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Abstract
This paper studies distributionally robust optimization (DRO)when the ambiguity set is given
by moments for the distributions. The objective and constraints are given by polynomials
in decision variables. We reformulate the DRO with equivalent moment conic constraints.
Under some general assumptions, we prove the DRO is equivalent to a linear optimization
problem with moment and psd polynomial cones. A Moment-SOS relaxation method is pro-
posed to solve it. Its asymptotic and finite convergence are shown under certain assumptions.
Numerical examples are presented to show how to solve DRO problems.
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Mathematics Subject Classification 90C23 · 90C15 · 90C22

1 Introduction

Many decision problems are involved with uncertainties. People often like to make a decision
that works well with uncertain data. The distributionally robust optimization (DRO) is a
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frequently used model for this kind of decision problems. A typical DRO problem is

min
x∈X f (x) s.t. inf

μ∈MEμ[h(x, ξ)] ≥ 0, (1.1)

where f : Rn → R, h : Rn×R
p → R, x := (x1, . . . , xn) is the decision variable constrained

in a set X ⊆ R
n and ξ := (ξ1, . . . , ξp) ∈ R

p is the random variable obeying the distribution
of a measure μ ∈ M. The notation Eμ[h(x, ξ)] stands for the expectation of the random
function h(x, ξ) with respect to the distribution of ξ . The set M is called the ambiguity set,
which is used to describe the uncertainty of the measure μ.

The ambiguity setM is oftenmoment-based or discrepancy-based. For themoment-based
ambiguity, the setM is usually specified by the first, second moments [11, 17, 50]. Recently,
higher order moments are also often used [8, 15, 28], especially in relevant applications
with machine learning. For discrepancy-based ambiguity sets, popular examples are the φ-
divergence ambiguity sets [2, 31] and the Wasserstein ambiguity sets [40]. There are also
some other types of ambiguity sets. For instance, [22] assumes M is given by distributions
with sum-of-squares (SOS) polynomial density functions of known degrees.

We are mostly interested in Borel measures whose supports and moments, up to a given

degree d , are respectively contained in given sets S ⊆ R
p and Y ⊆ R(p+d

d ). Let B(S) denote
the set of Borel measures supported in S. We assume the ambiguity set is given as

M :=
{
μ ∈ B(S) : Eμ([ξ ]d) ∈ Y

}
, (1.2)

where [ξ ]d is the monomial vector

[ξ ]d := [
1 ξ1 · · · ξp (ξ1)

2 ξ1ξ2 · · · ξdp
]T

.

The problem (1.1) equipped with the above ambiguity set is called the distributionally robust
optimization of moment (DROM). When all the defining functions are polynomials, the
DROM is an important class of distributionally robust optimization. It has broad applications.
Polynomial and moment optimization are studied extensively [25, 29, 34, 38]. This paper
studies how to solve DROM in the form (1.1) by using Moment and SOS relaxations (see the
preliminary section for a brief review of them). Currently, there exists relatively few work
on this topic.

Solving DROM is of broad interests recently. It is studied in [22, 31] when the density
functions are given by polynomials. Polynomial and moment optimization are studied exten-
sively [25, 29, 34, 38]. In this paper, we study how to solve DROM in the form (1.1) by using
Moment-SOS relaxations. Currently, there exists relatively less work on this topic.

We remark that the distributionally robust min-max optimization

min
x∈X max

μ∈MEμ[F(x, ξ)] (1.3)

is a special case of the distributionally robust optimization in the form (1.1). Assume each
μ ∈ M is a probability measure (i.e., Eμ[1] = 1), then the min-max optimization (1.3) is
equivalent to

min
(x,x0)∈X×R

x0 s.t. inf
μ∈MEμ[x0 − F(x, ξ)] ≥ 0. (1.4)

This is a distributionally robust optimization problem in the form (1.1).
The distributionally robust optimization is frequently used to model uncertainties in var-

ious applications. It is closely related to stochastic optimization and robust optimization.
Under certain conditions, the DRO can be transformed into other two kinds of problems. In
stochastic optimization (see [6, 14, 24, 45, 47]), people often need to solve decision problems
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such that the true distributions can be well approximated by sampling. The performance of
computed solutions heavily relies on the quality of sampling. In order to get more stable
solutions, regularization terms can be added to the optimization (see [39, 43, 49]). In robust
optimization (see[1, 4]), the uncertainty is often assumed to be freely distributed in some
sets. This approach is often computationally tractable and suitable for large-scale data. How-
ever, it may produce too pessimistic decisions for certain applications. Combining these two
approaches may give more reasonable decisions sometimes. Some information of random
variables may be well estimated, or even exactly generated from the sampling or historic
data. For instance, people may know the support of the measure, discrepancy from a refer-
ence distribution, or its descriptive statistics. The ambiguity set can be given as a collection
of measures satisfying such properties. It contains some exact information of distributions,
as well as some uncertainties. For decision problems with ambiguity sets, it is naturally to
find optimal decisions that work well under uncertainties. This gives rise to distributionally
robust optimization like (1.1).

We refer to [7, 22, 41, 51, 53, 54, 56] for recent work on distributionally robust optimiza-
tion. For the min-max robust optimization (1.3), we refer to [11, 46, 50]. The distributionally
robust optimization has broad applications, e.g., portfolio management [11, 13, 55], network
design [31, 52], inventory problems [5, 50] and machine learning [12, 16, 32]. For more
general work on distributonally robust optimization, we refer to the survey [44] and the
references therein.

Contributions

This article studies the distributionally robust optimization (1.1) with a moment ambiguity
setM as in (1.2). Assume the measure support set S is a semi-algebraic set given by a tuple
g := (g1, . . . , gm1) of polynomials in ξ . Similarly, assume the feasible set X is given by a
polynomial tuple c := (c1, . . . , cm2) in x . We consider the case that the objective f (x) is a
polynomial in x , constrained in a set X ⊆ R

n , and that the function h(x, ξ) is polynomial in
the random variable ξ and is linear in x . The function h(x, ξ) can be written as

h(x, ξ) :=
∑

α:=(α1,...,αp)

α1+···+αp≤d

hα(x) · ξ
α1
1 · · · ξαp

p , (1.5)

where each coefficient hα(x) is a linear function in x . The total degree in ξ := (ξ1, . . . , ξp)

is at most d . For neatness, we also write that

h(x, ξ) = (Ax + b)T [ξ ]d , (1.6)

for a given matrix A and vector b. Recall thatM has the expression (1.2). It is clear that the
set M consists of truncated moment sequences (tms)

y := (yα), where α := (α1, . . . , αp), |α| := α1 + · · · + αp ≤ d,

such that the moment vector y = ∫ [ξ ]ddμ is contained in a given set Y . In this paper,
we focus on the case that S is compact and that Y is a set whose conic hull cone(Y ) can
be represented by linear, second order or semidefinite conic inequalities. For convenience,
define the conic hull of moments

K := cone({Eμ([ξ ]d) : μ ∈ M}). (1.7)
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Note that K can also be expressed with cone(Y ); see (3.6). The constraint in (1.1) is the same
as

(Ax + b)T y ≥ 0 ∀ y ∈ K .

Let K ∗ denote the dual cone of K , then the above is equivalent to Ax + b ∈ K ∗. Therefore,
the problem (1.1) can be equivalently reformulated as

min
x∈X f (x) s.t. Ax + b ∈ K ∗. (1.8)

The moment constraining cone K and its dual cone K ∗ are typically difficult to describe
computationally. However, they can be successfully solved byMoment-SOS relaxations (see
[35, 38]).

A particularly interesting case is that ξ is a univariate random variable, i.e., p = 1. For this
case, the dual cone K ∗ can be exactly represented by semidefinite programming constraints.
For instance, if d = 4, Y is the hypercube [0, 1]5 and S = [a1, a2], then cone(Y ) is the
nonnegative orthant and the cone K can be expressed by the constraints

⎡
⎣
y0 y1 y2
y1 y2 y3
y2 y3 y4

⎤
⎦ 	 0, (a1 + a2)

[
y1 y2
y2 y3

]
	 a1a2

[
y0 y1
y1 y2

]
+
[
y2 y3
y3 y4

]
,

(y0, y1, y2, y3, y4) ≥ 0.

In the above, X1 	 X2 means that X1 − X2 is a positive semidefinite (psd) matrix. The dual
cone K ∗ can be given by semidefinite programming constraints dual to the above. The proof
for such expression is shown in Theorem 4.6.

For the case that ξ is multi-variate, i.e., p > 1, there typically do not exist explicit
semidefinite programming representations for the cone K and its dual cone K ∗. However,
they can be approximated efficiently by Moment-SOS relaxations (see [35, 38]).

