy
is less than the mixed volume, or there exist infinitely many complex KKT points, our
algorithm may still find one or more GNEs.

• Numerical experiments are presented to show the effectiveness of our algorithm.

This paper is organized as follows. In Sect. 2, we introduce some basics in optimality con-
ditions for GNEPs, polyhedral homotopy and polynomial optimization. The algorithm for
solvingGNEPs of polynomials is proposed in Sect. 3.We show the polyhedral homotopy con-
tinuation is optimal for GNEPs of polynomials with generic coefficients in Sect. 4. Numerical
experiments are presented in Sect. 5.

2 Preliminaries

In this section, preliminary concepts for GNEPs, polyhedral homotopy continuation and
polynomial optimization problems are reviewed. We introduce the optimality conditions for
GNEPs to derive a systemof polynomialswhose collection of solutions containsGNEs. Then,
we review Bernstein’s theorem, which gives an upper bound of the number of solutions for a
system of polynomials. Finally, the polyhedral homotopy continuation and theMoment-SOS
hierarchy of semidefinite relaxations are suggested as two main tools to solve GNEPs.

2.1 Optimality Conditions for GNEPs

Under some suitable constraint qualifications (for example, the linear constraint qualification
condition (LICQ), or Slater’s Condition for convex problems; see [5]), if u ∈ X is a GNE,
then there exist Lagrange multiplier vectors λ1, . . . , λN such that

⎧
⎪⎪⎨

⎪⎪⎩

∇xi fi (x) −
mi∑

j=1
λi, j∇xi gi, j (x) = 0, (i ∈ {1, . . . , N })

λi ⊥ gi (x), gi, j (x) = 0, (i ∈ {1, . . . , N }, j ∈ Ei )

λi, j ≥ 0, gi, j (x) ≥ 0, (i ∈ {1, . . . , N }, j ∈ Ii )

(2.1)

where∇xi fi (x) is the gradient of fi with respect to xi and λi ⊥ gi (x) implies that λ	
i gi (x) =

0 for the constraining vector

gi (x) := [
gi,1(x), . . . , gi,mi (x)

]	
.

The polynomial system (2.1) is called the KKT system of this GNEP. The solution
(x, λ1, . . . , λN ) of the KKT system is called a KKT tuple and the first block of coordi-
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nates x is called a KKT point. For the GNEP of polynomials, the LICQ of Fi (u−i ) hold at
every GNE [37], under some genericity conditions. Moreover, consider the system consists
of all equations in (2.1), i.e.,

⎧
⎨

⎩

∇xi fi (x) −
mi∑

j=1
λi, j∇xi gi, j (x) = 0, (i ∈ {1, . . . , N })

λi ⊥ gi (x), gi, j (x) = 0, (i ∈ {1, . . . , N }, j ∈ Ei ).

(2.2)

Then, the (x, λ1, . . . , λN ) satisfying (2.2) is called a complex KKT tuple, and similarly, the
first coordinate x is called a complex KKT point. For generic GNEPs of polynomials, there
are finitely many solutions to (2.2) [37]. In this case, the number of complex KKT points is
called the algebraic degree of the GNEP.

2.2 MixedVolumes and Bernstein’s Theorem

Let C[z1, . . . , zk] be the set of all complex coefficient polynomials in variables z1, . . . , zk .
For a polynomial p ∈ C[z1, . . . , zk], suppose

p =
∑

a∈Nk

caza

where za = za1
1 · · · zak

k for a = (a1, . . . , ak). Then the support of p, denoted by Ap , is the
set of exponent vectors for monomials such that

a ∈ Ap if and only if ca �= 0.

The convex hull Q p of the support Ap is called the Newton polytope of p. For an integer
vector w ∈ Z

k , we define a map hw : Z
k → Z such that

hw(a) = 〈w, a〉 for all a ∈ Z
k .

Given a finite integer lattice of points A ⊂ Z
k , the minimum value of hw on A is denoted by

h�
w(A). When it is clear from the context, we may omit the index w for h. Moreover, we let

Aw:= {a ∈ A | hw(a) = h�
w(A)}. Then, we define pw be the polynomial consists of terms

of p supported on Aw , i.e., for each p = ∑
a∈A caza ∈ C[z1, . . . , zk], we have

pw =
∑

a∈Aw

caza .

For an m-tuple of polynomials P = (p1, . . . , pm), we denote Pw := (pw
1 , . . . , pw

m ). The
m-tuplePw is called the facial system ofP with respect tow. The term ‘facial’ comes from
the fact that Aw is a face of A exposed by a vector w.

Let Q1, . . . , Qm be polytopes in R
k , and α1, . . . , αm be nonnegative real scalars. The

Minkowski sum of polytopes is

α1Q1 + · · · + αm Qm := {α1v1 + · · · + αnvm | vi ∈ Qi }.
The volume of theMinkowski sum α1Q1+· · ·+αm Qm can be understood as a homogeneous
polynomial in variables of α1, . . . , αm . In particular, the coefficient for the term α1α2 · · · αm

in the volume of α1Q1 + · · · + αm Qm is called the mixed volume of Q1, . . . , Qm , which is
denoted by MV (Q1, . . . , Qm).

In [4], it was proved that for a square polynomial system in C[z1, . . . , zk], the mixed
volume of the system is an upper bound for the number of isolated roots in the complex torus
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(C \ {0})k , where 0 is the all-zero vector. This is called Bernstein’s theorem. Moreover, it
states when the mixed volume bound is tight.

Theorem 2.1 (Bernstein’s theorem)[4, Theorems A and B] Let P be a system consists of
polynomials p1, . . . , pk in C[z1, . . . , zk]. For each Newton polytope Q pi of pi , we have

(the number of isolated roots for P in (C \ {0})k) ≤ MV (Q p1 , . . . , Q pk ). (2.3)

The equality holds if and only if the facial system Pw has no root in (C \ {0})k for any
nonzero w ∈ Z

k .

It is worth noting that Bernstein’s theorem concerns roots in the torus (C \ {0})k because it
allows considering Laurent polynomials which are possible to have negative exponents. A
system that satisfies the equality in the above theorem is called Bernstein generic.

2.3 Polyhedral Homotopy Continuation

The homotopy continuation is an algorithmic method to find numerical approximations of
roots for a systemof polynomial equations. Consider a square systemof polynomial equations
P := {p1, . . . , pk} ⊂ C[z1, . . . , zk] with k equations and k variables. We are interested in
solving the system P , i.e., computing a zero set

V(P) := {z ∈ C
k | p1(z) = · · · = pk(z) = 0}.

The main idea for the homotopy continuation is solving P by tracking a homotopy path
from the known roots of a system Q, called a start system, to that of the target system
P . Given the start system Q = {q1, . . . , qk} ⊂ C[z1, . . . , zk] with the same number of
variables and equations of P , we construct a homotopy H (z, t) such that H (z, 0) = Q
andH (z, 1) = P . For tracking the homotopy from t = 0 to t = 1, numerical ODE solving
techniques for Davidenko equations and Newton’s iteration are applied; see [46, Chapter 2]
for more details.

Choosing a proper start system is an important task for the homotopy continuation as it
determines the number of paths to track. In this paper, the polyhedral homotopy continuation
established by Huber and Sturmfels [23] is considered. For each polynomial pi in P with
its Newton polytope Q pi , the polyhedral homotopy continuation constructs a start system
Q with the mixed volume MV (Q p1 , . . . , Q pk ) many solutions. We briefly introduce the
framework of the polyhedral homotopy continuation. For a polynomial p ∈ C[z1, . . . , zk]
and its support set Ap , we know that

p(z) =
∑

a∈Ap

caza .

Let �p : Ap → R be a function defined on every lattice point in Ap , we define

p(z, t) =
∑

a∈Ap

cazat�p(a) (2.4)

which is called a lifted polynomial of p by the lifting function �p . Lifting all polynomials
p1, . . . , pk in P gives a lifted system P(z, t). Note that P(z, 1) = P . A solution of P
can be expressed by a Puiseux series z(t) = (z1(t), . . . , zk(t)) where

zi (t) = tαi yi + (higher order terms)
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for some rational number αi and a nonzero constant yi . As z(t) is a solution for the lifted
system, plugging z(t) into each p j gives

p j (z(t), t) =
∑

a∈Ap j

ca ya
i t 〈a,α〉+�p j (a) + (higher order terms).

