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Abstract
There exist several discretization techniques for the numerical solution of partial differential
equations. In addition to classical finite difference, finite element and finite volume tech-
niques, a more recent approach employs radial basis functions to generate differentiation
stencils on unstructured point sets. This approach, abbreviated by RBF-FD (radial basis
function-finite difference), has gained in popularity since it enjoys several advantages: It is
(relatively) straightforward, does not require a mesh and generalizes easily to higher spa-
tial dimensions. However, its application is not quite as blackbox as it may appear at first
sight. The computed solution might suffer severely from various sources of errors if RBF-FD
parameters are not selected carefully. Through comprehensive numerical experiments, we
study the influence of several of these parameters on the condition numbers of intermediate
(local) weight matrices, on the condition number of the resulting (global) stiffness matrix
and ultimately on the approximation error of the computed discrete solution to the partial
differential equation. The parameters of investigation include the type of RBF (and its shape
or other parameters if applicable), the degree of polynomial augmentation, the discretization
stencil size, the underlying type of point set (structured/unstructured), and the total number
of (interior and boundary) points to discretize the PDE, here chosen as a three-dimensional
Poisson’s problemwith Dirichlet boundary conditions. Numerical tests on a sphere as well as
tests for the convection-diffusion equation are included in a supplement and demonstrate that
the results obtained for the Laplace problem on a cube generalize to wider problem classes.
The purpose of this paper is to provide a comprehensive survey on the various components
of the basic algorithms for RBF-FD discretization and steer away from potential pitfalls such
as computationally more expensive setups which not always lead to more accurate numerical
solutions. We guide toward a compatible selection of the multitude of RBF-FD parameters
in the basic version of RBF-FD. For many of its components we refer to the literature for
more advanced versions.
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1 Introduction

(Linear) partial differential equations can be solved numerically by a suitable discretization
followed by the solution of a linear system of equations. Among possible discretization
techniques, the radial basis function-finite difference (RBF-FD) method can be viewed as
a generalization of the finite difference (FD) method to unstructured point sets. The earlier
papers on RBF-FD include [72, 73]. Since then, it has gained in popularity and entered into
several applications including geosciences [25, 26], heat flow [44], the financial sector [45],
linear elasticity [66], fluid mechanics [11, 36], and neuronal dynamics [52].

As in classical finite difference methods, RBF-FD replaces (linear) differential operators
by differentiation stencils which encode formulas for weighted sums of function values at
neighboring points. The weights are chosen such that the formulas become exact for a set of
test functions which typically include radial as well as polynomial functions.

The discretization error in the numerical solution of a boundary value problem is affected
by several aspects of the solution process including the underlying point set (the number of
interior/boundary nodes and their distribution), the number (and distribution) of nodes in the
discretization stencil as well as the RBF (including its shape or other parameters) and the
degree of polynomial augmentation used to generate the stencil weights.

The application of RBF-FD discretization can lead to (auxiliary) highly ill-conditioned
linear systems of equations to be solved for theweights, resulting in instabilitywhich prevents
convergence of the numerical to the exact solution [24, 25, 39]. One possibility to address the
ill-conditioning lies in a scaling of the shape parameter which, however, leads to a stagnation
effect [1]. Another possibility lies in the use of hybrid kernels [46, 47], another in the tran-
sition to stable versions of RBFs, e. g. RBF-GA [27, 41, 42], RBF-RA [31, 80] or RBF-QR
[39]. These, however, typically incur increased computational costs. A computationally even
more expensive possibility to address the ill-conditioning is provided by (sufficiently high)
extended precision [23]. Further possibilities to address the ill-conditioning are spatially vari-
able shape parameters [8, 29, 56], Tikhonov regularization [69] or smoothing splines [20, 82].
More recent papers often suggest to use polyharmonic splines (PHS) in combinationwith high
order polynomials to generate the stencil weights. In [23, 25], the Gaussian (GA) and PHS
generating functions are studied and compared with respect to polynomial augmentation,
extended precision and stable algorithms. In [58], PHS with polynomial augmentation (for a
fixed stencil size and a numerically determined optimal degree of polynomial augmentation)
is compared to the stable RBF-GA method with a small shape parameter (i. e., representing
the limit case ε → 0). The advantages and disadvantages of the choice of parameters and
the performance of the PHS generating function with polynomial augmentation are further
studied in [2–4, 22, 35, 62].

In this paper, we will review some of these approaches with a focus on themost commonly
used and (to us) most promising ones. We will discuss the multitude of involved parameter
choices, illustrate their influence through numerical tests, and draw comparisons between the
different approaches. There already exist quite a few numerical studies for the performance
of RBF interpolation, approximation [7] and the solution of partial differential equations, but
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we address yet another angle that we have not found in the literature yet. Namely, the novel
contributions of this paper consist of

• A comprehensive view and comparison of the basic but often still competitive RBF-FD
methods from the literature, in particular comprehensive numerical tests to illustrate the
condition numbers of weight and stiffness matrices side-by-side with the discretization
errors for a broad set of parameter choices across the landscape of RBF-FD discretiza-
tion; the intention is to illustrate the ill-conditioning of weight matrices as a cause for
numerical instabilities and the scaling of the shape parameter which is introduced to
control this ill-conditioning as a cause for stagnation, show both the potential and limi-
tations of individual RBF classes and offer a comparison to alternative RBF-FD setups
(see Sects. 4.2–4.4);

• A new scaling law for the stencil size and the degree of polynomial augmentation for
PHS and HYB generating functions on Cartesian node distributions (see Sect. 4.3);

• A detailed (numerical) comparison of the hybrid (HYB) [46] and the PHS generating
functions for the case of polynomial augmentation (see Sect. 4.4);

• General recommendations for parameter setups in the basic version of RBF-FD dis-
cretizations (see Sect. 4.5).

While in this paper all linear systems are solved directly, our focus on condition numbers
of the resulting stiffness matrices will also be of interest for the subsequent development of
iterative solvers for the systems.

The remainder of this paper is organized as follows. In Sect. 2, we review RBFs, RBF-
FD approximation of linear differential operators and its application to the discretization of
linear partial differential equations. The details pertaining to the node generation, the stencil
formation and computation of the stencil weights, the choice of the RBF and the role of
polynomial augmentation are discussed in Sect. 3. Section 4 is devoted to comprehensive
numerical tests for a multitude of parameter choices in RBF-FD discretization applied to our
model problem, the three-dimensional Poisson’s equationwithDirichlet boundary conditions.
In order to illustrate that qualitative results also apply to a wider class of model problems,
we provide a supplement with numerical results on a different domain, i. e., a sphere, as well
as for a different partial differential equation, i. e., the convection-diffusion equation with a
recirculating convection. Finally, a conclusion and an outlook are presented in Sect. 5.

2 The RBF-FDMethod

In this section, we introduce radial basis functions as a tool for the approximation of linear
differential operators (Sect. 2.1), explain the discretization of a partial differential equation
with Dirichlet boundary conditions by means of the RBF-FD method (Sect. 2.2) and sum-
marize the various types of errors that may and typically do occur in the overall numerical
RBF-FD solution process (Sect. 2.3).

2.1 RBF and RBF-FD Approximation

Radial basis functions typically refer to a set of functions that are characterized by individual
centers but are otherwise identical and radial in shape, i. e., shifted copies of one another, the
function value at a point depending only on its distance to the center. Formally, they can be
defined as follows).
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Definition 2.1 For a spatial dimension d ∈ N, an open domain � ⊆ R
d , a shape parameter

ε > 0, a set of pairwise distinct nodes X := {x1, . . . , xn} ⊂ � with n ∈ N, and a generating
function φε : [0,∞) → R, we define radial basis functions (RBFs) centered at a node xi as

�ε,xi : � → R, �ε,xi (x) := φε (‖x − xi‖2) , i ∈ {1, . . . , n}.
Sometimes, the generating function φε is referred to as a kernel function or even as a radial
basis function itself. Ideally, the functions �ε,xi are linearly independent and hence form a
basis of their span so that the terminology basis function is justified. Furthermore, in order to
later be able to guarantee the existence of unique solutions of (discrete) interpolation problems
using radial basis functions, we will require the kernel function to be (conditionally) positive
definite, see Definition 2.2. Typical examples for such kernel functions are listed in Table 1.

We list several reasons for the popularity of RBFs for multivariate interpolation and
approximation [78]:

• RBFs can be used in any spatial dimension.
• RBFs are applicable to arbitrarily scattered data. In particular, no mesh is required.
• Interpolants/approximants have a simple representation and inherit the

smoothness of the radial basis functions.

RBFs can be used to approximate the action of a linear differential operator as follows.
Let L denote a linear differential operator, u : � → R be a sufficiently smooth function, and
let

X� := {x1, . . . , xNI } ⊂ �, X∂� := {xNI+1, . . . , xN } ⊂ ∂�

be sets of distinct interior and boundary nodes, resp., with NI , N ∈ N, NI ≤ N (see
Sect. 3.1 for more details about possibilities for the generation of these node sets). Such node
sets X := X� ∪ X∂� also occur in finite difference discretizations, but now the nodes may
be scattered and need not be connected by edges of a (structured tensor product) grid.