This paper studies how to solve the equivalent optimization problem (1.8) byMoment-SOS
relaxations. In computation, the cone ofY is usually expressed as aCartesian product of linear,
second order, or semidefinite conic constraints. A hierarchy of Moment-SOS relaxations is
proposed to solve (1.8) globally,which is equivalent to the distributionally robust optimization
(1.1). It isworthy to note that our convex relaxations use both “moment” and “SOS” relaxation
techniques, which are different from the classic work of polynomial optimization and DROM
problems. In most prior work, usually one of moment and SOS relaxation is used, but rarely
two are used simultaneously. Under some general assumptions (e.g., the compactness or
archimedeanness), we prove the asymptotic and finite convergence of the proposedMoment-
SOSmethod. The property of finite convergencemakes ourmethod very attractive for solving
DROM. To check whether a Moment-SOS relaxation is tight or not, one can solve an A-
truncated moment problem with the method in [35]. By doing so, we not only compute the
optimal values and optimizers of (1.8), but also obtain a measure μ that achieves the worst
case expectation constraint. This is a major advantage that most other methods do not own.
In summary, our main contributions are:

– We consider the new class of distributionally robust optimization problems in the
form (1.1), which are given by polynomial functions and moment ambiguity sets. The
Moment-SOS relaxation method is proposed to solve them globally. It has more attrac-
tive properties than prior existing methods. Numerical examples are given to show the
efficiency.

– When the objective f (x) and the constraining set X are given by SOS-convex
polynomials, we prove the DROM is equivalent to a linear conic optimization problem.
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– Under some general assumptions, we prove the asymptotic and finite convergence of the
proposed method. There is little prior work on finite convergence for solving DROM.
In particular, when the random variable ξ is univariate, we show that the lowest order
Moment-SOS relaxation is sufficient for solving (1.8) exactly.

– We also show how to obtain the measure μ∗ that achieves the worst case expectation
constraint.

The rest of the paper is organized as follows. Section 2 reviews some preliminary results
aboutmoment and polynomial optimization. In Sect. 3,we give an equivalent reformulation of
the distributionally robust optimization, expressing it as a linear conic optimization problem.
In Sect. 4, we give an algorithm of Moment-SOS relaxations to solve (1.8). Some numerical
experiments and applications are given in Sect. 5. Finally, we make some conclusions and
discussions in Sect. 6.

2 Preliminaries

Notation

The symbolR (resp.,R+,N) denotes the set of real numbers (resp., nonnegative real numbers,
nonnegative integers). For t ∈ R, 
t� denotes the smallest integer that is greater or equal to
t . For an integer k > 0, [k] := {1, · · · , k}. The symbol Nn (resp., Rn) stands for the set of
n-dimensional vectors with entries in N (resp., R). For a vector v, we use ‖v‖ to denote its
Euclidean norm. The superscript T denotes the transpose of a matric or vector. For a set S,
the notation B(S) denotes the set of Borel measures whose supports are contained in S. For
two sets S1, S2, the operation

S1 + S2 := {s1 + s2 : s1 ∈ S1, s2 ∈ S2}
is the Minkowski sum. The symbol e stands for the vector of all ones and ei stands for the
i th standard unit vector, i.e., its i th entry is 1 and all other entries are zeros. We use In to
denote the n-by-n identity matrix. A symmetric matrix W is positive semidefinite (psd) if
vT Wv ≥ 0 for all v ∈ R

n . We write W 	 0 to mean that W is psd. The strict inequality
W  0 means that W is positive definite.

The symbol R[x] := R[x1, · · · , xn] denotes the ring of polynomials in x with real coef-
ficients, and R[x]d is the subset of R[x] with polynomials of degrees at most d . For a
polynomial f ∈ R[x], we use deg( f ) to denote its degree. For a tuple f = ( f1, . . . , fr ) of
polynomials, the deg( f ) denotes the highest degree of fi . For a polynomial p(x), vec(p) is
the coefficient vector of p. For α := (α1, . . . , αn) and x := (x1, . . . , xn), we denote that

xα := xα1
1 · · · xαn

n , |α| := α1 + · · · + αn .

For a degree d , denote the power set

N
n
d := {α ∈ N

n : |α| ≤ d}.
Let [x]d denote the vector of all monomials in x that have degrees at most d , i.e.,

[x]d := [
1 x1 · · · xn x21 x1x2 · · · xdn

]T
.

The notation ξα and [ξ ]d are similarly defined for ξ := (ξ1, . . . , ξp). The notation Eμ[h(ξ)]
denotes the expectation of the random function h(ξ)with respect toμ for the random variable
ξ . The Dirac measure, which is supported at a point u, is denoted as δu .
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Let V be a vector space over the real field R. A set C ⊆ V is a cone if ax ∈ C for all
x ∈ C and a > 0. For a set X ⊂ V , we denote its closure by X in the Euclidean topology.
Its conic hull, which is the minimum convex cone containing X , is denoted as cone(X). The
dual cone of the set X is

X∗ := {� ∈ V ∗| �(x) ≥ 0, ∀x ∈ X}, (2.1)

where V ∗ is the dual space of V (i.e., the space of linear functionals on V ). Note that X∗ is
a closed convex cone for all X . For two nonempty sets X1, X2 ∈ V , we have (X1 + X2)

∗ =
X∗
1 ∩ X∗

2 . When X1 + X2 is a closed convex cone, we also have (X∗
1 ∩ X∗

2)
∗ = X1 + X2.

In the following, we review some basics in optimization about polynomials and moments.
We refer to [21, 25, 27, 29, 36, 37] for more details about this topic.

2.1 SOS and Nonnegative Polynomials

A polynomial f ∈ R[x] is said to be SOS if f = f 21 + · · · + f 2k for some real polynomials
fi ∈ R[x]. We use Σ[x] to denote the cone of all SOS polynomials in x . The dth degree
truncation of the SOS cone Σ[x] is

Σ[x]d := Σ[x] ∩ R[x]d .
It is a closed convex cone for each degree d . For a polynomial f ∈ R[x], the membership
f ∈ Σ[x] can be checked by solving semidefinite programs [25, 29]. In particular, f is said
to be SOS-convex [18] if its Hessian matrix ∇2 f (x) is SOS, i.e., ∇2 f = V (x)T V (x) for a
matrix polynomial V (x).

In this paper, we also need to work with polynomials in ξ := (ξ1, . . . , ξp). For a tuple
g := (g1, . . . , gm1) of polynomials in ξ , its quadratic module is the set

QM[g] := Σ[ξ ] + g1 · Σ[ξ ] + · · · + gm1 · Σ[ξ ].
The dth degree truncation of QM[g] is

QM[g]d := Σ[ξ ]d + g1 · Σ[ξ ]d−deg(g1) + · · · + gm1 · Σ[ξ ]d−deg(gm1 ).

Let S = {ξ ∈ R
p : g(ξ) ≥ 0} be the set determined by g and let P(S) denote the set of

polynomials that are nonnegative on S. We also frequently use the dth degree truncation

Pd(S) := P(S) ∩ R[ξ ]d .
Then it holds that for all degree d

QM[g]d ⊆ Pd(S).

The quadratic module QM[g] is said to be archimedean if there exists a polynomial φ ∈
QM[g] such that {ξ ∈ R

p : φ(ξ) ≥ 0} is compact. If QM[g] is archimedean, then S must be
a compact set. The converse is not necessarily true. However, for compact S, the quadratic
module QM[g̃] is archimedean if g is replaced by g̃ := (g, N − ‖ξ‖2) for N sufficiently
large. When QM[g] is archimedean, if a polynomial h > 0 on S, then we have h ∈ QM[g]
(see [42]). Furthermore, under some classical optimality conditions, we have h ∈ QM[g] if
h ≥ 0 on S (see [36]).
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2.2 TruncatedMoment Problems

For the variable ξ ∈ R
p , the space of truncated multi-sequences (tms) of degree d is

R
N

p
d := {z = (zα)α∈Np

d
: zα ∈ R

}
.

Each z ∈ R
N

p
d determines the linear Riesz functional Lz on R[ξ ]d such that

Lz

( ∑

α∈Np
d

hαξα
)

:=
∑

α∈Np
d

hαzα. (2.2)

For convenience of notation, we also write that

〈q, z〉 := Lz(q), q ∈ R[ξ ]d . (2.3)

For a polynomial q ∈ R[ξ ]2d and a tms z ∈ R
N

p
2k , with k ≥ d , the kth order localizing matrix

L(d)
q [z] is such that

vec(a)T
(
L(k)
q [z]

)
vec(b) = Lz(qab) (2.4)

for all a, b ∈ R[ξ ]s , where s = k − 
deg(q)/2�. In particular, for q = 1 (the constant one
polynomial), the L(k)

1 [z] becomes the so-called moment matrix

Mk[z] := L(k)
1 [z]. (2.5)

We can use the moment matrix and localizing matrices to describe dual cones of quadratic
modules. For a polynomial tuple g = (g1, . . . , gm1) with deg(g) ≤ 2k, define the tms cone

S [g]2k :=
{
z ∈ R

N
p
2k : Mk[z] 	 0, L(k)

g1 [z] 	 0, . . . , L(k)
gm1

[z] 	 0
}

. (2.6)

It can be verified that (see [38])

(QM[g]2k)∗ = S [g]2k . (2.7)

A tms z = (zα) ∈ R
N

p
d is said to admit a representing measure μ supported in a set S ⊆ R

p

if zα = ∫ ξαdμ for all α ∈ N
p
d . Such a measure μ is called an S-representing measure for z.

In particular, if z = 0 is the zero tms, then it admits the identically zero measure. Denote by
meas(z, S) the set of S-measures admitted by z. This gives the moment cone

Rd(S) := {z ∈ R
N

p
d | meas(z, S) �= ∅}. (2.8)

It is interesting to note that Rd(S) can also be written as the conic hull

Rd(S) = cone({[ξ ]d : ξ ∈ S}). (2.9)

Recall that Pd(S) denotes the cone of polynomials in R[ξ ]d that are nonnegative on S. It
is a closed and convex cone. For all h ∈ Pd(S) and z ∈ Rd(S), it holds that for every
μ ∈ meas(z, S),

〈h, z〉 =
∑

α∈Np
d

hαzα =
∫

h(ξ)dμ ≥ 0.