Dividing by t 〈a,α〉+�p j (a) and letting t = 0, we have a start system Q. The solutions for Q
can be obtained from the branches of the algebraic function z(t) near t = 0. The homotopy
H (z, t) joining P and Q has MV (Q p1 , . . . , Q pk ) many paths as t varies from 0 to 1. It
is motivated from Theorem 2.1 that a polynomial system supported on Ap1 , . . . , Apk has at
most MV (Q p1 , . . . , Q pk )many isolated solutions in the torus (C\0)k . Polyhedral homotopy
continuation is implemented robustly in many software HOM4PS2 [30], PHCpack [48] and
HomotopyContinuation.jl [9].

Remark 2.2 1. Even in the case that the number of solutions is smaller than the mixed
volume, the polyhedral homotopy continuation algorithmmay find all complex solutions.

2. For GNEPs, there may exist complex KKT tuples outside of the torus. For instance, when
there are KKT points with inactive constraints, Lagrange multipliers according to these
constraints are 0. Theoretically, the polyhedral homotopy continuation aims on finding
roots in the torus (C \ {0})k . However, actual implementations are designed to find roots
outside the torus by adding a small perturbation on the constant term; see [32] for details.
In Example 3.3, we give an example where the homotopy continuation successfully finds
all complex solutions to a system, while the mixed volume is strictly greater than the
number of solutions, and there exist roots outside the torus.

In summary, we give the general framework of polyhedral homotopy continuation for
solving a polynomial system:

Algorithm 2.3 For a system of polynomial equations P = {p1, . . . , pk}, do the following:

Step 1 For each i = 1, . . . , k, choose a function �pi : Api → R. Then, construct the lifted
polynomial p̄i (z, t) as in (2.4), and define P(z, t) := { p̄1(z, t), . . . , p̄k(z, t)}.

Step 2 Construct a start system Q from the lifted system P by trimming some powers of t
and letting t = 0.

Step 3 Starting from Q, track MV (Q p1 , . . . , Q pk ) many paths from t = 0 to t = 1 with
Puiseux series solutions z(t) obtained near t = 0.

As the polyhedral homotopy continuation approximates the roots of a system numerically,
a posteriori certifications are usually applied to verify the output obtained by numerical
solvers, such as the Smale’s α-theory [6, Chapter 8] and interval arithmetic [34, Chapter
8]. There are multiple known implementations for these methods. For α-theory certifi-
cation, one can use alphaCertified [20] or NumericalCertification [29].
For certification using interval arithmetic, software NumericalCertification and
HomotopyContinuation.jl [7] are available.

2.4 Basic Concepts in Polynomial Optimization

For the set of real polynomials H = {h1, . . . , hs} in z := (z1, . . . , zk), the ideal generated
by H is

Ideal[H] := h1 · R[z] + · · · + hs · R[z].
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For a nonnegative integer d , the d-truncation of Ideal[H] is
Ideal[H]d := Ideal[H] ∩ R[z]d .

A polynomial σ ∈ R[z] is said to be a sum of squares (SOS) if σ = σ 2
1 + · · · + σ 2

l for some
polynomials σi ∈ R[z]. The set of all SOS polynomials in z is denoted as �[z]. For a degree
d , we denote the truncation

�[z]d := �[z] ∩ R[z]d .

For a set Q = {q1, . . . , qt } of polynomials in z, its quadratic module is the set

Qmod[Q] := �[z] + q1 · �[z] + · · · + qt · �[z].
Similarly, we denote the truncation of Qmod[Q]

Qmod[Q]2d := �[z]2d + q1 · �[z]2d−deg(q1) + · · · + qt · �[z]2d−deg(qt ).

The set Q determines the basic closed semi-algebraic set

S(Q) := {z ∈ R
k | q1(z) ≥ 0, . . . , qt (z) ≥ 0}.

Moreover, for H = {h1, . . . , hs}, its real zero set is
VR(H) := V(H) ∩ R

k = {z ∈ R
k | h1(z) = · · · = hs(z) = 0}.

The set Ideal[H]+Qmod[Q] is said to bearchimedean if there existsρ ∈ Ideal[H]+Qmod[Q]
such that the set S({ρ}) is compact. If Ideal[H] + Qmod[Q] is archimedean, then VR(H) ∩
S(Q) must be compact. Conversely, if VR(H) ∩ S(Q) is compact, say, VR(H) ∩ S(Q) is
contained in the ball R−‖z‖2 ≥ 0, then Ideal[H]+Qmod[Q∪{R−‖z‖2}] is archimedean and
VR(H)∩S(Q) = VR(H)∩S(Q∪{R−‖z‖2}). Clearly, if f ∈ Ideal[H]+Qmod[Q], then f ≥
0 onVR(H)∩S(Q). The reverse is not necessarily true. However, when Ideal[H]+Qmod[Q]
is archimedean, if the polynomial f > 0 onVR(H)∩S(Q), then f ∈ Ideal[H]+Qmod[Q].
This conclusion is referenced as Putinar’s Positivstellensatz [43]. Interestingly, if f ≥ 0 on
VR(H) ∩ S(Q), we also have f ∈ Ideal[H] + Qmod[Q], under some standard optimality
conditions [36].

Truncated multi-sequences (tms) are useful for characterizing the duality of nonnegative
polynomials. For an integer d ≥ 0, a real vector y = (yα)α∈Nk

2d
is called a tms of degree 2d .

For a polynomial p(z) = ∑
α∈Nk

2d
pαzα , define the operation

〈p, y〉 :=
∑

α∈Nk
2d

pα yα. (2.5)

The operation 〈p, y〉 is bilinear in p and y. Moreover, for a polynomial q ∈ R[x]2s (s ≤ d),
and a degree t ≤ d −�deg(q)/2�, the dth order localizing matrix of q for y is the symmetric
matrix L(d)

q [y] such that (the vec(a) denotes the coefficient vector of a)

〈qa2, y〉 = vec(a)T (L(d)
q [y])vec(a) (2.6)

for all a ∈ R[x]t . When q = 1 (the constant one polynomial), the localizing matrix L(d)
q [y]

becomes the dth order moment matrix Md [y] := L(d)
1 [y]. We refer to [21, 26, 28] for more

details and applications about tms and localizing matrices. In Sect. 3.2, SOS polynomials and
localizing matrices are exploited for solving polynomial optimization problems.
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3 An Algorithm for Finding GNEs

In this section, we study an algorithm for finding GNEs based on the polyhedral homotopy
continuation and the Moment-SOS semidefinite relaxations. First, we propose a framework
for solving GNEPs. Then, we discuss the polyhedral homotopy continuation for solving the
complex KKT systems for GNEPs of polynomials, and the Moment-SOS relaxations for
selecting GNEs from the set of KKT points.

For the GNEP of polynomials, we consider its complex KKT system (2.2). Let m :=
m1 + · · · + m N and define KC ⊆ C

n × C
m as a finite set of complex KKT tuples, i.e., every

point in KC solves the system (2.2). We further define

K :=
{

(x, λ) ∈ KC ∩ (Rn × R
m)

∣
∣
∣
∣

λi, j ≥ 0, gi, j (x) ≥ 0
∀ i ∈ {1, . . . , N }, j ∈ Ii

}

,

P := {x ∈ R
n | there is λ ∈ R

m such that (x, λ) ∈ K}. (3.1)

Then, K and P are sets of KKT tuples and KKT points respectively. When the GNEP is
convex, all points in P are GNEs. Furthermore, when KC is the set of all complex KKT
tuples and some constraint qualifications hold at every GNE, the P is the set of all GNEs if it
is nonempty, or the nonexistence of GNEs can be certified by the emptiness of P . However,
when there is no convexity assumed for the GNEP, the KKT conditions are usually not
sufficient for x ∈ P being a GNE.

Suppose the GNEP is not convex. Let u = (ui , u−i ) ∈ P . For each i ∈ {1, . . . , N }, we
consider the following optimization problem:

⎧
⎪⎨

⎪⎩

δi := min
xi ∈Rni

fi (xi , u−i ) − fi (ui , u−i )

s.t. gi, j (xi , u−i ) = 0 ( j ∈ Ei ),

gi, j (xi , u−i ) ≥ 0 ( j ∈ Ii ).

(3.2)

Then, u is a GNE if and only if every δi ≥ 0, i.e., ui minimizes (3.2) for each i . If δi < 0
for some i , then u is not a GNE. For such a case, suppose (3.2) has a minimizer vi . Then it
is clear that

fi (vi , x−i ) − fi (xi , x−i ) ≥ 0 (3.3)

holds with x = x� at any GNE x� ∈ P such that vi ∈ Xi (x�−i ) (e.g., the vi ∈ Xi (x�−i ) holds
at all NEs for NEPs). However, (3.3) does not hold at x = u. Therefore, we propose the
following algorithm for finding GNEs.