For a node x j ∈ X�, j ∈ {1, . . . , NI }, and stencil size n ≤ N , let X j ⊆ X be a
stencil associated to the (stencil) center x j (see Sect. 3.2 for more information on the stencil
computation). We use I j ⊆ {1, . . . , N } to denote the index set of nodes included in the
stencil X j , i. e.,

X j =
{
x
s j1

, . . . , x
s jn

}
= {

xi ∈ X : i ∈ I j
}

for I j :=
{
s j1 , . . . , s jn

}
. (2.1)

The goal is to determine weights {w j
1 , . . . , w

j
n } ⊂ R such that the differential operator

applied to the function u and evaluated at x j can be expressed (approximately) as a weighted
sum of function values at the nodes in the stencil X j , i. e.,

Lu(x j ) := Lu(x)|x=x j ≈
n∑

i=1

w
j
i u

(
x
s ji

)
. (2.2)

The stencil weights are determined such that the weighted sum yields the correct result
for the interpolant w. r. t. the stencil nodes, i. e., equality is enforced for (basis) functions
k1, . . . , kn : � → R. If these are cardinal basis functions w. r. t. the stencil nodes in X j ,
i. e., if there holds k�(xs ji

) = δ�i with the Kronecker delta, then pu : � → R, pu(x) =∑n
i=1 u(x

s ji
)ki (x) is the interpolant of u, and the application of a differential operator L at
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some xc ∈ � is given by

Lpu(xc) =
n∑

i=1

u
(
x
s ji

)
Lki (xc) =:

n∑
i=1

u
(
x
s ji

)
wi (2.3)

for weights defined by wi := Lki (xc), i ∈ {1 . . . , n}.
We will next illustrate the computation of these weights for typical RBF spaces with (or

without) polynomial augmentation. Let {�ε,xi | i ∈ I j } denote the n radial basis functions
associated with the nodes of the stencil X j , and let

	� := span

{
p : � → R, p(x) =

d∏
j=1

x
k j
j | k j ∈ N0,

d∑
j=1

k j ≤ �

}
(2.4)

denote the space of d-variate polynomials of degree at most � ∈ N0. There holds

dim	� =
(

� + d

d

)
=: M, (2.5)

and we denote a basis of	� by {p1, . . . , pM }. The n-dimensional constrained function space
of RBFs associated with the stencil X j (2.1) and augmented by polynomials up to degree �

is defined by

R j :=
{
s : � → R, s(x) =

n∑
i=1

λ
j
i �ε,x

s
j
i

(x) +
M∑
k=1

λ̃
j
k pk(x) | λ

j
i , λ̃

j
k ∈ R

such that
n∑

i=1

λ
j
i pk(xs ji

) = 0 for all k ∈ {1, . . . , M}
}
.

It is straightforward that (the weights of) an interpolant s ∈ R j of a function f : � → R can
be computed as the solution of the linear system

[
A j Pj

PT
j 0

] [
λ j

λ̃ j

]
=

[
f j

0M

]

with coefficient and right hand side vectors

λ j :=

⎡
⎢⎢⎣

λ
j
1
...

λ
j
n

⎤
⎥⎥⎦ , λ̃ j :=

⎡
⎢⎢⎣

λ̃
j
1
...

λ̃
j
M

⎤
⎥⎥⎦ , f j :=

⎡
⎢⎢⎢⎣

f
(
x
s j1

)

...

f
(
x
s jn

)

⎤
⎥⎥⎥⎦ , 0M :=

⎡
⎢⎣
0
...

0

⎤
⎥⎦ ∈ R

M

and system matrix

Ã j :=
[
A j Pj

PT
j 0

]
:=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ε,x
s
j
1

(x
s j1

) · · · �ε,x
s
j
n
(x

s j1
) p1(xs j1

) · · · pM (x
s j1

)

...
. . .

...
...

. . .
...

�ε,x
s
j
1

(x
s jn

) · · · �ε,x
s
j
n
(x

s jn
) p1(xs jn

) · · · pM (x
s jn

)

p1(xs j1
) · · · p1(xs jn

) 0 · · · 0

...
. . .

...
...

. . .
...

pM (x
s j1

) · · · pM (x
s jn

) 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.6)
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The interpolation problem has a unique solution if this matrix Ã j is regular. This can be
guaranteed if the kernel function and node set X satisfy the properties given in Definitions 2.2
and 2.3, resp.

Definition 2.2 The generating function φ : [0,∞) → R is called conditionally positive
definite of order � ∈ N if

N∑
j=1

N∑
k=1

λ jλkφ(‖x j − xk‖2) > 0 (2.7)

for any (finite) set X = {x1, . . . , xN } ⊂ R
n of distinct nodes and coefficients λ j , j =

1, . . . , N , λ j �= 0 for at least one j ∈ {1, . . . , N }, satisfying
N∑
j=1

λ j p(x j ) = 0

for all polynomials p ∈ 	�−1.
The generating function φ is called positive definite if (2.7) holds without any restrictions
on λ j imposed through polynomials.

Definition 2.3 A(finite) set X = {x1, . . . , xN } ⊂ R
n of distinct nodes is called	�-unisolvent

if there is no nonzero polynomial in 	� that vanishes on all nodes in X , i. e., if

p(x j ) = 0 ∀ j ∈ {1, . . . , N } 
⇒ p = 0.

More details concerning (conditionally) positive definite functions are included in most
textbooks on radial basis functions, see e. g. [9, 77]. In terms of matrices, 	�-unisolvency
guarantees that the submatrix Pj in (2.6) has full column rank, and if in addition the generating
function is conditionally positive definite (of order � + 1 or less), then Ã j is regular.

The cardinal functions of the space R j may now be represented by

ki (x) =
[
�ε,x

s
j
1

(x) · · · �ε,x
s
j
n
(x) p1(x) · · · pM (x)

]
Ã j

−1
[
ei
0M

]

where ei ∈ R
n denotes the i’th unit vector. Application of the differential operator and

evaluation at the stencil center xc := x j yields

w
j
i

(2.3)= Lki (x j )

= [L�ε,x
s
j
1

(x j ) · · · L�ε,x
s
j
n
(x j )

︸ ︷︷ ︸
=:(L8 j)

T

Lp1(x j ) · · · LpM (x j )︸ ︷︷ ︸
=:(Lp j )

T

]
Ã j

−1
[
ei
0M

]

for a single weight and

[
w

j
1 . . . w

j
n

]
=

[(L8 j
)T (Lp j

)T ]
Ã j

−1
[

In
0M×n

]

for all weightswith identitymatrix In ∈ R
n×n and zeromatrix 0M×n ∈ R

M×n . Augmentation
of the matrix on the right to an (n + M) × (n + M) identity matrix and introduction of
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dummy variables w̃
j
i (which may later be discarded since they originated from the arbitrary

augmentation to the identity matrix) leads to the linear system of equations

[
A j Pj

PT
j 0

]

︸ ︷︷ ︸
= Ã j (2.6)

[
w j

w̃ j

]
=

[
L �� j

Lp j

]
with w j :=

⎡
⎢⎢⎣

w
j
1
...

w
j
n

⎤
⎥⎥⎦ , w̃ j :=

⎡
⎢⎢⎣

w̃
j
1
...

w̃
j
M

⎤
⎥⎥⎦ (2.8)

for the desired stencil weights w
j
i in the approximation (2.2) [25]. Without polynomial

augmentation, the saddle point system (2.8) simplifies to A jw
j = L �� j . However, there

exist several reasons to add polynomials in RBF-FD interpolation and approximation [23,
25], including the following.

• For some RBFs, the matrix A j in (2.8) is guaranteed to be positive definite. For other
RBFs, it can be shown that A j is positive definite on the subspace that satisfies the
constraints for an appropriately chosen polynomial degree � (this is e. g. the case for
conditionally positive definite generating functions and a unisolvent stencil).

• Exact/accurate interpolation of low order polynomials (in particular constants) instead of
an oscillatory representation which is often obtained without polynomial augmentation.

• The accuracy of the approximation in (2.2) may be significantly improved.
• Stagnation errors may be reduced.

2.2 RBF-FD for Partial Differential Equations

In the previous subsection, we derived an approximation of the application of a linear differ-
ential operator to a function and its evaluation at a fixed node by a sum of weighted function
values at stencil nodes. We next extend this approach to the discretization of a linear partial
differential equation

Lu(x) = f (x) ∀x ∈ �, (2.9a)

u(x) = g(x) ∀x ∈ ∂�, (2.9b)

where f : � → R is a sufficiently smooth function and g : ∂� → R is a function to specify
the Dirichlet boundary conditions.

For each interior node x j ∈ X�, j ∈ {1, . . . , NI }, of the point set X = X� ∪ X∂� ⊂ �,

we compute a stencil X j ⊂ X of size n (2.1) and stencil weights {w j
1 , . . . , w

j
n } by solving

(2.8). The stencil weights are used to compute approximations ui to the solution u(xi ) of
(2.9a), (2.9b) at all interior nodes xi ∈ X�, i. e., ui ≈ u(xi ) for all xi ∈ X�, i ∈ {1, . . . , NI }
by enforcing equality in (2.2), i. e.

n∑
i=1

w
j
i us ji

= f (x j ), j ∈ {1, . . . , NI }. (2.10)
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Given the Dirichlet boundary data from (2.9b), we set u
s ji

:= g(x
s ji

) for all x
s ji

∈ ∂�,

substitute this boundary information into (2.10) and obtain
∑

i∈{1,...,n}
s.t. x

s
j
i
∈�

w
j
i us ji

= f (x j ) −
∑

i∈{1,...,n}
s.t. x

s
j
i
∈∂�

w
j
i g(xs ji

)

︸ ︷︷ ︸
=: f̃ j

, j ∈ {1, . . . , NI }.

Hence, we define the right hand side vector f̃ := ( f̃1, . . . , f̃NI )
T ∈ R

NI and the global
stiffness matrix B ∈ R

NI×NI , containing row-wise the weights of the interior nodes of the
j’th stencil,

Bj,� :=

⎧⎪⎨
⎪⎩

w
j
i : ∃i ∈ {1, . . . , n} such that � = s ji ∈ I j ,

i. e., the interior node x� = x
s ji

is in the stencil X j ,

0 : else,
(2.11)

for all j, � ∈ {1, . . . , NI }. The solution u ∈ R
NI of the linear system of equations

Bu = f̃ (2.12)

yields the RBF-FD approximation u j ≈ u(x j ) to the solution of the partial differential
equation (2.9a), (2.9b) at the interior nodes x j for j ∈ {1, . . . , NI }.

2.3 Sources for Errors in the RBF-FDMethod

There are several sources that contribute to (numerical) approximation errors |u j −
u(x j )|, j ∈ {1, . . . , NI } in the RBF-FD method where u ∈ R

NI denotes the computed
solution of (2.12). First of all, there occurs a discretization error when approximating the
differential operator by a weighted sum of function values at the stencil nodes (2.2). The
computation of the weights requires the solution of (small, possibly ill-conditioned) linear
systems of equations subject to floating point arithmetic [33]. The subsequent computation of
the RBF-FD approximate solution u requires the solution of another (now large and sparse)
linear system of equations whose matrix coefficients consist of those weights, i. e., solutions
of ill-conditioned systems. Errors in u can hence be attributed to errors in the stiffness matrix
B as well as errors in the right hand side f̃ in (2.12) which might result in amplified relative
errors in u if the stiffness matrix B is ill-conditioned.