This implies that Rd(S)∗ = Pd(S). When S is compact, we also have Pd(S)∗ = Rd(S). If
S is not compact, then

Pd(S)∗ = Rd(S). (2.10)
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We refer to [29, Sect. 5.2] and [38] for this fact.
A frequent case is that S = {ξ : g(ξ) ≥ 0} is determined by a polynomial tuple g =

(g1, . . . , gm1). For an integer k ≥ deg(g)/2, a tms z ∈ R
N

p
2k admits an S-representing

measure μ if z ∈ S [g]2k and
rankMk−d0 [z] = rankMk[z], (2.11)

where d0 = 
deg(g)/2�.Moreover, themeasureμ is unique and is r -atomic, i.e., |supp(μ)| =
r , where r = rankMk[z]. The above rank condition is called flat extension or flat truncation
[9, 34]. When it holds, the tms z is said to be a flat tms. When z is flat, one can obtain the
unique representing measure μ for z by computing Schur decompositions and eigenvalues
(see [19]).

To obtain a representing measure for a tms y ∈ R
N

p
d that is not flat, a semidefinite

relaxation method is proposed in [35]. Suppose S is compact and the quadratic module
QM[g] is archimedean. Select a generic polynomial R ∈ Σ[ξ ]2k , with 2k > deg(g), and
then solve the moment optimization

{
min

ω
〈R, ω〉

s.t. ω|d = y, ω ∈ S [g]2k . (2.12)

In the above ω|d denotes the dth degree truncation of ω, i.e.,

ω|d := (ωα)|α|≤d . (2.13)

As k increases, by solving (2.12), one can either get a flat extension of y, or a certificate that
y does not have any representing measure. We refer to [35] for more details about solving
truncated moment problems.

3 Moment Optimization Reformulation

In this section, we reformulate the distributionally robust optimization equivalently as a linear
conic optimization problem with moment constraints. We consider the DROM problem

⎧
⎪⎪⎨
⎪⎪⎩

min
x∈Rn

f (x)

s.t. inf
μ∈MEμ[h(x, ξ)] ≥ 0,

x ∈ X ,

(3.1)

where x is the decision variable constrained in a set X ⊆ R
n and ξ ∈ R

p is the random
variable obeying the distribution of the measure μ that belongs to the moment ambiguity set
M. We assume that the objective f (x) is a polynomial in x and h(x, ξ) is a polynomial in ξ

whose coefficients are linear in x . Equivalently, one can write that

h(x, ξ) = (Ax + b)T [ξ ]d , A ∈ R
(p+d

d )×n, b ∈ R
(p+d

d ). (3.2)

Suppose measures in the ambiguity set M have supports contained in the set

S = {ξ ∈ R
p : g1(ξ) ≥ 0, . . . , gm1(ξ) ≥ 0}, (3.3)

for a given tuple g := (g1, . . . , gm1) of polynomials in ξ . The ambiguity set M can be
expressed as

M := {μ ∈ B(S)
∣∣Eμ([ξ ]d) ∈ Y

}
, (3.4)
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where Y is the constraining set for moments of μ. The set Y is not necessarily closed or
convex. The closure of its conic hull is denoted as cone(Y ). In computation, it is often a
Cartesian product of linear, second order or semidefinite cones. The constraining set X for x
is assumed to be the set

X := {x ∈ R
n | c1(x) ≥ 0, . . . , cm2(x) ≥ 0}, (3.5)

for a tuple c = (c1, . . . , cm2) of polynomials in x .
The DROM (3.1) can be equivalently reformulated as polynomial optimization with

moment conic conditions. Observe that

inf
μ∈MEμ[h(x, ξ)] ≥ 0 ⇐⇒ (Ax + b)T y ≥ 0, ∀ y ∈ Rd(S) ∩ cone(Y ).

The setRd(S) is the moment cone defined as in (2.8). It consists of degree-d tms’ admitting
S-measures. For convenience, we denote the intersection

K = Rd(S) ∩ cone(Y ). (3.6)

Therefore, we get that

inf
μ∈MEμ[h(x, ξ)] ≥ 0 ⇐⇒ Ax + b ∈ K ∗, (3.7)

where K ∗ denotes the dual cone of K . In view of (2.1) and (2.3), the dual cone Y ∗ is the
following polynomial cone

Y ∗ = {φ ∈ R[ξ ]d : 〈φ, z〉 ≥ 0, ∀ z ∈ Y }. (3.8)

Observe the dual cone relations

Rd(S)∗ = Pd(S), Pd(S)∗ = Rd(S),(
Pd(S) + Y ∗)∗ = Rd(S) ∩ cone(Y ).

When both Rd(S) and cone(Y ) are closed, we have

Rd(S) ∩ cone(Y ) = Rd(S) ∩ cone(Y ). (3.9)

If one of them is not closed, the above may or may not be true. Note that C∗∗ = C if C is
a closed convex cone. When (3.9) holds and the sum Pd(S) + Y ∗ is a closed cone, we can
express the dual cone K ∗ as

K ∗ = Pd(S) + Y ∗. (3.10)

As shown in [3, Proposition B.2.7], the above equality holds if Rd(S), cone(Y ) are closed
and their interiors have non-empty intersection. Such conditions are often satisfied for most
applications. Recall that h(x, ξ) = (Ax + b)T [ξ ]d . The membership Ax + b ∈ K ∗ means
that h(x, ξ) ∈ K ∗. Therefore, we get the following result.

Theorem 3.1 Assume the set X is given as in (3.5). If the equality (3.10) holds, then (3.1) is
equivalent to the following optimization

⎧
⎪⎨
⎪⎩

min
x∈Rn

f (x)

s.t. c1(x) ≥ 0, . . . , cm2(x) ≥ 0,
h(x, ξ) ∈ Pd(S) + Y ∗.

(3.11)
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Themembership constraint in (3.11)means that h(x, ξ), as a polynomial in ξ , is the sum of
a polynomial inPd(S) and a polynomial in Y ∗. When f , c1, . . . , cm2 are all linear functions,
(3.11) is a linear conic optimization problem. When f and every ci are polynomials, we can
apply Moment-SOS relaxations to solve it.

Recall that X is the set given as in (3.5). Denote the degree

d1 := max{deg( f )/2, 
deg(c)/2�}.
Observe that for all x ∈ X and w = [x]2d1 , it holds that

〈 f , w〉 = f (x), Md1 [w] 	 0,

L(d1)
ci [w] 	 0, i = 1, . . . ,m2.

We refer to the Subsection 2.2 for the above notation. For convenience, define the projection

map π : RN
n
2d1 → R

n such that

π(w) := (we1 , . . . , wen ), w ∈ R
N
n
2d1 . (3.12)

So, the optimization (3.11) can be relaxed to
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min
(x,w)

〈 f , w〉
s.t. Md1 [w] 	 0, L(d1)

ci [w] 	 0 (i ∈ [m2]),
h(x, ξ) ∈ Pd(S) + Y ∗,
w0 = 1, x = π(w), w ∈ R

N
n
2d1 .

(3.13)

The relaxation (3.13) is said to be tight if it has the same optimal value as (3.11) does.
Under the SOS-convexity assumption, the relaxation (3.13) is equivalent to (3.11). This is
the following result.

Theorem 3.2 Suppose the ambiguity set M is given as in (3.4) and the set X is given as in
(3.5). Assume the polynomials f ,−c1, . . . ,−cm2 are SOS-convex. Then, the optimization
problems (3.13) and (3.11) are equivalent in the following sense: they have the same optimal
value, and w∗ is a minimizer of (3.13) if and only if x∗ := π(w∗) is a minimizer of (3.11).

Proof Let w be a feasible point for (3.13) and x = π(w), then Ax + b ∈ K ∗. Since
f ,−c1, . . . ,−cm2 are SOS-convex, by the Jensen’s inequality (see [26]), we have the
inequalities

f (x) = f (π(w)) ≤ 〈 f , w〉,
ci (x) = ci (π(w)) ≥ 〈ci , w〉, i = 1, . . . ,m2.

The (1, 1)-entry of L(d1)
ci [w] is 〈ci , w〉, so L(d1)

ci [w] 	 0 implies that 〈ci , w〉 ≥ 0. This means
that x = π(w) ∈ X for every w that is feasible for (3.13). Let f0, f1 denote the optimal
values of (3.11), (3.13) respectively. Since the latter is a relaxation of the former, it is clearly
that f0 ≥ f1. For every ε > 0, there exists a feasible w such that 〈 f , w〉 ≤ f1 + ε, which
implies that f (π(w)) ≤ f1 + ε. Hence f0 ≤ f1 + ε for every ε > 0. Therefore, f0 = f1,
i.e., (3.13) and (3.11) have the same optimal value.