Algorithm 3.1 For the GNEP of polynomials, do the following:

Step 0 Let S := ∅ and Vi := ∅ for all i ∈ {1, . . . , N }.
Step 1 Solve the complex KKT system (2.2) for a set of complex solutions KC. Let P be

the set given as in (3.1).
Step 2 IfP �= ∅, then select u ∈ P , letP := P \{u}, and proceed to the next step. Otherwise,

output the set S (possibly empty) of GNEs and stop.
Step 3 If Vi = ∅ for all i ∈ {1, . . . , N }, or fi (vi , u−i ) − fi (ui , u−i ) ≥ 0 for all i ∈

{1, . . . , N } and for all vi ∈ Vi ∩ Xi (u−i ), then go to the next step. Otherwise, go
back to Step 2.

Step 4 For each i ∈ {1, . . . , N }, solve the polynomial optimization problem (3.2) for a
minimizer vi . If there exists i ∈ {1, . . . , N } such that δi < 0, let Vi := Vi ∪ {vi } for
all such i . Otherwise, u is a GNE and let S := S ∪ {u}. Then, go back to Step 2.
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In Sect. 3.1, we show how to find the set of complex solutions for the system (2.2) using
the polyhedral homotopy continuation. Since the polyhedral homotopy tracks mixed volume
many paths,P must be a finite set (possibly empty). Therefore, Algorithm 3.1 must terminate
within finitely many loops. Moreover, if KC is the set of all complex KKT tuples, i.e.,
Algorithm 2.3 finds all complex solutions for (2.2), then Algorithm 3.1 will either find all
GNEs, or detect the nonexistence of GNEs. This is the case when Algorithm 2.3 finds the
mixed volume many complex solutions for (2.2). In Sect. 4, we show that when the GNEP is
defined by generic dense polynomials, Algorithm 2.3 can find mixed volume many solutions
for (2.2). The following result is straightforward:

Theorem 3.2 For the GNEP, suppose |KC| equals the mixed volume of (2.2). If S produced
by Algorithm 3.1 is nonempty, then S is the set of all GNEs. Otherwise, the GNEP does not
have any GNE.

3.1 The Polyhedral HomotopyMethod for Finding KKT Tuples

In this subsection, we explain how the polyhedral homotopy continuation is applied to find
complex solutions for the system (2.2). For each i ∈ {1, . . . , N }, denote the set of polynomials
in variables of x and λi as

Fi (x, λi ) :=
{
∇xi fi (x) −

∑mi

j=1
λi, j∇xi gi, j (x)

}

∪ {λi, j gi, j (x) | j ∈ Ii
} ∪ {gi, j (x) | j ∈ Ei

}
.

We define a system

F(x, λ) :=
N⋃

i=1

Fi (x, λi ). (3.4)

Then, F(x, λ) is a system with n + m polynomial equations in n + m variables, and we use
Algorithm 2.3 to solve F(x, λ) = 0 by letting z := (x, λ) and P(z) := F(z).

The example below shows detail of applying the homotopymethod for findingKKT tuples
from an actual NEP problem.

Example 3.3 Consider the two-player unconstrained NEP

min
x1∈R1

1
2 x21 x32 − x1x22 − 2x1x2 min

x2∈R1

1
2 x31 x22 − x21 x2 − 2x1x2.

For this problem, the complex KKT system reduces to vanishing the gradients ∇x1 f1 and
∇x2 f2, i.e., we have

F = {∇x1 f1,∇x2 f2} = {x1x32 − x22 − 2x2, x31 x2 − x21 − 2x1}.
Considering a lifted system with generic lifting functions � f1 and � f2 , we have

F(x, t) = {x1x32 t� f1 (1,3) − x22 t� f1 (0,2) − 2x2t� f1 (0,1),

x31 x2t� f2 (3,1) − x21 t� f2 (2,0) − 2x1t� f2 (1,0)}
such that F(x, 1) = F . Also, we get a start system F(x, 0) after trimming some powers
of t . The system F has the mixed volume equal to 8. Therefore, the polyhedral homotopy
continuation provided 8 paths to track and found 6 numerical solutions to F :

(x1, x2) :=
⎧
⎨

⎩

(−0.76069 + 0.857874i,−0.76069 + 0.857874i),
(−0.76069 − 0.857874i,−0.76069 − 0.857874i),
(1.52138, 1.52138), (0,−2), (−2, 0), (0, 0).

123



   13 Page 10 of 26 Journal of Scientific Computing            (2023) 95:13 

Indeed, using the software Macaulay2 [17], we verified that the system F(x) = 0 has
exactly 6 complex solutions.

Remark 3.4 1. Note that the system F(x) = 0 has 6 complex solutions, which is strictly
less than its mixed volume. This shows that the polyhedral homotopy continuation may
find all complex solutions to the polynomial system even if the number of solutions is
smaller than the mixed volume.

2. As presented in this example, the polyhedral homotopy continuation may find solutions
outside the torus in the actual implementation.

In Sect. 4, we show that under the genericity assumption, the polyhedral homotopy con-
tinuation provides the optimal number of paths for finding complex KKT points. In this case,
the polyhedral homotopy continuation guarantees finding all complex KKT points, hence the
complete collection of GNEs can be obtained by Algorithm 3.1.

3.2 TheMoment-SOS Relaxation for Selecting GNEs

In this sequel, we discuss how to solve the polynomial optimization (3.2). For each i , denote

θi (xi ) := fi (xi , u−i ) − fi (ui , u−i ),

�i (xi ) := {gi, j (xi , u−i ) | j ∈ Ei },
�i (xi ) := {gi, j (xi , u−i ) | j ∈ Ii }.

Denote the degree

di := max{�deg(θi )/2�, �deg(�i (xi ))/2�, �deg(�i (xi ))/2�}, (3.5)

where deg(�i (xi )) := max{deg(gi, j (xi , u−i )) | j ∈ Ei }, and deg(�i (xi )) is similarly

defined. For d ≥ di , recall that the tms y ∈ R
N

ni
2d and localizing matrices L(d)

q [y] are given
by (2.5) and (2.6) respectively. The dth moment relaxation for (3.2) is

⎧
⎪⎪⎨

⎪⎪⎩

ϑ
(d)
i := min

y∈RN
ni
2d

〈θi , y〉

s.t. L(d)
p [y] � 0 (p ∈ �i ), L(d)

q [y] = 0 (q ∈ �i ),

y0 = 1, Md [y] � 0,

(3.6)

Its dual optimization problem is the dth SOS relaxation
{
max γ

s.t. θi − γ ∈ Ideal(�i )2d + Qmod(�i )2d .
(3.7)

Both (3.6)–(3.7) are semidefinite programs that can be efficiently solved by some well devel-
oped methods and software (e.g., SeDuMi [47]). By solving the relaxations (3.6)–(3.7) for
d = d0, d0 +1, . . ., we get the following algorithm, namedMoment-SOS hierarchy [25], for
solving (3.2).

Algorithm 3.5 For the given u ∈ P and the i th player’s optimization (3.2). Initialize d := di .

Step 1 Solve the moment relaxation (3.6) for the minimum value ϑ
(d)
i and a minimizer y�.

If ϑ
(d)
i ≥ 0, then δi = 0 and stop; otherwise, go to the next step.
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Step 2 Let t := di as in (3.5). If y� satisfies the rank condition

rank Mt [y�] = rank Mt−di [y�], (3.8)

then extract a set Ui of r := rank Mt (y�) minimizers for (3.2) and stop.
Step 3 If (3.8) fails to hold and t < d , let t := t + 1 and then go to Step 2; otherwise, let

d := d + 1 and go to Step 1.

The rank condition (3.8) is called flat truncation [35]. It is a sufficient (and almost neces-
sary) condition for checking finite convergence of the Moment-SOS hierarchy. Indeed, the
Moment-SOS hierarchy has finite convergence if and only if the flat truncation is satisfied for
some relaxation orders, under some generic conditions [35]. When (3.8) holds, the method in
[21] can be used to extract r minimizers for (3.2). The method is implemented in the software
GloptiPoly 3 [22]. We refer to [21, 35] and [26, Chapter 6] for more details.