To illustrate the propagation of errors, we recall the well-known result from numerical
linear algebra bounding the relative error between the solution x̂ of a perturbed linear system
of equations Âx̂ = b̂ and the solution x of Ax = b with respect to the relative errors in the
matrix entries, εA, and right hand side, εb,

‖x̂ − x‖
‖x‖ ≤ K(A)

1 − εA · K(A)
(εA + εb),

if εA · κ(A) < 1. If we assume for the weight matrices and right hand sides in (2.8) relative
errors of order εA j , εb j ∈ O(10−16) (e. g. rounding errors when computing in double preci-
sion accuracy), then the relative error in the computed weights is bounded by κ(A j ) · 10−16.
Hence, we might lose up to �log10 κ(A j )� digits of accuracy in the weights which in turn
define via (2.11) the matrix entries of the stiffness matrix B in (2.12), leading to a possi-
bly large relative error εB in these matrix entries. Hence, both the condition numbers of the
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weight matrices Ã j in (2.8) and the stiffnessmatrix B in (2.12) give insight into the numerical
approximation errors observed in the RBF-FD solution of a partial differential equation.

3 Node and Stencil Generation, Choice of RBFs and Polynomial
Augmentation

In this section, we discuss some methods for the node generation (Sect. 3.1), the stencil for-
mation (Sect. 3.2), the choice of the RBF (Sect. 3.3) and the role of polynomial augmentation
in RBF-FD (Sect. 3.4).

3.1 Generation of Node Distributions

The underlying application may already provide the set of (scattered) nodes. However, we
may have the luxury to generate our own node set for a given domain and its boundary which
is typically the case for the numerical solution of partial differential equations. We discuss
several options to do so and refer to the literature for further sophisticated methods that may
be necessary for more complex applications.

The different ways to generate a node distribution can be roughly classified as
regular/structured (e. g., Cartesian, Chebyshev or hexagonal) [46] or irregular/unstruct-
ured/scattered (e. g., coordinates generated by some type of randomnumber generator). There
are also variants that are neither structured nor (completely) unstructured such as node sets
generated by a sequence of quasi-random numbers, or initially regular node distributions that
have been subsequently perturbed [55]. Sophisticated algorithms to create node distributions
with variable node density or strategies for local modification and refinement can be found
in [19, 25, 48, 51, 63, 67, 75], and an overview of generation methods for node distributions,
focusing on meshless finite difference methods including RBF-FD, is given in [70].

Two important quantities which are relevant for the RBF approximation error are the fill
distance and separation distance of a point set.

Definition 3.1 Given a node set X in a domain �, the fill distance hX ,� (radius of largest
circle not intersectingwith X ) and the separation distance qX (shortest distance of two disjoint
nodes) are defined by

hX ,� := sup
x∈�

min
x j∈X

‖x − x j‖2 and qX := 1

2
min

xi ,x j∈X
j �=i

‖x j − xi‖2, resp.

In general, the (global) RBF approximation error depends on the fill distance (the smaller
the better) as well as the separation distance (the larger the better for stability reasons) of the
node set [67, 74, 78], hence these two aspects should be kept in mind for its construction.

We will use the following four prototypes for node distributions in our numerical tests in
Sect. 4: regular Cartesian node distributions, a recently introduced node placing algorithm
based on Poisson disk samplingwhich rejects nodes that are too close to each other (according
to a user-definedminimal spacing) abbreviated as PNP [67] (created by [65]),Halton node dis-
tributions [21, 32] (created by [10]) and irregular random node distributions (created by [53]).

The construction of these four types of node sets in the interior of our model domain
(0, 1)d is straightforward. The extension of the Cartesian node set to the boundary ∂� is
also straighforward whereas different variants exist in the case of PNP, Halton or random
nodes, both with respect to the number and location of boundary nodes. One could e. g. use
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Fig. 1 Example node distributions and stencils for � = (0, 1)2, N = 100 (total number of nodes), NI = 64
(number of interior nodes) and n = 5 (stencil size)

PNP/Halton/random nodes in a lower spatial dimension. We will use the same number of
boundary nodes (as determined by the Cartesian grid) for all four types of node sets. The
PNP and Halton interior node sets are complemented with boundary nodes of the Cartesian
grid whereas the random interior node set is complemented with d − 1 dimensional random
boundary nodes.

Figure 1 illustrates these four types of node distributions for d = 2 spatial dimensions
(even though all our numerical experiments will be performed for d = 3 spatial dimensions).

3.2 Generation of Stencils

There are several aspects to take into consideration when selecting the number and location
of nodes in a stencil. If a partial differential equation is to be solved, then the stencil will
be used to approximate partial/directional derivatives or more general differential operators.
Since these describe local characteristics of a function, it is natural to include nodes that
are close to the stencil center, e. g. the n nearest neighbors or all neighbors within a certain
distance to the center.

Finite difference stencils often have a symmetric structure, i. e., node xi belongs to stencil
X j if and only if node x j belongs to stencil Xi (possibly evenwith identicalweightsw

j
i = wi

j ,
e. g. for self-adjoint differential operators). This symmetry property typically no longer holds
if upwinding is used for convection-type operators [64] or if a node lies near the boundary. In
this case, one may use an extrapolation approach, introducing new nodes outside the closure
�, or asymmetric stencils [76]. For scattered node sets, we cannot expect any symmetry for
RBF-FD stencils.

In the finite differencemethod, the stencil size n is typically fixed for all nodes. In the RBF-
FDmethod, it is easily possible (and sometimes advantageous) to utilize different stencil sizes
n j for different stencils X j , e. g., by selecting a fixed radius and choosing stencils that consist
of all nodes within this radius with respect to the stencil center [46]. Further propositions
and algorithms to form stencils can be found in [14, 15, 51, 60] but are not pursued in more
detail here.

Figure 1 illustrates nearest neighbor stencils (marked in red) for stencil centers (marked
in black) for the four types of node distributions. The remaining nodes are marked green if
they lie on the boundary or blue if they lie in the interior.

If stencil nodes are very close to each other, the small separation distance often results
in high condition numbers of the weight matrices. The criteria for good node distributions
for (global) RBF approximations as mentioned in Sect. 3.1 carry over to the local RBF-FD
approach, i. e., a good stencil X j should consist of a small fill distance (w. r. t. a suitable
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domain � j containing x j ) and a large separation distance (see Definition 3.1) but does not
necessarily have to be structured.

In the case of a structured grid, the weights and resulting truncation errors of RBF-FDmay
be computed analytically [5, 6]. Stencils may be optimized with respect to these truncation
errors, e. g. for the discretization of the Laplace operator on Cartesian (tensor product) nodes,
we observed that so-called sparse stencils along the coordinate axes can be advantageous
compared to nearest neighbor stencils. However, these advantages typically disappear (or
are hard to exploit) on unstructured node sets. Stencils on structured grids more likely run
into problems with unisolvency (Definition 2.3) than stencils on unstructured grids. A typical
example of a node set that is not 	2-unisolvent in R

2 consists of any three nodes that are
collinear, i. e., lying on a line. In [77, Theorem 2.7], a criterion is provided that guarantees for
certain (subsets of Cartesian) node sets in R2 to be 	�-unisolvent, a generalization to higher
spatial dimensions along with additional information on polynomial interpolation in several
variables is given in [30, 43]. Here we will pursue only the nearest neighbor approach (with a
fixed stencil size for all nodes). For more advanced stencil selection algorithms (which may
lead to different conclusions for the choice of RBF-FD parameters) and a machine learning
approach to classify the quality of stencils we refer to [13, 14, 17, 51, 57].

If not only the nodes but an underlying, possibly unstructured mesh is available, then a
nearest neighbor search could be performed on the graphwith the Euclidean distance between
nodes being replaced by the shortest path in the graph.

In the case of an unstructured node distribution without a mesh, nearest neighbor stencils
may be determined efficiently using a kd-tree [81]. However, especially in the case of ran-
domly distributed nodes, problems may occur if, as illustrated in Fig. 1 (right), the nearest
neighbors are located in a somewhat imbalanced way around the stencil center, possibly with
relatively large fill distance and small separation distance. Lop-sided stencils may also occur
on structured grids for stencil centers close to the boundary ∂�.

3.3 Choice of RBF

Table 1 shows some of the most commonly used generating functions which can be roughly
classified as

• Leading to infinitely smooth RBFs and depending on a shape parameter (e. g., GA, GMQ,
MQ, IMQ, IQ),

• Leading to not infinitely smooth RBFs and (possibly) independent of a shape parameter
(e. g., PHS(k)),

• And a hybridization of both (e. g., HYB(γ ) = GA + γ PHS(2)) [46, 47].

Additional generating functions can be found in [9, 25], including compactly supported
generating functions which lead to a sparse matrix A j (2.8).

For the first class of generating functions, a major challenge in interpolation and approx-
imation is the selection of a suitable shape parameter ε. Choosing it too large results in poor
approximation accuracies since the RBFs either form peaks (GA, IMQ, IQ) or approximate
piecewise polynomials (GMQ(ν) with ν > 0) [18]. On the other side, as the shape param-
eter ε goes to zero, the RBFs converge to a constant function and the matrix A j in (2.8)
becomes increasingly ill-conditioned, rendering a solution in finite floating point arithmetic
numerically infeasible. However, the underlying interpolants/approximants may still exist
in the limit and be determined analytically in which case they are related to multivariate
polynomials [28, 59] (which also explains why polynomial augmentation is not needed for
small shape parameters [39]). E. g., for d = 1, the Lagrange minimal-degree interpolating
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Table 1 Commonly used generating functions

Name Abbrev. φε(r)

Gaussian (HYB(0)) GA e−(εr)2

Generalized multiquadric GMQ(ν) (1 + (εr)2)ν/2, ν ∈ Z \ 2N0

Multiquadric (GMQ(1)) MQ (1 + (εr)2)1/2

Inverse multiquadric (GMQ(−1)) IMQ (1 + (εr)2)−1/2

Inverse quadratic (GMQ(−2)) IQ (1 + (εr)2)−1

Polyharmonic spline PHS(k) r2k−1 (or r2k log(r)), k ∈ N

Hybrid (GA + γ PHS(2)) HYB(γ ) e−(εr)2 + γ r3, γ ≥ 0 (or

αe−(εr)2 + βr3, α, β ∈ [0, 1])

polynomial can be obtained for the underlying interpolant/approximant in the limit ε → 0.
Hence, the FD method can be seen as the limit ε → 0 in the RBF-FD method [5, 6, 18]. On
the other hand, this explains the occurrence of the Runge phenomenon (i. e., large boundary
oscillations in interpolations with higher degree polynomials) in (global) RBF interpolation
with small shape parameters. In the context of RBFs, the Runge phenomenon can also be
observed if the separation distance becomes very small [29].