If w∗ is a minimizer of (3.13), we also have x∗ = π(w∗) ∈ X and

f (x∗) = f (π(w∗)) ≤ 〈 f , w∗〉.
Since (3.13) is a relaxation of (3.11), they must have the same optimal value and x∗ is a
minimizer of (3.11). For the converse, if x∗ is a minimizer of (3.11), then w∗ := [x∗]2d1 is
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feasible for (3.13) and f (x∗) = 〈 f , w∗〉 . So w∗ must also be a minimizer of (3.13), since
(3.13) and (3.11) have the same optimal value. ��

In the following, we derive the dual optimization of (3.13). As in Subsection 2.2, we have
seen that

Md1 [w] 	 0, L(d1)
ci [w] 	 0 (i ∈ [m2]) ⇐⇒ w ∈ S [c]2d1 ,

where S [c]2d1 is given similarly as in (2.6). Recall the dual relationship

(QM[c]2d1)∗ = S [c]2d1 ,
as shown in (2.7). The Lagrange function for (3.13) is

L(w; γ, q, y, z) = 〈 f , w〉 − γ (w0 − 1) − 〈q, w〉 − 〈y, Aπ(w) + b〉
= 〈 f − q − yT Ax − γ · 1, w〉 + γ − 〈b, y〉,

for γ ∈ R, q ∈ QM[c]2d1 , y ∈ K . (Note that the cone K is not necessarily closed.) To make

L(w; γ, q, y, z) have a finite infimum for w ∈ R
N
n
2d1 , we need the constraint

f − yT Ax − γ = q.

Therefore, the dual optimization of (3.13) is
⎧
⎪⎨
⎪⎩

max
(γ,y)

γ − 〈b, y〉
s.t. f (x) − yT Ax − γ ∈ QM[c]2d1 ,

γ ∈ R, y ∈ K .

(3.14)

The first membership in (3.14) means that f (x) − yT Ax − γ , as a polynomial in x , belongs
to the truncated quadratic module QM[c]2d1 . So it gives a constraint for both γ and y.

4 TheMoment-SOS RelaxationMethod

In this section, we give a Moment-SOS relaxation method for solving the distributionally
robust optimization and prove its convergence.

In Sect. 3, we have seen that the DROM (3.1) is equivalent to the linear conic optimization
(3.13) under certain assumptions. It is still hard to solve (3.13) directly, due to themembership
constraint h(x, ξ) ∈ Pd(S) + Y ∗. This is because the nonnegative polynomial cone Pd(S)

typically does not have an explicit computational representation. For its dual problem (3.14),
it is similarly difficult to deal with the conic membership y ∈ K . However, both (3.13) and
(3.14) can be solved efficiently by Moment-SOS relaxations.

Recall that S is a semi-algebraic set given as in (3.3). For every integer k ≥ d/2, it holds
the nesting containment

QM[g]2k ∩ R[ξ ]d ⊆ QM[g]2k+2 ∩ R[ξ ]d ⊆ · · · ⊆ Pd(S).

We thus consider the following restriction of (3.13):
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

min
(x,w)

〈 f , w〉
s.t. Md1 [w] 	 0, L(d1)

ci [w] 	 0 (i ∈ [m2]),
h(x, ξ) ∈ QM[g]2k + Y ∗,
w0 = 1, x = π(w),w ∈ R

N
n
2d1 .

(4.1)

123



12 Page 12 of 27 Journal of Scientific Computing (2023) 94 :12

The integer k is called the relaxation order. Since (QM[g]2k)∗ = S [g]2k , the dual
optimization of (4.1) is

⎧⎪⎨
⎪⎩

max
(γ,y,z)

γ − 〈b, y〉
s.t. f (x) − yT Ax − γ ∈ QM[c]2d1 ,

γ ∈ R, z ∈ S [g]2k, y ∈ cone(Y ), y = z|d .
(4.2)

We would like to remark that QM[g] is a quadratic module in the polynomial ring R[ξ ],
while QM[c] is a quadratic module in the polynomial R[x]. The notation z|d denotes the
degree-d truncation of z; see (2.13) for its meaning. The optimization (4.2) is a relaxation
of (3.14), since it has a bigger feasible set. There exist both quadratic module and moment
constraints in (4.2). The primal-dual pair (4.1)-(4.2) can be solved as semidefinite programs.
The following is a basic property about the above optimization.

Theorem 4.1 Assume (3.9) holds. Suppose (γ ∗, y∗, z∗) is an optimizer of (4.2) for the
relaxation order k. Then (γ ∗, y∗) is a maximizer of (3.14) if and only if it holds that
y∗ ∈ Rd(S).

Proof If (γ ∗, y∗) is a maximizer of (3.14), then it is clear that y∗ ∈ Rd(S). Conversely, if
y∗ ∈ Rd(S), then (γ ∗, y∗) is feasible for (3.14), since (3.9) holds. Since (4.2) is a relaxation
of (3.14), we know (γ ∗, y∗) must also be a maximizer of (3.14). ��

If Rd(S) is a closed cone, then we only need to check y∗ ∈ Rd(S) in the above. Inter-
estingly, when S is compact, the moment cone Rd(S) is closed [27, 29, 38]. As introduced
in the Subsection 2.2, the membership y∗ ∈ Rd(S) can be checked by solving a truncated
moment problem. This can be done by solving the optimization (2.12) for a generically
selected objective. Once (γ ∗, y∗) is confirmed to be a maximizer of (3.14), we show how to
get a minimizer for (3.1). This is shown as follows.

Theorem 4.2 Assume (3.9) holds. For a relaxation order k, suppose (x∗, w∗) is a minimizer
of (4.1) and (γ ∗, y∗, z∗) is a maximizer of (4.2) such that y∗ ∈ Rd(S). Assume there is no
duality gap between (4.1) and (4.2), i.e., they have the same optimal value. If the point x∗
belongs to the set X and f (x∗) = 〈 f , w∗〉, then x∗ is a minimizer of (3.11). Moreover, if in
addition the dual cone K ∗ can be expressed as in (3.10), then x∗ is also a minimizer of (3.1).

Proof Let f1, f2 be optimal values of the optimization problems (3.13) and (3.14)
respectively. Then, by the weak duality, it holds that

f1 ≥ f2.

Themembership y∗ ∈ Rd(S) implies that (γ ∗, y∗) is a maximizer of (3.14), by Theorem 4.1.
So f2 = γ ∗−bT y∗. By the assumption, the primal-dual pair (4.1)-(4.2) have the same optimal
value, so

〈 f , w∗〉 = γ ∗ − bT y∗ = f2.

The constraint h(x∗, ξ) ∈ QM[g]2k+Y ∗ implies that h(x∗, ξ) ∈ Pd(S)+Y ∗. Since x∗ ∈ X ,
we know x∗ is a feasible point of (3.11). The optimal value of (3.11) is greater than or equal
to that of (3.13), hence

f1 ≥ f2 = 〈 f , w∗〉 = f (x∗) ≥ f1.

So f (x∗) = f1. This implies that x∗ is a minimizer of (3.11). Moreover, if in addition K ∗
can be expressed as in (3.10), the optimization (3.1) is equivalent to (3.11), by Theorem 3.1.
So x∗ is also a minimizer of (3.1). ��
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In the above theorem, the assumptions that x∗ ∈ X and f (x∗) = 〈 f , w∗〉 must hold if
f ,−c1, . . . ,−cm2 are SOS-convex polynomials. We have the following theorem.

Theorem 4.3 Assume (3.9) holds. For a relaxation order k, suppose (x∗, w∗) is aminimizer of
(4.1) and (γ ∗, y∗, z∗) is amaximizer of (4.2) such that y∗ ∈ Rd(S). Assume there is no duality
gap between (4.1) and (4.2), i.e., they have the same optimal value. If f ,−c1, . . . ,−cm2 are
SOS-convex polynomials, then x∗ := π(w∗) is a minimizer of (3.11). Moreover, if in addition
K ∗ can be expressed as in (3.10), then x∗ is also a minimizer of (3.1).

Proof Since f and −c1, . . . ,−cm2 are SOS-convex polynomials, by the Jensen’s inequality
(see [26]), it holds that

f (x∗) = f (π(w∗)) ≤ 〈 f , w∗〉,
ci (x

∗) = ci (π(w∗)) ≥ 〈ci , w∗〉, i = 1, . . . ,m2.

Similarly, the constraint L(d1)
ci [w∗] 	 0 implies that 〈ci , w∗〉 ≥ 0. So x∗ ∈ X is a feasible

point of (3.11). As in the proof of Theorem 4.2, we can similarly show that

f1 ≥ f2 = 〈 f , w∗〉 ≥ f (x∗) ≥ f1,

so f (x∗) = 〈 f , w∗〉. The conclusions follow from Theorem 4.2. ��

4.1 An Algorithm for Solving the DROM

Based on the above discussions, we now give the algorithm for solving the optimization
problem (3.13) and its dual (3.14), as well as the DROM (3.1).

Algorithm 4.4 For given f , h,M, S, X , Y and the defining polynomial tuples g and c, do
the following:

Step 0 Get a computational representation for cone(Y ) and the dual cone Y ∗. Initialize

d0 := 
deg(g)/2�, t0 := 
d/2�, k := 
d/2�, l := t0 + 1.

Choose a generic polynomial R ∈ Σ[ξ ]2t0+2.
Step 1 Solve (4.1) for a minimizer (x∗, w∗) and solve (4.2) for a maximizer (γ ∗, y∗, z∗).
Step 2 Solve the moment optimization

{
min

ω
〈R, ω〉

s.t. ω|d = y∗, ω ∈ S [g]2�, ω ∈ R
N

p
2� .