The convergence properties of Algorithm 3.5 are as follows. By solving the hierarchy
of relaxations (3.6) and (3.7), we get a monotonically increasing sequence of lower bounds
{ϑd}∞d=d0

for the minimum value ϑmin, i.e.,

ϑd0 ≤ ϑd0+1 ≤ · · · ≤ ϑmin.

When Ideal(�i )2d + Qmod(�i )2d is archimedean, we have ϑd → ϑmin as d → ∞ [25].
If ϑd = ϑmin for some d , the relaxation (3.6) is said to be exact for solving (3.2). For such
a case, the Moment-SOS hierarchy is said to have finite convergence. This is guaranteed
when the archimedean and some optimality conditions hold (see [36]). Although there exist
special polynomials such that the Moment-SOS hierarchy fails to have finite convergence,
such special problems belong to a set of measure zero in the space of input polynomials [36].
We refer to [26–28, 36] for more work on polynomial and moment optimization.

4 TheMixed Volume of GNEPs

For a polynomial system, if the set of its complex solutions is zero-dimensional, then the
algebraic degree of the polynomial system counts the number of complex solutions for the
system. In this section, we prove that under some genericity assumptions on the GNEP, the
mixed volume of the complex KKT system (2.2) equals its algebraic degree. Throughout
this section, we have a GNEP of polynomials consisting of dense polynomials of certain
degrees. Without loss of generality, we assume Ii = ∅ for all i ∈ {1, . . . , N }, i.e., all players
only have equality constraints, for the convenience of our discussion. Note that if there
exist inequality constraints, then all following results still hold by enumerating the active
constraints. For a tuple d := (d1, . . . , dN ) of nonnegative integers, the C[x]d represents the
space of polynomials whose degree in xi is not greater than di .

Recall that we say a system of polynomials is Bernstein generic if the number of isolated
solutions in the complex torus equals its mixed volume. The main result of this section is the
following:

Theorem 4.1 Consider the GNEP of polynomials given as in (1.1). For each i , let
di,0, . . . , di,mi ∈ N

N be tuples of nonnegative integers. Suppose all fi and gi, j are generic
dense polynomials in C[x]di,0 and C[x]di, j respectively. Then, the complex KKT system (3.4)
is Bernstein generic.
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We first introduce some basic notation and useful lemmas before showing Theorem 4.1.
Let w1, . . . , wN be weight vectors such that

wi = (0, . . . , 0, (wi,1, . . . , wi,ni , vi,1, . . . , vi,mi ), 0, . . . , 0),

wherewi,k and vi, j areweights for variables xi,k andλi, j respectively. Definew := ∑N
i=1 wi .

Each wi is the weight vector for the system F applied only for xi and λi variables.
The idea for the proof of the result is inspired by the paper [8]. We introduce the lemmas

established from the paper that will be used for the proof of the Theorem 4.1.

Lemma 4.2 [8, Lemma 8] Let p be a polynomial in C[x] and w ∈ Z
n be an integer vector.

If ∂ pw

∂xi
�= 0, then ∂ pw

∂xi
=
(

∂ p
∂xi

)w

and h�(A ∂ p
∂xi

) = h�(Ap) − wi .

Lemma 4.3 Let p be a dense polynomial in C[x]d and w = ∑N
i=1 wi be a weight vector in

Z
n. Then, we have

h�
wi

(Ap) · pw =
ni∑

k=1

wi,k xi,k
∂ pw

∂xi,k
.

Proof For a monomial xa , note that xi,k
∂xa

∂xi,k
= ai,k xa . Therefore, we have

ni∑

k=1

wi,k xi,k
∂xa

∂xi,k
=

ni∑

k=1

wi,kai,k xa = 〈wi , a〉xa .

Summing over all monomials in pw , we get

h�
wi

(Apw ) · pw =
ni∑

k=1

wi,k xi,k
∂ pw

∂xi,k
.

Noting the fact that h�
wi

(Ap) = h�
wi

(Apw ), we get the desired result.

Note that Lemma 4.3 is a generalization of Euler’s formula for quasihomogeneous polyno-
mials mentioned in [8, Lemma 9].

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1 Recall the second part of Theorem 2.1 that a polynomial system is
Bernstein generic if and only if the facial system has no root in the complex torus for any
nonzero vector w. For each polynomial p and a weight vector w, let Iwi (p) and Jw

i (p) be

partition sets of indices {1, . . . , ni } for each i , such that ∂ pw

∂xi, j
�= 0 if j ∈ Iwi (p) and ∂ pw

∂xi, j
= 0

if j ∈ Jw
i (p). That is, Iwi (p) is the set of all labels j such that the variable xi, j appears in

pw , and Jw
i (p) = {1, . . . , ni } \ Iwi (p). Also, we let

Iwi = Iwi ( fi ) ∪
⎛

⎝
mi⋃

j=1

Iwi (gi, j )

⎞

⎠ , Iw =
N⋃

i=1

Iwi , and n̂i = ∣
∣Iwi
∣
∣ .

Furthermore, let n̂ := ∑N
i=1 n̂i . It is clear that if j ∈ Jw

i (p) and a ∈ Aw
p , then ai, j = 0.

Hence, wemay consider pw as a polynomial inC[Iw] := C[xi, j | j ∈ Iwi (p), i = 1, . . . , N ].
Note that if p is a generic polynomial, then pw can also be considered as a generic polynomial
for a given support.
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In the following, for a fixed weight vector w, we show that there are no roots for the facial
system Fw in the torus (C \ {0})n . Consider the facial system of Fi , say,

Fw
i =

⎧
⎨

⎩
(∇xi fi −

mi∑

j=1

λi, j∇xi gi, j )
w, gw

i,1, . . . , gw
i,mi

⎫
⎬

⎭

where

∇xi fi −
mi∑

j=1

λi, j∇xi gi, j =
⎧
⎨

⎩

∂ fi

∂xi,1
−

mi∑

j=1

λi, j
∂gi, j

∂xi,1
, . . . ,

∂ fi

∂xi,ni

−
mi∑

j=1

λi, j
∂gi, j

∂xi,ni

⎫
⎬

⎭
.

For each k ∈ {1, . . . , ni }, let A∂i,k be the support of
∂ fi
∂xi,k

−∑mi
j=1 λi, j

∂gi, j
∂xi,k

. Then, we have

h�(A∂i,k ) = min

{

h�

(

A ∂ fi
∂xi,k

)

, min
j=1,...,mi

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}}

.

In the above, we recall that for a polynomial p, the h�(Ap) is the minimum of h(a) := 〈w, a〉
over a ∈ Ap; see Sect. 2.2 for more details. Depending on where the value of h�(A∂i,k ) is
attained, there are the following three cases:

(a) h�(A∂i,k ) = min
j=1,...,mi

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}

< h�

(

A ∂ fi
∂xi,k

)

,

(b) h�(A∂i,k ) = h�

(

A ∂ fi
∂xi,k

)

< min
j=1,...,mi

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}

,

(c) h�(A∂i,k ) = h�

(

A ∂ fi
∂xi,k

)

= min
j=1,...,mi

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}

.

Let Mw
i ⊆ {1, . . . , mi } be the set of indices l such that

h�

(

A ∂gi,l
∂xi,k

)

+ vi,l = min
j=1,...,mi

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}

.

Then, for each k = 1, . . . , ni , we have

(
∂ fi

∂xi,k
−

mi∑

i=1

λi, j
∂gi, j

∂xi,k

)w

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− ∑

j∈Mw
i

λi, j
∂gw

i, j
∂xi,k

, Case (a)

∂ f w
i

∂xi,k
, Case (b)

∂ fi
w

∂xi,k
− ∑

j∈Mw
i

λi, j
∂gw

i, j
∂xi,k

, Case (c).

Note that for a fixed i , if we consider a generic dense polynomial p ∈ C[x] with a
fixed multidegree, then we have the same support A ∂ p

∂xi,k

for ∂ p
∂xi,k

for any k = 1, . . . , ni .

Therefore, the values of h�

(

A ∂ fi
∂xi,k

)

and min
j=1,...,mi

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}

do not depend

on the choice of k = 1, . . . , ni . It means that without loss of generality, if we have

h�

(

A ∂ fi
∂xi,k

)

> min
j=1,...,mi

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}

for some k ∈ {1, . . . , ni }, then so do all

123



   13 Page 14 of 26 Journal of Scientific Computing            (2023) 95:13 

other indices in {1, . . . , ni }. Furthermore, since we only concern zeros of Fw in the torus, we
assume that not all polynomials in Fw are divisible by any single variable xi, j ; otherwise,
we may divide all polynomials in Fw by a proper power of xi, j until one of them cannot be
divided by xi, j any further.