For each node set X and stencil X j , there typically exists a shape parameter ε j > 0 that
is optimal for the numerical computation of the corresponding stencil weights (2.8). Such
an ε j depends on several factors such as the function to be approximated, the generating
function, the stencil nodes and even themachine precision [38].Hence, using spatially varying
(i. e., stencil dependent) shape parameters ε j can be (theoretically) advantageous [8, 25, 29],
especially for functions with gradient discontinuities [56], but it is not pursued any further
here since it adds even more parameters/choices into the setting of RBF-FD. On Cartesian
grids, optimal shape parameters can be derived analytically [5, 6].

Another way to address the problem of ill-conditioning is using the hybrid kernel HYB(γ )

[46, 47]. The idea is to achieve numerical stability (i. e., lower condition numbers of the
weight and stiffness matrices as well as no large spurious eigenvalues of the stiffness matrix
for smaller shape parameters) in a direct approach, i. e., with lower computational costs
than a stable RBF algorithm. HYB(γ ) typically leads to smaller errors and larger condition
numbers by decreasing γ and vice versa (i. e., a too small as well as a too large γ value can
be problematic in terms of stability or accuracy, respectively). Hence, often

γ ∈ [10−6, 10−3] (3.1)

is utilized [46, 52].
Yet another (computationallymore expensive) possibility to address the ill-conditioning is

to switch to stable versions ofRBFs, e. g., RBF-GA [27, 41, 42], RBF-RA [31, 80] orRBF-QR
[39]. These stable algorithms typically increase the computational costs by at least a factor of
10 [61]. Using (sufficiently high) extended precision is another approach, but in general not
advisable for large scale problems since it is computationally even more expensive [23, 39].

3.4 Polynomial Augmentation in RBF-FD

Polynomial interpolation can be viewed as a special case of RBF-FD with polynomial aug-
mentation in which the dimension of the polynomial space M equals the stencil size n, but
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no radial basis functions are used, i. e., the stencil weights are computed as the solution of
PT
j w j = Lp j (2.8). As mentioned in Sect. 2.1, polynomial interpolation can lead to a sin-

gular Pj if min{d, n} > 1. If polynomial augmentation is used in RBF-FD, necessary (but
not sufficient) criteria for the weight matrix Ã j in (2.8) to be regular are given by n ≥ M
and rank(Pj ) = M (full column rank).

Often, for a numerically stable computation, a lower boundnmin = nmin(�) is suggested for
the stencil size n that depends on the degree � of polynomial augmentation (or, equivalently,
the dimensionM of the respective polynomial space (2.4)). In [23], the lower boundnmin = M
is suggested for RBF-FD interpolation and approximation. For the solution of elliptic and
hyperbolic PDEs, nmin ≈ 2M has been proposed [4, 22, 35]. A slightly different bound,
nmin ≈ 2M + �ln(2M)� is proposed in [62] for the advection-diffusion equation. In [22,
58], it is observed that unstructured node distributions allow for smaller nmin than Cartesian
node distributions with an increasing difference as � increases (e. g., nmin ≈ 2M is too small
for Cartesian nodes with � > 4 whereas unstructured nodes can achieve lowest errors for
n ≈ M + �ln(2M)� [58]. In general, the optimal relation between polynomial degree � and
stencil size n depends on the underlying problem [62].

There are different effects of polynomial augmentation in the RBF-FD method which
depend on the type of generating function that they complement. Polynomial augmentation
(with close too maximal permissible degree �) is studied in [23, 25] for RBF-FD interpola-
tion and approximation for the GA generating function (with a shape parameter ε, leading
to infinitely smooth RBFs) and the PHS(k) generating function (without a shape parameter,
leading to not infinitely smooth RBFs). In both cases, stagnation errors disappear and higher
accuracies (for the same convergence order) compared to polynomial least squares approx-
imation with the same � are observed (for sufficiently large �). The convergence order for
� ≥ D (3.2) is then

O
(
N (D−�−1)/d

)
, D := order of the linear differential operator L (3.2)

if the approximated function is sufficiently smooth [63, 74] (i. e., D = 0 for function interpo-
lation/approximation and D = 2 for the Laplace operatorL = � or the convection-diffusion
operator L = �+bT∇) and (approximate) internodal spacing N−1/d [2, 23, 39]. Hence, the
convergence order depends on � (which is connected to n as a larger � requires a larger n).
While n, ε and k do not enter into the above order of convergence, varying these parameters
can still lead to significant changes in the accuracy [23], i. e., affect the constants hidden in
the O notation.

ForGA, the accuracy can be significantly increased by polynomial augmentation for shape
parameters larger than the optimal one [27] (while possibly increasing the condition number
of Ã j in (2.8)) and the optimal shape parameter is (similar to the case without polynomial
augmentation) mostly invariant with respect to refinement (i. e., the number of nodes N ).

For PHS (or other only conditionally positive definite RBFs), polynomial augmentation
is typically needed for convergence [35, 46]. The condition number of the matrix Ã j in (2.8)
may increase (also for PHS) when increasing the polynomial degree �. Furthermore, when
increasing the stencil size n, the stencil weights become larger (by absolute value) near the
stencil center and smaller elsewhere, and if the stencil size n is large enough, then there is
no Runge phenomenon [2, 3].

Infinitely smooth RBFs have the potential for spectral accuracy in global RBF approaches
[29], but this benefit is typically sacrificed in the local RBF-FD approach [5] since the sten-
cil size n is significantly smaller than the number of nodes N . Additionally, GA and PHS
with polynomial augmentation (and n only slightly larger than M) can achieve (especially

123



8 Page 14 of 37 Journal of Scientific Computing (2023) 95 :8

for unstructured nodes since they allow for smaller nmin than Cartesian nodes [58]) com-
parable accuracies with lower computational costs than stable RBF variants. Using the GA
generating function (with a stable algorithm or close to maximal permissible degree of poly-
nomial augmentation) leads to the challenge of choosing an appropriate shape parameter,
and using extended precision is computationally too expensive for RBF-FD approximation.
Hence, the PHS generating function with close to maximal permissible degree of polynomial
augmentation is recommended (taking into consideration the approximation accuracy and
computational cost) [23, 25].

Many results for RBF-FD approximation using PHS with polynomial augmentation carry
over to the solution of elliptic and hyperbolic PDEs, i. e., stagnation errors disappear, the
convergence order is again given by (3.2), hence depends on the polynomial degree � (which
requires a minimal stencil size nmin). Increasing the PHS degree determined by k and stencil
size n may lead to slight improvements of accuracy. The stencil weights become larger (by
absolute value) near the stencil center and smaller elsewhere by increasing the stencil size n.
If the stencil size n is large enough, then there is no Runge phenomenon [4, 22].

For the Poisson problem (involving a differential operator L of order D = 2 (3.2)), a con-
vergence order ofO(N−�/d) is numerically observed for � ∈ {2, 4, 6, 8} (and no convergence
for � = 0) [35], i. e., slightly higher than the (theoretical) convergence order for RBF-FD
interpolation and approximation (3.2). Additionally, it is observed in [4, 22] that using PHS
in the form r2k−1 or r2k log(r) leads to similar results (thus the form r2k−1 is preferred),
quasi-uniform node distributions lead to similar (often even higher) accuracies compared to
Cartesian node distributions, and if the stencil size n is sufficiently large, then no ghost nodes
(i. e., additional nodes outside the domain � to increase stability and accuracy by avoiding
lop-sided stencils near the boundary ∂�) are needed. It has been observed in [74] that ghost
nodes can increase stability and accuracy especially in the presence of Neumann boundary
conditions. Moreover, whereas a larger PHS degree can lead to a higher accuracy (accompa-
nied by the potential for more numerical instabilities such as larger spurious eigenvalues of
the stiffness matrix and larger absolute values of the stencil weights), a PHS degree that is
chosen too small can also be problematic. Hence, given the degree of augmentation � ∈ N,
in [62] it is suggested to select k in the PHS r2k−1 according to

k =
{

�+1
2 , if � is odd,

�
2 , if � is even.

(3.3)

While the optimal choice for the relation between PHS exponent k and polynomial degree �

could depend on the type of the node distribution, the relation

k ≤ kmax := � + 1 (3.4)

has to be satisfied to prove unisolvency in this setting [62]. Furthermore, there has to hold

D ≤ k (3.5)

for the order D of the differential operator (3.2) to ensure that the right hand sideL�ε,x
s
j
i

(x j )

in (2.8) is defined for all stencil nodes x
s ji
, in particular for the center s ji = j . Since (3.3)

contradicts (3.5) for the case � = 2, we modify (3.3) and define (with D as in (3.2))

kmin :=
{
max{D, �+1

2 }, if � is odd,

max{D, �
2 }, if � is even

(3.6)
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and propose to select k ∈ [kmin, kmax] depending on the model problem and number of points
N (see also (4.1) for our choice in the numerical experiments).

A different idea lies in the use of variable degrees of polynomial augmentation � j and
variable sizes n j for each stencil X j [49]. While it can reduce the computational costs and
increase the accuracy, it adds even more parameters/choices into the setup of RBF-FD, hence
this approach is not pursued any further here.