(4.3)

If (4.3) is infeasible, then y∗ admits no S-measure, update k := k + 1 and go
back to Step 1. Otherwise, solve (4.3) for a minimizer ω∗ and go to Step 3.

Step 3 Check whether or not there exists an integer s ∈ [max(d0, t0), �] such that

rankMs−d0 [ω∗] = rankMs[ω∗].
If such s does not exist, update � := � + 1 and go to Step 2. If such s exists, then
y∗ = ∫ [ξ ]ddμ for the measure

μ = θ1δu1 + · · · + θr δur .

In the above, the scalars θ1, . . . , θr > 0, u1, . . . , ur ∈ S are distinct points,
r = rankMs[ω∗], and δui denotes the Dirac measure supported at ui . Up to
scaling, a measure μ∗ ∈ M that achieves the worst case expectation constraint
can be recovered as a multiple of μ.
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Remark 4.5 All optimization problems in Algorithm 4.4 can be solved numerically by the
software GloptiPoly3 [20], YALMIP [30] and SeDuMi [48]. In Step 0, we assume
cone(Y ) can be expressed by linear, second order or semidefinite cones. See Sect. 5 for more
details. In Step 1, if (4.1) is unbounded from below, then (3.11) must also be unbounded from
below. If (4.2) is unbounded from above, then (3.14) may be unbounded from above (and
hence (3.11) is infeasible) , or it may be because the relaxation order k is not large enough.
We refer to [38] for how to verify unboundedness of (3.14). Generally, one can assume
(4.1) and (4.2) have optimizers. In Step 3, the finitely atomic measure μ can be obtained by
computing Schur decompositions and eigenvalues. We refer to [19] for the method. It is also
implemented in the software GloptiPoly3. Note that the measure μ associated with y∗
may not belong to M. This is because (4.2) has the conic constraint y ∈ cone(Y ) instead
of y ∈ Y . Once the atomic measure μ is extracted, we can choose a scalar β > 0 such that
βμ ∈ M.

4.2 Convergence of Algorithm 4.4

In this subsection, we prove the convergence of Algorithm 4.4. The main results here are
based on the work [35, 38].

First, we consider the relatively simple but still interesting case that ξ is a univariate
random variable (i.e., p = 1) and the support set S = [a1, a2] is an interval. For this case,
Algorithm 4.4 must terminate in the initial loop k := 
d/2� with y∗ ∈ Rd(S), if (γ ∗, y∗, z∗)
is a maximizer of (4.2).

Theorem 4.6 Suppose the random variable ξ is univariate and the set S = [a1, a2], for
scalars a1 < a2, is an interval with the constraint g(ξ) := (ξ − a1)(a2 − ξ) ≥ 0. If
(γ ∗, y∗, z∗) is a maximizer of (4.2) for k = 
d/2�, then we must have z∗ ∈ R2k(S) and
hence y∗ ∈ Rd(S).

Proof In the relaxation (4.2), the tms z has the even degree 2k. We label the entries of z as
z = (z0, z1, . . . , z2k). The condition z ∈ S [g]2k implies that

Mk[z] 	 0, L(k)
g [z] 	 0. (4.4)

Since g = (ξ − a1)(a2 − ξ), one can verify that L(k)
g [z] 	 0 is equivalent to

(a1 + a2)

⎡
⎢⎢⎢⎣

z1 z2 · · · zk
z2 z3 · · · zk+1
...

...
. . .

...

zk zk+1 · · · z2k−1

⎤
⎥⎥⎥⎦ 	 a1a2

⎡
⎢⎢⎢⎣

z0 z1 · · · zk−1

z1 z2 · · · zk
...

...
. . .

...

zk−1 zk · · · z2k−2

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

z2 z3 · · · zk
z3 z4 · · · zk+1
...

...
. . .

...

zk zk+1 · · · z2k

⎤
⎥⎥⎥⎦ .

As shown in [9, 23], the (4.4) are sufficient and necessary conditions for z ∈ R2k(S). So,
if (γ ∗, y∗, z∗) is a maximizer of (4.2), then Mk[z∗] 	 0 and L(k)

g [z∗] 	 0. Hence, we have
z∗ ∈ R2k(S) and hence y∗ = z∗|d ∈ Rd(S). ��
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Second, we prove the asymptotic convergence of Algorithm 4.4 when the random variable
ξ is multi-variate. It requires that the quadratic module QM[g] is archimedean and (3.13) has
interior points.

Theorem 4.7 Assume that QM[g] is archimedean and there exists a point x̂ ∈ X such that
h(x̂, ξ) = a1(ξ) + a2(ξ) with a1 > 0 on S and a2 ∈ Y ∗. Suppose (γ (k), y(k), z(k)) is
an optimal triple of (4.2) when its relaxation order is k. Then, the sequence {y(k)}∞k=1 is
bounded and every accumulation point of {y(k)}∞k=1 belongs to the cone Rd(S). Therefore,
every accumulation point of {(γ (k), y(k))}∞k=1 is a maximizer of (3.14).

Proof For every (γ, y, z) that is feasible for (4.2) and for ŵ := [x̂]2d1 , it holds that
〈 f , ŵ〉 − (γ − 〈b, y〉) = 〈 f − yT Ax − γ, ŵ〉 + (Ax̂ + b)T y

≥ (Ax̂ + b)T y. (4.5)

There exists ε > 0 such that a1(ξ) − ε ∈ QM[g]2k0 , for some k0 ∈ N, since QM[g] is
archimedean. Noting a2 ∈ Y ∗, one can see that

(Ax̂ + b)T y = 〈h(x̂, ξ), y〉 = 〈a1(ξ), y〉 + 〈a2(ξ), y〉 ≥ 〈a1(ξ), y〉.
For all k ≥ k0, it holds that

〈a1(ξ), y〉 = 〈a1(ξ) − ε, y〉 + ε〈1, y〉 ≥ ε〈1, y〉 = εy0.

(Note 〈1, y〉 = y0.) Let f2 be the optimal value of (3.14), then

γ (k) − 〈b, y(k)〉 ≥ f2,

because (γ (k), y(k), z(k)) is an optimizer of (4.2), and (4.2) is a relaxation of themaximization
(3.14). So (4.5) implies that

(Ax̂ + b)T y(k) ≤ 〈 f , ŵ〉 − f2.

Hence, we can get that

(y(k))0 ≤ 1

ε
(〈 f , ŵ〉 − f2).

The sequence
{
(y(k))0

}∞
k=1 is bounded.

Since QM[g] is archimedean, there exists N > 0 such that N − ‖ξ‖2 ∈ QM[g]2k1 for
some k1 ≥ k0. For all k ≥ k1, the membership z(k) ∈ S [g]2k implies that

N · (z(k))0 − ((z(k))2e1 + · · · + (z(k))2ep
) ≥ 0.

Note that y(k) = z(k)|d , hence (y(k))0 = (z(k))0. Since z(k) ∈ S [g]2k and the sequence{
(z(k))0

}∞
k=1 is bounded, one can further show that the set

{z(k)|d : z ∈ S [g]2k}∞k=1

is bounded. We refer to [38, Theorem 4.3] for more details about the proof. Therefore, the
sequence {y(k)}∞k=1 is bounded. Since QM[g] is archimedean, we also have

Rd(S) =
∞⋂
k=1

Sk, where Sk := {z|d : z ∈ S [g]2k}.
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This is shown in Proposition 3.3 of [38]. So, if ŷ is an accumulation point of {y(k)}∞k=1,
then we must have ŷ ∈ Rd(S). Similarly, if (γ̂ , ŷ, ẑ) is an accumulation point of
{(γ (k), y(k), z(k))}∞k=1, then ŷ ∈ Rd(S). As in the proof of Theorem 4.1, one can similarly
show that (γ̂ , ŷ) is a maximizer of (3.14). ��

Last, we prove that Algorithm 4.4 will terminate within finitely many steps under certain
assumptions. Like Theorem 4.7, we also assume the archimedeanness of QM[g]. When
QM[g] is not archimedean, if the set S = {ξ ∈ R

p : g(ξ) ≥ 0} is bounded, we can replace g
by g̃ = (g, N − ‖ξ‖2) where N is such that S ⊆ {‖ξ‖2 ≤ N }. Then QM[g̃] is archimedean.
Moreover, we also need to assume the strong duality between (3.13) and (3.14), which is
guaranteed under the Slater’s condition for (3.14). These assumptions typically hold for
polynomial optimization.

Theorem 4.8 Assume QM[g] is archimedean and there is no duality gap between (3.13)
and (3.14). Suppose (x∗, w∗) is a minimizer of (3.13) and (γ ∗, y∗) is a maximizer of (3.14)
satisfying:

(i) There exists k1 ∈ N such that h(x∗, ξ) = h1(ξ) + h2(ξ), with h1 ∈ QM[g]2k1 and
h2 ∈ Y ∗.

(ii) The polynomial optimization problem in ξ

{
min
ξ∈Rp

h1(ξ)

s.t. g1(ξ) ≥ 0, . . . , gm1(ξ) ≥ 0
(4.6)

has finitely many critical points u such that h1(u) = 0.

Then, when k is large enough, for every optimizer (γ (k), y(k), z(k)) of (4.2), we must have
y(k) ∈ Rd(S).