For each index i , let

Uw
i := V(gw

i,1, . . . , gw
i,mi

) ⊂ C
n̂,

Jacw
i := [∇xi f w

i (x) ∇xi gw
i,1(x) · · · ∇xi gw

i,mi
(x)
]
, and

W w
i :=

{
x ∈ C

n̂ | rank(Jacw
i ) ≤ mi

}
.

Note that the variety Uw
i is defined by the i th player’s feasibility constraints, Jacw

i is the
transpose of the Jacobian matrix in the variable xi for the vector [ f w

i , gw
i,1, . . . , gw

i,mi
]	, and

W w
i is the determinantal variety given by the facial system of complex Fritz-John conditions

(see [37, Section 3]). Recall the assumption that not all polynomials involved are divisible
by any single variable. For all 2 ≤ l ≤ mi , the hypersurface given by gw

i,l(x) = 0 intersects
the common zeros of gw

i,1, . . . , gw
i,l−1 without any fixed point when varying the coefficients

of gw
i,l . Thus, by Bertini’s theorem (see [37, Proposition 2.2] for example), the variety Uw

i
is of codimension mi (or possibly empty). Then, by a similar argument, dim(Uw

i ∩ W w
i ) ≤

n̂ − n̂i . Also, following the argument in the proof of [37, Theorem 3.1], the dimension for
V w−i := ⋂

k �=i (U
w
k ∩ W w

k ) is not greater than n̂i .
If x� ∈ W w

i , then there exist λi,0, . . . , λi,mi ∈ C such that

λi,0∇xi f w
i (x�) + λi,1∇xi gw

i,1(x�) + · · · + λi,mi ∇xi gw
i,mi

(x�) = 0.

It means that if
(

∂ fi
∂xi,k

−∑mi
j=1 λi, j

∂gi, j
∂xi,k

)w

(x�) = 0, then x� ∈ W w
i . Indeed, all nonzero

solutions to the facial system, if they exist, must be in Uw
i ∩ W w

i for all i = 1, . . . , N . If
mi > n̂i for some i , then Uw

i ∩V w−i = ∅ when gi, j are generic polynomials, so Fw does not
have any solution. Hence, we may assume that mi ≤ n̂i . From now on, we prove the desired
statement by considering each of the three cases mentioned above respectively.

Case (a). Suppose that there exists i = 1, . . . , N such that
(

∂ fi

∂xi,k
−

mi∑

i=1

λi, j
∂gi, j

∂xi,k

)w

= −
∑

j∈Mw
i

λi, j
∂gw

i, j

∂xi,k
.

Without loss of generality, we assume i = 1. Note that if there is a root (x�, λ�) over (C\{0})
of Fw , then

∑

j∈Mw
1

λ�
1, j

∂gw
1, j

∂x1,k
(x�) = 0. (4.1)

Denote by (Jacw
i )◦ the submatrix of the rightmost mi columns of Jacw

i , and

(W w
i )◦ := {x ∈ C

n̂ | rank(Jacw
i )◦ ≤ mi − 1}.

Then the Eq. (4.1) implies that x� ∈ (W w
1 )◦ ∩ Uw

1 . For a generic z−1 ∈ C
n̂−n̂1 , [37, Propo-

sition 2.2] implies that the variety {x1 ∈ C
n̂1 : gw

1,1(x1, z−1) = · · · = gw
1,m1

(x1, z−1) = 0} is
smooth, i.e., thematrix (Jacw

i )◦ has full column rank at (x1, z−1) for all x1 ∈ C
n̂1 . Sowe know

dim((W w
1 )◦ ∩Uw

1 ) < n̂ − n̂1 by [45, Theorem 1.25]. Thus, we have (W w
1 )◦ ∩Uw

1 ∩V w−1 = ∅,
which contradicts to the fact that (x�, λ�) is a root of Fw.
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Case (b). Suppose that there exists i = 1, . . . , N such that
(

∂ fi

∂xi,k
−

mi∑

i=1

λi, j
∂gi, j

∂xi,k

)w

= ∂ f w
i

∂xi,k
. (4.2)

Without loss of generality, assume that i = 1. We further assume that m1 �= 0 because if
m1 = 0, then it can be considered as a special case of Case (c). For a root (x�, λ�) for the facial

system, we have
∂ f w

1
∂x1,k

(x�) = 0 for all k = 1, . . . , n1. Then, V(
∂ f w

1
∂x1,k

| k = 1, . . . , n1) ∩ V w−1
has the dimension at most zero due to the genericity of f w

1 . Hence, the genericity of gw
1, j

concludes that there is no point in
⋂N

i=1(W w
i ∩ Uw

i ) satisfying (4.2).
Case (c). As the first two cases cannot happen, we may assume that

h�

(

A ∂ fi
∂xi,k

)

= min
j=1,...,mi

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}

for all i = 1, . . . , N . We consider two subcases, the case that wi,k ≥ 0 for each indices
i = 1, . . . , N and k ∈ Iwi , and the case that there is i ∈ 1, . . . , N such that wi,k < 0 for
some k ∈ Iwi .

First, we assume that wi,k ≥ 0 for each index i and k ∈ Iwi . Because we consider a
dense polynomial fi , its partial derivatives are also dense polynomials. Thus, we have 0 in
the support Ap for each p ∈ { ∂ fi

∂xi,k
| k ∈ Iwi }. Therefore, we have 0 ≥ h�(Ap). Since all

wi,k ≥ 0, we also have h�(Ap) ≥ 0, and so we get h�(Ap) = 0 for each p. It further
concludes that wi,k = 0 for all i and k ∈ Iwi . Also, since

h�

(

A ∂ fi
∂xi,k

)

= min
j=1,...,m1

{

h�

(

A ∂gi, j
∂xi,k

)

+ vi, j

}

= 0

for each i , we have min
j=1,...,mi

vi, j = 0.We assume that there is at least one index i ∈ 1, . . . , N

such that vi, j > 0 for some j ∈ {1, . . . , mi }. Otherwise, w can be considered as just a zero
vector and there is nothing to prove. Recall that Mw

i is a subset of {1, . . . , mi } such that
vl = min

j=1,...,mi
vi, j = 0 for all l ∈ Mw

i . Then, we know that Mw
i � {1, . . . , m1} for some

i = 1, . . . , N ; otherwise, Fw equals to F . Without loss of generality, let i = 1 be such an
index. Then, the size of Mw

1 is exactly the number of variables λ1, j that appear in Fw
1 (i.e.,

λ1, j variable appears in Fw
1 if and only if j ∈ Mw

1 ). Without loss of generality, we further

assume Mw
1 = {1, . . . , m̂1} for some m̂1 < m1, and let Ĵacw

1 be the submatrix of the left
most m̂1 + 1 columns of Jacw

1 . If (x�, λ�) is a nonzero solution to the facial system, then

rank (Ĵacw
1 (x�)) ≤ m̂1. Define

Ŵ w
1 = {x ∈ C

n̂ | rank(Ĵacw
1 ) ≤ m̂1}

the determinantal variety of Ĵacw
1 . Then, by the similar argument from the proof for [37,

Theorem 3.1], we have

codim (Ŵ w
1 ∩ V(gw

1,1, . . . , gw
1,m̂1

)) ≥ n̂1.

Note that gw
1, j (x�) = 0 for all j = 1, . . . , mi . Since m̂1 < m1, for any l such that m̂1 < l ≤

m1, the hypersurface gw
1,l intersects Ŵ w

1 ∩ V(gw
1,1, . . . , gw

1,m̂1
) properly from the genericity

of gw
1,l . It means that we have codim(Ŵ w

1 ∩ Uw
1 ) > n̂1, and hence Ŵ w

1 ∩ Uw
1 ∩ V w−1 = ∅.