4 Numerical Results

This section contains numerical tests for the RBF-FD discretization of Poisson’s equation
in d = 3 spatial dimensions on a unit cube, i. e., in (2.9a), (2.9b), we set � = (0, 1)3 and
L = �. We refer to the supplement for numerical tests for further model problems. We
choose the right hand side functions f , g such that the analytical solution u is given by the
three-dimensional version of Franke’s function F : R3 → R [40, 54] with

F(x) = 0.75 exp
[− (

(9x1 − 2)2 + (9x2 − 2)2 + (9x3 − 2)2
)
/4

]

+ 0.75 exp
[−(9x1 + 1)2/49 − (9x2 + 1)/10 − (9x3 + 1)/10

]

+ 0.5 exp
[− (

(9x1 − 7)2 + (9x2 − 3)2 + (9x3 − 5)2
)
/4

]

− 0.2 exp
[−(9x1 − 4)2 − (9x2 − 7)2 − (9x3 − 5)2

]
.

Wewill study the influence of the following parameters on the performance of theRBF-FD
method to illustrate causes for potential pitfalls and hopefully steer away from them:

• The type of the node distribution (i. e., Cartesian, PNP, Halton or random);
• The stencil size n;
• The total number of nodes N ;
• The generating function φε and its intrinsic parameters (shape parameter ε, the parameter

γ in HYB(γ ), the PHS degree specified by k);
• the degree of polynomial augmentation �.

We will illustrate the resulting approximation errors of the discrete approximate solution
side-by-side with the condition numbers of the involved weight and stiffness matrices. To
this end, all of the following Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 and 14 consist of three
columns of plots, showing

• The errors between the exact and computed solution of the PDE (left column),
• The (maximum of the) condition numbers of the weight matrices (2.8) (middle column),
• The condition numbers of the stiffness matrices (2.11), (2.12) (right column).

In Sect. 4.1, we present general information about the setting of the numerical tests such
as node and stencil generation, solution of the arising linear systems of equations and the
computation of the approximation error. In Sect. 4.2, we focus on the pitfalls for infinitely
smooth (GA) RBFs related to the choice of the shape parameter. We concentrate in Sect. 4.3
on the (shape parameter independent) PHS generating function. In Sect. 4.4, we utilize the
HYB generating function in the same setups as in Sect. 4.2 and compare HYB to infinitely
smooth RBFs as well as to PHS. The conclusions are summarized in Sect. 4.5, along with
recommendations for the various components of RBF-FD discretization.
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4.1 General Information

In order to compare results for the different types of node distributions (see Sect. 3.1), we
generate PNP, Halton and random node distributions with the same number of interior and
boundary nodes as in a typical Cartesian grid, i. e., NI = νd interior nodes and N = (ν +2)d

total nodes for some ν ∈ N. While the construction of Halton or random nodes with a
prescribed number NI of interior nodes is straighforward, it is slightly more complicated for
PNP nodes since their construction is based on a local distance function h : � → (0,∞) that
specifies theminimal nodal spacing at point x ∈ �viah(x).Aconstant nodal spacing function
h ≡ (ν+1)−1 (i. e., the same spacing as for theCartesian nodes) leads to fewer nodes than NI .
Hence, we use a scaled version h ≡ α(ν + 1)−1 with α ∈ [0.9256, 0.9284] experimentally
determined such that exactly NI nodes are generated. (The tests with h ≡ (ν + 1)−1 lead to
qualitatively comparable observations as h ≡ α(ν + 1)−1 with slightly increased errors and
decreased condition numbers due to the typically larger fill and separation distances).

When showing results on Cartesian grids, for comparison we also include test results (for
the error (4.2) and the condition number of the stiffness matrix) obtained for finite difference
discretizations with a standard central 7-point stencil (i. e., second-order approximation) as
well as for a compact/Hermite 19-point stencil (i. e., the 19 stencil nodes consist of the
3 × 3 × 3 nodes around the center without the 8 corner nodes, and not only function values
but also derivatives are included in the approximation in (2.2), leading to a fourth-order
approximation, see [68, 79]).

For the computation of stencils (see Sect. 3.2), we use a library [50] that utilizes a kd-tree
for the nearest neighbor search with respect to the norm ‖ · ‖μ for some μ ∈ N. In our
experiments, we use the Euclidean norm by setting μ = 2.

We focus on the generating functions in Table 1, i. e., we consider the generating functions
GA, MQ, IMQ, IQ, HYB(γ ) and PHS(k) of the form r2k−1 with k ≥ 2 determined by

k =
{

� + 1, if � ≤ 3,

�, if � ≥ 4
(4.1)

for polynomial augmentation � ≥ 2 (which is required for convergence, see (3.2)).
Even though some generating functions (e. g., GA, IMQ, IQ [25]) guarantee the resulting

matrices A j in (2.8) to be symmetric positive definite, they might be highly ill-conditioned
so that a direct solver based on a Cholesky factorization may break down in practice. Hence,
for solving linear systems, we will always use direct solvers based on LU factorizations with
pivoting. For stencils that are not unisolvent, the matrix block Pj in (2.8) may no longer
have full column rank, hence Ã j is no longer regular but (2.8) may still have (no longer
unique) solutions. These can be computed by a nullspace approach [12, 15] which may also
be beneficial in the unisolvent case. For the computation of (lower bounds of) condition
numbers κ1 of the arising matrices, we use the LAPACK [37] function dgecon with the 1-
norm (we also computed κ∞ which led to qualitatively similar observations for the stiffness
matrix and made no difference for the symmetric weight matrices, hence these results are
not reported here).

In order to measure the approximation accuracy of the RBF-FD computed discrete
solution, we determine the relative 2-norm error between the exact solution of the PDE
(2.9a),(2.9a) evaluated at the nodes, us := (

u(x j )
)NI
j=1, and the computed solution u obtained

from solving the system in (2.12),

e2 := ‖us − u‖2
‖us‖2 . (4.2)
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Fig. 2 Pointwise relative error |(us (·) − u(·))/us (·)| (top row) and absolute error |us (·) − u(·)| (bottom row)
with respect to their ‖ · ‖∞ norm distance to the center (0.5, 0.5, 0.5)T of the domain [0, 1]3 for Halton node
distributions with N = 8000 nodes and NI = 5832 interior nodes. PHS with stencil size n = 116, polynomial
augmentation of degree � = 5; GA and HYB(10−5) with n = 131, shape parameter ε = 3.5, no polynomial
augmentation

We have also performed numerical experiments and measured the error in the (relative)
infinity as well as the (relative) 1-norm but do not report these results here since they are
qualitatively very similar (see also [19, 35] for results in different error norms).

Since the error e2 in (2.12) does not provide insight into the component-wise absolute
or relative errors |(us(·) − u(·))| or |(us(·) − u(·))/us(·)|, resp., we include Fig. 2 which
illustrates these pointwise errors with respect to their distance to the center (0.5, 0.5, 0.5)T

of the domain [0, 1]3 for three different types of generating functions on a Halton grid. While
we observe that the pointwise errors possess a significant deviation from their mean and tend
to become smaller closer to the (Dirichlet) boundary, we argue that the error e2 (added as a
horizontal line to all plots, scaled by 1/

√
NI for the bottom row) is a reasonable measure to

assess the overall RBF-FD discretization error.

4.2 Numerical Results for (Infinitely Smooth) Gaussian RBFs

In this subsection,we provide numerical tests using theGAgenerating functionwhich leads to
infinitely smooth RBFs. We have also performed the same tests for generalized multiquadric
GMQ(ν) for ν ∈ {1,−1,−2} (i. e., for MQ, IMQ and IQ) generating functions but do not
report on these results since they were qualitatively similar (with adjusted shape parameters
and constants c in (4.3)).

Similarly, since random nodes lead to qualitatively comparable observations as Halton
nodes (with slightly increased errors and condition numbers due to the typically larger fill
distance and smaller separation distance), we also do not include our test results for random
nodes here.

We will later (in Sect. 4.4) provide numerical results comparing several generating func-
tions, includingMQ, IMQand IQ, on all four types of grids (Cartesian, PNP,Halton, random).

We begin with an overview of the numerical tests before a more detailed discussion of
the results. In all of these tests, we show plots for the RBF-FD discretization error (4.2), the
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Fig. 3 Error (4.2) and condition numbers as a function of the shape parameter ε for theGAgenerating function,
stencil sizes n ∈ {7, 35, 50, 90, 131} and node distributions (Cartesian, PNP, Halton) with N = 8000 nodes
and NI = 5832 interior nodes

(maximum of the) condition numbers of the weight matrices (2.8) and the condition numbers
of the stiffness matrices defined by (2.11).

• Figure 3: Influence of the shape parameter ε on different grid types (Cartesian, PNP,
Halton) for different stencil sizes n, fixed problem size N .

• Figure 4: Influence of the stencil size n on different grid types (Cartesian, PNP, Halton)
for different shape parameters ε, fixed problem size N , polynomial augmentation of
degree � = 0 (a constant term).

• Figure 5: Influence of the problem size N on different grid types (Cartesian, PNP, Halton)
for different stencil sizes n, a problem size dependent shape parameter ε (4.3), polynomial
augmentation of degree � = 0.

Wewill now present the tests and discuss the results. In Fig. 3, we show results with respect
to the shape parameter ε ∈ {0.2m : m = 1, 2, . . . , 30} for the GA generating function,
stencil sizes n ∈ {7, 35, 50, 90, 131} and node distributions (Cartesian, PNP, Halton) with
N = 203 = 8000 total nodes (NI = 183 = 5832 interior and N − NI = 2168 boundary
nodes). Each color/marker represents a different stencil size.

In the three left plots, we see that there exists an optimal shape parameter ε ∈ (1, 4)
that increases with increasing stencil size, especially on the Cartesian and PNP grids. For
(much) larger shape parameters, the discretization error increases since the basis functions
turn more and more into spikes so that the spanned function space does not offer accurate
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Fig. 4 Error (4.2) and condition numbers as a function of the stencil sizen for theGAgenerating function, shape
parameters ε ∈ {1, 2, 3, 4, 5}, polynomial augmentation of degree � = 0 and node distributions (Cartesian,
PNP, Halton) with N = 8000 nodes and NI = 5832 interior nodes

approximations. For (much) smaller shape parameters, numerical instabilities occur which
become apparent in the middle and right plots showing condition numbers for both the
weight and stiffness matrices. Larger stencil sizes incur larger condition numbers in the
weight matrices but also have the potential to reach smaller discretization accuracies for
suitably chosen shape parameters. In particular, the (best possible) RBF-FD discretization
accuracies obtained on the PNP and Halton grids are comparable to the ones on the Cartesian
grid (or even better) as long as the stencil size is large enough.