Proof Since there is no duality gap between (3.13) and (3.14),

0 = 〈 f , w∗〉 − (γ ∗ − 〈b, y∗〉) = 〈 f − (y∗)T Ax − γ ∗, w∗〉 + (Ax∗ + b)T y∗.

Due to the feasibility constraints, we further have

〈 f (x) − (y∗)T Ax − γ ∗, w∗〉 = 0, (Ax∗ + b)T y∗ = 0.

Therefore, it holds that

(Ax∗ + b)T y∗ = 〈h(x∗, ξ), y∗〉 = 〈h1(ξ), y∗〉 + 〈h2(ξ), y∗〉 = 0.

The conic membership y∗ ∈ K implies that

〈h1(ξ), y∗〉 = 〈h2(ξ), y∗〉 = 0.

We consider the polynomial optimization problem (4.6) in the variable ξ . For each order
k ≥ k1, the kth order Moment-SOS relaxation pair for solving (4.6) is

min 〈h1(ξ), z〉 s.t. z ∈ S [g]2k, z0 = 1, (4.7)

νk := max γ s.t. h1(ξ) − γ ∈ QM[g]2k . (4.8)

The archimedeanness of QM[g] implies that S is compact, so

Rd(S) = Rd(S).
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The membership y∗ ∈ K implies that y∗ ∈ Rd(S). Since

〈h1(ξ), y∗〉 = 0,

the polynomial h1(ξ) vanishes on the support of each S-representing measure for y∗, so
the optimal value of (4.6) is zero. By the given assumption, the sequence {νk} has finite
convergence to the optimal value 0 and the relaxation (4.8) achieves its optimal value for
all k ≥ k1. The optimization (4.6) has only finitely many critical points that are global
optimizers. So, Assumption 2.1 of [34] for the optimization (4.6) is satisfied. Moreover, the
given assumption also implies that (x∗, w∗) is an optimizer of (4.1) and (γ ∗, y∗, z∗) is an
optimizer of (4.2) for all k ≥ k1. Suppose (x (k), w(k)) is an arbitrary optimizer of (4.1) and
(γ (k), y(k), z(k)) is an arbitrary optimizer of (4.2), for the relaxation order k.

When (z(k))0 = 0, we have vec(1)T Mk[z(k)]vec(1) = 0. Since Mk[z(k)] 	 0,

Mk[z(k)]vec(1) = 0.

Consequently, we further have Mk[z(k)]vec(ξα) = 0 for all |α| ≤ k − 1 (see Lemma 5.7 of
[29]). Then, for each power α = β + η with |β|, |η| ≤ k − 1, one can get

(z(k))α = vec(ξβ)T Mk[z(k)]vec(ξη) = 0.

This means that z(k)|2k−2 is the zero vector and hence y(k) ∈ Rd(S).
For the case (z(k))0 > 0, let ẑ := z(k)/(z(k))0. The given assumption implies that (x∗, w∗)

is also a minimizer of (4.1) and (γ ∗, y∗, z∗) is optimal for (4.2), for all k ≥ k1. So there
is no duality gap between (4.1) and (4.2). Since (γ (k), y(k), z(k)) is optimal for (4.2), so
〈h1(ξ), z(k)〉 = 0 and hence ẑ is a minimizer of (4.7) for all k ≥ k1. By Theorem 2.2 of [35],
the minimizer z(k) must have a flat truncation z(k)|2t for some t , when k is sufficiently big.
This means that the truncation z(k)|2t , as well as y(k), has a representing measure supported
in S. Therefore, we have y(k) ∈ Rd(S). ��

The conclusion of Theorem 4.8 is guaranteed to hold under conditions (i) and (ii), which
depend on the constraints g and the set Y . These two conditions are not convenient to verify
computationally. However, in computational practice of Algorithm 4.4, there is no need to
check or verify them. The correctness of computational results by Algorithm 4.4 does not
depend on conditions (i) and (ii). In other words, the conditions (i) and (ii) are sufficient for
Algorithm 4.4 to have finite convergence, but they may not be necessary. It is possible that
the finite convergence occurs even if some of them fail to hold. In our numerical experiments,
the finite convergence is always observed. We also like to remark that the conditions (i) and
(ii) generally hold, which is a main topic of the work [36]. In particular, when h1 has generic
coefficients, the optimization (4.6) has finitely many critical points and so the condition (ii)
holds. This is shown in [34].

5 Numerical Experiments

In this section, we give numerical experiments for Algorithm 4.4 to solve distributionally
robust optimization problems. The computation is implemented in MATLAB R2018a, in a
Laptop with CPU 8th Generation Intel� CoreTM i5-8250U and RAM 16 GB. The software
GloptiPoly3 [20], YALMIP [30] and SeDuMi [48] are used for the implementation. For
neatness of presentation, we only display four decimal digits.

To apply implement Algorithm 4.4, we need a computational representation for the cone
cone(Y ). For a given set Y , it may be mathematically hard to get a computationally efficient
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description for the closure of its conic hull. However, in most applications, the set Y is often
convex and there usually exist convenient representations for cone(Y ). For instance, the
cone(Y ) is often a polyhedra, second order, or semidefinite cone, or a Cartesian product of
them. The following are some frequently appearing cases.

– If Y = {y : T y + u ≥ 0} is a nonempty polyhedron, given by some matrix T and vector
u, then

cone(Y ) = {y : T y + su ≥ 0, s ∈ R+}. (5.1)

It is also a polyhedron and is closed.
– Consider that Y = {y : A(y) + B 	 0} is given by a linear matrix inequality, for a

homogeneous linear symmetric matrix valued function A and a symmetric matrix B. If
Y is nonempty and bounded, then

cone(Y ) = {y : A(y) + sB 	 0, s ∈ R+} . (5.2)

When Y is unbounded, the cone(Y ) may not be closed and its closure cone(Y ) may be
tricky. We refer to the work [33] for such cases. When Y is given by second order conic
conditions, we can do similar things for obtaining cone(Y ).

Example 5.1 Consider the DROM problem
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
x∈R4

f (x) = −x1 − 2x2 − x3 + 2x4

s.t. inf
μ∈MEμ[h(x, ξ)] ≥ 0,

x ≥ 0, 1 − eT x ≥ 0,

(5.3)

where (the random variable ξ is univariate, i.e, p = 1)

h(x, ξ) = (x4 − x1 − 2)ξ5 + (x4 − 1)ξ4 + (2x1 + x2 + x4 + 1)ξ3

+ (2x1 − x2 + x4 − 1)ξ2 + (2 − x2 − x3)ξ,

S = [0, 3], g = 3ξ − ξ2,

Y =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩
y =

⎡
⎢⎢⎢⎣

y0
y1
...

y5

⎤
⎥⎥⎥⎦ ∈ R

6

∣∣∣∣∣∣∣∣∣

1 ≤ y0 ≤ y1 ≤ y2 ≤
y3 ≤ y4 ≤ y5 ≤ 2

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

.

The cone(Y ) is given as in (5.1). The objective f and constraints c1, c2 are all linear. We
start with k = 3, and the Algorithm 4.4 terminates in the initial loop. The optimal value F∗
and the optimizer x∗ for (3.11) are respectively

F∗ ≈ −0.0326, x∗ ≈ (0.6775, 0.0000, 0.0000, 0.3225).
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The optimizer for (4.2) is

y∗ ≈ (0.9355, 0.9355, 0.9517, 1.0163, 1.2260, 1.8710).

The measure μ for achieving y∗ = ∫ [ξ ]5dμ is supported at the points

u1 ≈ 0.9913, u2 ≈ 3.0000.

By a proper scaling, we get the measureμ∗ = 0.9957δu1 +0.0043δu2 that achieves the worst
case expectation constraint.

Example 5.2 Consider the DROM problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x∈R3

f (x) = (x1 − x3 + x1x3)
2 + (2x2 + 2x1x2 − x23 )

2

s.t. inf
μ∈MEμ[h(x, ξ)] ≥ 0,

c1(x) = 1 − x21 − x22 − x23 ≥ 0,

c2(x) = 3x3 − x21 − 2x42 ≥ 0,

(5.4)

where (the random variable ξ is bivariate, i.e, p = 2)

h(x, ξ) = (1 − x3)ξ
2
1 ξ22 + (x1 − x2 + x3 − 1)ξ1ξ

2
2

+ (x1 + x2 + x3 + 1)ξ22 + (x1 − x3)ξ
2
1 − ξ2,

S = {ξ ∈ R
2 : 1 − ξ T ξ ≥ 0}, g := 1 − ξ T ξ,

Y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
y ∈ R

N
2
4

∣∣∣∣∣∣∣∣∣∣

y00 = 1, 0.1 ≤ yα ≤ 1 (0 < |α| ≤ 4)⎛
⎜⎜⎝
y20 y11 y30 y12
y11 y02 y21 y03
y30 y21 y40 y22
y12 y03 y22 y04

⎞
⎟⎟⎠ � 2I4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

The cone(Y ) is given as in (5.2). One can verify that f and all −ci are SOS-convex. We
start with k = 2, and Algorithm 4.4 terminates in the initial loop. The optimal value F∗ and
optimizer x∗ of (3.11) are respectively

F∗ ≈ 0.0160, x∗ ≈ (0.4060, 0.0800, 0.4706).