Therefore, such x� does not exist.
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Lastly, we deal with the subcase that there exists i ∈ {1, . . . , N } such that wi,k < 0 for
some k ∈ Iwi . Without loss of generality, assume that i = 1 and suppose that w1,k̂ < 0

for some k̂ ∈ Iw1 . Since there is a negative entry w1,k̂ , we have h�
1(Ag1,t ) < 0 for some t ∈

{1, . . . , m1}. Furthermore, suppose that we have a root (x�, λ�) of Fw . Note that gw
1, j (x�) = 0

for all j = 1, . . . , mi . Let t ∈ Mw
1 be the index such that h�(Ag1,t ) < 0. Then, by Lemma

4.3, we have

0 = h�(Ag1,t )λ1,t g
w
1,t (x�) =

N∑

i=1

∑

k∈Iwi
wi,k xi,kλ1,t

∂gw
1,t

∂xi,k
(x�)

=
∑

k∈Iw1
w1,k x1,k

⎛

⎝
∂ f w

1

∂x1,k
(x�) −

∑

j∈Mw
1 \{t}

λ1, j
∂gw

1, j

∂x1,k
(x�)

⎞

⎠

+
N∑

i=2

∑

k∈Iwi
wi,k xi,kλ1,t

∂gw
1,t

∂xi,k
(x�)

= h�
w1

(
A f1

)
f w
1 (x�) −

∑

j∈Mw
1 \{t}

λ1, j h
�
w1

(
Ag1, j

)
gw
1, j (x�)

+
N∑

i=2

h�
wi

(
Ag1,t

)
λ1,t g

w
1,t (x�).

In the above, the third equality holds due to the fact that

∂ f w
1

∂x1,k
(x�) −

∑

j∈Mw
1

λ1, j
∂gw

1, j

∂x1,k
(x�) = 0,

and the last equality is obtained by applying Lemma 4.3. Let

q = h�
w1

(
A f1

)
f w
1 −

∑

j∈Mw
1 \{t}

λ1, j h
�
w1

(
Ag1, j

)
gw
1, j +

N∑

i=2

h�
wi

(
Ag1,t

)
λ1,t g

w
1,t

be the polynomial obtained from the last equality. We know that a point x� lies in V(q).
It means that q(x�) = h�

w1
(A f1) f w

1 (x�) = 0 since x� ∈ Uw
1 . However, it contradicts the

genericity of f1.

Remark 4.4 1. For the GNEP, if the defining functions are generic polynomials, then the set
of complex KKT tuples is finite, and all KKT tuples lie in the torus when the GNEP only
has equality constraints. This is implied by [37, Theorem 3.1]. In this case, Bernstein
genericity implies that the mixed volume agrees with the algebraic degree. The explicit
formula for the algebraic degree of generic GNEPs is studied in the recent paper [37].

2. Even when defining functions for the GNEP are not generic, the mixed volume still is
an upper bound for the number of isolated solutions in the torus by Theorem 2.1. In
this case, we may still find all complex KKT tuples using the homotopy continuation.
However, it is still open in general that how to justify the completeness of solutions of a
system found by the homotopy continuation. For partial results on the test of checking
completeness, see [10, 31].

123



Journal of Scientific Computing            (2023) 95:13 Page 17 of 26    13 

5 Numerical Examples

In this section, we present some numerical experiments of solving GNEPs of polyno-
mials using the polyhedral homotopy continuation. We apply the software Homotopy
Continuation.jl to find complex KKT points of GNEPs by the polyhedral homo-
topy continuation, and apply Gloptipoly3 and SeDuMi to implement the Moment-SOS
hierarchy of semidefinite relaxations for verifying GNEs. The computation is executed in a
Macbook pro, 2 GHz Quad-Core Intel Core i5, 32 GB RAM.

When the GNEP is convex, if the complex KKT tuple (x, λ1, . . . , λN ) satisfies

gi, j (x) ≥ 0, λi, j ≥ 0 for all i ∈ {1, . . . , N }, j ∈ Ii ,

i.e., x is a KKT point, then x is a GNE. For nonconvex GNEPs, the tuple of strategies x is a
GNE if and only if the

δ := min
i=1,...,N

{

min
j∈I {gi, j (x)}, min

j∈E {−|gi, j (x)|}, δi

}

≥ 0

where each δi is given by (3.2). The δ is called the accuracy parameter for x . In practical
computation, one may not get δ ≥ 0 exactly, due to rounding-off errors. In this section, we
regard x being a GNE if δ ≥ −10−6.

Example 5.1 (i) Consider the 2-player NEP in [38]

1st player:

{
min

x1∈R3

∑3
j=1 x1, j (x1, j − j · x2, j )

s.t . 1 − x1,1x1,2 ≥ 0, 1 − x1,2x1,3 ≥ 0, x1,1 ≥ 0,

2nd player:

⎧
⎪⎨

⎪⎩

min
x2∈R3

∏3
j=1 x2, j +∑

1≤i< j≤3
1≤k≤3

x1,i x1, j x2,k +∑

1≤i≤3
1≤ j<k≤3

x1,i x2, j x2,k

s.t . 1 − (x2,1)2 − (x2,2)2 − (x2,3)2 = 0.

This is a nonconvex NEP since both players’ optimization problems are nonconvex.
Moreover, the feasible set for the first player’s optimization problem is unbounded. By
implementing the polyhedral homotopy continuation on the complex KKT system, we
got 252 complex KKT tuples, and 8 of them satisfy the KKT system (2.1). Since this is
a nonconvex problem, we ran Algorithm 3.1 for selecting NEs. We obtained four NEs
u = (u1, u2) with

u1 = (0.3198, 0.6396,−0.6396), u2 = (0.6396, 0.6396,−0.4264);
u1 = (0.0000, 0.3895, 0.5842), u2 = (−0.8346, 0.3895, 0.3895);
u1 = (0.2934,−0.5578, 0.8803), u2 = (0.5869,−0.5578, 0.5869);
u1 = (0.0000,−0.5774,−0.8660), u2 = (−0.5774,−0.5774,−0.5774).

Their accuracy parameters are respectively

−5.2324 · 10−11, −1.7619 · 10−9, −4.8633 · 10−9,−7.1933 · 10−9.

Note that for this NEP, the mixed volume of the complex KKT system equals 252.
The polyhedral homotopy found all complex KKT tuples, so all NEs are obtained by
our method. It took about 7.81 seconds to find all NEs, including 4 seconds to find all
complex KKT tuples, and about 3.81 seconds to verify NEs.
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(ii) If the second player’s objective becomes

−
3∏

j=1

x2, j +
∑

1≤i≤3
1≤ j<k≤3

x1,i x2, j x2,k −
∑

1≤i< j≤3
1≤k≤3

x1,i x1, j x2,k,

then the polyhedral homotopy continuation found 252 complex KKT tuples, and there
are 3 of them satisfying the KKT system (2.1). However, none of these KKT points are
NEs, by Algorithm 3.1. Indeed, since the mixed volume for the complex KKT system
equals 252, all complex KKT tuples were found by homotopy continuation. Therefore,
we detected that this NEP does not have any NE. It took around 3 seconds to solve the
complex KKT system, and 1.09 seconds to detect the nonexistence of NEs.

Example 5.2 Consider a GNEP variation of the problem in Example 5.1(i).

1st player:

{
min

x1∈R3

∑3
j=1 x1, j (x1, j − j · x2, j )

s.t . x2,3 − x1,1x1,2 ≥ 0, x2,1 − x1,2x1,3 ≥ 0, x1,1 − x2,2 ≥ 0,

2nd player:

⎧
⎪⎨

⎪⎩

min
x2∈R3

∏3
j=1 x2, j +∑

1≤i< j≤3
1≤k≤3

x1,i x1, j x2,k +∑

1≤i≤3
1≤ j<k≤3

x1,i x2, j x2,k

s.t . 1 − (x1,1x2,1)2 − (x2,2)2 − (x2,3)2 = 0.

Similar to the problem in Example 5.1(i), this is a nonconvex GNEP, and the first player has
an unbounded feasible strategy set. By implementing the polyhedral homotopy continuation
on the complex KKT system, we computed the mixed volume 512 and found 484 complex
KKT tuples, and 11 of them satisfy the KKT system (2.1). Since this is a nonconvex problem,
we ran Algorithm 3.1 for selecting GNEs. We obtained two GNEs u = (u1, u2) with

u1 = (0.8188,−0.3213,−0.3947), u2 = (0.8868, 0.6353,−0.2631);
u1 = (0.5873,−0.5993, 0.6091), u2 = (1.1747,−0.5993, 0.4061).

Their accuracy parameters are respectively

−4.0433 · 10−9, −6.7675 · 10−9.

It took about 9.85 seconds to find all GNEs including 4 seconds to solve the complex KKT
system, and about 5.85 seconds to verify GNEs.

Example 5.3 Consider the 2-player convex GNEP in [39]

min
x1∈R2

2∑

j=1
(x1, j − 1)2 + x2(x1,1 − x1,2) min

x2∈R1
(x2)3 − x1,1x1,2x2 − x2

s.t. 2 − x	
1 x1 − x2 ≥ 0; s.t. 3x2 − x	

1 x1 ≥ 0, 1 − x2 ≥ 0.