In Fig. 4, the setting is similar to the one in Fig. 3, only that now the stencil size n ∈
{7, . . . , 200} is shown along the x-axis and each color/marker represents a different shape
parameter ε ∈ {1, 2, 3, 4, 5}. Furthermore, polynomial augmentation of degree � = 0 (i. e.,
a constant term) has been added. This choice typically increases the accuracy slightly with
only marginal increase in the computational cost (see Sect. 3.4 for more details). This figure
once more illustrates the numerical instabilities that occur for (too) small shape parameters.
On the Cartesian grid, one can observe a noticeable jump that occurs when increasing the
stencil size from n ≤ 32 to n ≥ 33 which was also observed in [5] and coincides with the
following observation: The stencil nodes that are most valuable for the approximation of the
Laplace operator on the Cartesian grid appear to be those along the coordinate axes. The
first 27 nodes in a nearest neighbor search are those in the 3 × 3 × 3 grid around the stencil
center, the next 6 are the extensions to both sides along the respective three coordinate axes.
When all 6 are added and a stencil of 33 nodes is formed, one sees the jumping improvement
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Fig. 5 Error (4.2) and condition numbers as a function of the number of nodes for the GA generating function
with polynomial augmentation of degree � = 0, c = 0.15 (4.3) and stencil sizes n ∈ {7, 33, 50, 90, 131}

in the approximation accuracy. On the Cartesian grid, a further increase in the stencil size
leads to hardly any improvement. On the Halton grid, stagnation sets in for a stencil size
around n = 100 whereas the error continues to (slowly) decrease up to a stencil size around
n = 150.

In Fig. 5, we show plots with respect to 3
√
N where N ∈ {(ν + 2)3 : ν ∈ N, 6 ≤ ν ≤ 25}

denotes the number of total nodes with NI = ν3 ∈ [216, 15, 625] interior nodes. As before,
we use the GA generating function with polynomial augmentation of degree � = 0. For the
shape parameter, we follow the strategy to increase it along with the problem size as in

ε := cN 1/d (4.3)

for a constant c to avoid increasing ill-conditioning in the weight matrices [22, 24, 46, 71].
The constant c influences the shape parameter, a smaller c leads to larger condition numbers
of the weight (stiffness) matrices, a larger c leads to “spiky” basis functions that no longer
provide good approximations on finer grids. A similar approach using two constants c1, c2
with ε = c1N 1/d − c2 > 0 (and the determination of these constants) has been studied in
[24].

Wehave performed several tests for constants c ∈ {0.05, 0.1, 0.15, 0.2, 0.25} (not reported
here) and found c = 0.15 to yield the best results for a stencil size n = 50 (and good results
for a wider range of stencil sizes). In the plots in the middle of Fig. 5, using (4.3) to determine
the shape parameter, it is confirmed that with such a choice of shape parameter, the condition
numbers of the weight matrices remain (close to) constant (with different constants for
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different c) as N increases while the condition numbers of the stiffness matrix still increase
with N .

On a Cartesian grid, the RBF-FD error for a stencil of size n = 7 is comparable to the
7-point-FD error (even better up to 3

√
N ≈ 25 and worse for larger N since c = 0.15 is too

large for this n), and stencil sizes n > 33 appear to lead to no further advantage compared
to n = 33. On PNP and Halton grids, RBF-FD with stencil size n = 7 performs worse than
on a Cartesian grid. For larger stencils, the error decreases both with increasing stencil and
problem sizes n, N , reaching accuracies even better than the finite difference 19-point-stencil.

4.3 Numerical Results for Polyharmonic Spline (PHS) RBFs

An attractive feature of the PHS generating function with polynomial augmentation lies in
their simplicity due to the lack of a shape parameter ε to be finetuned and their scalability.
In fact, it can be shown [16, 34] that the weight vector w j in the solution of the system (2.8)
can be recovered from the solution w

j
h of a scaled (and typically much better conditioned)

system
[

Ah
j Ph

j
(Ph

j )
T 0

][
w

j
h

w̃
j
h

]
=

[L ��h
j

Lph0

]
(4.4)

viaw j = h−Dw
j
h with D denoting the order of the differential operator. Thematrices Ah

j , P
h
j

and right hand side vectors L ��h
j ,Lph0 are now computed for the shifted and scaled point sets

Xh
j := h−1(X j − x j ) where the scaling parameter h ∈ R is selected such that the maximum

distance from the center x j to another stencil node is one. Since the new center node after the
shift is the origin, the evaluation of Lph0 greatly simplifies in the case of a monomial basis
of 	�: For the Laplace operator, the entries corresponding to x2 and y2 are 2, all others are
zero.
Since the high condition numbers in (2.8) hence can be reduced by a (row and column)
scaling, they are harmless in actual computations and have no negative effect on the computed
interpolant. This has also been observed in Sect. 5.2 of [23]. We will illustrate the (lack of)
difference between the numerical solutions with and without shift-and-scale in Fig. 7 (last
two rows of plots) and use (4.4) instead of (2.8) in all other numerical tests involving PHS.

However, even without a shape parameter, there still remain several parameters to choose
such as the stencil size n, the exponent in the polyharmonic spline determined by k and the
degree � of polynomial augmentation. Similarly as in the previous subsection, PNP leads to
results somewhat between those for Cartesian and Halton nodes while random nodes lead to
worse, but qualitatively comparable observations as Halton nodes. Hence, we do not include
test results for PNP and random nodes (Sect. 4.4 will include results for PHS on PNP and
random nodes in comparison to other RBFs). In this subsection, we provide the following
numerical results to illustrate the interplay of these quantities and their resulting discretization
errors.

• Figure 6: Influence of the stencil size n on a Halton grid for the PHS(k) generating
function and different degrees � of polynomial augmentation where k is determined by
� via (3.6) or (4.1).

• Figure 7: Influence of the problem size N on different grid types (Cartesian, Halton) for
different k in PHS(k) and degrees � of polynomial augmentation which in turn determine
the stencil size n via (4.5).
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Fig. 6 Error (4.2) and condition numbers as a function of the quotient of stencil size n and the number
of augmented polynomials M (2.5) for the PHS(k) generating function with k ∈ {2, 3, 4} given by (3.6)
(top row) and k ∈ {3, 4, 5, 6, 7, 8} given by (4.1) (bottom row), degree of polynomial augmentation � ∈
{2, 3, 4, 5, 6, 7, 8} and N = 8000 Halton nodes (NI = 5832)

• Figure 8: Influence of the problem size N on different grid types (Cartesian, Halton) for
different degrees � of polynomial augmentation which in turn determine k in PHS(k) and
the stencil size n via (4.1) and (4.5), resp.

In Fig. 6, each color/marker represents a different degree of polynomial augmentation
� ∈ {2, 3, 4, 5, 6, 7, 8}. For a given �, we use the generating function PHS(k) with k selected
via (3.6) (top row) andvia (4.1) (bottom row) anduse stencil sizesn ∈ {2M+�2M/15�i : i ∈
{−4, . . . , 17}} ⊂ [�22M/15�, �64M/15�] (where M (2.5) denotes the dimension of the
space of augmented polynomials, see also Table 2).

The comparison between plots in the two rows demonstrates that larger PHS degrees can
decrease the error but may eventually lead to numerical instabilities. Larger degrees than
given by (3.6) seem to be especially beneficial for smaller polynomial degrees � ≤ 4 while
(4.1) can lead to numerical instabilities for � ≥ 5.

We do not show plots for our results on Cartesian grids but only briefly summarize our
findings: For Cartesian nodes and � ∈ {2, 3, 5}, there occured breakdowns in the solver
(i. e., in the LU factorization of the weight matrices) for some of the smaller stencil sizes.
The nullspace approach of [12, 15] could have been used instead of an LU factorization to
compute weights but was not pursued here. The second column in Table 2 summarizes the
minimal stencil sizes nmin which were necessary in these setups.

As discussed in Sect. 3.4, using a stencil size of approximately n ≈ 2M seems reasonable
for Cartesian nodes with � ≤ 3 or unstructured nodes. Further tests on unstructured grids
(not included here) have shown an only slight advantage when using n = 2M + �ln(2M)�
compared to n = 2M for the error (4.2) and the condition numbers of the weight and stiffness
matrices, especially in the case of larger degrees of polynomial augmentation (or on random
nodes). Since the difference between n = 2M and n = 2M + �ln(2M)� (or some similar
stencil size) is typically rather small (as long as � is sufficiently large (3.2)), we recommend
(and will use ourselves in subsequent tests) the following stencil sizes,
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Table 2 Required and
recommended stencil sizes for
PHS on a three-dimensional
Cartesian grid

� nmin M 2M 2M + �ln(2M)�
2 16 10 20 22

3 35 20 40 43

4 98 35 70 74

5 202 56 112 116

6 > 359 84 168 173

7 > 512 120 240 245

8 > 704 165 330 335

n =
{

(� − 1)M, if Cartesian nodes are used and � ≥ 4,

2M + �ln(2M)�, otherwise.
(4.5)

A larger stencil size not only increases the computational cost to compute the stencil
weights but also leads to more non-zero entries in the stiffness matrix. We hence conclude
that RBF-FD using PHS and polynomial augmentation with a large degree � is not suit-
able/efficient for Cartesian nodes since the stencil size should increase with the degree � of
polynomial augmentation as for example suggested in (4.5). Compared to the search for a
best shape parameter in infinitely smooth RBFs, the sensitivity of the results when moving
away from the optimal setting is much reduced here.