The optimizer for (4.2) is

y∗ ≈ (0.3180, 0.2750, 0.1411, 0.2436, 0.1137, 0.0744, 0.2199, 0.0950,

0.0552, 0.0460, 0.2011, 0.0819, 0.0426, 0.0318, 0.0318).

The measure μ for achieving y∗ = ∫ [ξ ]4dμ is supported at the points

u1 ≈ (0.6325, 0.7745), u2 ≈ (0.9434, 0.3317).

By a proper scaling, we get the measureμ∗ = 0.2527δu1 +0.7473δu2 that achieves the worst
case expectation constraint.
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Example 5.3 Consider the DROM problem
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x∈R3

f (x) = x41 − 2x21 + 2x32 + x43

s.t. inf
μ∈MEμ[h(x, ξ)] ≥ 0,

c1(x) = x21 + x22 + x23 − 1 ≥ 0,

c2(x) = 4 − x21 − 2x22 − x3 ≥ 0,

(5.5)

where (the random variable ξ is bivariate, i.e, p = 2)

h(x, ξ) = (x1 + x2 + 1)ξ42 + (3x1 + x2)ξ
2
1 ξ2 + (x1 + 2x2 + x3 + 1)ξ31

+2x1 + x2 − 2x3,

S = {ξ ∈ R
2 : g := (ξ1, ξ2, 1 − eT ξ) ≥ 0},

Y =
{
y ∈ R

N
2
4

∣∣∣∣
y00 = 1, 0.2i ≤ yi0 ≤ 0.6i ,
yi0 ≥ 1.2y0i , i = 1, 2, 3, 4

}
.

In the above, cone(Y ) is given as in (5.1). The objective f and −c1 are not convex. We start
with k = 2, while the algorithm terminates at k = 3. In the last loop, the optimizers for (4.1)
and (4.2) are

w∗ ≈ (1.0000, 0.2692,−1.5454,−0.8493, 0.0725,−0.4161,−0.2287, 2.3884,

1.3125, 0.7213, 0.0195,−0.1120,−0.0616, 0.6430, 0.3534, 0.1942,

−3.6911,−2.0284,−1.1147,−0.6126, 0.0053,−0.0302, −0.0166,

0.1731, 0.0951, 0.0523,−0.9938,−0.5461,−0.3001,−0.1649,

5.7044, 3.1348, 1.7227, 0.9467, 0.5202),

y∗ ≈ (0.0871, 0.0488, 0.0383, 0.0300, 0.0188, 0.0195, 0.0184, 0.0116,

0.0073, 0.0122, 0.0113, 0.0071, 0.0045, 0.0028, 0.0094).

The optimal value F∗ ≈ −7.0017 for both of them.Themeasure for achieving y∗ = ∫ [ξ ]4dμ

is supported at the points

u1 ≈ (0.0000, 1.0000), u2 ≈ (0.6139, 0.3861).

By a proper scaling, we get the measureμ∗ = 0.0877δu1 +0.9123δu2 that achieves the worst
case expectation constraint. The point

x∗ = π(w∗) ≈ (0.2692,−1.5454,−0.8493),

is feasible for (5.5) as c1(x∗) ≈ 2.1822 and c2(x∗) ≈ 3.9919·10−8.Moreover, F∗− f (x∗) ≈
1.2204 · 10−7. By Theorem 4.2, we know F∗ is the optimal value and x∗ is an optimizer for
(5.5).

Example 5.4 Consider the DROM problem
⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min
x∈R3

f (x) = x41 − x1x2x3 + x33 + 3x1x3 + x22

s.t. inf
μ∈MEμ[h(x, ξ)] ≥ 0,

c1(x) = x1x2 − 0.25 ≥ 0,

c2(x) = 6 − x21 − 4x1x2 − x22 − x23 ≥ 0,

(5.6)
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where (the random variable ξ is bivariate, i.e, p = 2)

h(x, ξ) = (2 − x1 + x2)ξ
4
2 + (x1 + x3 + 1)ξ1ξ

2
2 + (2 − x1 + 2x2)ξ

3
2

+ (x1 + 2x2 + x3 + 2)ξ21 + (3x2 − x1)ξ
2
2 ,

S = {ξ ∈ R
2|1 ≤ ξ T ξ ≤ 4}, g = (ξ T ξ − 1, 4 − ξ T ξ),

Y =
⎧⎨
⎩y ∈ R

N
2
4

∣∣∣∣∣∣
y00 = 1,

∑
|α|≥1

y2α = 36

⎫⎬
⎭ .

The set Y is not convex. Its convex hull is ‖y‖ ≤ √
37 with y00 = 1. Hence,

cone(Y ) =
{
y ∈ R

N
2
4

∣∣∣ ‖y‖2 ≤ √
37y00

}
.

The functions f and−c1,−c2 are not convex. We begin with k = 2. The optimizers for (4.1)
and (4.2) are respectively

w∗ ≈ (1.0000, 0.6790, 0.3682,−2.0984, 0.4611, 0.2500,−1.4249, 0.1356,−0.7726,

4.4034, 0.3131, 0.1698,−0.9675, 0.0920,−0.5246, 2.9900, 0.0499,−0.2845,

1.6212,−9.2402, 0.2126, 0.1153,−0.6569, 0.0625,−0.3562, 2.0302, 0.0339,

− 0.1932, 1.1008,−6.2742, 0.0184,−0.1047, 0.5969,−3.4021, 19.3898),

y∗ ≈ (1.2272, 0.2992,−1.1902, 0.0730,−0.2902, 1.1543, 0.0178,−0.0708, 0.2814,

− 1.1194, 0.0043,−0.0173, 0.0686,−0.2729, 1.0857).

The optimal value is F∗ ≈ −12.6420 for both of them. The measure for achieving y∗ =∫ [ξ ]4dμ is μ = 1.2272δu , with u ≈ (0.2438,−0.9698) ∈ S. So μ∗ = δu . For the point

x∗ = π(w∗) ≈ (0.6790, 0.3682,−2.0984),

one can verify that x∗ is feasible for (5.6), since

c1(x
∗) ≈ −1.6654 · 10−9, c2(x

∗) ≈ 5.6235 · 10−8, F∗ − f (x∗) ≈ −7.7271 · 10−8.

By Theorem 4.2, we know x∗ is the optimizer for (5.6).

Example 5.5 (Portfolio selection [11, 22]) Consider that there exist n risky assets that can
be chosen by the investor in the financial market. The uncertain loss ri of each asset can be
described by the random risk variable ξ which admits a probability measure supported in
S = [0, 1]p . Assume the moments of μ ∈ M are constrained in the set

Y =
{
y ∈ R

N
3
3 | y000 = 1, 0.1 ≤ yα ≤ 1, |α| ≥ 1

}
.

The cone cone(Y ) can be given as in (5.1). Minimizing the portfolio loss over the ambiguity
set M is equivalent to solving the following min-max optimization problem

min
x∈Δ3

max
μ∈M Eμ [x1r1(ξ) + x2r2(ξ) + x3r3(ξ)] , (5.7)

for the simplex Δn := {x ∈ R
3
∣∣eT x = 1, x ≥ 0

}
. The functions ri (ξ) are

⎧⎪⎪⎨
⎪⎪⎩

r1(ξ) = −1 + ξ1 + ξ1ξ2 − ξ1ξ3 − 2ξ31 ,

r2(ξ) = −1 − ξ1ξ2 + ξ22 − ξ2ξ3 + ξ32 ,

r3(ξ) = −1 + ξ2ξ3 − ξ23 − ξ33 .

(5.8)
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Then (5.7) can be equivalently reformulated as
⎧
⎪⎪⎨
⎪⎪⎩

min
(x0,x)∈R×R3

x0

s.t. inf
μ∈MEμ

[
x0 − (x1r1(ξ) + x2r2(ξ) + x3r3(ξ)

)] ≥ 0,

x ≥ 0, eT x = 1.

(5.9)

ApplyingAlgorithm 4.4 to solve (5.9), we get the optimal value F∗ and the optimizer (x∗
0 , x

∗)
in the initial loop k = 2:

F∗ ≈ −1.0136, (x∗
0 , x

∗) ≈ (−1.0136, 0.1492, 0.3501, 0.5007).

The optimizer for (4.2) is

y∗ ≈ (1.0000, 0.6077, 0.4440, 0.3725, 0.3864, 0.3347, 0.2530,

0.4440, 0.2666, 0.1803, 0.2560, 0.2523, 0.1771, 0.3347,

0.2010, 0.1306, 0.4440, 0.2666, 0.1601, 0.1000).

The measure for achieving y∗ = ∫ [ξ ]4dμ is

μ = 0.5560δu1 + 0.4440δu2 ,

with the following two points in S:

u1 ≈ (0.4911,−0.0000, 0.1905), u2 ≈ (0.7538, 1.0000, 0.6005).

Since μ belongs to M, it is also the measure that achieves the worst case expectation
constraint. Therefore, the optimizer for (5.7) is x∗ and the optimal value is −1.0136.

Example 5.6 (Newsvendor problem [50]) Consider that there is a newsvendor trade product
with an uncertain daily demand. Assume the demand quantity D(ξ) is affected by a random
variable ξ ∈ R

2 such that

D(ξ) = 2 − ξ1 + ξ2 − ξ21 + 2ξ22 + ξ41 .