By implementing the polyhedral homotopy continuation on the complex KKT system, we
knew the mixed volume is 23, and we got 17 complex KKT tuples. For these KKT tuples,
only one of them satisfies the KKT system (2.1). Because this is a convex GNEP, we got a
GNE u := (u1, u2) from this KKT tuple with

u1 = (0.4897, 1.0259), u2 = (0.7077).

It took around 2 seconds to solve the complex KKT system.
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Example 5.4 Consider a 2-player GNEP

1st player:

⎧
⎪⎨

⎪⎩

min
x1∈R2

3x2,1(x1,1)3 + 5(x1,2)3 − 2
∑2

j=1 x1, j ·∑2
j=1 x2, j

s.t . 5x1,1 − 2x1,2 + 3x2,2 − 1 ≥ 0, 3 − x2,1 · x	
1 x1 ≥ 0,

x1,1 ≥ −2, x1,2 ≥ 1;

2nd player:

⎧
⎪⎨

⎪⎩

min
x2∈R2

(2x1,1 + 3x1,2)(x2,1)3 − 3x2,1 + 7(x2,2)2 + 5x1,1x1,2x2,2

s.t . 7x1,2 + 3x2,2 − 5x22,1 + 3 ≥ 0, 2x2,1 ≥ −1,
2 − x2,2 ≥ 0, 5 + x2,2 ≥ 0.

This is a nonconvex GNEP. By implementing the polyhedral homotopy continuation on
the complex KKT system, we knew the mixed volume is 480 and polyhedral continuation
found exactly 480 complex KKT tuples. We ran Algorithm 3.1 and obtained the unique GNE
u := (u1, u2) with

u1 = (0.7636, 1.0000), u2 = (0.4700,−0.2727), δ = −1.0220 · 10−8.

Note that for this GNEP, the mixed volume of the complex KKT system coincides with the
number of complex KKT tuples we found. The polyhedral homotopy found all complex KKT
tuples, so all GNEs are obtained by our method. It took around 5.75 seconds to find all GNEs
including 4 seconds to solve the complex KKT system, and 1.75 seconds to select the GNE.

Example 5.5 Consider a GNEP whose optimization problems are

1st player:

⎧
⎪⎨

⎪⎩

min
x1∈R2

2(x1,1)2 + 7(x1,2)2 + 3x1,1 + 5x1,2

s.t . 1 − 2(x1,1)2 − (x1,2)2 − 3(x2,1)2 − 5(x2,2)2 ≥ 0,
1 − x1,1 ≥ 0, 1

2 − x1,2 ≥ 0;

2nd player:

⎧
⎪⎨

⎪⎩

min
x2∈R2

3(x2,2)2 − 4x2,1x2,2

s.t . 3(x1,1)2 + (x1,2)2 + 7
10 (x2,1)2 + 6(x2,2)2 − 1 ≥ 0,

7 − x2,1 ≥ 0, x2,2 − 3
10 ≥ 0, 8

10 − x2,2 ≥ 0.

This is a nonconvex GNEP. By implementing the polyhedral homotopy continuation on the
complex KKT system, we computed the mixed volume is 168 and polyhedral homotopy
found 168 complex KKT tuples. However, none of them are GNEs. It took around 3 seconds
to solve this problem, including 3 seconds to solve the complex KKT system, and 0.001
seconds to detect the nonexistence of GNEs.

Example 5.6 Consider a convex GNEP of 3 players. For i = 1, 2, 3, the i th player aims to
minimize the quadratic function

fi (x) = 1

2
x	

i Ai xi + x	
i (Bi x−i + bi ).

All variables have box constraints −10 ≤ xi, j ≤ 10, for all i, j . In addition to them, the first
player has linear constraints x1,1 + x1,2 + x1,3 ≤ 20, x1,1 + x1,2 − x1,3 ≤ x2,1 − x3,2 + 5;
the second player has x2,1 − x2,2 ≤ x1,2 + x1,3 − x3,1 + 7; and the third player has x3,2 ≤
x1,1 + x1,3 − x2,1 + 4.
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(i) Consider the case that the values of parameters are set as in [15, Example A.3]:

A1 =
⎡

⎣
20 5 3
5 5 −5
3 −5 15

⎤

⎦ , A2 =
[
11 −1
−1 9

]

, A3 =
[
48 39
39 53

]

,

B1 =
⎡

⎣
−6 10 11 20
10 −4 −17 9
15 8 −22 21

⎤

⎦ , B2 =
[
20 1 −3 12 1
10 −4 8 16 21

]

,

B3 =
[
10 −2 22 12 16
9 19 21 −4 20

]

, b1 =
⎡

⎣
1

−1
1

⎤

⎦ , b2 =
[
1
0

]

, b3 =
[−1

2

]

.

This is a convex GNEP since for all i ∈ {1, 2, 3}, the Ai is positive semidefinite and all
constraints are linear. By implementing the polyhedral homotopy continuation on the com-
plex KKT system, we got the mixed volume 12096, and polyhedral homotopy found 11631
complex KKT tuples. There are 5 GNEs obtained by Algorithm 3.1, which are presented in
the following table.

u1 u2 u3

1 (-0.3805,-0.1227,-0.9932) (0.3903,1.1638) (0.0504,0.0176)
2 (-0.9018,-4.4017,-2.1791) (-2.0034,-2.4541) (-0.0316,2.9225)
3 (-0.8039,-0.3062,-2.3541) (0.9701, 3.1228) (0.0751,-0.1281)
4 (1.9630,-1.3944, 5.1888) (-3.1329,-10.0000) (-0.0398,1.6392)
5 (0.6269,10.0000,9.3731) (1.8689,10.0000) (0.3353,-10.0000)

It took around 177s to solve the complex KKT system. We would like to remark that in [15]
and [39], only the first GNE was found, and the second to the fourth GNEs are new solutions
found by our algorithm.

(ii) If we let

A1 =
⎡

⎣
1 2 3
2 5 −5
3 −5 15

⎤

⎦ ,

and all other parameters be given as in (i), then this GNEP is nonconvex. By implementing the
polyhedral homotopy continuation on the complex KKT system, the mixed volume equals
12096 and we got 11620 complex KKT tuples, and five of them satisfy the KKT condition
(2.1). Since this is a nonconvex problem, we ran Algorithm 3.1 for selecting GNEs, and
obtained one GNE u = (u1, u2, u3) with

u1 = (0.9968, 10.0000, 9.0032), u2 = (0.6668, 10.0000), u3 = (0.7283,−10.0000).

The accuracy parameter is −9.5445 · 10−7. It took around 209.68 seconds to find all GNEs
including 207 seconds to solve the complex KKT system, and 2.68 seconds to select the
GNE.

5.1 Comparison with ExistingMethods

In this subsection, we compare the performance of Algorithm 3.1with some existingmethods
for solving GNEPs, such as the augmented Lagrangian method (ALM) in [24], Gauss-Seidel
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method (GSM) in [40], the interior point method (IPM) in [12], and the semidefinite relax-
ation method (KKT-SDP) in [39]. We tested these methods on all GNEPs of polynomials in
Examples 5.1–5.6.

Given a computed tuple u = (u1, . . . , uN ) for an N -player game. Then, u is a GNE if and
only if δ ≥ 0. For the KKT-SDP method, we say the method finds a GNE successfully when-
ever δ ≥ −10−6 since δ ≥ 0 may not be possible due to a numerical error. For other earlier
algorithmsmentioned above, since they are iterativemethods, the stopping criterion is given as

the following: For the computed tuple u, when min
i=1,...,N

{

min
j∈I {gi, j (x)}, min

j∈E {−|gi, j (x)|}
}

≥
−10−6, we solve (3.2) for each i . If we further have δ ≥ −10−6, then we stop the iteration
and report that the method found a GNE successfully.