In Fig. 7, we show results for the PHS(k) generating functions with stencil sizes given
by (4.5), polynomial augmentation of degree � = 3 with k ∈ {2, . . . , 5}, � = 5 with
k ∈ {2, . . . , 7} and � ∈ {6, 8} with k ∈ {2, . . . , 8} (� ≥ 5 only for Halton nodes since the
stencil size for Cartesian nodes according to (4.5) would be rather large). In particular, in
these tests k and � are no longer connected via (3.6) or (4.1). However, the polynomial degree
� now determines the stencil size via (4.5). These tests show that violating the unisolvency
condition (3.4) (by using (k, �) combinations (5, 3), (7, 5), (8, 6)) significantly increases the
error (4.2) and the condition numbers of the weight and stiffness matrices. The results for
� = 8 in combination with k = 2 show that additionally (as mentioned in [62]) it can be
problematic if k is too small. Furthermore, it can be observed that using higher values of k than
those given by (3.6) can further decrease the error. The equation (3.2) for the convergence
order can be interpreted in the way that for increasing N and �, the other parameters n and
k become less influential. Our numerical tests indicate that for our settings (4.1) leads to
smaller approximation errors compared to (3.6). However, [62] points out that using a larger
k than given by (3.6) can lead to numerical instabilities (especially for a large degree �).

The plots in the last row show results that have been computedwithout scaling and shifting,
i. e., using (2.8) instead of (4.4). Comparing with the plots directly above, it can be seen that
shifting and scaling has an effect on the condition numbers of the weight matrices but leads
to hardly noticible changes in the approximation errors (except for k = 2).

In Fig. 8, we show results with respect to the total number of nodes N for the generating
function PHS(k). Each color/marker represents a different degree of polynomial augmenta-
tion � ∈ {2, 3, 4, 5, 6, 7, 8}. This degree � determines k by (4.1) and n by (4.5). Further tests
(not included here) on unstructured nodes with stencil sizes n determined via n ∈ {2M, 3M}
instead of (4.5) do not lead to significant changes in the error (4.2) or the condition numbers
of the weight or stiffness matrices whereas n = M +�ln(2M)� turned out to be too small (in
most cases), leading to significantly larger errors and condition numbers of the weight and
stiffness matrices.
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Fig. 7 Error (4.2) and condition numbers as a function of the number of nodes for the PHS(k) generating
function r2k−1 with polynomial augmentation of degree � = 3 with k ∈ {2, . . . , 5}, � = 5 with k ∈ {2, . . . , 7}
and � ∈ {6, 8} with k ∈ {2, . . . , 8} (last row without scaling and shifting, i. e., using (2.8) instead of (4.4))
and stencil sizes n given by (4.5)
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Fig. 8 Error (4.2) and condition numbers as a function of the number of nodes for PHS(k) generating function,
degrees of polynomial augmentation � ∈ {2, 3, 4, 5, 6, 7, 8} (k and stencil size n are determined by (4.1) and
(4.5), respectively, for a fixed �)

For Cartesian nodes, we show results only for � ≤ 5 since larger degrees require very
large stencil sizes, rendering the RBF-FD approach computationally very costly and hence
not competitive (e. g., n = 420 for � = 6 on a Cartesian grid versus n = 335 for � = 8 on a
Halton grid).

We find that for � ∈ {2, 3, 4, 5}, we obtain comparable errors on Cartesian and Halton
node sets (for significantly larger stencil sizes on Cartesian grids for � ≥ 4 (4.5)). Larger
degrees of polynomial augmentation (andwith it larger stencils) lead to smaller discretization
errors but larger condition numbers in the weight matrices.

The tests in this subsection illustrated that the PHS(k) generating function can be used
successfully as long as the parameter k, the degree � of polynomial augmentation and the
stencil size n are adjusted correspondingly.

4.4 Numerical Results for Hybrid (HYB) RBFs and Comparison with Other RBFs

In this subsection, we show numerical results for hybrid generating functions HYB(γ ) and
comparisons to GA, IMQ, IQ, MQ and PHS (see Table 1). We will mostly use γ = 10−5

(which fulfills (3.1)) but also include some numerical experiments with γ = 10−9 or γ =
10−1. The results of this subsection are presented through the following Figures.

• Figure 9 (as Fig. 3, with HYB(10−5) instead of GA): Influence of the shape parameter ε

on different grid types (Cartesian, PNP,Halton) for different stencil sizes n, fixed problem
size N .

• Figure 10 (as Fig. 4, with HYB(10−5) instead of GA): Influence of the stencil size n
on different grid types (Cartesian, PNP, Halton) for different shape parameters ε, fixed
problem size N , polynomial augmentation of degree � = 0 (a constant term).
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Fig. 9 Error (4.2) and condition numbers as a function of the shape parameter ε for the HYB(10−5) generating
function, stencil sizes n ∈ {7, 35, 50, 90, 131} and node distributions (Cartesian, PNP, Halton) with N = 8000
nodes and NI = 5832 interior nodes

• Figure 11 (as Fig. 5, with HYB(10−5) instead of GA): Influence of the problem size N
on different grid types (Cartesian, PNP, Halton) for different stencil sizes n, a problem
size dependent shape parameter ε (4.3), polynomial augmentation of degree � = 0.

• Figure 12: Influence of the problem size N on different grid types (Cartesian, PNP,
Halton, random) for different generating functions (GA, IMQ, IQ, MQ, HYB(10−9),
HYB(10−5), HYB(10−1)), a problem size dependent shape parameter ε (4.3), stencil
size n ∈ {50, 131}, polynomial augmentation of degree � = 0.

• Figure 13: Influence of the shape parameter ε for HYB(10−5) on different grid types
(Cartesian,Halton) for different degrees of polynomial augmentation, stencil size n = 90,
fixed problem size N .

• Figure 14: Influence of the problem size N on different grid types (Cartesian, PNP,Halton,
random) forHYB(10−9), HYB(10−5), HYB(10−1) (with a problem size dependent shape
parameter ε (4.3)) and PHS(k) with k given by (4.1), stencil size n given by (4.5), degree
of polynomial augmentation � ∈ {3, 5, 8}.
The results of Fig. 9 may be compared to those in Fig. 3 since we have only exchanged

the Gaussian generating function and now use HYB(10−5). A noticeable difference can be
observed as the shape parameter ε goes to zero: the condition numbers of weight and stiffness
matrices now remain bounded, and while there still is an optimal shape parameter ε ∈ (1, 4),
the errors/condition numbers no longer blow up for ε → 0.
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Fig. 10 Error (4.2) and condition numbers as a function of the stencil size n for the HYB(10−5) generating
function, shape parameters ε ∈ {1, 2, 3, 4, 5}, polynomial augmentation of degree � = 0 and node distributions
(Cartesian, PNP, Halton) with N = 8000 nodes and NI = 5832 interior nodes

Figure 10 compares to Fig. 4 in the same sense that only the Gaussian generating function
has been replaced by HYB(10−5). On the Cartesian grid, we observe the same jump in
accuracy at the stencil size n = 33.When increasing the stencil size n, the condition numbers
now remainbounded (and significantly smaller than for theGaussian) so that the discretization
error no longer blows up due to ill-conditioning for large n.

Figure 11 shows test results for the same setting as in Fig. 5, again for HYB(10−5) instead
of GA. It shows that HYB(10−5) can lead to similar errors as the GA generating function
with the additional benefit of numerical stability for smaller shape parameters, larger stencil
sizes and finer discretizations.

In Fig. 12, we use stencil sizes n = 50 (top four rows) and n = 131 (bottom two rows) to
compare results for the generating functions GA, IMQ, IQ, MQ, HYB(10−9), HYB(10−5),
HYB(10−1) on Cartesian, PNP, Halton and random nodes. For each combination of generat-
ing function, grid type and stencil size, we beforehand numerically determined the constant
c ∈ {0.05, 0.1, 0.15, 0.2, 0.25} in (4.3) leading to the smallest approximation errors over a
wide range of tested problem sizes N , see Table 3. We observe that on all except the ran-
dom node sets, the RBF-FD variants lead to more accurate approximations than the 7-point
FD stencil (except for very small problem sizes N ). On PNP and Halton grids, all except
HYB(10−1) lead to approximation errors comparable or even better than the 19-point FD
stencil on the Cartesian grid.
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Fig. 11 Error (4.2) and condition numbers as a function of the number of nodes for the HYB(10−5)
generating function with polynomial augmentation of degree � = 0, c = 0.15 (4.3) and stencil sizes
n ∈ {7, 33, 50, 90, 131}

Comparing the three hybrid versions, we note that HYB(10−1) (compared to HYB(10−5))
reduces the condition numbers but increases the error, while HYB(10−9) leads to condition
numbers and approximation errors comparable to those for the infinitely smooth RBFs.

For n = 131, we include only results for PNP and Halton nodes since there is no improve-
ment on Cartesian nodes compared to n = 50 (or, in fact, n = 33), and the results for random
nodes are qualitatively similar to those for Halton nodes. Increasing from n = 50 to n = 131
on PNP or Halton nodes leads to a significant reduction in the error (accompanied by an
increase in the condition numbers of the weight matrices) for all generating functions except
for HYB(10−1). (HYB(10−1) behaves similar to PHS, i. e., the error is mainly decreased by
increasing the polynomial degree � and not the stencil size n.)

In Fig. 13, we add polynomial augmentation to the HYB(10−5) generating function. We
also add two horizontal (dashed gray/green) lines for the (shape parameter independent)
PHS(2) results using the two polynomial augmentation degrees � ∈ {3, 5}, resp. (and other-
wise identical setting). On the Cartesian grid, HYB(10−5) with � = 5 failed for ε ∈ {0.5, 1}
(with a breakdown in the LU factorization of the weight matrices) which we indicate by the
dummy values 1039 and 1022 for the condition numbers of the weight and stiffness matrices,
resp. We recall that a minimal stencil size n depending on the polynomial augmentation
degree � is necessary for the weight matrices to be non-singular. For � = 6, the polynomial
space	6 (2.4) for d = 3 has dimension 84 (2.5), hence the fixed stencil size n = 90 satisfies
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Fig. 12 Error (4.2) and condition numbers as a function of the number of nodes for several generating functions
with shape parameter ε = c 3√N , c as in Table 3, polynomial augmentation of degree � = 0, stencil size n = 50
for Cartesian, PNP, Halton and random nodes and stencil size n = 131 for PNP and Halton nodes
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Table 3 Summary of constants c in (4.3) for tests in Fig. 12

Grid type Cartesian PNP Halton Random
stencil size n = 50 n = 50 n = 131 n = 50 n = 131 n = 50

GA 0.15 0.15 0.2 0.15 0.15 0.15

IMQ 0.1 0.05 0.1 0.05 0.1 0.1

IQ 0.1 0.05 0.1 0.05 0.05 0.1

MQ 0.1 0.1 0.1 0.1 0.1 0.1

HYB(10−9) 0.1 0.1 0.15 0.15 0.15 0.05

HYB(10−5) 0.1 0.15 0.2 0.1 0.2 0.1

HYB(10−1) 0.2 0.25 0.15 0.25 0.15 0.25

this constraint for all degrees of polynomial augmentation � ∈ {−1, 0, . . . , 6}. Here, � = −1
denotes the case of no polynomial augmentation.