In each day, the newsvendor orders x units of the product at the wholesale price P1, sells the
product with quantity min{x, D(ξ)} at the retail price P2 and clears the unsold stock at the
salvage price P0. Assume that P0 < P1 < P2, then the newsvendor’s daily loss is given as

l(x, ξ) := (P1 − P2)x + (P2 − P0) · max{x − D(ξ), 0}.
Clearly, the newsboy will earn the most if he can buy the greatest order quantity that is
guaranteed to be sold out. Suppose ξ admits a probability measure supported in S and has
its true distribution contained in the ambiguity set M. Then the best order decision for the
newsvendor product can be obtained from the following DROM problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
x∈R (P1 − P2)x

s.t. inf
μ∈MEμ[D(ξ) − x] ≥ 0,

x ≥ 0.

(5.10)

Suppose P0 = 0.25, P1 = 0.5, P2 = 1, and

S = [0, 5]2, Y =
{
y ∈ R

N
2
4

∣∣∣∣
y00 = 1, 1 ≤ y01 ≤ y02 ≤ 4
2i ≤ yi0 ≤ 4i , i = 1, 2, 3, 4

}
.
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The cone cone(Y ) can be given as in (5.1). Applying Algorithm 4.4 to solve (5.10), we get
the optimal value F and the optimizer x∗ respectively

F∗ ≈ −7.5000, x∗ ≈ 15.0000.

The optimizer of (4.2) is

y∗ ≈ (0.5000, 1.0000, 0.5000, 2.0000, 1.0000, 0.5000, 4.0000, 2.0000,

1.0000, 0.5000, 8.0000, 4.0000, 2.0000, 1.0000, 0.5000).

The measure for achieving y∗ = ∫ [ξ ]4dμ is μ = 0.5δu with

u = (2.0000, 1.0000) ∈ S.

So μ∗ = δu achieves the worst case expectation constraint.

We would like to remark that the ambiguity set M can be constructed by samples or
historic data. It can also be updated as the sampling size increases. Assume the support set
S is given and each μ ∈ M is a probability measure. The moment ambiguity set Y can be
estimated by statistical samplings. Suppose T = {ξ (1), . . . , ξ (N )} is a given sample set for
ξ . One can randomly choose T1, . . . , Ts ⊆ T such that each Ti contains 
N/2� samples.
Choose a smaller sample size s, say, s = 5. For a given degree d , choose the moment vectors
l, u ∈ R

N
n
d such that

lα = min
j=1,...,s

{ 1

|Tj |
∑
i∈Tj

(ξ (i))α,
1

|T \ Tj |
∑

i∈T \Tj

(ξ (i))α
}
,

uα = max
j=1,...,s

{ 1

|Tj |
∑
i∈Tj

(ξ (i))α,
1

|T \ Tj |
∑

i∈T \Tj

(ξ (i))α
}

for every power α ∈ N
n
d . The moment constraining set Y , e.g., as in Example 5.5, can be

estimated as
Y = {y ∈ R

N
n
d : l ≤ y ≤ u}. (5.11)

Other types of moment constraining set Y can be estimated similarly. Suppose each ξ (i)

independently follows the distribution of ξ . As the sample size N increases, the moment
ambiguity set M with Y in (5.11) is expected to give a better approximation of the true
distribution of ξ . This is indicated by the Law of Large Numbers and the convergence results
of sample average approximations. The following is an example for how to do this.

Example 5.7 Consider the portfolio selection optimization problem as in Example 5.5. The
DROM is (5.7), or equivalently (5.9). Assume each ri (ξ) is given as in (5.8). Suppose
ξ = (ξ1, ξ2, ξ3) is the random variable, where each ξi is independently distributed. Assume
ξ1 follows the uniform distribution on [0, 1], ξ2 follows the truncated standard normal distri-
bution on [0, 1] and ξ3 follows the truncated exponential distribution with the mean value 0.5
on [0, 1]. We use the MATLAB commands makedist and truncate to generate samples
of ξ with the sample size N ∈ {50, 100, 200}, and then construct Y as in (5.11) with s = 5
and d = n = 3.

(i). When N = 50, we get that

l = (1.0000, 0.4354, 0.3779, 0.3873, 0.2757, 0.1916, 0.1872,

0.1975, 0.1549, 0.2018, 0.2027, 0.1299, 0.1161, 0.1111,

0.0848, 0.1025, 0.1193, 0.0801, 0.0866, 0.1207),
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Table 1 Computational results for Example 5.7

Case F∗ x∗ θ u1, u2, u3

(i) −0.9711

⎡
⎣
0.0159
0.2824
0.7017

⎤
⎦

⎡
⎣
0.0746
0.7297
0.1957

⎤
⎦

⎡
⎣
0.0000
0.4555
0.1266

⎤
⎦ ,

⎡
⎣
0.5675
0.0000
0.1074

⎤
⎦ ,

⎡
⎣
0.8492
1.0000
0.3832

⎤
⎦

(ii) −0.9743

⎡
⎣
0.0163
0.2711
0.7125

⎤
⎦

⎡
⎣
0.0749
0.7320
0.1931

⎤
⎦

⎡
⎣
0.0000
0.5170
0.1563

⎤
⎦ ,

⎡
⎣
0.5898
0.0000
0.1103

⎤
⎦ ,

⎡
⎣
0.8103
1.0000
0.4343

⎤
⎦

(iii) −0.9749

⎡
⎣
0.0171
0.2829
0.6999

⎤
⎦

⎡
⎣
0.0937
0.7096
0.1967

⎤
⎦

⎡
⎣
0.0000
0.4666
0.1370

⎤
⎦ ,

⎡
⎣
0.5616
0.0000
0.1122

⎤
⎦ ,

⎡
⎣
0.8450
1.0000
0.4474

⎤
⎦

u = (1.0000, 0.5803, 0.4606, 0.4808, 0.3938, 0.2696, 0.2579,

0.2838, 0.2109, 0.3293, 0.2913, 0.1870, 0.1821, 0.1662,

0.1091, 0.1793, 0.2027, 0.1235, 0.1361, 0.2560).

(ii). For N = 100, we get that

l = (1.0000, 0.4935, 0.3799, 0.4135, 0.3150, 0.1828, 0.2065,

0.1975, 0.1745, 0.2459, 0.2261, 0.1061, 0.1268, 0.0924,

0.0837, 0.1280, 0.1195, 0.0926, 0.1102, 0.1709),

u = (1.0000, 0.5882, 0.4545, 0.5182, 0.4156, 0.2529, 0.2838,

0.2833, 0.2294, 0.3545, 0.3178, 0.1768, 0.1941, 0.1565,

0.1242, 0.1844, 0.2035, 0.1451, 0.1570, 0.2716).

(iii). For N = 200, we get that

l = (1.0000, 0.4803, 0.4177, 0.4157, 0.3170, 0.1957, 0.2253,

0.2508, 0.1784, 0.2580, 0.2310, 0.1274, 0.1459, 0.1170,

0.0875, 0.1348, 0.1719, 0.0998, 0.1048, 0.1886),

u = (1.0000, 0.5647, 0.4698, 0.5137, 0.3939, 0.2712, 0.2738,

0.2883, 0.2250, 0.3387, 0.3097, 0.1904, 0.1950, 0.1662,

0.1300, 0.1889, 0.2062, 0.1396, 0.1510, 0.2470).

Applying Algorithm 4.4, we get the optimal value F∗ and the optimizer (x∗
0 , x

∗) in the initial
loop k = 2 for each case. The computational results are given in Table 1. Since x∗

0 = F∗
and y∗ admits a measure μ = θ1δu1 + θδu2 + θ3δu3 , we only list F∗, θ = (θ1, θ2, θ3) and
u1, u2, u3 for convenience. As the sample size increases, the optimal value of F∗ improves.
This indicates that the ambiguity set can be estimated by sampling averages and the accuracy
increases as the sampling size increases.
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6 Conclusions and Discussions

This paper studies distributionally robust optimization when the ambiguity set is given by
moment constraints. The DROM has a deterministic objective, some constraints on the deci-
sion variable and a worst case expectation constraint. The distributionally robust min-max
optimization is a special case of DROM. The objective and constraints are assumed to be
polynomial functions in the decision variable. Under the SOS-convexity assumption, we
show that the DROM is equivalent to a linear conic optimization problem with moment con-
straints, as well as the psd polynomial conic condition. The Moment-SOS relaxation method
(i.e., Algorithm 4.4) is proposed to solve the linear conic optimization. The method can deal
with moments of any order. Moreover, it not only returns the optimal value and optimizers
for the original DROM, but also gives the measure that achieves the worst case expecta-
tion constraint. Under some general assumptions (e.g., the archimedeanness), we proved the
asymptotic and finite convergence of the proposed method (see Theorems 4.6, 4.7 and 4.8).
Numerical examples, as well as some applications, are given to show how it solves DROM
problems.

The distributionally robust optimization is attracting broad interests in various applica-
tions. There is much future work to do. In this paper, we assumed the random function h(x, ξ)

is linear in the decision variable x . How can we solve the DROM if h(x, ξ) is not linear in x?
To prove the DROM (3.1) is equivalent to the linear conic optimization (3.13), we assumed
the objective and constraints are SOS-convex. When they are not SOS-convex, how can we
get equivalent linear conic optimization for (3.1)? They are important future work.
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