For the ALM, GSM and IPM, the same parameters are applied as in [12, 24, 40]. In the
augmented Lagrangian method, full penalization is used, and a Levenberg-Marquardt type
method (see [24, Algorithm 24]) is implemented to solve penalized subproblems. For the
Gauss-Seidel method, normalization parameters are updated as (4.3) in [40], and Moment-
SOS relaxations are used to solve normalized subproblems. We let 1000 be the maximum
number of iterations for theALMand IPM, and atmost 100 iterations are allowed in theGSM.
For initial points, we use (0, 0, 0, 1√

3
, 1√

3
, 1√

3
) for Examples 5.1(i-ii), (0, 0, 0, 0,− 1√

2
, 1√

2
)

for Example 5.2, (0, 0, 1, 1) for Example 5.4, (0, 0, 0, 1√
5
) for Example 5.5, and the zero

vector for all other problems. For the one-shot KKT-SDP method, randomly generated posi-
tive semidefinite matrices are exploited to formulate polynomial optimization. Note that the
ALM, IPM and KKT-SDP are designed for finding a KKT point of the GNEP. When the
GNEP is convex (e.g., Examples 5.3 and 5.6(i)), the limit point is guaranteed to be a GNE,
if these methods produce a convergent sequence. However, since we in general do not make
any convexity assumption, it is possible that these methods converge to a KKT point which
is not a GNE. For the ALM and IPM, the produced sequence is considered convergent to a
KKT point if the last iterate satisfies the KKT conditions up to a small round-off error (say,
10−6). If the iteration is convergent but the stopping criterion is not met, we still solve (3.2)
to check if the latest iterating point is a GNE or not.

The numerical results are shown in Table 1. In general, the method can be regarded to
solve the GNEP successfully if the error is small (e.g., less than 10−6). For Algorithm 3.1,
when there are more than one GNE obtained, we present the largest error among these GNEs.

The comparison is summarized as follows:

1. The augmented Lagrangian method converges to a KKT point that is not a GNE for
Examples 5.1(i)–(ii) and 5.6(ii). For Example 5.2, the iteration cannot proceed because
the maximum penalty parameter was reached at the 14th iteration. For Examples 5.4 and
5.5, it fails to converge because the penalized subproblem cannot be solved accurately.

2. The interior pointmethod converges to aKKTpoint that is not aGNE forExamples 5.1(ii),
5.4 and5.6(ii). ForExamples 5.2 and5.5, the algorithmdoes not converge. In this problem,
the Newton-type directions usually do not satisfy sufficient descent conditions.

3. For Examples 5.1(i)–(ii) and 5.6(i), the Gauss-Seidel method failed to converge and it
alternated between several points. For Examples 5.2, 5.5 and 5.6(ii), the iteration cannot
proceed at some stages since global minimizers for normalized subproblems cannot be
obtained. Usually, this is because the normalized subproblem is infeasible or unbounded.

4. The semidefinite relaxation method obtained a KKT point that is not a GNE for Exam-
ples 5.1(i)–(ii), 5.2 and 5.6(ii).

5. Algorithm3.1 detected nonexistence ofGNEs forExamples 5.1(ii) and 5.5.Wewould like
to remark that if there existKKTpoints that are notGNEs, then the semidefinite relaxation
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Table 1 Comparison with other methods

Example ALM IPM GSM KKT-SDP Algorithm 3.1

5.1(i) time 27.52 13.34 Fail 2.95 12.6

error 4.67 4.67 1.48 < 8 · 10−9 (4 GNEs)

5.1(ii) time 32.03 8.04 Fail 2.92 7.8

error 1.11 1.11 0.19 no GNE

5.2 time Fail Fail Fail 4.65 9.9

error 0.66 < 7 · 10−9 (2 GNEs)

5.3 time 0.72 3.14 4.45 1.51 2.0

error 2 · 10−7 2 · 10−7 2 · 10−7 8 · 10−9 1 · 10−8

5.4 time Fail 1.69 11.47 17.89 5.75

error 2 · 10−7 4 · 10−7 1 · 10−6 2 · 10−8

5.5 time Fail Fail Fail 1.51 3

error no GNE no GNE

5.6(i) time 1.50 3.12 Fail 11.55 177

error 1 · 10−7 2 · 10−7 2 · 10−7 < 1 · 10−6 (5 GNEs)

5.6(ii) time 59.93 16.19 Fail 11.29 210

error 123.22 123.22 123.22 1 · 10−7

The “time" gives the consumed time (in seconds) for finding GNEs or KKT points, and the “error" measures
the quantity −δ of the computed solution

method may not detect the nonexistence of GNEs. For all other GNEPs, Algorithm 3.1
found at least one GNE.Moreover, for Examples 5.1(i), 5.2 and 5.6, Algorithm 3.1 found
more than one GNE, and the completeness of GNEs are guaranteed for Examples 5.1(i),
5.2 and 5.4.

5.2 GNEPs of Polynomials with Randomly Generated Coefficients

We present numerical results of Algorithm 3.1 on GNEPs defined by polynomials whose
coefficients are randomly generated. For the GNEP with N players, we assume that all
players have the same dimension for their strategy vectors, i.e., n1 = n2 = · · · = nN . The
i th player’s optimization problem is given by

{
min

xi ∈Rni
fi (xi , x−i )

s.t. −x	
i Ai xi + x	−i Bi xi + c	

i x ≥ di .
(5.1)

In the above, we have Ai = R	
i Ri with a randomly generated matrix Ri ∈ R

ni ×ni . Also,
Bi ∈ R

ni ×(n−ni ), ci ∈ R
n , di ∈ R are randomly generated real matrices or vectors. Under

this setting, the constraining function of (5.1) is a convex polynomial in xi , and the Xi (x−i )

is compact, for all x−i ∈ R
n−ni .

For the objective function fi , we consider two cases. First, we let

fi := x	
i �i xi + x	−i�i xi + c	

i x,

where �i = �	
i �i with a randomly generated matrix �i ∈ R

ni ×ni , and �i (resp., ci ) is a
randomly generated matrix (resp., vector) inR

ni ×(n−ni ) (resp., inR
n). In this case, the GNEP
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Table 2 Numerical results for random GNEPs

(a) Degree 2 convex GNEPs
N ni Mixed volume Rate of success Average time

2 2 25 100% 0.0575

2 3 49 100% 0.1721

2 4 81 100% 0.9539

3 2 125 100% 0.9118

3 3 343 100% 3.4150

(b) Degree d nonconvex GNEPs
d N ni Mixed volume Rate of success Average time (seconds)

2 2 2 25 100% 0.0563 + 1.1330

2 3 49 100% 0.1802 + 1.5098

2 4 81 100% 0.8819 + 1.9762

3 2 125 100% 0.8473 + 3.1890

3 3 343 100% 3.3804 + 6.9738

3 2 2 100 100% 0.1893 + 2.5667

2 3 484 100% 2.18 + 5.7500

2 4 2116 98% 21.483 + 17.3477

3 2 1000 97% 5.255 + 14.4360

4 2 2 289 100% 0.8270 +4.4256

2 3 2809 95% 24.533 + 21.9054

3 2 4913 95% 44.0899 + 40.6792

N and n are the number of players and the number of variables for each player respectively. The “rate of
success” indicates the percentage of GNEPs such that the homotopy continuation finds themixed volumemany
KKT points. The “average time” represents the average of the elapsed times for (KKT points computation)+
(GNE selection) in seconds. For convex problems, the elapsed time is only measured for the KKT points
computation

given by (5.1) is convex, and all KKT points are GNEs. The second case is for GNEPswithout
convexity settings. We consider a degree d dense polynomial with randomly generated real
coefficients, i.e.,

fi := ζ	[x]d ,

where ζ is a randomly generated real vector of the proper size. To choose real matrices,
vectors and coefficients randomly, we use the Matlab function unifrnd that generates
real numbers following the uniform distribution.

The numerical results are presented in Table 2. By Theorem 3.2, if the mixed volume
many complex KKT points are obtained, then Algorithm 3.1 can find all GNEs or detect
the nonexistence of GNEs. Since we consider random examples, the homotopy method
mostly finds all mixed volume many KKT points. As the problem sizes grow, there are some
cases where the homotopy method cannot find all mixed volume many KKT points, due to
numerical issues.
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6 Conclusions and Discussions

This paper studies a new approach for solving GNEPs of polynomials using the polyhedral
homotopy continuation and the Moment-SOS relaxations. We show that under some generic
assumptions, the mixed volume and the algebraic degree for the complex KKT system are
identical, and our method can find all GNEs or detect the nonexistence of GNEs. Some
numerical experiments are presented to show the effectiveness of our method.

For future work, it is interesting to find local GNEs, i.e., find x = (x1, . . . , xN ) such
that each xi is local minimizer for Fi (x−i ). Note that every local GNE satisfies the KKT
condition. However, it is difficult to select local GNEs from KKT points, especially when the
second-order sufficient optimality conditions (see [5]) are not satisfied. Moreover, when the
|KC| is strictly less than the mixed volume for (2.2), how do we know whether our method
finds all GNEs or detects nonexistence of GNEs or not? These questions are mostly open, to
the best of the authors’ knowledge.
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