The best results in terms of the error (4.2) and condition numbers of theweight and stiffness
matrices are obtained for Cartesian nodes for � = 2 and for Halton nodes for � = 4. Larger
degrees � do not appear advisable since they increase the computational complexity without
reducing the approximation error. The magnitude of the optimal shape parameter increases
(and the range of suitable shape parameterswidens) as the degree of polynomial augmentation
increases (especially on the Halton grid), and an appropriately chosen shape parameter leads
to significantly better results than PHS(2) by itself. While ε → 0 leads to blow-up (and
no improvement though polynomial augmentation) for the Gaussian kernel, HYB(γ ) with
polynomial augmentation behaves similar to PHS with polynomial augmentation as ε → 0
(since the Gaussian approximates a constant contained in the polynomial augmentation).

This figure as well as many additional tests (not included here) with a setting as in Fig. 6
but for HYB(γ ) for γ ∈ {10−9, 10−5, 10−1} have shown that some results for PHS regarding
polynomial augmentation carry over to HYB (e. g., Cartesian nodes need larger stencil sizes
than unstructured nodes). Hence, for the remaining tests, we use (4.5) to determine the stencil
size n for HYB when used in combination with larger degrees �.

The setup in Fig. 14 is similar to Fig. 12 with PHS instead of the generating func-
tions GA, IMQ, IQ, MQ, and now larger degrees �. Each color/marker represents a
different generating function (HYB(10−9), HYB(10−5), HYB(10−1) and PHS(k)). The
top four rows of plots show results for � = 3 on Cartesian, PNP, Halton and random
nodes, resp. The polynomial degree determines k and n via (4.1) and (4.5), leading to
(�, n, k) = (3, 43, 4). In the bottom two rows, we show results for the two parameter com-
binations (�, n, k) ∈ {(5, 116, 5), (8, 335, 8)}. For each combination of γ value in HYB(γ ),
grid type and degree of polynomial augmentation, we beforehand numerically determined the
constant c ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4} for the problem size dependent shape
parameter in (4.3) leading to the smallest approximation errors over a wide range of tested
problem sizes N , see Table 4. The PHS generating function needs polynomial augmentation
of degree � ≥ D (3.2) in order to converge and we use respective degrees for the HYB(γ )
generating function as well. The γ value seems to be mainly important for the numerical
stability and not so much for the error in the case of larger degrees �. Tests with � = 5 (not
included here) showed that Cartesian nodes are not an advisable option for RBF-FD with
HYB in combination with larger degrees of polynomial augmentation � since the required
stencil sizes are significantly larger than for unstructured nodes without leading to smaller
errors, similar to the PHS case studied in Sect. 4.3. Tests for � ∈ {5, 8} with k according
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Fig. 13 Error (4.2) and condition numbers as a function of the shape parameter ε for theHYB(10−5) generating
function, stencil size n = 90, polynomial augmentation of degree � ∈ {−1, 0, . . . , 6} and node distributions
(Cartesian, Halton) with N = 8000 nodes and NI = 5832 interior nodes. (Horizontal gray/green dashed lines
show results for ε-independent PHS(2) with � ∈ {3, 5} for comparison)

to (4.1) show a decrease in the approximation error as � increases with hardly any noticible
difference between HYB(10−9) and PHS. However, for large �, PHS seems to be the better
option in terms of numerical stability.

4.5 Summary

In Sect. 4.2, we focused on the main difficulty of the (infinitely smooth) GA generating
function: the selection of a shape parameter.

We concentrated in Sect. 4.3 on the PHS generating function. Tests on Cartesian nodes
(not included here) exhibited problems for larger � (and required excessively large stencil
sizes). For non-Cartesian grids, determining the stencil size via (4.5) and the PHS degree via
(4.1) (or in case of numerical instabilities via the smaller (3.6)) seems reasonable in terms of
accuracy and numerical stability.

In Sect. 4.4, we showed tests for the HYB generating function which combines GA with
PHS(2) and compared results with those obtained for several infinitely smooth RBFs and
PHS. On one hand, we repeated the tests in Sect. 4.2 with HYB(γ ) instead of GA. Our
observations (in the setup with no or only small degrees of polynomial augmentation) agree
with [46] that typically smaller errors and larger condition numbers are obtained bydecreasing
γ . Additionally, we showed that HYB(γ ), GA, IQ, IMQ and MQ generating functions can
lead to comparable errors (for carefully selected shape parameters, see Table 3, Table 4 and
(4.3) for general guidelines) and if γ is chosen according to (3.1).

We also focused on the role of polynomial augmentation. For GA, IQ, IMQ and MQ
generating functions, typically a small degree � (e. g., � ≤ 2) is suggested. For HYB(γ ), with
a sufficiently large γ , we observed that increasing � can lead to smaller errors than small �

(always paired with suitable shape parameters).
Therefore, we compared PHS and HYB generating functions with larger degrees of poly-

nomial augmentation. These tests showed that � > 3 on Cartesian nodes is also not advisable
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Fig. 14 Error (4.2) and condition numbers as a function of the number of nodes for several generating
functions with fixed (�, n, k) = (3, 43, 4) for Cartesian, PNP, Halton and random nodes (top four rows) and
(�, n, k) ∈ {(5, 116, 5), (8, 335, 8)} (i. e., given �, then n and k follow by (4.5) and (4.1)) and shape parameter
ε = c 3√N , c as in Table 4, for the HYB generating functions on Halton nodes (bottom two rows)
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Table 4 Summary of constants c in (4.3) for tests in Fig. 14

Grid type Cartesian PNP Halton Random
degree � = 3 � = 3 � = 3 � = 5 � = 8 � = 3

HYB(10−9) 0.25 0.15 0.2 0.25 0.2 0.35

HYB(10−5) 0.1 0.1 0.1 0.2 0.25 0.1

HYB(10−1) 0.3 0.3 0.25 0.35 0.35 0.25

for HYB. For � ≤ 5 on PNP and Halton nodes, HYB can lead to smaller errors than PHS. For
sufficiently large �, HYB converges to PHS(2) as ε → 0 which is reflected in the illustrated
approximation errors (the condition numbers of the weight and stiffness matrices depend on
γ ). An advantage of using degrees � ≥ 3 for HYB is the decrease of sensitivity with respect
to the choice of γ or the shape parameter.

When it comes to the underlying nodes, one observes “PNP ≤ Halton ≤ random” where
“≤” relates the approximations errors (aswell as condition numbers of theweight and stiffness
matrices) obtained for those node sets. However, for PHS andHYB generating functions with
larger degrees of polynomial augmentation, the differences are rather small, making HYB
and PHS good options for adaptive node refinement and stencil selection as long as stencil
sizes according to (4.5) (or larger) are used (for nearest neighbor stencils).

Hence, our recommendations for a good RBF-FD discretization setup using basic algo-
rithms as described in this paper may be summarized as follows:

• If Cartesian nodes are used, then a standard finite difference discretization or HYB with
a small degree � ∈ {0, 1, 2} of polynomial augmentation and γ according to (3.1) should
be used. (Alternatives such as stabilized RBF-GA [58] may also be viable.)

• On unstructured nodes, PHS with polynomial augmentation offers a shape-parameter-
independent approach. The required parameters �, n, kmay be determined via (3.2), (4.5)
and (4.1) (or (3.6) if numerical instabilities occur), resp.. Best results are observed for
large exponents and polynomial degrees k = � = 8 which require rather large stencils.

• On unstructured nodes, GA, MQ, IMQ, IQ or HYB with carefully finetuned parameters
and constant polynomial augmentation provide options to achieve similar accuracies as
PHS with smaller stencils and hence may decrease the computational time or memory
compared to the PHS setup.

• (Unstructured) PNP node sets often lead to the best results (smallest approximation error)
among the various node sets included in our tests and are a promising option for more
complicated domains �, adaptive node refinement or variable density node sets.

These recommendations almost certainly will have to be adjusted when more advanced
algorithms for node generation or stencil selection, stable versions of radial basis functions
or computation of weights for deficient sets, etc., are used which are beyond the scope of this
paper.

5 Conclusion and Outlook

RBF-FD provides ameshfree and relatively easy to implement approach for the discretization
of partial differential equations. Its realization, however, involves a multitude of parameter
choices, many of which (but by far not all) have been tested and illustrated in this work. Our
conclusions for these have been summarized at the end of the previous section. It turns out that
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several methods work well if parameters are chosen accordingly, and there is no clear winner
(at least not among the tested variants). However, if parameters are not selected carefully,
there are many “losers” leading to stagnation/divergence of the approximation error.

A straightforward extension of this work would lie in the consideration of further RBF-FD
variants, including stabilized versions, variable shape parameters, other than nearest neighbor
stencils, further types of generating functions or their combinations. It would furthermore be
of interest to extend our study to other types of partial differential equations.

We have focused on the discretization process and resulting approximation errors of
RBF-FD discretization and mostly left out considerations of computational complexity. The
computation of stencil weights may be executed in parallel, hence an increase in stencil size
(or polynomial augmentation degree) may not be a severe drawback with respect to compu-
tational time for the setup phase. However, it will lead to a less sparse and worse conditioned
stiffness matrix and hence increase the computational time required for solving it (directly
or iteratively). We plan to design and analyse iterative solvers for linear systems arising in
RBF-FD discretization next.
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